Sample records for cycle statistical model

  1. Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.

    2000-01-01

    Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.

  2. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  3. Evaluation of The Operational Benefits Versus Costs of An Automated Cargo Mover

    DTIC Science & Technology

    2016-12-01

    logistics footprint and life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically...life-cycle cost are presented as part of this report. Analysis of modeling and simulation results identified statistically significant differences...Error of Estimation. Source: Eskew and Lawler (1994). ...........................75 Figure 24. Load Results (100 Runs per Scenario

  4. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  5. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2016-01-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  6. Statistical tests of simple earthquake cycle models

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM < 4.0 × 1019 Pa s and ηM > 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  7. Assessment of variations in thermal cycle life data of thermal barrier coated rods

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.

  8. Assessment of variations in thermal cycle life data of thermal barrier coated rods

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1981-01-01

    An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.

  9. ANALYSIS OF MERCURY IN VERMONT AND NEW HAMPSHIRE LAKES: EVALUATION OF THE REGIONAL MERCURY CYCLING MODEL

    EPA Science Inventory

    An evaluation of the Regional Mercury Cycling Model (R-MCM, a steady-state fate and transport model used to simulate mercury concentrations in lakes) is presented based on its application to a series of 91 lakes in Vermont and New Hampshire. Visual and statistical analyses are pr...

  10. Statistical tests of simple earthquake cycle models

    USGS Publications Warehouse

    Devries, Phoebe M. R.; Evans, Eileen

    2016-01-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  11. Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.

    PubMed

    Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier

    2010-07-01

    We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.

  12. The association between physical environment and cycling to school among Turkish and Moroccan adolescents in Amsterdam.

    PubMed

    Mäki-Opas, Tomi E; de Munter, Jeroen; Maas, Jolanda; den Hertog, Frank; Kunst, Anton E

    2014-08-01

    This study examined the effect of physical environment on cycling to and from school among boys and girls of Turkish and Moroccan origin living in Amsterdam. The LASER study (n = 697) was an interview study that included information on cycling to and from school and the perceived physical environment. Objective information on physical environment was gathered from Statistics Netherlands and the Department for Research and Statistics at the Municipality of Amsterdam. Structural equation modelling with latent variables was applied, taking into account age, gender, self-assessed health, education, country of origin, and distance to school. For every unit increase in the latent variable scale for bicycle-friendly infrastructure, we observed a 21% increase in the odds for cycling to and from school. The association was only borderline statistically significant and disappeared after controlling for distance to school. The enjoyable environment was not associated with cycling to and from school after controlling for all background factors. Bicycle-friendly infrastructure and an enjoyable environment were not important factors for cycling to and from school among those with no cultural cycling background.

  13. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar web page and are updated as new monthly observations become available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to calculate the deviation from the mean cycle of the solar index at the next future time interval. The forecasts are initiated for a given cycle after about 8 to 9 monthly observations from the start of the cycle are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.

  14. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  15. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  16. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  17. The forecasting of menstruation based on a state-space modeling of basal body temperature time series.

    PubMed

    Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio

    2017-09-20

    Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  18. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.

  19. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  20. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  1. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  2. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  3. Origin of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    North, G. R.

    1984-01-01

    A climate model resolving the seasonal cycle and the two horizontal dimensions was developed and applied to several problems of current interest. Models of this type are useful when for various reasons a general circulation model experiment is not warranted or not feasible. For example, in cases where the signal to natural variability is small it may be advantageous to first consider such a statistical dynamical model because extremely long runs may be necessary in the application. In this case the simpler statistical dynamical model serves as a pilot study device. The model developed is a thermodynamic model whose solution yields the equilibrium seasonal cycle for the surface temperature field over the globe. The model is essentially a statement of the conservation of heat energy for individual columns of the earth atmosphere system. Various terms such as the infrared radiation flux to space are parameterized with earth radiation budget data from satellites such as Nimbus 6. The primary agent modulating the seasonal cycle amplitude is the heat capacity per unit area which is a strong function of surface type -- ocean surface can store 60 times more heat per unit time than land. By adjusting its few empirical parameters the model can be brought into remarkable agreement with the observed seasonal cycle. The model is then very useful for looking at the dependence of the seasonal cycle of the temperature on such externally defined variables as the Earth's orbital elements (eccentricity, tilt, precession of equinoxes) or the configuration of land-sea geography which can be changed by continental drift.

  4. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.

    2017-01-01

    The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to many space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar webpage and are updated as new monthly observations come available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to predict the deviation from the mean cycle of the solar index at the next future time interval. The prediction algorithm is applied recursively to produce monthly smoothed solar index values for the remaining of the cycle. The forecasts are initiated for a given cycle after about 8 to 12 months of observations are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.

  5. PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST

    PubMed Central

    Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.

    2015-01-01

    Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750

  6. First-cycle blood counts and subsequent neutropenia, dose reduction, or delay in early-stage breast cancer therapy.

    PubMed

    Silber, J H; Fridman, M; DiPaola, R S; Erder, M H; Pauly, M V; Fox, K R

    1998-07-01

    If patients could be ranked according to their projected need for supportive care therapy, then more efficient and less costly treatment algorithms might be developed. This work reports on the construction of a model of neutropenia, dose reduction, or delay that rank-orders patients according to their need for costly supportive care such as granulocyte growth factors. A case series and consecutive sample of patients treated for breast cancer were studied. Patients had received standard-dose adjuvant chemotherapy for early-stage nonmetastatic breast cancer and were treated by four medical oncologists. Using 95 patients and validated with 80 additional patients, development models were constructed to predict one or more of the following events: neutropenia (absolute neutrophil count [ANC] < or = 250/microL), dose reduction > or = 15% of that scheduled, or treatment delay > or = 7 days. Two approaches to modeling were attempted. The pretreatment approach used only pretreatment predictors such as chemotherapy regimen and radiation history; the conditional approach included, in addition, blood count information obtained in the first cycle of treatment. The pretreatment model was unsuccessful at predicting neutropenia, dose reduction, or delay (c-statistic = 0.63). Conditional models were good predictors of subsequent events after cycle 1 (c-statistic = 0.87 and 0.78 for development and validation samples, respectively). The depth of the first-cycle ANC was an excellent predictor of events in subsequent cycles (P = .0001 to .004). Chemotherapy plus radiation also increased the risk of subsequent events (P = .0011 to .0901). Decline in hemoglobin (HGB) level during the first cycle of therapy was a significant predictor of events in the development study (P = .0074 and .0015), and although the trend was similar in the validation study, HGB decline failed to reach statistical significance. It is possible to rank patients according to their need of supportive care based on blood counts observed in the first cycle of therapy. Such rankings may aid in the choice of appropriate supportive care for patients with early-stage breast cancer.

  7. A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu

    2013-05-10

    Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less

  8. Life Cycle of Tropical Convection and Anvil in Observations and Models

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  9. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  10. Hospital financial management: what is the link between revenue cycle management, profitability, and not-for-profit hospitals' ability to grow equity?

    PubMed

    Singh, Simone Rauscher; Wheeler, John

    2012-01-01

    Effective revenue cycle management--from appointment scheduling and patient registration at the front end of the revenue cycle to billing and cash collections at the back end--plays a crucial role in hospitals' efforts to improve their financial performance. Using data for 1,397 bond-issuing, not-for-profit US hospitals for 2000 to 2007, this study analyzed the relationship between hospitals' performance at managing the revenue cycle and their profitability and ability to build equity capital. Hospital-level fixed effects regression analysis was used to model four different measures of profitability and equity capital as functions of two key financial indicators of revenue cycle management--amount of patient revenue and speed of revenue collection. The results indicated that higher amounts of patient revenue in relation to a hospital's assets were associated with statistically significant increases in operating and total profit margins, free cash flow, and equity capital (p < 0.01 for all four models); that is, hospitals that generated more patient revenue per dollar of assets invested reported improved financial performance. Likewise, a statistically significant link existed between lower revenue collection periods and all four indicators of hospital financial performance (p < 0.01 for three models; p < 0.05 for one model). Hospitals that collected faster on their patient revenue reported higher profit margins and larger equity values. For revenue cycle managers, these findings represent good news: Streamlining a hospital's management of the patient revenue cycle can advance the organization's financial viability by improving profitability and enabling equity growth.

  11. Evaluation of the ecological relevance of mysid toxicity tests using population modeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn-Hines, A.; Munns, W.R. Jr.; Lussier, S.

    1995-12-31

    A number of acute and chronic bioassay statistics are used to evaluate the toxicity and risks of chemical stressors to the mysid shrimp, Mysidopsis bahia. These include LC{sub 50}S from acute tests, NOECs from 7-day and life-cycle tests, and the US EPA Water Quality Criteria Criterion Continuous Concentrations (CCC). Because these statistics are generated from endpoints which focus upon the responses of individual organisms, their relationships to significant effects at higher levels of ecological organization are unknown. This study was conducted to evaluate the quantitative relationships between toxicity test statistics and a concentration-based statistic derived from exposure-response models describing populationmore » growth rate ({lambda}) to stressor concentration. This statistic, C{sup {sm_bullet}} (concentration where {lambda} = I, zero population growth) describes the concentration above which mysid populations are projected to decline in abundance as determined using population modeling techniques. An analysis of M. bahia responses to 9 metals and 9 organic contaminants indicated the NOEC from life-cycle tests to be the best predictor of C{sup {sm_bullet}}, although the acute LC{sub 50} predicted population-level response surprisingly well. These analyses provide useful information regarding uncertainties of extrapolation among test statistics in assessments of ecological risk.« less

  12. Collaborative Professional Development for Statistics Teaching: A Case Study of Two Middle-School Mathematics Teachers

    ERIC Educational Resources Information Center

    de Oliveira Souza, Leandro; Lopes, Celi Espasandin; Pfannkuch, Maxine

    2015-01-01

    The recent introduction of statistics into the Brazilian curriculum has presented a multi-problematic situation for teacher professional development. Drawing on research in the areas of teacher development and statistical inquiry, we propose a Teacher Professional Development Cycle (TPDC) model. This paper focuses on two teachers who planned a…

  13. Statistical cyclicity of the supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Rolf, T.; Coltice, N.; Tackley, P. J.

    2014-04-01

    Supercontinents like Pangea impose a first-order control on Earth's evolution as they modulate global heat loss, sea level, climate, and biodiversity. In a traditional view, supercontinents form and break up in a regular, perhaps periodic, manner in a cycle lasting several 100 Myr as reflected in the assembly times of Earth's major continental aggregations: Columbia, Rodinia, and Pangea. However, modern views of the supercontinent cycle propose a more irregular evolution on the basis of an improved understanding of the Precambrian geologic record. Here we use fully dynamic spherical mantle convection models featuring plate-like behavior and continental drift to investigate supercontinent formation and breakup. We further dismiss the concept of regularity but suggest a statistical cyclicity in which the supercontinent cycle may have a characteristic period imposed by mantle and lithosphere properties, but this is hidden in immense fluctuations between different cycles that arise from the chaotic nature of mantle flow.

  14. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  15. Climate change or climate cycles? Snowpack trends in the Olympic and Cascade Mountains, Washington, USA.

    PubMed

    Barry, Dwight; McDonald, Shea

    2013-01-01

    Climate change could significantly influence seasonal streamflow and water availability in the snowpack-fed watersheds of Washington, USA. Descriptions of snowpack decline often use linear ordinary least squares (OLS) models to quantify this change. However, the region's precipitation is known to be related to climate cycles. If snowpack decline is more closely related to these cycles, an OLS model cannot account for this effect, and thus both descriptions of trends and estimates of decline could be inaccurate. We used intervention analysis to determine whether snow water equivalent (SWE) in 25 long-term snow courses within the Olympic and Cascade Mountains are more accurately described by OLS (to represent gradual change), stationary (to represent no change), or step-stationary (to represent climate cycling) models. We used Bayesian information-theoretic methods to determine these models' relative likelihood, and we found 90 models that could plausibly describe the statistical structure of the 25 snow courses' time series. Posterior model probabilities of the 29 "most plausible" models ranged from 0.33 to 0.91 (mean = 0.58, s = 0.15). The majority of these time series (55%) were best represented as step-stationary models with a single breakpoint at 1976/77, coinciding with a major shift in the Pacific Decadal Oscillation. However, estimates of SWE decline differed by as much as 35% between statistically plausible models of a single time series. This ambiguity is a critical problem for water management policy. Approaches such as intervention analysis should become part of the basic analytical toolkit for snowpack or other climatic time series data.

  16. Network Polymers Formed Under Nonideal Conditions.

    DTIC Science & Technology

    1986-12-01

    the system or the limited ability of the statistical model to account for stochastic correlations. The viscosity of the reacting system was measured as...based on competing reactions (ring, chain) and employs equilibrium chain statistics . The work thus far has been limited to single cycle growth on an...polymerizations, because a large number of differential equations must be solved. The Makovian approach (sometimes referred to as the statistical or

  17. Stochastic Fluctuations in a Babcock-Leighton Model of the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul; Dikpati, Mausumi

    2000-11-01

    We investigate the effect of stochastic fluctuations on a flux transport model of the solar cycle based on the Babcock-Leighton mechanism. Specifically, we make use of our recent flux transport model (Dikpati & Charbonneau) to investigate the consequences of introducing large-amplitude stochastic fluctuations in either or both the meridional flow and poloidal source term in the model. Solar cycle-like oscillatory behavior persists even for fluctuation amplitudes as high as 300%, thus demonstrating the inherent robustness of this class of solar cycle models. We also find that high-amplitude fluctuations lead to a spread of cycle amplitude and duration showing a statistically significant anticorrelation, comparable to that observed in sunspot data. This is a feature of the solar cycle that is notoriously difficult to reproduce with dynamo models based on mean field electrodynamics and relying only on nonlinearities associated with the back-reaction of the Lorentz force to produce amplitude modulation. Another noteworthy aspect of our flux transport model is the fact that meridional circulation in the convective envelope acts as a ``clock'' regulating the tempo of the solar cycle; shorter-than-average cycles are typically soon followed by longer-than-average cycles. In other words, the oscillation exhibits good phase locking, a property that also characterizes the solar activity cycle. This shows up quite clearly in our model, but we argue that it is in fact a generic property of flux transport models based on the Babcock-Leighton mechanism, and relies on meridional circulation as the primary magnetic field transport agent.

  18. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  19. Disconcordance in Statistical Models of Bisphenol A and Chronic Disease Outcomes in NHANES 2003-08

    PubMed Central

    Casey, Martin F.; Neidell, Matthew

    2013-01-01

    Background Bisphenol A (BPA), a high production chemical commonly found in plastics, has drawn great attention from researchers due to the substance’s potential toxicity. Using data from three National Health and Nutrition Examination Survey (NHANES) cycles, we explored the consistency and robustness of BPA’s reported effects on coronary heart disease and diabetes. Methods And Findings We report the use of three different statistical models in the analysis of BPA: (1) logistic regression, (2) log-linear regression, and (3) dose-response logistic regression. In each variation, confounders were added in six blocks to account for demographics, urinary creatinine, source of BPA exposure, healthy behaviours, and phthalate exposure. Results were sensitive to the variations in functional form of our statistical models, but no single model yielded consistent results across NHANES cycles. Reported ORs were also found to be sensitive to inclusion/exclusion criteria. Further, observed effects, which were most pronounced in NHANES 2003-04, could not be explained away by confounding. Conclusions Limitations in the NHANES data and a poor understanding of the mode of action of BPA have made it difficult to develop informative statistical models. Given the sensitivity of effect estimates to functional form, researchers should report results using multiple specifications with different assumptions about BPA measurement, thus allowing for the identification of potential discrepancies in the data. PMID:24223205

  20. Modeling Cell Size Regulation: From Single-Cell-Level Statistics to Molecular Mechanisms and Population-Level Effects.

    PubMed

    Ho, Po-Yi; Lin, Jie; Amir, Ariel

    2018-05-20

    Most microorganisms regulate their cell size. In this article, we review some of the mathematical formulations of the problem of cell size regulation. We focus on coarse-grained stochastic models and the statistics that they generate. We review the biologically relevant insights obtained from these models. We then describe cell cycle regulation and its molecular implementations, protein number regulation, and population growth, all in relation to size regulation. Finally, we discuss several future directions for developing understanding beyond phenomenological models of cell size regulation.

  1. Promoting students’ mathematical problem-solving skills through 7e learning cycle and hypnoteaching model

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Suryadi, D.; Dahlan, J. A.

    2018-01-01

    The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).

  2. Sunspot random walk and 22-year variation

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua

    2012-01-01

    We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.

  3. Simulating Metabolism with Statistical Thermodynamics

    PubMed Central

    Cannon, William R.

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed. PMID:25089525

  4. Simulating metabolism with statistical thermodynamics.

    PubMed

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  5. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  6. The mean time-limited crash rate of stock price

    NASA Astrophysics Data System (ADS)

    Li, Yun-Xian; Li, Jiang-Cheng; Yang, Ai-Jun; Tang, Nian-Sheng

    2017-05-01

    In this article we investigate the occurrence of stock market crash in an economy cycle. Bayesian approach, Heston model and statistical-physical method are considered. Specifically, Heston model and an effective potential are employed to address the dynamic changes of stock price. Bayesian approach has been utilized to estimate the Heston model's unknown parameters. Statistical physical method is used to investigate the occurrence of stock market crash by calculating the mean time-limited crash rate. The real financial data from the Shanghai Composite Index is analyzed with the proposed methods. The mean time-limited crash rate of stock price is used to describe the occurrence of stock market crash in an economy cycle. The monotonous and nonmonotonous behaviors are observed in the behavior of the mean time-limited crash rate versus volatility of stock for various cross correlation coefficient between volatility and price. Also a minimum occurrence of stock market crash matching an optimal volatility is discovered.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less

  8. Visually Evoked Potential Markers of Concussion History in Patients with Convergence Insufficiency

    PubMed Central

    Poltavski, Dmitri; Lederer, Paul; Cox, Laurie Kopko

    2017-01-01

    ABSTRACT Purpose We investigated whether differences in the pattern visual evoked potentials exist between patients with convergence insufficiency and those with convergence insufficiency and a history of concussion using stimuli designed to differentiate between magnocellular (transient) and parvocellular (sustained) neural pathways. Methods Sustained stimuli included 2-rev/s, 85% contrast checkerboard patterns of 1- and 2-degree check sizes, whereas transient stimuli comprised 4-rev/s, 10% contrast vertical sinusoidal gratings with column width of 0.25 and 0.50 cycles/degree. We tested two models: an a priori clinical model based on an assumption of at least a minimal (beyond instrumentation’s margin of error) 2-millisecond lag of transient response latencies behind sustained response latencies in concussed patients and a statistical model derived from the sample data. Results Both models discriminated between concussed and nonconcussed groups significantly above chance (with 76% and 86% accuracy, respectively). In the statistical model, patients with mean vertical sinusoidal grating response latencies greater than 119 milliseconds to 0.25-cycle/degree stimuli (or mean vertical sinusoidal latencies >113 milliseconds to 0.50-cycle/degree stimuli) and mean vertical sinusoidal grating amplitudes of less than 14.75 mV to 0.50-cycle/degree stimuli were classified as having had a history of concussion. The resultant receiver operating characteristic curve for this model had excellent discrimination between the concussed and nonconcussed (area under the curve = 0.857; P < .01) groups with sensitivity of 0.92 and specificity of 0.80. Conclusions The results suggest a promising electrophysiological approach to identifying individuals with convergence insufficiency and a history of concussion. PMID:28609417

  9. Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.

    2016-12-01

    The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.

  10. Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.

    PubMed

    Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J

    2016-09-01

    This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, doi:10.1002/ 2015PA002850.

  12. ICSI Outcome in Infertile Couples with Different Causes of Infertility: A Cross-Sectional Study.

    PubMed

    Ashrafi, Mahnaz; Jahanian Sadatmahalleh, Shahideh; Akhoond, Mohammad Reza; Ghaffari, Firouzeh; Zolfaghari, Zahra

    2013-07-01

    Different success rate of Intracytoplasmic Sperm injection (ICSI) has been observed in various causes of infertility. In this study, we evaluated the relation between ICSI outcome and different causes of infertility. We also aimed to examine parameters that might predict the pregnancy success rate following ICSI. This cross sectional study included1492 infertile women referred to Infertility Center of Royan Institute between 2010 and 2011. We assigned two groups including pregnant (n=504) and non-pregnant (n=988), while all participants underwent ICSI cycles. All statistics were performed by SPSS program. Statistical Analysis was carried out using Chi-square and t test. Logistic regression was done to build a prediction model in ICSI cycles. The overall clinical pregnancy rate in our study was 33.9% (n=1492). There was a statistically significant difference in mean serum concentration on day 3 after application of luteinizing hormone (LH) between the pregnant and the non-pregnant groups (p<0.05). However, There were no significant differences between two groups in the serum concentrations on day 3 after application of the following hormones: folliclestimulating hormone (FSH), thyroid-stimulating hormone (TSH), and metoclopramidestimulated prolactin (PRL) . We found no association between different causes of infertility and clinical outcomes . The number of metaphase II (MII) oocytes, embryo transfer, number of good embryo (grade A, B, AB), total dose of gonadotropin, endometrial thickness, maternal age, number of previous cycle were statistically significant between two groups (p<0.05). Our results indicate that ICSI in an effective option in couples with different causes of infertility. These variables were integrated into a statistical model to allow the prediction for the chance of pregnancy following ICSI cycles. It is required that each infertility center gather enough information about the causes of infertility in order to provide more information and better assistance to patients. Therefore, we suggest that physicians prepare adequate training and required information regarding these procedures for infertile couples in order to improve their knowledge.

  13. Evaluation of Statistical Methods for Modeling Historical Resource Production and Forecasting

    NASA Astrophysics Data System (ADS)

    Nanzad, Bolorchimeg

    This master's thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed "cycle-jumping" wherein overlap of multiple cycles is limited. The model is designed in a way that each cycle is described by the same three parameters as conventional multicyclic Hubbert model and every two cycles are connected with a transition width. Transition width indicates the shift from one cycle to the next and is described as weighted coaddition of neighboring two cycles. It is determined by three parameters: transition year, transition width, and gamma parameter for weighting. The cycle-jumping method provides superior model compared to the conventional multicyclic Hubbert model and reflects historical production behavior more reasonably and practically, by better modeling of the effects of technological transitions and socioeconomic factors that affect historical resource production behavior by explicitly considering the form of the transitions between production cycles.

  14. Understanding Solar Cycle Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to amore » generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.« less

  15. Characterization of the Body-to-Body Propagation Channel for Subjects during Sports Activities.

    PubMed

    Mohamed, Marshed; Cheffena, Michael; Moldsvor, Arild

    2018-02-18

    Body-to-body wireless networks (BBWNs) have great potential to find applications in team sports activities among others. However, successful design of such systems requires great understanding of the communication channel as the movement of the body components causes time-varying shadowing and fading effects. In this study, we present results of the measurement campaign of BBWN during running and cycling activities. Among others, the results indicated the presence of good and bad states with each state following a specific distribution for the considered propagation scenarios. This motivated the development of two-state semi-Markov model, for simulation of the communication channels. The simulation model was validated using the available measurement data in terms of first and second order statistics and have shown good agreement. The first order statistics obtained from the simulation model as well as the measured results were then used to analyze the performance of the BBWNs channels under running and cycling activities in terms of capacity and outage probability. Cycling channels showed better performance than running, having higher channel capacity and lower outage probability, regardless of the speed of the subjects involved in the measurement campaign.

  16. A statistical model for combustion resonance from a DI diesel engine with applications

    NASA Astrophysics Data System (ADS)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  17. A fractal comparison of real and Austrian business cycle models

    NASA Astrophysics Data System (ADS)

    Mulligan, Robert F.

    2010-06-01

    Rescaled range and power spectral density analysis are applied to examine a diverse set of macromonetary data for fractal character and stochastic dependence. Fractal statistics are used to evaluate two competing models of the business cycle, Austrian business cycle theory and real business cycle theory. Strong evidence is found for antipersistent stochastic dependence in transactions money (M1) and components of the monetary aggregates most directly concerned with transactions, which suggests an activist monetary policy. Savings assets exhibit persistent long memory, as do those monetary aggregates which include savings assets, such as savings money (M2), M2 minus small time deposits, and money of zero maturity (MZM). Virtually all measures of economic activity display antipersistence, and this finding is invariant to whether the measures are adjusted for inflation, including real gross domestic product, real consumption expenditures, real fixed private investment, and labor productivity. This strongly disconfirms real business cycle theory.

  18. Statistical analysis of lithium iron sulfide status cell cycle life and failure mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, E.C.; Battles, J.E.; Miller, W.E.

    1983-08-01

    A statistical model was developed for life cycle testing of electrochemical cell life cycle trials and verified experimentally. The Weibull distribution was selected to predict the end of life for a cell, based on a 20 percent loss of initial stabilized capacity or a decrease to less than 95 percent coulombic efficiency. Groups of 12 or more Li-alloy/FeS cells were cycled to determine the mean time to failure (MTTF) and also to identify the failure modes. The cells were all full size electric vehicle batteries with 150-350 A-hr capacity. The Weibull shape factors were determined and verified in prediction ofmore » the number of cell failures in two 10 cell modules. The short circuit failure in the cells with BN-felt and MgO powder separators were found to be caused by the formation of Li-Al protrusions that penetrated the BN-felt separators, and the extrusion of active material at the edge of the electrodes.« less

  19. A Bayesian Joint Model of Menstrual Cycle Length and Fecundity

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.

    2015-01-01

    Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923

  20. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  1. Using mental mapping to unpack perceived cycling risk.

    PubMed

    Manton, Richard; Rau, Henrike; Fahy, Frances; Sheahan, Jerome; Clifford, Eoghan

    2016-03-01

    Cycling is the most energy-efficient mode of transport and can bring extensive environmental, social and economic benefits. Research has highlighted negative perceptions of safety as a major barrier to the growth of cycling. Understanding these perceptions through the application of novel place-sensitive methodological tools such as mental mapping could inform measures to increase cyclist numbers and consequently improve cyclist safety. Key steps to achieving this include: (a) the design of infrastructure to reduce actual risks and (b) targeted work on improving safety perceptions among current and future cyclists. This study combines mental mapping, a stated-preference survey and a transport infrastructure inventory to unpack perceptions of cycling risk and to reveal both overlaps and discrepancies between perceived and actual characteristics of the physical environment. Participants translate mentally mapped cycle routes onto hard-copy base-maps, colour-coding road sections according to risk, while a transport infrastructure inventory captures the objective cycling environment. These qualitative and quantitative data are matched using Geographic Information Systems and exported to statistical analysis software to model the individual and (infra)structural determinants of perceived cycling risk. This method was applied to cycling conditions in Galway City (Ireland). Participants' (n=104) mental maps delivered data-rich perceived safety observations (n=484) and initial comparison with locations of cycling collisions suggests some alignment between perception and reality, particularly relating to danger at roundabouts. Attributing individual and (infra)structural characteristics to each observation, a Generalised Linear Mixed Model statistical analysis identified segregated infrastructure, road width, the number of vehicles as well as gender and cycling experience as significant, and interactions were found between individual and infrastructural variables. The paper concludes that mental mapping is a highly useful tool for assessing perceptions of cycling risk with a strong visual aspect and significant potential for public participation. This distinguishes it from more traditional cycling safety assessment tools that focus solely on the technical assessment of cycling infrastructure. Further development of online mapping tools is recommended as part of bicycle suitability measures to engage cyclists and the general public and to inform 'soft' and 'hard' cycling policy responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. II. Reference Dynamo Solutions

    NASA Astrophysics Data System (ADS)

    Lemerle, Alexandre; Charbonneau, Paul

    2017-01-01

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  3. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  4. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.

  5. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  6. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  7. TOMS and SBUV Data: Comparison to 3D Chemical-Transport Model Results

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Steenrod, Steve; Frith, Stacey

    2003-01-01

    We have updated our merged ozone data (MOD) set using the TOMS data from the new version 8 algorithm. We then analyzed these data for contributions from solar cycle, volcanoes, QBO, and halogens using a standard statistical time series model. We have recently completed a hindcast run of our 3D chemical-transport model for the same years. This model uses off-line winds from the finite-volume GCM, a full stratospheric photochemistry package, and time-varying forcing due to halogens, solar uv, and volcanic aerosols. We will report on a parallel analysis of these model results using the same statistical time series technique as used for the MOD data.

  8. Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1981-01-01

    A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.

  9. Prognostic value of cell cycle regulatory proteins in muscle-infiltrating bladder cancer.

    PubMed

    Galmozzi, Fabia; Rubagotti, Alessandra; Romagnoli, Andrea; Carmignani, Giorgio; Perdelli, Luisa; Gatteschi, Beatrice; Boccardo, Francesco

    2006-12-01

    The aims of this study were to investigate the expression levels of proteins involved in cell cycle regulation in specimens of bladder cancer and to correlate them with the clinicopathological characteristics, proliferative activity and survival. Eighty-two specimens obtained from patients affected by muscle-invasive bladder cancer were evaluated immunohistochemically for p53, p21 and cyclin D1 expression, as well as for the tumour proliferation index, Ki-67. The statistical analysis included Kaplan-Meier curves with log-rank test and Cox proportional hazards models. In univariate analyses, low Ki-67 proliferation index (P = 0.045) and negative p21 immunoreactivity (P = 0.04) were associated to patient's overall survival (OS), but in multivariate models p21 did not reach statistical significance. When the combinations of the variables were assessed in two separate multivariate models that included tumour stage, grading, lymph node status, vascular invasion and perineural invasion, the combined variables p21/Ki-67 or p21/cyclin D1 expression were independent predictors for OS; in particular, patients with positive p21/high Ki-67 (P = 0.015) or positive p21/negative cyclin D1 (P = 0.04) showed the worst survival outcome. Important alterations in the cell cycle regulatory pathways occur in muscle-invasive bladder cancer and the combined use of cell cycle regulators appears to provide significant prognostic information that could be used to select the patients most suitable for multimodal therapeutic approaches.

  10. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels.

    PubMed

    Spatari, Sabrina; MacLean, Heather L

    2010-11-15

    Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO₂ flux from land use change and N₂O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.

  11. The concept and use of elasticity in population viability models [Exercise 13

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    As you have seen in exercise 12, plants, such as the western prairie fringed orchid, typically have distinct life stages and complex life cycles that require the matrix analyses associated with a stage-based population model. Some statistics that can be generated from such matrix analyses can be very informative in determining which variables in the model have the...

  12. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  13. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  14. Impact of a statistical bias correction on the projected simulated hydrological changes obtained from three GCMs and two hydrology models

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio

    2010-05-01

    Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.

  15. Simulation and assimilation of satellite altimeter data at the oceanic mesoscale

    NASA Technical Reports Server (NTRS)

    Demay, P.; Robinson, A. R.

    1984-01-01

    An improved "objective analysis' technique is used along with an altimeter signal statistical model, an altimeter noise statistical model, an orbital model, and synoptic surface current maps in the POLYMODE-SDE area, to evaluate the performance of various observational strategies in catching the mesoscale variability at mid-latitudes. In particular, simulated repetitive nominal orbits of ERS-1, TOPEX, and SPOT/POSEIDON are examined. Results show the critical importance of existence of a subcycle, scanning in either direction. Moreover, long repeat cycles ( 20 days) and short cross-track distances ( 300 km) seem preferable, since they match mesoscale statistics. Another goal of the study is to prepare and discuss sea-surface height (SSH) assimilation in quasigeostrophic models. Restored SSH maps are shown to meet that purpose, if an efficient extrapolation method or deep in-situ data (floats) are used on the vertical to start and update the model.

  16. Modeling the densification of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Elzey, D. M.; Wadley, H. N. G.

    1993-01-01

    We present a first model that enables prediction of the density (and its time evolution) of a monotape lay-up subjected to a hot isostatic or vacuum hot pressing consolidation cycle. Our approach is to break down the complicated (and probabilistic) consolidation problem into simple, analyzable parts and to combine them in a way that correctly represents the statistical aspects of the problem, the change in the problem's interior geometry, and the evolving contributions of the different deformation mechanisms. The model gives two types of output. One is in the form of maps showing the relative density dependence upon pressure, temperature, and time for step function temperature and pressure cycles. They are useful for quickly determining the best place to begin developing an optimized process. The second gives the evolution of density over time for any (arbitrary) applied temperature and pressure cycle. This has promise for refining process cycles and possibly for process control. Examples of the models application are given for Ti3Al + Nb, gamma TiAl, Ti6Al4V, and pure aluminum.

  17. Statistical Methods for Rapid Aerothermal Analysis and Design Technology: Validation

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas; Morgan, Carolyn

    2003-01-01

    The cost and safety goals for NASA s next generation of reusable launch vehicle (RLV) will require that rapid high-fidelity aerothermodynamic design tools be used early in the design cycle. To meet these requirements, it is desirable to identify adequate statistical models that quantify and improve the accuracy, extend the applicability, and enable combined analyses using existing prediction tools. The initial research work focused on establishing suitable candidate models for these purposes. The second phase is focused on assessing the performance of these models to accurately predict the heat rate for a given candidate data set. This validation work compared models and methods that may be useful in predicting the heat rate.

  18. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probabilitymore » of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.« less

  19. A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe.

    PubMed

    Ritenberga, Olga; Sofiev, Mikhail; Siljamo, Pilvi; Saarto, Annika; Dahl, Aslog; Ekebom, Agneta; Sauliene, Ingrida; Shalaboda, Valentina; Severova, Elena; Hoebeke, Lucie; Ramfjord, Hallvard

    2018-02-15

    The paper suggests a methodology for predicting next-year seasonal pollen index (SPI, a sum of daily-mean pollen concentrations) over large regions and demonstrates its performance for birch in Northern and North-Eastern Europe. A statistical model is constructed using meteorological, geophysical and biological characteristics of the previous year). A cluster analysis of multi-annual data of European Aeroallergen Network (EAN) revealed several large regions in Europe, where the observed SPI exhibits similar patterns of the multi-annual variability. We built the model for the northern cluster of stations, which covers Finland, Sweden, Baltic States, part of Belarus, and, probably, Russia and Norway, where the lack of data did not allow for conclusive analysis. The constructed model was capable of predicting the SPI with correlation coefficient reaching up to 0.9 for some stations, odds ratio is infinitely high for 50% of sites inside the region and the fraction of prediction falling within factor of 2 from observations, stays within 40-70%. In particular, model successfully reproduced both the bi-annual cycle of the SPI and years when this cycle breaks down. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Studies in the use of cloud type statistics in mission simulation

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.

    1974-01-01

    A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.

  1. A nonparametric analysis of plot basal area growth using tree based models

    Treesearch

    G. L. Gadbury; H. K. lyer; H. T. Schreuder; C. Y. Ueng

    1997-01-01

    Tree based statistical models can be used to investigate data structure and predict future observations. We used nonparametric and nonlinear models to reexamine the data sets on tree growth used by Bechtold et al. (1991) and Ruark et al. (1991). The growth data were collected by Forest Inventory and Analysis (FIA) teams from 1962 to 1972 (4th cycle) and 1972 to 1982 (...

  2. Quantifying variability in fast and slow solar wind: From turbulence to extremes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.

    2017-12-01

    Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)

  3. Statistical Downscaling Of Local Climate In The Alpine Region

    NASA Astrophysics Data System (ADS)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up to 60 % of explained variance).

  4. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  5. A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments.

    PubMed

    Mayhew, Michael B; Robinson, Joshua W; Jung, Boyoun; Haase, Steven B; Hartemink, Alexander J

    2011-07-01

    To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been developed to use these valuable data sources in estimating how a population of cells progresses through the cell cycle. Furthermore, existing methods are designed to handle only a single binary marker of cell cycle progression at a time. Consequently, they cannot facilitate comparison of experiments involving different sets of markers. Here, we develop a new sampling model to accommodate an arbitrary number of different binary markers that characterize the progression of a population of dividing cells along a branching process. We engineer a strain of Saccharomyces cerevisiae with fluorescently labeled markers of cell cycle progression, and apply our new model to two image datasets we collected from the strain, as well as an independent dataset of different markers. We use our model to estimate the duration of post-cytokinetic attachment between a S.cerevisiae mother and daughter cell. The Java implementation is fast and extensible, and includes a graphical user interface. Our model provides a powerful and flexible cell cycle analysis tool, suitable to any type or combination of binary markers. The software is available from: http://www.cs.duke.edu/~amink/software/cloccs/. michael.mayhew@duke.edu; amink@cs.duke.edu.

  6. ARM Climate Modeling Best Estimate Lamont, OK Statistical Summary (ARMBE-CLDRAD SGPC1)

    DOE Data Explorer

    McCoy, Renata; Xie, Shaocheng

    2010-01-26

    Calculate monthly mean diurnal cycle based on the hourly CMBE data with qcflag >=-1 (>30% valid data within the averaged hour). For 2-D clouds, only data over the period when both MMCR and MPL were working are used.

  7. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Cycle) and the High-Resolution Rapid Refresh (HRRR) was developed at NOAA's Earth System Research Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author: EMC Webmaster Page

  8. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less

  9. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  10. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  11. Latitudinal migration of sunspots based on the ESAI database

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  12. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.

    PubMed

    Little, Eliza; Campbell, Scott R; Shaman, Jeffrey

    2016-08-09

    West Nile Virus (WNV) is an endemic public health concern in the United States that produces periodic seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform effective vector control. Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York using readily available meteorological and hydrological conditions. We first validate a statistical model built with surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from 2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013-2015, and multimodel inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions. The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes. This study shows that real-time climate information can be used to predict WNV infection rates in Culex mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest.

  13. The association of bicycle-related genital numbness and Sexual Health Inventory for Men (SHIM) score: results from a large, multinational, cross-sectional study.

    PubMed

    Baradaran, Nima; Awad, Mohannad; Gaither, Thomas W; Fergus, Kirkpatrick B; Ndoye, Medina; Cedars, Benjamin E; Balakrishnan, Ashwin S; Eisenberg, Michael L; Sanford, Tom; Breyer, Benjamin N

    2018-05-23

    To assess the association of genital numbness and erectile dysfunction in male cyclists. Cyclists were recruited through Facebook advertisements and outreach to sporting clubs. This is a secondary analysis of a larger epidemiological population-based study that examined sexual and urinary wellness in athletes. We queried cycling habits and erectile function using Sexual Health Inventory for Men (SHIM). A total of 2 774 male cyclists were included in the analysis. Amongst cyclists, there was a statistically significant increase in the trend of genital numbness presence with more years of cycling (P = 0.002), more frequent weekly cycling (P < 0.001), and longer cycling distance at each ride (P < 0.001). Less frequent use of padded shorts (odds ratio [OR] 0.14, P < 0.001) and lower handlebar (OR 0.49, P < 0.001) were associated with numbness, but body mass index (BMI) (OR 1.1, P = 0.33) and age (OR 1.2, P = 0.15) were not. In a multivariate logistic regression model, after adjusting for age, BMI, and lifetime miles (calculated by average daily cycling mileage × cycling days/week × cycling years.), there were no statistically significant differences in mean SHIM score between cyclists with and cyclists without numbness (20.3 vs 20.2, P = 0.83). However, interestingly, the subset of cyclists who reported numbness in the buttock reported statistically significantly worse SHIM scores (20.3 vs 18.4, P < 0.001). This association was not present in cyclists who reported numbness in the scrotum, penis, or perineum and remained significant after adjusting for overall biking intensity. Cyclists report genital numbness in proportion with biking intensity but numbness is not associated with worse sexual function in this cohort. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  14. Modeling transit bus fuel consumption on the basis of cycle properties.

    PubMed

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  15. BCM: toolkit for Bayesian analysis of Computational Models using samplers.

    PubMed

    Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A

    2016-10-21

    Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.

  16. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  17. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  18. Statistical Prediction of Sea Ice Concentration over Arctic

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Jeong, Jee-Hoon; Kim, Baek-Min

    2017-04-01

    In this study, a statistical method that predict sea ice concentration (SIC) over the Arctic is developed. We first calculate the Season-reliant Empirical Orthogonal Functions (S-EOFs) of monthly Arctic SIC from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, which contain the seasonal cycles (12 months long) of dominant SIC anomaly patterns. Then, the current SIC state index is determined by projecting observed SIC anomalies for latest 12 months to the S-EOFs. Assuming the current SIC anomalies follow the spatio-temporal evolution in the S-EOFs, we project the future (upto 12 months) SIC anomalies by multiplying the SI and the corresponding S-EOF and then taking summation. The predictive skill is assessed by hindcast experiments initialized at all the months for 1980-2010. When comparing predictive skill of SIC predicted by statistical model and NCEP CFS v2, the statistical model shows a higher skill in predicting sea ice concentration and extent.

  19. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  20. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  1. Validity of the two-level model for Viterbi decoder gap-cycle performance

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Arnold, S.

    1990-01-01

    A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.

  2. Statistical Simulation of the Performance and Degradation of a PEMFC Membrane Electrode Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, David; Bellemare-Davis, Alexander; Karan, Kunal

    2012-07-01

    A 1-D MEA Performance model was developed that considered transport of liquid water, agglomerate catalyst structure, and the statistical variation of the MEA characteristic parameters. The model was validated against a low surface area carbon supported catalyst across various platinum loadings and operational conditions. The statistical variation was found to play a significant role in creating noise in the validation data and that there was a coupling effect between movement in material properties with liquid water transport. Further, in studying the low platinum loaded catalyst layers it was found that liquid water played a significant role in the increasing themore » overall transport losses. The model was then further applied to study platinum dissolution via potential cycling accelerated stress tests, in which the platinum was found to dissolve nearest the membrane effectively resulting in reaction distribution shifts within the layer.« less

  3. Interspecific and intraspecific competition as causes of direct and delayed density dependence in a fluctuating vole population

    PubMed Central

    Hansen, Thomas F.; Stenseth, Nils C.; Henttonen, Heikki; Tast, Johan

    1999-01-01

    A 3- to 5-year cycle of vole abundances is a characteristic phenomenon in the ecology of northern regions, and their explanation stands as a central theoretical challenge in population ecology. Although many species of voles usually coexist and are in severe competition for food and breeding space, the role of interspecific competition in vole cycles has never been evaluated statistically. After studying community effects on the population dynamics of the gray-sided vole (Clethrionomys rufocanus) in the subarctic birch forest at Kilpisjärvi, Finland, we report statistical results showing that both interspecific and intraspecific effects are important in the direct year-to-year density dependence. However, interspecific effects are not detectable in the 2-year delayed density dependence that is crucial for generating the characteristic cycles. Furthermore, we show that most of the competition takes place during the winter. The results are evaluated against two models of community dynamics. One assumes that the delayed effects are caused by an interaction with a specialist predator, and the other assumes that they are caused by overgrazing food plants. These statistical results show that vole cycles may be generated by a species-specific trophic interaction. The results also suggest that the gray-sided vole may be the focal species in the birch-forest community, as field voles may be in the taiga and as lemmings may be on the tundra. PMID:9927680

  4. A generalized model for multi-marker analysis of cell cycle progression in synchrony experiments

    PubMed Central

    Mayhew, Michael B.; Robinson, Joshua W.; Jung, Boyoun; Haase, Steven B.; Hartemink, Alexander J.

    2011-01-01

    Motivation: To advance understanding of eukaryotic cell division, it is important to observe the process precisely. To this end, researchers monitor changes in dividing cells as they traverse the cell cycle, with the presence or absence of morphological or genetic markers indicating a cell's position in a particular interval of the cell cycle. A wide variety of marker data is available, including information-rich cellular imaging data. However, few formal statistical methods have been developed to use these valuable data sources in estimating how a population of cells progresses through the cell cycle. Furthermore, existing methods are designed to handle only a single binary marker of cell cycle progression at a time. Consequently, they cannot facilitate comparison of experiments involving different sets of markers. Results: Here, we develop a new sampling model to accommodate an arbitrary number of different binary markers that characterize the progression of a population of dividing cells along a branching process. We engineer a strain of Saccharomyces cerevisiae with fluorescently labeled markers of cell cycle progression, and apply our new model to two image datasets we collected from the strain, as well as an independent dataset of different markers. We use our model to estimate the duration of post-cytokinetic attachment between a S.cerevisiae mother and daughter cell. The Java implementation is fast and extensible, and includes a graphical user interface. Our model provides a powerful and flexible cell cycle analysis tool, suitable to any type or combination of binary markers. Availability: The software is available from: http://www.cs.duke.edu/~amink/software/cloccs/. Contact: michael.mayhew@duke.edu; amink@cs.duke.edu PMID:21685084

  5. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    NASA Astrophysics Data System (ADS)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.

    2017-02-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org

  6. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  7. Total ozone variations at Reykjavik since 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, G.G.; Rognvaldsson, O.E.; Sigfusson, T.I.

    1993-12-01

    Total ozone measurements using a Dobson spectrophotometer have been performed on a regular basis at Reykjavik (65 deg 08 min N, 21 deg 54 min W), Iceland, since 1957. The data set for the entire period of observations has been critically examined. Due to problems related to the calibration of the instrument the data record of ozone observations is divided into two periods in the following analysis (1957-1977 and 1977-1990). A statistical model was developed to fit the data and estimate long-term changes in total ozone. The model includes seasonal variations, solar cycle influences, quasi-biennial oscillation (QBO) effects, and linearmore » trends. Some variants of the model are applied to investigate to what extent the estimated trends depend on the form of the model. Trend analysis of the revised data reveals a statistically significant linear decrease of 0.11 +/- 0.07% per year in the annual total ozone amount during the earlier period and 0.30 +/- 0.11% during the latter. The annual total ozone decline since 1977 is caused by a 0.47 +/- 0.14% decrease per year during the summer with no significant change during the winter or fall. On an annual basis, ozone varies by 3.5 +/- 0.8% over a solar cycle and by 2.1 +/- 0.6% over a QBO for the whole observation period. The effect of the 11-year solar cycle is particularly strong in the data during the early months of the year and in the westerly phase of the QBO. The data also suggest a strong response of total ozone to major solar proton events.« less

  8. FP7 GLOWASIS - A new collaborative project aimed at pre-validation of a GMES Global Water Scarcity Information Service

    NASA Astrophysics Data System (ADS)

    Westerhoff, R.; Levizzani, V.; Pappenberger, F.; de Roo, A.; Lange, R. D.; Wagner, W.; Bierkens, M. F.; Ceran, M.; Weerts, A.; Sinclair, S.; Miguez-Macho, G.; Langius, E.; Glowasis Team

    2011-12-01

    The main objective of the project GLOWASIS is to pre-validate a GMES Global Service for Water Scarcity Information. It will be set up as a one-stop-shop portal for water scarcity information, in which focus is put on: - monitoring data from satellites and in-situ sensors; - improving forecasting models with improved monitoring data; - linking statistical water data in forecasting; - promotion of GMES Services and European satellites. In European and global pilots on the scale of river catchments it combines hydrological models with in-situ and satellite derived water cycle information, as well as government ruled statistical water demand data. By linking water demand and supply in three pilot studies with existing platforms (European Drought Observatory and PCR-GLOBWB) for medium- and long-term forecasting in Europe, Africa and worldwide, GLOWASIS' information contributes both in near-real time reporting for emerging drought events as well as in provision of climate change time series. By combining complex water cycle variables, governmental issues and economic relations with respect to water demand, GLOWASIS will aim for the needed streamlining of the wide variety of important water scarcity information. More awareness for the complexity of the water scarcity problem will be created and additional capabilities of satellite-measured water cycle parameters can be promoted. The service uses data from GMES Core Services LMCS Geoland2 and Marine Core Service MyOcean (land use, soil moisture, soil sealing, sea level), in-situ data from GEWEX' initiatives (i.e. International Soil Moisture network), agricultural and industrial water use and demand (statistical - AQUASTAT, SEEAW and modelled) and additional water-cycle information from existing global satellite services. In-depth interviews with a.o. EEA and the Australian Bureau of Meteorology are taking place. GLOWASIS will aim for an open source and open-standard information portal on water scarcity and use of modern media (forums, Twitter, etc). Infrastructure of the GLOWASIS portal is set up for dissemination and inclusion of current and future innovative and integrated multi-purpose products for research & operational applications with open standards. The project has started in January 2011 and the duration is 24 months.

  9. Moist Baroclinic Life Cycles in an Idealized Model with Varying Hydrostasy

    NASA Astrophysics Data System (ADS)

    Hsieh, T. L.; Garner, S.; Held, I.

    2016-12-01

    Baroclinic life cycles are simulated in a limited-area model having varying degrees of hydrostasy to examine their interaction with explicitly resolved moist convection. The life cycles are driven by an idealized sea surface temperature field in an f-plane channel, and no convective parameterization is used. The hydrostasy is controlled by rescaling the model equations following the hypohydrostatic rescaling and by changing the resolution. In experiments having the same ratio between the grid spacing and the rescaling factor, the simulated convection is shown to have the same hydrostasy, suggesting that the low resolution models have been rescaled to be as nonhydrostatic as the high resolution model without additional computational cost. The nonhydrostatic convective cells in the rescaled models are found to be wider and slower than those in the unscaled models, consistent with predictions of the similarity theory. For the same resolution, although the wider cells in the rescaled models have better resolved structure, the total latent heating is insensitive to the rescaling factor. This is because latent heating is constrained by long-wave cooling which is found to be insensitive to the model hydrostasy, requiring a non-similarity in the frequency and distribution of convection. Consequently, the resolved nonhydrostatic convection maintains the same stability profile as the unresolved hydrostatic convection, so the statistics of the life cycles are also insensitive to the rescaling factor. The findings suggest that the mean climate and internal variability would be unaffected by the hypohydrostatic rescaling when the self-organization of convection is not important.

  10. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  11. The effects of sampling frequency on the climate statistics of the European Centre for Medium-Range Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas J.; Gates, W. Lawrence; Arpe, Klaus

    1992-12-01

    The effects of sampling frequency on the first- and second-moment statistics of selected European Centre for Medium-Range Weather Forecasts (ECMWF) model variables are investigated in a simulation of "perpetual July" with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the e-folding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and runoff, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature, and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over oceans. An appropriate sampling frequency for each model variable is obtained by comparing the estimates of first- and second-moment statistics determined at intervals ranging from 2 to 24 hours with the "best" estimates obtained from hourly sampling. Relatively accurate estimation of first- and second-moment climate statistics (10% errors in means, 20% errors in variances) can be achieved by sampling a model variable at intervals that usually are longer than the bandwidth of its time series but that often are shorter than its characteristic time scale. For the surface variables, sampling at intervals that are nonintegral divisors of a 24-hour day yields relatively more accurate time-mean statistics because of a reduction in errors associated with aliasing of the diurnal cycle and higher-frequency harmonics. The superior estimates of first-moment statistics are accompanied by inferior estimates of the variance of the daily means due to the presence of systematic biases, but these probably can be avoided by defining a different measure of low-frequency variability. Estimates of the intradiurnal variance of accumulated precipitation and surface runoff also are strongly impacted by the length of the storage interval. In light of these results, several alternative strategies for storage of the EMWF model variables are recommended.

  12. Changes in ultrasound shear wave elastography properties of normal breast during menstrual cycle.

    PubMed

    Rzymski, P; Skórzewska, A; Opala, T

    2011-01-01

    Elastography is a novel technique capable of noninvasively assessing the elastic properties of breast tissue. Because the risk factors for breast cancer include hormonal status and proliferation, the aim of our study was to estimate the intensity of sonoelastographic changes during the menstrual cycle. Eight women aged 20-23 years with regular menstrual cycles underwent B-mode sonography and sonoelastography (ShearWave on Aixplorer, France) on days 3, 10, 17 and 24. Mean values of glandular and fat tissue elasticity did not change statistically significantly during the menstrual cycle as well as glandular to fat tissue ratio. During almost the whole cycle differences between outer and inner quadrants in glandular and fat tissue were statistically significant. The lowest values of elasticity occurred on the 10th day and the highest on the 24th of the menstrual cycle. There were statistically significant differences in elasticity between inner and outer quadrants of both breasts close to day 3 and 17 of the menstrual cycle.

  13. Accurately Characterizing the Importance of Wave-Particle Interactions in Radiation Belt Dynamics: The Pitfalls of Statistical Wave Representations

    NASA Technical Reports Server (NTRS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-01-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  14. Periodicity and time trends in the prevalence of total births and conceptions with congenital malformations among Jews and Muslims in Israel, 1999-2006: a time series study of 823,966 births.

    PubMed

    Agay-Shay, Keren; Friger, Michael; Linn, Shai; Peled, Ammatzia; Amitai, Yona; Peretz, Chava

    2012-06-01

    BACKGROUND Congenital malformations (CMs) are a leading cause of infant disability. Geophysical patterns such as 2-year, yearly, half-year, 3-month, and lunar cycles regulate much of the temporal biology of all life on Earth and may affect birth and birth outcomes in humans. Therefore, the aim of this study was to evaluate and compare trends and periodicity in total births and CM conceptions in two Israeli populations. METHODS Poisson nonlinear models (polynomial) were applied to study and compare trends and geophysical periodicity cycles of weekly births and weekly prevalence rate of CM (CMPR), in a time-series design of conception date within and between Jews and Muslims. The population included all live births and stillbirths (n = 823,966) and CM (three anatomic systems, eight CM groups [n = 2193]) in Israel during 2000 to 2006. Data were obtained from the Ministry of Health. RESULTS We describe the trend and periodicity cycles for total birth conceptions. Of eight groups of CM, periodicity cycles were statistically significant in four CM groups for either Jews or Muslims. Lunar month and biennial periodicity cycles not previously investigated in the literature were found to be statistically significant. Biennial cycle was significant in total births (Jews and Muslims) and syndactyly (Muslims), whereas lunar month cycle was significant in total births (Muslims) and atresia of small intestine (Jews). CONCLUSION We encourage others to use the method we describe as an important tool to investigate the effects of different geophysical cycles on human health and pregnancy outcomes, especially CM, and to compare between populations. Copyright © 2012 Wiley Periodicals, Inc.

  15. Predicting the success of IVF: external validation of the van Loendersloot's model.

    PubMed

    Sarais, Veronica; Reschini, Marco; Busnelli, Andrea; Biancardi, Rossella; Paffoni, Alessio; Somigliana, Edgardo

    2016-06-01

    Is the predictive model for IVF success proposed by van Loendersloot et al. valid in a different geographical and cultural context? The model discriminates well but was less accurate than in the original context where it was developed. Several independent groups have developed models that combine different variables with the aim of estimating the chance of pregnancy with IVF but only four of them have been externally validated. One of these four, the van Loendersloot's model, deserves particular attention and further investigation for at least three reasons; (i) the reported area under the receiver operating characteristics curve (c-statistics) in the temporal validation setting was the highest reported to date (0.68), (ii) the perspective of the model is clinically wise since it includes variables obtained from previous failed cycles, if any, so it can be applied to any women entering an IVF cycle, (iii) the model lacks external validation in a geographically different center. Retrospective cohort study of women undergoing oocyte retrieval for IVF between January 2013 and December 2013 at the infertility unit of the Fondazione Ca' Granda, Ospedale Maggiore Policlinico of Milan, Italy. Only the first oocyte retrieval cycle performed during the study period was included in the study. Women with previous IVF cycles were excluded if the last one before the study cycle was in another center. The main outcome was the cumulative live birth rate per oocytes retrieval. Seven hundred seventy-two women were selected. Variables included in the van Loendersloot's model and the relative weights (beta) were used. The variable resulting from this combination (Y) was transformed into a probability. The discriminatory capacity was assessed using the c-statistics. Calibration was made using a logistic regression that included Y as the unique variable and live birth as the outcome. Data are presented using both the original and the calibrated models. Performance was evaluated correlating the mean predicted chances of live births in the five quintiles and the observed rates. Two-hundred-eleven live births (27%) were obtained. The c-statistic was 0.64 (95% CI: 0.61-0.67, P < 0.001). The slope of the linear predictor (calibration slope) expressed as an Odds Ratio was 1.81 (95% CI: 1.46-2.24, P < 0.001), corresponding to a beta of 0.630. The calibration intercept was +0.349 (P = 0.13). While a clear discrepancy exists using the original model, data appear properly distributed with the calibrated model. The Pearson coefficient of the correlation between the mean predicted chances of live births in the five quintiles and the observed rates was 0.99 (P = 0.002). Data were collected retrospectively, thus exposing them to potential inaccuracies. The selection criteria for access to IVF adopted in our center might be too stringent, leading to the exclusion of women with a poor, yet acceptable chance of live birth. Therefore, the validity of the model in women with a very low chance of live birth could not be tested. The van Loendersloot's model can be used in other contexts but it is important that it has local calibration. It may help in counseling couples about their chance of success but it cannot be used to exclude treatments. Further research is needed to improve the discriminatory performance of IVF predictive models. None. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  17. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returnsmore » Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.« less

  18. Cycling transport safety quantification

    NASA Astrophysics Data System (ADS)

    Drbohlav, Jiri; Kocourek, Josef

    2018-05-01

    Dynamic interest in cycling transport brings the necessity to design safety cycling infrastructure. In las few years, couple of norms with safety elements have been designed and suggested for the cycling infrastructure. But these were not fully examined. The main parameter of suitable and fully functional transport infrastructure is the evaluation of its safety. Common evaluation of transport infrastructure safety is based on accident statistics. These statistics are suitable for motor vehicle transport but unsuitable for the cycling transport. Cycling infrastructure evaluation of safety is suitable for the traffic conflicts monitoring. The results of this method are fast, based on real traffic situations and can be applied on any traffic situations.

  19. X-ray light curves of active galactic nuclei are phase incoherent

    NASA Technical Reports Server (NTRS)

    Krolik, Julian; Done, Chris; Madejski, Grzegorz

    1993-01-01

    We compute the Fourier phase spectra for the light curves of five low-luminosity active galactic nuclei observed by EXOSAT. There is no statistically significant phase coherence in any of them. This statement is equivalent, subject to a technical caveat, to a demonstration that their fluctuation statistics are Gaussian. Models in which the X-ray output is controlled wholly by a unitary process undergoing a nonlinear limit cycle are therefore ruled out, while models with either a large number of randomly excited independent oscillation modes or nonlinearly interacting spatially dependent oscillations are favored. We also demonstrate how the degree of phase coherence in light curve fluctuations influences the application of causality bounds on internal length scales.

  20. Analysis of in vitro fertilization data with multiple outcomes using discrete time-to-event analysis

    PubMed Central

    Maity, Arnab; Williams, Paige; Ryan, Louise; Missmer, Stacey; Coull, Brent; Hauser, Russ

    2014-01-01

    In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and followup required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data due to its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women’s Hospital, Massachusetts. We also summarize the performance of our proposed methods based on a simulation study. PMID:24317880

  1. Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1981-01-01

    A parametric software cost estimation model prepared for Deep Space Network (DSN) Data Systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit DSN software life cycle statistics. The estimation model output scales a standard DSN Work Breakdown Structure skeleton, which is then input into a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.

  2. A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling

    NASA Astrophysics Data System (ADS)

    Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.

    2017-12-01

    Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.

  3. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  4. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  5. Shallow cloud statistics over Tropical Western Pacific: CAM5 versus ARM Comparison

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Zhang, C.; Klein, S. A.; Ma, H. Y.; Kollias, P.; Xie, S.

    2014-12-01

    The role of shallow convection in the tropical convective cloud life cycle has received increasing interest because of its sensitivity to simulate large-scale tropical disturbances such as MJO. Though previous studies have proposed several hypotheses to explain the role of shallow clouds in the convective life cycle, our understanding on the role of shallow clouds is still premature. There are more questions needs to be addressed related to the role of different cloud population, conditions favorable for shallow to deep convection transitions, and their characteristics at different stages of the convective cloud life. The present study aims to improve the understanding of the shallow clouds by documenting the role of different shallow cloud population for the Year of Tropical Convection period using Atmospheric Radiation Measurement observations at the Tropical Western Pacific Manus site. The performance of the CAM5 model to simulate shallow clouds are tested using observed cloud statistics.

  6. Propagation of Interplanetary Disturbances in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Wang, Chi

    2005-01-01

    Contents include the following: 1. We have developed a one-dimensional, spherically symmetric, multi-fluid MHD model that includes solar wind protons and electrons, pickup ions, and interstellar neutral hydrogen. This model advances the existing solar wind models for the outer heliosphere in two important ways: one is that it distinguishes solar wind protons from pickup ions, and the other is that it allows for energy transfer from pickup ions to the solar wind protons. Model results compare favorably with the Voyager 2 observations. 2. 2. Solar wind slowdown and interstellar neutral density. The solar wind in the outer heliosphere is fundamentally different from that in the inner heliosphere since the effects of interstellar neutrals become significant. 3. ICME propagation from the inner to outer heliosphere. Large coronal mass ejections (CMEs) have major effects on the structure of the solar wind and the heliosphere. The plasma and magnetic field can be compressed ahead of interplanetary CMEs. 4. During the current solar cycle (Cycle 23), several major CMEs associated with solar flares produced large transient shocks which were observed by widely-separated spacecraft such as Wind at Earth and Voyager 2 beyond 60 AU. Using data from these spacecraft, we use the multi-fluid model to investigate shock propagation and interaction in the heliosphere. Specifically, we studied the Bastille Day 2000, April 2001 and Halloween 2003 events. 5. Statistical properties of the solar wind in the outer heliosphere. In a collaboration with L.F. Burlaga of GSFC, it is shown that the basic statistical properties of the solar wind in the outer heliosphere can be well produced by our model. We studied the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, using our numerical model with observations made at 1 AU during 1995 as input. 6. Radial heliospheric magnetic field events. The heliospheric magnetic field (HMF) direction, on average, conforms well to the Parker spiral.

  7. Does solar activity affect human happiness?

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2018-03-01

    We investigate the direct influence of solar activity (represented by sunspot numbers) on human happiness (represented by the Twitter-based Happiness Index). We construct four models controlling for various statistical and dynamic effects of the analyzed series. The final model gives promising results. First, there is a statistically significant negative influence of solar activity on happiness which holds even after controlling for the other factors. Second, the final model, which is still rather simple, explains around 75% of variance of the Happiness Index. Third, our control variables contribute significantly as well: happiness is higher in no sunspots days, happiness is strongly persistent, there are strong intra-week cycles and happiness peaks during holidays. Our results strongly contribute to the topical literature and they provide evidence of unique utility of the online data.

  8. Model for Solar Proton Risk Assessment

    NASA Technical Reports Server (NTRS)

    Xapos, M. A.; Stauffer, C.; Gee, G. B.; Barth, J. L.; Stassinopoulos, E. G.; McGuire, R. E.

    2004-01-01

    A statistical model for cumulative solar proton event fluences during space missions is presented that covers both the solar minimum and solar maximum phases of the solar cycle. It is based on data from the IMP and GOES series of satellites that is integrated together to allow the best features of each data set to be taken advantage of. This allows fluence-energy spectra to be extended out to energies of 327 MeV.

  9. Time Exceedances for High Intensity Solar Proton Fluxes

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adam, James H., Jr.; Dietrich, William F.

    2011-01-01

    A model is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  10. Evaluation of the effects of a freeze/thaw environment on cellular glass

    NASA Technical Reports Server (NTRS)

    Frickland, P.; Cleland, E.; Hasegawa, T.

    1981-01-01

    Using the evaluation criteria of water vapor permeability and conformability, a protective butylrubber/silicone conformal coating system was selected for use on Foamglas substrates in a freeze/thaw environment. The selection of a specific freeze/thaw cycle which closely models field conditions is discussed. A sampling plan is described which allows independent evaluation of the effects of conformal coatings, cycle number and location within the environmental chamber. The results of visual examination, measurement of density, modulus of rupture and Young's modulus are reported. Based upon statistical evaluation of the experimental results, it is concluded that no degradation in mechanical properties of either coated or uncoated Foamglas occurred within the duration of the test (53 freeze/thaw cycles).

  11. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    DOE PAGES

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles; ...

    2016-06-08

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typicalmore » climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.« less

  12. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typicalmore » climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.« less

  13. Review of Models of Beam-Noise Statistics

    DTIC Science & Technology

    1977-11-01

    depth. Rays are traced according to Snell’s Law from the receiver depth in 10 I vertical-angle steps for one cycle. If tte 10 increments are not...Blvd. Rockville, MD 20850 Attn: J. T. Gottwald TRW Systems Group 7600 Colshire Drive McLean, VA 22101 Attn: R. T. Brown 1 I. B. Gereben 1 Undersea

  14. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  15. Three Dimensional CFD Analysis of the GTX Combustor

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.

    2002-01-01

    The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.

  16. Parallel computing for automated model calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.

    2002-07-29

    Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less

  17. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    PubMed

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.

  18. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  19. Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Moniot, Matthew; Jehlik, Forrest

    This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline).more » These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.« less

  20. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  1. Mathematical modeling of the moderate storm on 28 February 2008

    NASA Astrophysics Data System (ADS)

    Eroglu, Emre

    2018-04-01

    The sun is an active star with plasma-filled prominences. The sudden ejection of the solar plasma creates storms in the form of bursting or spraying. A magnetospheric storm is a typical phenomenon that lasts 1-3 days and involves all magnetosphere from the earth's ionosphere to the magnetotail. The storms are known by different categorical names such as weak, moderate, strong, intense. One of these is the moderate geomagnetic storm on February 28, 2008, which occurred in the 24th solar cycle. The reason for discussing this storm is that it is the first moderate storm in the 24th solar cycle. In this study, we investigate the storm and entered the 24th solar cycle. The correlation among the parametres has been investigated via statistics. The solar wind parameters and the zonal geomagnetic indices have been analyzed separately and then the interaction with each other has been exhibited. The author has concluded the work with two new nonlinear mathematical models. These explain the storm with 79.1% and 87.5% accuracy.

  2. Structural uncertainty of downscaled climate model output in a difficult-to-resolve environment: data sparseness and parameterization error contribution to statistical and dynamical downscaling output in the U.S. Caribbean region

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.

    2016-12-01

    Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.

  3. Development of a funding, cost, and spending model for satellite projects

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  4. Hemispheric Coupling: Comparing Dynamo Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Charbonneau, P.; Passos, D.

    2014-12-01

    Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.

  5. Predicting the Size of Sunspot Cycle 24 on the Basis of Single- and Bi-Variate Geomagnetic Precursor Methods

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    Examined are single- and bi-variate geomagnetic precursors for predicting the maximum amplitude (RM) of a sunspot cycle several years in advance. The best single-variate fit is one based on the average of the ap index 36 mo prior to cycle minimum occurrence (E(Rm)), having a coefficient of correlation (r) equal to 0.97 and a standard error of estimate (se) equal to 9.3. Presuming cycle 24 not to be a statistical outlier and its minimum in March 2008, the fit suggests cycle 24 s RM to be about 69 +/- 20 (the 90% prediction interval). The weighted mean prediction of 11 statistically important single-variate fits is 116 +/- 34. The best bi-variate fit is one based on the maximum and minimum values of the 12-mma of the ap index; i.e., APM# and APm*, where # means the value post-E(RM) for the preceding cycle and * means the value in the vicinity of cycle minimum, having r = 0.98 and se = 8.2. It predicts cycle 24 s RM to be about 92 +/- 27. The weighted mean prediction of 22 statistically important bi-variate fits is 112 32. Thus, cycle 24's RM is expected to lie somewhere within the range of about 82 to 144. Also examined are the late-cycle 23 behaviors of geomagnetic indices and solar wind velocity in comparison to the mean behaviors of cycles 2023 and the geomagnetic indices of cycle 14 (RM = 64.2), the weakest sunspot cycle of the modern era.

  6. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus

    PubMed Central

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-01-01

    Abstract DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure. PMID:29800455

  7. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus.

    PubMed

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-05-01

    DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.

  8. Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.

    2006-01-01

    This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols, thermodynamics, and the diurnal cycle.

  9. Synchronized Trajectories in a Climate "Supermodel"

    NASA Astrophysics Data System (ADS)

    Duane, Gregory; Schevenhoven, Francine; Selten, Frank

    2017-04-01

    Differences in climate projections among state-of-the-art models can be resolved by connecting the models in run-time, either through inter-model nudging or by directly combining the tendencies for corresponding variables. Since it is clearly established that averaging model outputs typically results in improvement as compared to any individual model output, averaged re-initializations at typical analysis time intervals also seems appropriate. The resulting "supermodel" is more like a single model than it is like an ensemble, because the constituent models tend to synchronize even with limited inter-model coupling. Thus one can examine the properties of specific trajectories, rather than averaging the statistical properties of the separate models. We apply this strategy to a study of the index cycle in a supermodel constructed from several imperfect copies of the SPEEDO model (a global primitive-equation atmosphere-ocean-land climate model). As with blocking frequency, typical weather statistics of interest like probabilities of heat waves or extreme precipitation events, are improved as compared to the standard multi-model ensemble approach. In contrast to the standard approach, the supermodel approach provides detailed descriptions of typical actual events.

  10. Using Discrete Event Simulation to predict KPI's at a Projected Emergency Room.

    PubMed

    Concha, Pablo; Neriz, Liliana; Parada, Danilo; Ramis, Francisco

    2015-01-01

    Discrete Event Simulation (DES) is a powerful factor in the design of clinical facilities. DES enables facilities to be built or adapted to achieve the expected Key Performance Indicators (KPI's) such as average waiting times according to acuity, average stay times and others. Our computational model was built and validated using expert judgment and supporting statistical data. One scenario studied resulted in a 50% decrease in the average cycle time of patients compared to the original model, mainly by modifying the patient's attention model.

  11. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  12. Investigating the Potential of Activity Tracking App Data to Estimate Cycle Flows in Urban Areas

    NASA Astrophysics Data System (ADS)

    Haworth, J.

    2016-06-01

    Traffic congestion and its associated environmental effects pose a significant problem for large cities. Consequently, promoting and investing in green travel modes such as cycling is high on the agenda for many transport authorities. In order to target investment in cycling infrastructure and improve the experience of cyclists on the road, it is important to know where they are. Unfortunately, investment in intelligent transportation systems over the years has mainly focussed on monitoring vehicular traffic, and comparatively little is known about where cyclists are on a day to day basis. In London, for example, there are a limited number of automatic cycle counters installed on the network, which provide only part of the picture. These are supplemented by surveys that are carried out infrequently. Activity tracking apps on smart phones and GPS devices such as Strava have become very popular over recent years. Their intended use is to track physical activity and monitor training. However, many people routinely use such apps to record their daily commutes by bicycle. At the aggregate level, these data provide a potentially rich source of information about the movement and behaviour of cyclists. Before such data can be relied upon, however, it is necessary to examine their representativeness and understand their potential biases. In this study, the flows obtained from Strava Metro (SM) are compared with those obtained during the 2013 London Cycle Census (LCC). A set of linear regression models are constructed to predict LCC flows using SM flows along with a number of dummy variables including road type, hour of day, day of week and presence/absence of cycle lane. Cross-validation is used to test the fitted models on unseen LCC sites. SM flows are found to be a statistically significant (p<0.0001) predictor of total flows as measured by the LCC and the models yield R squared statistics of ~0.7 before considering spatio-temporal variation. The initial results indicate that data collected using fitness tracking apps such as Strava are a promising data source for traffic managers. Future work will incorporate the spatio-temporal structure in the data to better account for the spatial and temporal variation in the ratio of SM flows to LCC flows.

  13. Natural cycle in vitro fertilisation (IVF) for subfertile couples.

    PubMed

    Allersma, Thomas; Farquhar, Cindy; Cantineau, Astrid E P

    2013-08-30

    Subfertility affects 15% to 20% of couples trying to conceive. In vitro fertilisation (IVF) is one of the assisted reproduction techniques developed to improve chances of achieving pregnancy. In the standard IVF method with controlled ovarian hyperstimulation (COH), growth and development of multiple follicles are stimulated by using gonadotrophins, often combined with a gonadotrophin-releasing hormone (GnRH) agonist or antagonist. Although it is an established method of conception for subfertile couples, the treatment is expensive and has a high risk of adverse effects. Studies have shown that IVF in a natural cycle (NC) or a modified natural cycle (MNC) might be a promising low risk and low cost alternative to the standard stimulated IVF treatment since the available dominant follicle of each cycle is used. In this review, we included available randomised controlled studies comparing natural cycle IVF (NC and MNC) with standard IVF. To compare the efficacy and safety of natural cycle IVF (including both NC-IVF and MNC-IVF) with controlled ovarian hyperstimulation IVF (COH-IVF) in subfertile couples. An extended search including of the Menstrual Disorders and Subfertility Group (MDSG) Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, conference abstracts in the Web of Knowledge, the World Health Organization International Trials Registry Platform search portal, LILACS database, PubMed and the OpenSIGLE database was conducted according to Cochrane guidelines. The last search was on 31st July 2013. All randomised controlled trials (RCTs) comparing either natural cycle IVF or modified natural cycle IVF versus standard IVF in subfertile couples were included. Data selection and extraction and risk of bias assessment were carried out independently by two authors (TA and AC). The primary outcome measures were live birth rate and ovarian hyperstimulation syndrome (OHSS) rate per randomised woman. We calculated Mantel-Haenszel odds ratios for each dichotomous outcome and either the mean difference or the standardised mean difference (SMD) for continuous outcomes, with 95% confidence intervals (CIs). A fixed effect model was used unless there was substantial heterogeneity, in which case a random effects model was used. Six randomised controlled trials with a total of 788 women were included. The largest of these trials included 396 women eligible for this review.No evidence of a statistically significant difference was found between natural cycle and standard IVF in live birth rates (OR 0.68, 95% CI 0.46 to 1.01, two studies, 425 women, I(2)= 0%, moderate quality evidence). The evidence suggests that for a woman with a 53% chance of live birth using standard IVF, the chance using natural cycle IVF would range from 34% to 53%. There was no evidence of a statistically significant difference between natural cycle and standard IVF in rates of OHSS (OR 0.19, 95% CI 0.01 to 4.06, one study, 60 women, very low quality evidence), clinical pregnancy (OR 0.52 95% CI 0.17 to 1.61, 4 studies, 351 women, I(2)=63%, low quality evidence), ongoing pregnancy (OR 0.72, 95% CI 0.50 to 1.05, three studies, 485 women, I(2)=0%, moderate quality evidence), multiple pregnancy (OR 0.76, 95% CI 0.25 to 2.31, 2 studies, 527 women, I(2)=0%, very low quality evidence), gestational abnormalities (OR 0.44 95% CI 0.03 to 5.93, 1 study, 18 women, very low quality evidence) or cycle cancellations (OR 8.98, 95% CI 0.20 to 393.66, 2 studies, 159 women, I(2)=83%, very low quality evidence). One trial reported that the oocyte retrieval rate was significantly lower in the natural cycle group (MD -4.40, 95% CI -7.87 to -0.93, 60 women, very low quality evidence). There were insufficient data to draw any conclusions about rates of treatment cancellation. Findings on treatment costs were inconsistent and more data are awaited. The evidence was limited by imprecision. Findings for pregnancy rate and for cycle cancellation were sensitive to the choice of statistical model: for these outcomes, use of a fixed effect model suggested a benefit for the standard IVF group. Moreover the largest trial has not yet completed follow up, though data have been reported for over 95% of women. Further evidence from well conducted large trials is awaited on natural cycle IVF treatment. Future trials should compare natural cycle IVF with standard IVF. Outcomes should include cumulative live birth and pregnancy rates, the number of treatment cycles necessary to reach live birth, treatment costs and adverse effects.

  14. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important formore » SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.« less

  15. Machine Learning Biogeographic Processes from Biotic Patterns: A New Trait-Dependent Dispersal and Diversification Model with Model Choice By Simulation-Trained Discriminant Analysis.

    PubMed

    Sukumaran, Jeet; Economo, Evan P; Lacey Knowles, L

    2016-05-01

    Current statistical biogeographical analysis methods are limited in the ways ecology can be related to the processes of diversification and geographical range evolution, requiring conflation of geography and ecology, and/or assuming ecologies that are uniform across all lineages and invariant in time. This precludes the possibility of studying a broad class of macroevolutionary biogeographical theories that relate geographical and species histories through lineage-specific ecological and evolutionary dynamics, such as taxon cycle theory. Here we present a new model that generates phylogenies under a complex of superpositioned geographical range evolution, trait evolution, and diversification processes that can communicate with each other. We present a likelihood-free method of inference under our model using discriminant analysis of principal components of summary statistics calculated on phylogenies, with the discriminant functions trained on data generated by simulations under our model. This approach of model selection by classification of empirical data with respect to data generated under training models is shown to be efficient, robust, and performs well over a broad range of parameter space defined by the relative rates of dispersal, trait evolution, and diversification processes. We apply our method to a case study of the taxon cycle, that is testing for habitat and trophic level constraints in the dispersal regimes of the Wallacean avifaunal radiation. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Impact of satellite data on large-scale circulation statistics as determined from GLAS analyses during FGGE-SOP-1

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1982-01-01

    A study using the analyses produced from the assimilation cycle of parallel model runs that both include and withhold satellite data was undertaken. The analyzed state of the atmosphere is performed using data from a certain test period during the first Special Observing Period (SOP) of the Global Weather Experiment (FGGE).

  17. Macro-Econophysics

    NASA Astrophysics Data System (ADS)

    Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Iyetomi, Hiroshi; Souma, Wataru; Yoshikawa, Hiroshi

    2017-07-01

    Preface; Foreword, Acknowledgements, List of tables; List of figures, prologue, 1. Introduction: reconstructing macroeconomics; 2. Basic concepts in statistical physics and stochastic models; 3. Income and firm-size distributions; 4. Productivity distribution and related topics; 5. Multivariate time-series analysis; 6. Business cycles; 7. Price dynamics and inflation/deflation; 8. Complex network, community analysis, visualization; 9. Systemic risks; Appendix A: computer program for beginners; Epilogue; Bibliography; Index.

  18. Impact of preimplantation genetic screening on donor oocyte-recipient cycles in the United States.

    PubMed

    Barad, David H; Darmon, Sarah K; Kushnir, Vitaly A; Albertini, David F; Gleicher, Norbert

    2017-11-01

    Our objective was to estimate the contribution of preimplantation genetic screening to in vitro fertilization pregnancy outcomes in donor oocyte-recipient cycles. This was a retrospective cross-sectional study of US national data from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System between 2005 and 2013. Society for Assisted Reproductive Technology Clinic Outcome Reporting relies on voluntarily annual reports by more than 90% of US in vitro fertilization centers. We evaluated pregnancy and live birth rates in donor oocyte-recipient cycles after the first embryo transfer with day 5/6 embryos. Statistical models, adjusted for patient and donor ages, number of embryos transferred, race, infertility diagnosis, and cycle year were created to compare live birth rates in 392 preimplantation genetic screening and 20,616 control cycles. Overall, pregnancy and live birth rates were significantly lower in preimplantation genetic screening cycles than in control cycles. Adjusted odds of live birth for preimplantation genetic screening cycles were reduced by 35% (odds ratio, 0.65, 95% confidence interval, 0.53-0.80; P < .001). Preimplantation genetic screening, as practiced in donor oocyte-recipient cycles over the past 9 years, has not been associated with improved odds of live birth or reduction in miscarriage rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Estimating Active Transportation Behaviors to Support Health Impact Assessment in the United States

    PubMed Central

    Mansfield, Theodore J.; Gibson, Jacqueline MacDonald

    2016-01-01

    Health impact assessment (HIA) has been promoted as a means to encourage transportation and city planners to incorporate health considerations into their decision-making. Ideally, HIAs would include quantitative estimates of the population health effects of alternative planning scenarios, such as scenarios with and without infrastructure to support walking and cycling. However, the lack of baseline estimates of time spent walking or biking for transportation (together known as “active transportation”), which are critically related to health, often prevents planners from developing such quantitative estimates. To address this gap, we use data from the 2009 US National Household Travel Survey to develop a statistical model that estimates baseline time spent walking and biking as a function of the type of transportation used to commute to work along with demographic and built environment variables. We validate the model using survey data from the Raleigh–Durham–Chapel Hill, NC, USA, metropolitan area. We illustrate how the validated model could be used to support transportation-related HIAs by estimating the potential health benefits of built environment modifications that support walking and cycling. Our statistical model estimates that on average, individuals who commute on foot spend an additional 19.8 (95% CI 16.9–23.2) minutes per day walking compared to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5–6.4) minutes per day compared to automobile commuters. Bicycle commuters cycle for an additional 28.0 (95% CI 17.5–38.1) minutes per day compared to automobile commuters. The statistical model was able to predict observed transportation physical activity in the Raleigh–Durham–Chapel Hill region to within 0.5 MET-hours per day (equivalent to about 9 min of daily walking time) for 83% of observations. Across the Raleigh–Durham–Chapel Hill region, an estimated 38 (95% CI 15–59) premature deaths potentially could be avoided if the entire population walked 37.4 min per week for transportation (the amount of transportation walking observed in previous US studies of walkable neighborhoods). The approach developed here is useful both for estimating baseline behaviors in transportation HIAs and for comparing the magnitude of risks associated with physical inactivity to other competing health risks in urban areas. PMID:27200327

  20. Estimating Active Transportation Behaviors to Support Health Impact Assessment in the United States.

    PubMed

    Mansfield, Theodore J; Gibson, Jacqueline MacDonald

    2016-01-01

    Health impact assessment (HIA) has been promoted as a means to encourage transportation and city planners to incorporate health considerations into their decision-making. Ideally, HIAs would include quantitative estimates of the population health effects of alternative planning scenarios, such as scenarios with and without infrastructure to support walking and cycling. However, the lack of baseline estimates of time spent walking or biking for transportation (together known as "active transportation"), which are critically related to health, often prevents planners from developing such quantitative estimates. To address this gap, we use data from the 2009 US National Household Travel Survey to develop a statistical model that estimates baseline time spent walking and biking as a function of the type of transportation used to commute to work along with demographic and built environment variables. We validate the model using survey data from the Raleigh-Durham-Chapel Hill, NC, USA, metropolitan area. We illustrate how the validated model could be used to support transportation-related HIAs by estimating the potential health benefits of built environment modifications that support walking and cycling. Our statistical model estimates that on average, individuals who commute on foot spend an additional 19.8 (95% CI 16.9-23.2) minutes per day walking compared to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5-6.4) minutes per day compared to automobile commuters. Bicycle commuters cycle for an additional 28.0 (95% CI 17.5-38.1) minutes per day compared to automobile commuters. The statistical model was able to predict observed transportation physical activity in the Raleigh-Durham-Chapel Hill region to within 0.5 MET-hours per day (equivalent to about 9 min of daily walking time) for 83% of observations. Across the Raleigh-Durham-Chapel Hill region, an estimated 38 (95% CI 15-59) premature deaths potentially could be avoided if the entire population walked 37.4 min per week for transportation (the amount of transportation walking observed in previous US studies of walkable neighborhoods). The approach developed here is useful both for estimating baseline behaviors in transportation HIAs and for comparing the magnitude of risks associated with physical inactivity to other competing health risks in urban areas.

  1. Statistical optimisation techniques in fatigue signal editing problem

    NASA Astrophysics Data System (ADS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  2. Statistical optimisation techniques in fatigue signal editing problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window andmore » fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.« less

  3. A multicenter randomized comparison of cycle control and laboratory findings with oral contraceptive agents containing 100 microg levonorgestrel with 20 microg ethinyl estradiol or triphasic norethindrone with ethinyl estradiol.

    PubMed

    Reisman, H; Martin, D; Gast, M J

    1999-11-01

    This study was undertaken to compare the effects of 2 oral contraceptive regimens on menstrual cycle control and laboratory findings. In a multicenter randomized study 100 microg levonorgestrel with 20 microg ethinyl estradiol (Alesse or Loette) was given to 155 healthy women. A triphasic preparation of 500, 750, and 1000 microg norethindrone with 35 microg ethinyl estradiol (Ortho-Novum 7/7/7 or TriNovum) was given to 167 women for 1 to 4 cycles of treatment. Overall, the percentages of normal menstrual cycles and the percentages of cycles with intermenstrual and withdrawal bleeding were similar between the 2 treatment groups. In the levonorgestrel with ethinyl estradiol group, there was a statistically significantly longer latent period and a statistically significantly shorter withdrawal bleeding episode. Adverse events were similar between treatment groups, and none were serious. Most mean changes from baseline laboratory values were comparable between groups, although the mean increase in cholesterol concentration was statistically significantly lower in the levonorgestrel with ethinyl estradiol group. Changes in triglyceride and glucose concentrations were not statistically significantly different between groups. Levonorgestrel (100 microg) with ethinyl estradiol (20 microg) provides menstrual cycle control equivalent to that obtained with triphasic norethindrone with ethinyl estradiol (75% higher estrogen dose) with similar safety and tolerability.

  4. Application of advanced data assimilation techniques to the study of cloud and precipitation feedbacks in the tropical climate system

    NASA Astrophysics Data System (ADS)

    Posselt, Derek J.

    The research documented in this study centers around two topics: evaluation of the response of precipitating cloud systems to changes in the tropical climate system, and assimilation of cloud and precipitation information from remote-sensing platforms. The motivation for this work proceeds from the following outstanding problems: (1) Use of models to study the response of clouds to perturbations in the climate system is hampered by uncertainties in cloud microphysical parameterizations. (2) Though there is an ever-growing set of available observations, cloud and precipitation assimilation remains a difficult problem, particularly in the tropics. (3) Though it is widely acknowledged that cloud and precipitation processes play a key role in regulating the Earth's response to surface warming, the response of the tropical hydrologic cycle to climate perturbations remains largely unknown. The above issues are addressed in the following manner. First, Markov chain Monte Carlo (MCMC) methods are used to quantify the sensitivity of the NASA Goddard Cumulus Ensemble (GCE) cloud resolving model (CRM) to changes in its cloud odcrnpbymiC8l parameters. TRMM retrievals of precipitation rate, cloud properties, and radiative fluxes and heating rates over the South China Sea are then assimilated into the GCE model to constrain cloud microphysical parameters to values characteristic of convection in the tropics, and the resulting observation-constrained model is used to assess the response of the tropical hydrologic cycle to surface warming. The major findings of this study are the following: (1) MCMC provides an effective tool with which to evaluate both model parameterizations and the assumption of Gaussian statistics used in optimal estimation procedures. (2) Statistics of the tropical radiation budget and hydrologic cycle can be used to effectively constrain CRM cloud microphysical parameters. (3) For 2D CRM simulations run with and without shear, the precipitation efficiency of cloud systems increases with increasing sea surface temperature, while the high cloud fraction and outgoing shortwave radiation decrease.

  5. An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William

    2007-01-01

    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion cells configured in series and parallel combinations to create nominal 14.4 volt, 3 Ah packs (4s-2p). These modules have accumulated approximately 3000 cycles. Results on the performance of the cells and modules will be presented in this paper. The life prediction and performance model for Li-ion cells in LEO will be built by analyzing the data statistically and performing regression analysis. Cells are being cycled to failure so that differences in performance trends that occur at different stages in the life of the cell can be observed and accurately modeled. Cell testing is being performed at the Naval Surface Warfare Center in Crane, IN.

  6. Application of the Maximum Amplitude-Early Rise Correlation to Cycle 23

    NASA Technical Reports Server (NTRS)

    Willson, Robert M.; Hathaway, David H.

    2004-01-01

    On the basis of the maximum amplitude-early rise correlation, cycle 23 could have been predicted to be about the size of the mean cycle as early as 12 mo following cycle minimum. Indeed, estimates for the size of cycle 23 throughout its rise consistently suggested a maximum amplitude that would not differ appreciably from the mean cycle, contrary to predictions based on precursor information. Because cycle 23 s average slope during the rising portion of the solar cycle measured 2.4, computed as the difference between the conventional maximum (120.8) and minimum (8) amplitudes divided by the ascent duration in months (47), statistically speaking, it should be a cycle of shorter period. Hence, conventional sunspot minimum for cycle 24 should occur before December 2006, probably near July 2006 (+/-4 mo). However, if cycle 23 proves to be a statistical outlier, then conventional sunspot minimum for cycle 24 would be delayed until after July 2007, probably near December 2007 (+/-4 mo). In anticipation of cycle 24, a chart and table are provided for easy monitoring of the nearness and size of its maximum amplitude once onset has occurred (with respect to the mean cycle and using the updated maximum amplitude-early rise relationship).

  7. Individualized decision-making in IVF: calculating the chances of pregnancy.

    PubMed

    van Loendersloot, L L; van Wely, M; Repping, S; Bossuyt, P M M; van der Veen, F

    2013-11-01

    Are we able to develop a model to calculate the chances of pregnancy prior to the start of the first IVF cycle as well as after one or more failed cycles? Our prediction model enables the accurate individualized calculation of the probability of an ongoing pregnancy with IVF. To improve counselling, patient selection and clinical decision-making in IVF, a number of prediction models have been developed. These models are of limited use as they were developed before current clinical and laboratory protocols were established. This was a cohort study. The development set included 2621 cycles in 1326 couples who had been treated with IVF or ICSI between January 2001 and July 2009. The validation set included additional data from 515 cycles in 440 couples treated between August 2009 and April 2011. The outcome of interest was an ongoing pregnancy after transfer of fresh or frozen-thawed embryos from the same stimulated IVF cycle. If a couple became pregnant after an IVF/ICSI cycle, the follow-up was at a gestational age of at least 11 weeks. Women treated with IVF or ICSI between January 2001 and April 2011 in a university hospital. IVF/ICSI cycles were excluded in the case of oocyte or embryo donation, surgically retrieved spermatozoa, patients positive for human immunodeficiency virus, modified natural IVF and cycles cancelled owing to poor ovarian stimulation, ovarian hyperstimulation syndrome or other unexpected medical or non-medical reasons. Thirteen variables were included in the final prediction model. For all cycles, these were female age, duration of subfertility, previous ongoing pregnancy, male subfertility, diminished ovarian reserve, endometriosis, basal FSH and number of failed IVF cycles. After the first cycle: fertilization, number of embryos, mean morphological score per Day 3 embryo, presence of 8-cell embryos on Day 3 and presence of morulae on Day 3 were also included. In validation, the model had moderate discriminative capacity (c-statistic 0.68, 95% confidence interval: 0.63-0.73) but calibrated well, with a range from 0.01 to 0.56 in calculated probabilities. In our study, the outcome of interest was ongoing pregnancy. Live birth may have been a more appropriate outcome, although only 1-2% of all ongoing pregnancies result in late miscarriage or stillbirth. The model was based on data from a single centre. The IVF model presented here is the first to calculate the chances of an ongoing pregnancy with IVF, both for the first cycle and after any number of failed cycles. The generalizability of the model to other clinics has to be evaluated more extensively in future studies (geographical validation). Centres with higher or lower success rates could use the model, after recalibration, by adjusting the intercept to reflect the IVF success rates in their centre. This project was funded by the NutsOhra foundation (Grant 1004-179). The NutsOhra foundation had no role in the development of our study, in the collection, analysis and interpretation of data; in writing of the manuscript, and in the decision to submit the manuscript for publication. There were no competing interests.

  8. Thermal advection and stratification effects on surface winds and the low level meridional mass transport

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Tiu, Felice S.

    1990-01-01

    Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.

  9. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  10. Color stability of shade guides after autoclave sterilization.

    PubMed

    Schmeling, Max; Sartori, Neimar; Monteiro, Sylvio; Baratieri, Luiz

    2014-01-01

    This study evaluated the influence of 120 autoclave sterilization cycles on the color stability of two commercial shade guides (Vita Classical and Vita System 3D-Master). The specimens were evaluated by spectrophotometer before and after the sterilization cycles. The color was described using the three-dimensional CIELab system. The statistical analysis was performed in three chromaticity coordinates, before and after sterilization cycles, using the paired samples t test. All specimens became darker after autoclave sterilization cycles. However, specimens of Vita Classical became redder, while those of the Vita System 3D-Master became more yellow. Repeated cycles of autoclave sterilization caused statistically significant changes in the color coordinates of the two shade guides. However, these differences are considered clinically acceptable.

  11. A comparison of single-cycle versus multiple-cycle proof testing strategies

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Mcclung, R. C.; Bartlett, M. L.; Fitzgerald, J. H.; Russell, D. A.

    1990-01-01

    An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading.

  12. North American Extreme Temperature Events and Related Large Scale Meteorological Patterns: A Review of Statistical Methods, Dynamics, Modeling, and Trends

    NASA Technical Reports Server (NTRS)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.; hide

    2015-01-01

    The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.

  13. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; hide

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  14. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  15. The Projection of Space Radiation Environments with a Solar Cycle Statistical Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.

    2006-01-01

    A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.

  16. Characterization of dependencies between growth and division in budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less

  17. Characterization of dependencies between growth and division in budding yeast

    DOE PAGES

    Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less

  18. Characterization of dependencies between growth and division in budding yeast

    PubMed Central

    Iversen, Edwin S.; Hartemink, Alexander J.

    2017-01-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G2/M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. PMID:28228543

  19. Characterization of dependencies between growth and division in budding yeast.

    PubMed

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  20. Statistical summaries of fatigue data for design purposes

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1983-01-01

    Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.

  1. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  2. A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region

    NASA Astrophysics Data System (ADS)

    Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe

    2018-06-01

    Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.

  3. The life-cycle argument: age as a mediator of pharmacists' earnings.

    PubMed

    Carvajal, Manuel J; Armayor, Graciela M

    2015-01-01

    Age diversity poses challenges to pharmacy employers and managers. A life-cycle argument has been presented to explain pharmacists' age-related differences at work. Explore responses of pharmacists' wage-and-salary earnings in three age groups (younger than 40, 40-54 years, and 55 years plus) to labor input and human-capital variables. A survey questionnaire was mailed to registered pharmacists in South Florida, USA. An earnings function was formulated and tested, using ordinary least squares, for each age group separately to compare the direction, magnitude, and statistical significance of each determinant on earnings. The covariates were number of hours worked, type of pharmacy degree, years of professional experience, gender, number of children, and whether the pharmacist had completed a residency and/or attained a specialty board certification. The model showed better fit and statistical significance for practitioners under 40 and 55 years or older. The number of hours worked was the overwhelming determinant, but the magnitude of its influence was different for the three age groups. Human-capital indicators provided evidence in support of the life-cycle argument. The wage-and-salary earnings of pharmacy practitioners were mediated by age group in their response to labor input and human-capital variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  5. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  6. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth

    2016-05-02

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less

  7. Floodplain dynamics control the age distribution of organic carbon in large rivers

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Limaye, A. B. S.; Ganti, V.; West, A. J.; Fischer, W. W.; Lamb, M. P.

    2016-12-01

    As sediments transit through river systems, they are temporarily stored within floodplains. This storage is important for geochemical cycles because it imparts a certain cadence to weathering processes and organic carbon cycling. However, the time and length scales over which these processes operate are poorly known. To address this, we developed a model for the distribution of storage times in floodplains and used it to make predictions of the age distribution of riverine particulate organic carbon (POC) that can be compared with data from a range of rivers.Using statistics generated from a numerical model of river meandering that accounts for the rates of lateral channel migration and the lengths of channel needed to exchange the sediment flux with the floodplain, we estimated the distribution of sediment storage times. Importantly, this approach consistently yields a heavy-tailed distribution of storage times. This finding, based on comprehensive simulations of a wide range of river conditions, arises because of geometrical constraints that lead to the preferential erosion and reworking of young deposits. To benchmark our model, we compared our results with meteoric 10Be data (a storage time proxy) from Amazonian rivers. Our model correctly predicts observed 10Be concentrations, and consequently appears to capture the correct characteristic timescales associated with floodplain storage. By coupling a simple model of carbon cycling with our floodplain storage model, we are able to make predictions about the radiocarbon content of riverine POC. We observe that floodplains with greater storage times tend to have biospheric POC with a lower radiocarbon content (after correcting bulk ages for contribution from radiocarbon-dead petrogenic carbon). This result confirms that storage plays a key role in setting the age of POC transported by rivers with important implications for the dynamics of the global carbon cycle.

  8. A statistical approach to quasi-extinction forecasting.

    PubMed

    Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric

    2007-12-01

    Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.

  9. Tracing the source of numerical climate model uncertainties in precipitation simulations using a feature-oriented statistical model

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Jones, A. D.; Rhoades, A.

    2017-12-01

    Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for by each predictor. By comparing the statistical model derived from true world information and modeled world information, we assess the errors lying in the physics of the numerical models. This work provides a unique insight to assess the performance of numerical climate models, and can be used to guide improvement of precipitation prediction.

  10. The Hog Cycle of Law Professors: An Econometric Time Series Analysis of the Entry-Level Job Market in Legal Academia.

    PubMed

    Engel, Christoph; Hamann, Hanjo

    2016-01-01

    The (German) market for law professors fulfils the conditions for a hog cycle: In the short run, supply cannot be extended or limited; future law professors must be hired soon after they first present themselves, or leave the market; demand is inelastic. Using a comprehensive German dataset, we show that the number of market entries today is negatively correlated with the number of market entries eight years ago. This suggests short-sighted behavior of young scholars at the time when they decide to prepare for the market. Using our statistical model, we make out-of-sample predictions for the German academic market in law until 2020.

  11. Astrostatistical Analysis in Solar and Stellar Physics

    NASA Astrophysics Data System (ADS)

    Stenning, David Craig

    This dissertation focuses on developing statistical models and methods to address data-analytic challenges in astrostatistics---a growing interdisciplinary field fostering collaborations between statisticians and astrophysicists. The astrostatistics projects we tackle can be divided into two main categories: modeling solar activity and Bayesian analysis of stellar evolution. These categories from Part I and Part II of this dissertation, respectively. The first line of research we pursue involves classification and modeling of evolving solar features. Advances in space-based observatories are increasing both the quality and quantity of solar data, primarily in the form of high-resolution images. To analyze massive streams of solar image data, we develop a science-driven dimension reduction methodology to extract scientifically meaningful features from images. This methodology utilizes mathematical morphology to produce a concise numerical summary of the magnetic flux distribution in solar "active regions'' that (i) is far easier to work with than the source images, (ii) encapsulates scientifically relevant information in a more informative manner than existing schemes (i.e., manual classification schemes), and (iii) is amenable to sophisticated statistical analyses. In a related line of research, we perform a Bayesian analysis of the solar cycle using multiple proxy variables, such as sunspot numbers. We take advantage of patterns and correlations among the proxy variables to model solar activity using data from proxies that have become available more recently, while also taking advantage of the long history of observations of sunspot numbers. This model is an extension of the Yu et al. (2012) Bayesian hierarchical model for the solar cycle that used the sunspot numbers alone. Since proxies have different temporal coverage, we devise a multiple imputation scheme to account for missing data. We find that incorporating multiple proxies reveals important features of the solar cycle that are missed when the model is fit using only the sunspot numbers. In Part II of this dissertation we focus on two related lines of research involving Bayesian analysis of stellar evolution. We first focus on modeling multiple stellar populations in star clusters. It has long been assumed that all star clusters are comprised of single stellar populations---stars that formed at roughly the same time from a common molecular cloud. However, recent studies have produced evidence that some clusters host multiple populations, which has far-reaching scientific implications. We develop a Bayesian hierarchical model for multiple-population star clusters, extending earlier statistical models of stellar evolution (e.g., van Dyk et al. 2009, Stein et al. 2013). We also devise an adaptive Markov chain Monte Carlo algorithm to explore the complex posterior distribution. We use numerical studies to demonstrate that our method can recover parameters of multiple-population clusters, and also show how model misspecification can be diagnosed. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We also explore statistical properties of the estimators and determine that the influence of the prior distribution does not diminish with larger sample sizes, leading to non-standard asymptotics. In a final line of research, we present the first-ever attempt to estimate the carbon fraction of white dwarfs. This quantity has important implications for both astrophysics and fundamental nuclear physics, but is currently unknown. We use a numerical study to demonstrate that assuming an incorrect value for the carbon fraction leads to incorrect white-dwarf ages of star clusters. Finally, we present our attempt to estimate the carbon fraction of the white dwarfs in the well-studied star cluster 47 Tucanae.

  12. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR

    Treesearch

    Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng

    2007-01-01

    Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...

  13. Digital simulation of hybrid loop operation in RFI backgrounds.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.

    1972-01-01

    A digital computer model for Monte-Carlo simulation of an imperfect second-order hybrid phase-locked loop (PLL) operating in radio-frequency interference (RFI) and Gaussian noise backgrounds has been developed. Characterization of hybrid loop performance in terms of cycle slipping statistics and phase error variance, through computer simulation, indicates that the hybrid loop has desirable performance characteristics in RFI backgrounds over the conventional PLL or the costas loop.

  14. Body weight changes during the menstrual cycle among university students in Ahvaz, Iran.

    PubMed

    Haghighizadeh, Mohammad Hossein; Karandish, Majid; Ghoreishi, Mahdiye; Soroor, Farshad; Shirani, Fatemeh

    2014-07-01

    Weight changes during menstrual cycle may be a cause of concern about body weight among most women. Limited data are available linking menstrual cycle and body weight changes. The aim of this study was to examine the relationship between menstrual cycles and body weight changes among university students in Ahvaz, Iran. This cross-sectional study was conducted on 50 Iranian female students aged 18-24 years. Anthropometric indices were measured according to standard protocols. During a complete menstrual cycle, weights of participants were measured each morning. Seventy eight percent of participants had normal weight (Body Mass Index: 18.5-24.9 kg m(-2)). Body weight increased only slightly during the three days before beginning of the menstruation. By using repeated-measures ANOVA, no statistically significant differences were found in weigh during menstrual cycle (p-value = 0.301). No statistically significant changes were found in body weight during women's menstrual cycle in a group of healthy non-obese Iranian young women. Further studies on overweight and obese women are suggested.

  15. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  16. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  17. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  18. Statistical Hotspot Model for Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2005-07-01

    The presence and need for energy localization in the ignition and detonation of high explosives is a corner stone in our understanding of explosive behavior. This energy localization, known as hot spots, provides the match that starts the energetic response that is integral to the detonation. In our model, we use the life cycle of a hot spot to predict explosive response. This life cycle begins with a random distribution of inhomogeneities in the explosive that we describe as a potential hot spot. A shock wave can transform these into hot spots that can then grow by consuming the explosive around them. The fact that the shock wave can collapse a potential hot spot without causing ignition is required in order to model phenomena like dead pressing. The burn rate of the hot spot is taken directly from experimental data. In our approach we do not assume that every hot spot is burning in an identical environment, but rather we take a statistical approach to the burning process. We also do not make a uniform temperature assumption in order to close the mixture equation of state, but track the flow of energy from reactant to product. Finally, we include both the hot spot burn model and a thermal decomposition path, required to explain certain long time behaviors. Building on work performed by Reaugh et. al., we have developed a set of reaction parameters for an HMX based heterogeneous explosive. These parameters have been determined from computer models on the micron scale, and experimental data. This model will be compared to experimental rate stick data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  19. Sex differences in mechanical allodynia: how can it be preclinically quantified and analyzed?

    PubMed Central

    Nicotra, Lauren; Tuke, Jonathan; Grace, Peter M.; Rolan, Paul E.; Hutchinson, Mark R.

    2014-01-01

    Translating promising preclinical drug discoveries to successful clinical trials remains a significant hurdle in pain research. Although animal models have significantly contributed to understanding chronic pain pathophysiology, the majority of research has focused on male rodents using testing procedures that produce sex difference data that do not align well with comparable clinical experiences. Additionally, the use of animal pain models presents ongoing ethical challenges demanding continuing refinement of preclinical methods. To this end, this study sought to test a quantitative allodynia assessment technique and associated statistical analysis in a modified graded nerve injury pain model with the aim to further examine sex differences in allodynia. Graded allodynia was established in male and female Sprague Dawley rats by altering the number of sutures placed around the sciatic nerve and quantified by the von Frey test. Linear mixed effects modeling regressed response on each fixed effect (sex, oestrus cycle, pain treatment). On comparison with other common von Frey assessment techniques, utilizing lower threshold filaments than those ordinarily tested, at 1 s intervals, appropriately and successfully investigated female mechanical allodynia, revealing significant sex and oestrus cycle difference across the graded allodynia that other common behavioral methods were unable to detect. Utilizing this different von Frey approach and graded allodynia model, a single suture inflicting less allodynia was sufficient to demonstrate exaggerated female mechanical allodynia throughout the phases of dioestrus and pro-oestrus. Refining the von Frey testing method, statistical analysis technique and the use of a graded model of chronic pain, allowed for examination of the influences on female mechanical nociception that other von Frey methods cannot provide. PMID:24592221

  20. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Key Characteristics of Rehabilitation Quality Improvement Publications: Scoping Review From 2010 to 2016.

    PubMed

    Jesus, Tiago S; Papadimitriou, Christina; Pinho, Cátia S; Hoenig, Helen

    2018-06-01

    To characterize the peer-reviewed quality improvement (QI) literature in rehabilitation. Five electronic databases were searched for English-language articles from 2010 to 2016. Keywords for QI and safety management were searched for in combination with keywords for rehabilitation content and journals. Secondary searches (eg, references-list scanning) were also performed. Two reviewers independently selected articles using working definitions of rehabilitation and QI study types; of 1016 references, 112 full texts were assessed for eligibility. Reported study characteristics including study focus, study setting, use of inferential statistics, stated limitations, and use of improvement cycles and theoretical models were extracted by 1 reviewer, with a second reviewer consulted whenever inferences or interpretation were involved. Fifty-nine empirical rehabilitation QI studies were found: 43 reporting on local QI activities, 7 reporting on QI effectiveness research, 8 reporting on QI facilitators or barriers, and 1 systematic review of a specific topic. The number of publications had significant yearly growth between 2010 and 2016 (P=.03). Among the 43 reports on local QI activities, 23.3% did not explicitly report any study limitations; 39.5% did not used inferential statistics to measure the QI impact; 95.3% did not cite/mention the appropriate reporting guidelines; only 18.6% reported multiple QI cycles; just over 50% reported using a model to guide the QI activity; and only 7% reported the use of a particular theoretical model. Study sites and focuses were diverse; however, nearly a third (30.2%) examined early mobilization in intensive care units. The number of empirical, peer-reviewed rehabilitation QI publications is growing but remains a tiny fraction of rehabilitation research publications. Rehabilitation QI studies could be strengthened by greater use of extant models and theory to guide the QI work, consistent reporting of study limitations, and use of inferential statistics. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  2. Impacts of climate change on the hydrological cycle over France and associated uncertainties

    NASA Astrophysics Data System (ADS)

    Dayon, Gildas; Boé, Julien; Martin, Éric; Gailhard, Joël

    2018-05-01

    This study deals with the evolution of the hydrological cycle over France during the 21st century. A large multi-member, multi-scenario, and multi-model ensemble of climate projections is downscaled with a new statistical method to drive a physically-based hydrological model with recent improvements. For a business-as-usual scenario, annual precipitation changes generally remain small, except over southern France, where decreases close to 20% are projected. Annual streamflows roughly decrease by 10% (±20%) on the Seine, by 20% (±20%) on the Loire, by 20% (±15%) on the Rhone and by 40% (±15%) on the Garonne. Attenuation measures, as implied by the other scenarios analyzed, lead to less severe changes. However, even with a scenario generally compatible with a limitation of global warming to two degrees, some notable impacts may still occur, with for example a decrease in summer river flows close to 25% for the Garonne.

  3. Three-Dimensional Model Synthesis of the Global Methane Cycle

    NASA Technical Reports Server (NTRS)

    Fung, I.; Prather, M.; John, J.; Lerner, J.; Matthews, E.

    1991-01-01

    A synthesis of the global methane cycle is presented to attempt to generate an accurate global methane budget. Methane-flux measurements, energy data, and agricultural statistics are merged with databases of land-surface characteristics and anthropogenic activities. The sources and sinks of methane are estimated based on atmospheric methane composition and variations, and a global 3D transport model simulates the corresponding atmospheric responses. The geographic and seasonal variations of candidate budgets are compared with observational data, and the available observations are used to constrain the plausible methane budgets. The preferred budget includes annual destruction rates and annual emissions for various sources. The lack of direct flux measurements in the regions of many of these fluxes makes the unique determination of each term impossible. OH oxidation is found to be the largest single term, although more measurements of this and other terms are recommended.

  4. Wave kinetics of random fibre lasers

    PubMed Central

    Churkin, D V.; Kolokolov, I V.; Podivilov, E V.; Vatnik, I D.; Nikulin, M A.; Vergeles, S S.; Terekhov, I S.; Lebedev, V V.; Falkovich, G.; Babin, S A.; Turitsyn, S K.

    2015-01-01

    Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics. PMID:25645177

  5. Reduced and Compressed Cisplatin-Based Chemotherapy in Children and Adolescents With Intermediate-Risk Extracranial Malignant Germ Cell Tumors: A Report From the Children’s Oncology Group

    PubMed Central

    Cullen, John W.; Olson, Thomas A.; Pashankar, Farzana; Malogolowkin, Marcio H.; Amatruda, James F.; Villaluna, Doojduen; Krailo, Mark; Billmire, Deborah F.; Rescorla, Frederick J.; Egler, Rachel A.; Dicken, Bryan J.; Ross, Jonathan H.; Schlatter, Marc; Rodriguez-Galindo, Carlos; Frazier, A. Lindsay

    2017-01-01

    Purpose To investigate whether event-free survival (EFS) can be maintained among children and adolescents with intermediate-risk (IR) malignant germ cell tumors (MGCT) if the administration of cisplatin, etoposide, and bleomycin (PEb) is reduced from four to three cycles and compressed from 5 to 3 days per cycle. Patients and Methods In a phase 3, single-arm trial, patients with IR MGCT (stage II-IV testicular, II-III ovarian, I-II extragonadal, or stage I gonadal tumors with subsequent recurrence) received three cycles of PEb. A parametric comparator model specified that the observed EFS rate should not be significantly < 92%. As recommended for trials that test a reduction of therapy, a one-sided P value ≤ .10 was used to indicate statistical significance. In a post hoc analysis, we also compared results to the EFS rate of comparable patients treated with four cycles of PEb in two prior studies. Results Among 210 eligible patients enrolled from 2003 to 2011, 4-year EFS (EFS4) rate was 89% (95% confidence interval, 83% to 92%), which was significantly lower than the 92% threshold of the comparison model (P = .08). Among 181 newly diagnosed patients, the EFS4 rate was 87%, compared with 92% for 92 comparable children in the historical cohort (P = .15). The EFS4 rate was significantly associated with stage (stage I, 100%; stage II, 92%; stage III, 85%; and stage IV, 54%; P < .001). Conclusion The EFS rate for children with IR MGCT observed after three cycles of PEb was less than that of a prespecified parametric model, particularly for patients with higher-stage tumors. These data do not support a reduction in the number of cycles of PEb from four to three. However, further investigation of a reduction in the number of cycles for patients with lower-stage tumors is warranted. PMID:28240974

  6. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  7. A comparison of biomechanical stability and pullout strength of two C1-C2 fixation constructs.

    PubMed

    Savage, Jason W; Limthongkul, Worawat; Park, Hyung-Soon; Zhang, Li-Qun; Karaikovic, Eldin E

    2011-07-01

    Several fusion techniques are used to treat atlantoaxial instability. Recent literature suggests that intralaminar screw (LS) fixation and pedicle screw (PS) fixation offer similar stability and comparable pullout strength. No studies have compared these characteristics after cyclic loading. To compare the stability and pullout strength of intra-LSs and PSs in a C1-C2 instability model after 1,000 cycles of axial loading. In vitro biomechanical study. Stability in axial rotation and screw pullout strength after cyclic loading. Six fresh-frozen human cadaveric cervical spines (C1-C2) were used in this study. C1-C2 instability was mimicked via odontoidotomy at its base and posterior soft-tissue release, including the supraspinous ligaments and facet joint capsules. Specimens were tested to 1,000 cycles after stabilization with two fixation constructs: C1 lateral mass (LM) screws and C2 intra-LSs (C1LM-C2LS) and C1 LM screws and C2 PSs (C1LM-C2PS). Angular motion was recorded for right and left axial rotation using an Optotrak 3020 system (Northern Digital, Waterloo, Ontario, Canada). Tensile loading to failure was then performed collinear to the longitudinal axis of the screw, and the data were recorded as peak pullout strength in newtons. There was no statistically significant difference in stability (measured in degrees of rotation) between the intra-LS and PS constructs at 250, 500, 750, and 1,000 cycles of axial rotation. Furthermore, there was no significant difference in stability at 250 cycles versus 1,000 cycles for the LS (1.30 vs. 1.49, p = .80) or PS (0.84 vs. 0.85, p = .96). Pedicle screws had higher pullout strength when compared with the intra-LSs (757.5 ± 239 vs. 583.4 ± 472 N); however, high standard deviation precluded statistical significance (p = .44). Our data suggest that a C1LM and C2LS construct has similar biomechanical stability when compared with a C1LM and C2PS construct after 1,000 cycles of axial rotation. Furthermore, PSs had higher pullout strength when compared with LSs; however, this result was not statistically significant. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses

    NASA Astrophysics Data System (ADS)

    Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.

    2017-12-01

    Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.

  9. Quantitative characterization and modeling of lithologic heterogeneity

    NASA Astrophysics Data System (ADS)

    Deshpande, Anil

    The fundamental goal of this thesis is to gain a better understanding of the vertical and lateral stratigraphic heterogeneities in sedimentary deposits. Two approaches are taken: Statistical characterization of lithologic variation recorded by geophysical data such as reflection seismic and wireline logs, and stochastic forward modeling of sediment accumulation in basins. Analysis of reflection seismic and wireline log data from Pleistocene fluvial and deltaic deposits in the Eugene Island 330 field, offshore Gulf of Mexico reveal scale-invariant statistics and strong anisotropy in rock properties. Systematic quantification of lateral lithologic heterogeneity within a stratigraphic framework, using reflection seismic data, indicates that fluvial and deltaic depositional systems exhibit statistical behavior related to stratigraphic fabric. Well log and seismic data profiles show a decay in power spectra with wavenumber, k, according to ksp{-beta} with beta between 1 and 2.3. The question of how surface processes are recorded in bed thickness distributions as a function of basin accommodation space is addressed with stochastic sedimentation model. In zones of high accommodation, random, uncorrelated, driving events produce a range of spatially correlated lithology fields. In zones of low accommodation, bed thickness distributions deviate from the random forcing imposed (an exponential thickness distribution). Model results are similar to that of a shallowing upward parasequence recorded in 15 meters of offshore Gulf of Mexico Pleistocene core. These data record a deviation from exponentially distributed bed thicknesses from the deeper water part of the cycle to the shallow part of the cycle where bed amalgamation dominates. Finally, a stochastic basin-fill model is used to explore the primary controls on stratigraphic architecture of turbidite channel-fill in the South Timbalier 295 field, offshore Louisiana Gulf Coast. Spatial and temporal changes in topography and subsidence rate are shown to be the main controls on turbidite channel stacking pattern within this basin. The model predicts the deposition of thick, amalgamated turbidite channel sands in the basin during a period of high initial subsidence followed by deposition of thinner, less connected sands when basin subsidence rate and accommodation space are low.

  10. The Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site: An Atmospheric State-Based Analysis and Error Decomposition of a Multiscale Modeling Framework Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-12-01

    Long-term reflectivity data collected by a millimeter cloud radar at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to examine the diurnal cycle of clouds and precipitation and are compared with the diurnal cycle simulated by a Multiscale Modeling Framework (MMF) climate model. The study uses a set of atmospheric states that were created specifically for the SGP and for the purpose of investigating under what synoptic conditions models compare well with observations on a statistical basis (rather than using case studies or seasonal or longer time scale averaging). Differences in the annual mean diurnal cycle between observations and the MMF are decomposed into differences due to the relative frequency of states, the daily mean vertical profile of hydrometeor occurrence, and the (normalized) diurnal variation of hydrometeors in each state. Here the hydrometeors are classified as cloud or precipitation based solely on the reflectivity observed by a millimeter radar or generated by a radar simulator. The results show that the MMF does not capture the diurnal variation of low clouds well in any of the states but does a reasonable job capturing the diurnal variations of high clouds and precipitation in some states. In particular, the diurnal variations in states that occur during summer are reasonably captured by the MMF, while the diurnal variations in states that occur during the transition seasons (spring and fall) are not well captured. Overall, the errors in the annual composite are due primarily to errors in the daily mean of hydrometeor occurrence (rather than diurnal variations), but errors in the state frequency (that is, the distribution of weather states in the model) also play a significant role.

  11. Prediction Methods in Solar Sunspots Cycles

    PubMed Central

    Ng, Kim Kwee

    2016-01-01

    An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269

  12. The data life cycle applied to our own data.

    PubMed

    Goben, Abigail; Raszewski, Rebecca

    2015-01-01

    Increased demand for data-driven decision making is driving the need for librarians to be facile with the data life cycle. This case study follows the migration of reference desk statistics from handwritten to digital format. This shift presented two opportunities: first, the availability of a nonsensitive data set to improve the librarians' understanding of data-management and statistical analysis skills, and second, the use of analytics to directly inform staffing decisions and departmental strategic goals. By working through each step of the data life cycle, library faculty explored data gathering, storage, sharing, and analysis questions.

  13. Modeling nonstructural carbohydrate reserve dynamics in forest trees

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Keenan, Trevor; Carbone, Mariah; Pederson, Neil

    2013-04-01

    Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Incorporation of fast- and slow-cycling NSC pools improved the ability of the model to reproduce the measured interannual variability in woody biomass increment. We show how model performance varies according to model structure and total pool size, and we use novel diagnostic criteria, based on autocorrelation statistics of annual biomass growth, to evaluate the model's ability to correctly represent lags and memory effects.

  14. Estimating sunspot number

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.

    1984-01-01

    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.

  15. Soil Moisture and the Persistence of North American Drought.

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-11-01

    We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.

  16. Continuous model for the rock-scissors-paper game between bacteriocin producing bacteria.

    PubMed

    Neumann, Gunter; Schuster, Stefan

    2007-06-01

    In this work, important aspects of bacteriocin producing bacteria and their interplay are elucidated. Various attempts to model the resistant, producer and sensitive Escherichia coli strains in the so-called rock-scissors-paper (RSP) game had been made in the literature. The question arose whether there is a continuous model with a cyclic structure and admitting an oscillatory dynamics as observed in various experiments. The May-Leonard system admits a Hopf bifurcation, which is, however, degenerate and hence inadequate. The traditional differential equation model of the RSP-game cannot be applied either to the bacteriocin system because it involves positive interaction terms. In this paper, a plausible competitive Lotka-Volterra system model of the RSP game is presented and the dynamics generated by that model is analyzed. For the first time, a continuous, spatially homogeneous model that describes the competitive interaction between bacteriocin-producing, resistant and sensitive bacteria is established. The interaction terms have negative coefficients. In some experiments, for example, in mice cultures, migration seemed to be essential for the reinfection in the RSP cycle. Often statistical and spatial effects such as migration and mutation are regarded to be essential for periodicity. Our model gives rise to oscillatory dynamics in the RSP game without such effects. Here, a normal form description of the limit cycle and conditions for its stability are derived. The toxicity of the bacteriocin is used as a bifurcation parameter. Exact parameter ranges are obtained for which a stable (robust) limit cycle and a stable heteroclinic cycle exist in the three-species game. These parameters are in good accordance with the observed relations for the E. coli strains. The roles of growth rate and growth yield of the three strains are discussed. Numerical calculations show that the sensitive, which might be regarded as the weakest, can have the longest sojourn times.

  17. Periods of High Intensity Solar Proton Flux

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  18. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélica Reis; MAGALHÃES, Ana Carolina; RIOS, Daniela; HONÓRIO, Heitor Marques; DELBEM, Alberto Carlos Botazzo

    2010-01-01

    Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments. PMID:20835565

  19. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.; Yi, Y., E-mail: suyeonoh@jnu.ac.kr

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cyclesmore » and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.« less

  20. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-08

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles.

  1. Towards single embryo transfer? Modelling clinical outcomes of potential treatment choices using multiple data sources: predictive models and patient perspectives.

    PubMed

    Roberts, Sa; McGowan, L; Hirst, Wm; Brison, Dr; Vail, A; Lieberman, Ba

    2010-07-01

    In vitro fertilisation (IVF) treatments involve an egg retrieval process, fertilisation and culture of the resultant embryos in the laboratory, and the transfer of embryos back to the mother over one or more transfer cycles. The first transfer is usually of fresh embryos and the remainder may be cryopreserved for future frozen cycles. Most commonly in UK practice two embryos are transferred (double embryo transfer, DET). IVF techniques have led to an increase in the number of multiple births, carrying an increased risk of maternal and infant morbidity. The UK Human Fertilisation and Embryology Authority (HFEA) has adopted a multiple birth minimisation strategy. One way of achieving this would be by increased use of single embryo transfer (SET). To collate cohort data from treatment centres and the HFEA; to develop predictive models for live birth and twinning probabilities from fresh and frozen embryo transfers and predict outcomes from treatment scenarios; to understand patients' perspectives and use the modelling results to investigate the acceptability of twin reduction policies. A multidisciplinary approach was adopted, combining statistical modelling with qualitative exploration of patients' perspectives: interviews were conducted with 27 couples at various stages of IVF treatment at both UK NHS and private clinics; datasets were collated of over 90,000 patients from the HFEA registry and nearly 9000 patients from five clinics, both over the period 2000-5; models were developed to determine live birth and twin outcomes and predict the outcomes of policies for selecting patients for SET or DET in the fresh cycle following egg retrieval and fertilisation, and the predictions were used in simulations of treatments; two focus groups were convened, one NHS and one web based on a patient organisation's website, to present the results of the statistical analyses and explore potential treatment policies. The statistical analysis revealed no characteristics that specifically predicted multiple birth outcomes beyond those that predicted treatment success. In the fresh transfer following egg retrieval, SET would lead to a reduction of approximately one-third in the live birth probability compared with DET, a result consistent with the limited data from clinical trials. From the population or clinic perspective, selection of patients based on prognostic indicators might mitigate about half of the loss in live births associated with SET in the initial fresh transfer while achieving a twin rate of 10% or less. Data-based simulations suggested that, if all good-quality embryos are replaced over multiple frozen embryo transfers, repeated SET has the potential to produce more live birth events than repeated DET. However, this would depend on optimising cryopreservation procedures. Universal SET could both reduce the number of twin births and lead to more couples having a child, but at an average cost of one more embryo transfer procedure per egg retrieval. The interview and focus group data suggest that, despite the potential to maintain overall success rates, patients would prefer DET: the potential for twins was seen as positive, while additional transfer procedures can be emotionally, physically and financially draining. For any one transfer, SET has about a one-third loss of success rate relative to DET. This can be only partially mitigated by patient and treatment cycle selection, which may be criticised as unfair as all patients receiving SET will have a lower chance of success than they would with DET. However, considering complete cycles (fresh plus frozen transfers), it is possible for repeat SET to produce more live births than repeat DET. Such a strategy would require support from funders and acceptance by patients of both cryopreservation and the burden of additional transfer cycles. Future work should include development of improved clinical and regulatory database systems, surveys to quantify the extent of patients' beliefs and experiences and develop approaches to meet their information needs, and, ideally, randomised controlled trials comparing policies of repeated SET with repeated DET.

  2. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  3. Does the use of gonadotropin-releasing hormone antagonists in natural IVF cycles for poor responder patients cause more harm than benefit?

    PubMed

    Aksoy, Senai; Yakin, Kayhan; Seyhan, Ayse; Oktem, Ozgur; Alatas, Cengiz; Ata, Baris; Urman, Bulent

    2016-06-01

    Poor ovarian response to controlled ovarian stimulation (COS) is one of the most critical factors that substantially limits the success of assisted reproduction techniques (ARTs). Natural and modified natural cycle IVF are two options that could be considered as a last resort. Blocking gonadotropin-releasing hormone (GnRH) actions in the endometrium via GnRH receptor antagonism may have a negative impact on endometrial receptivity. We analysed IVF outcomes in 142 natural (n = 30) or modified natural (n = 112) IVF cycles performed in 82 women retrospectively. A significantly lower proportion of natural cycles reached follicular aspiration compared to modified natural cycles (56.7% vs. 85.7%, p < 0.001). However, the difference between the numbers of IVF cycles ending in embryo transfer (26.7% vs. 44.6%) was not statistically significant between natural cycle and modified natural IVF cycles. Clinical pregnancy (6.7% vs. 7.1%) and live birth rates per initiated cycle (6.7% vs. 5.4%) were similar between the two groups. Notably, the implantation rate was slightly lower in modified natural cycles (16% vs. 25%, p > 0.05). There was a trend towards higher clinical pregnancy (25% vs. 16%) and live birth (25% vs. 12%) rates per embryo transfer in natural cycles compared to modified natural cycles, but the differences did not reach statistical significance.

  4. Experimental study of heat pump thermodynamic cycles using CO2 based mixtures - Methodology and first results

    NASA Astrophysics Data System (ADS)

    Bouteiller, Paul; Terrier, Marie-France; Tobaly, Pascal

    2017-02-01

    The aim of this work is to study heat pump cycles, using CO2 based mixtures as working fluids. Since adding other chemicals to CO2 moves the critical point and generally equilibrium lines, it is expected that lower operating pressures as well as higher global efficiencies may be reached. A simple stage pure CO2 cycle is used as reference, with fixed external conditions. Two scenarios are considered: water is heated from 10 °C to 65 °C for Domestic Hot Water scenario and from 30 °C to 35 °C for Central Heating scenario. In both cases, water at the evaporator inlet is set at 7 °C to account for such outdoor temperature conditions. In order to understand the dynamic behaviour of thermodynamic cycles with mixtures, it is essential to measure the fluid circulating composition. To this end, we have developed a non intrusive method. Online optical flow cells allow the recording of infrared spectra by means of a Fourier Transform Infra Red spectrometer. A careful calibration is performed by measuring a statistically significant number of spectra for samples of known composition. Then, a statistical model is constructed to relate spectra to compositions. After calibration, compositions are obtained by recording the spectrum in few seconds, thus allowing for a dynamic analysis. This article will describe the experimental setup and the composition measurement techniques. Then a first account of results with pure CO2, and with the addition of propane or R-1234yf will be given.

  5. [Educational status and patterns of weight gain in adulthood in Brazil: Estudo Pró-Saúde].

    PubMed

    Fonseca, Maria de Jesus Mendes da; França, Rosana de Figueiredo; Faerstein, Eduardo; Werneck, Guilherme Loureiro; Chor, Dóra

    2012-11-01

    The aim of the present study was to investigate the association between participant and parental educational status (considered as an indicator of socioeconomic status) and participant pattern of weight gain in adulthood. We analyzed data from 2 582 baseline participants (1999) of Estudo Pró-Saúde (Pro-Health Study), a longitudinal investigation of civil servants from a public university in Rio de Janeiro, Brazil. Self-administered questionnaires were used to identify patterns of weight gain in adulthood. Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated for the association between parental and participant educational status and steady weight gain or weight cycling, with stable weight as a reference, using multinomial logistic regression models. For males, lower paternal educational level entailed a chance about 55% lower of weight cycling as compared to stable weight (OR = 0.45; IC95% = 0.26-0.78), whereas lower maternal schooling was related to increased risk of weight cycling, although without reaching statistical significance (OR = 1.68; IC95% = 0.94-3.00). The association between participant educational status and weight history was not statistically significant among men. In women, lower educational status entailed a chance 94% higher of self-reported weight cycling (OR = 1.94; 95% CI = 1.17-3.23), and there was no association between parental educational level and history of weight gain. In this study, changes in weight throughout life, both steady and cyclic, were associated with parental and participant educational status, with major differences between genders.

  6. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential Evapotranspiration) also was carried out. This analysis indicates annual cycles in solar radiation and potential evapotranspiration that follow the annual cycle of extraterrestrial solar radiation, whereas temperature and dewpoint annual cycles are lagged by about 1 month relative to the solar cycle. The annual cycle of wind has a late summer minimum, and spring and fall maximums. At the annual time scale, the filled and adjusted data series and computed potential evapotranspiration have significant serial correlation and possibly have significant temporal trends. The inter-annual fluctuations of temperature and dewpoint are weakest, whereas those of wind and potential evapotranspiration are strongest.

  7. Climatic change on the Gulf of Fonseca (Central America) using two-step statistical downscaling of CMIP5 model outputs

    NASA Astrophysics Data System (ADS)

    Ribalaygua, Jaime; Gaitán, Emma; Pórtoles, Javier; Monjo, Robert

    2018-05-01

    A two-step statistical downscaling method has been reviewed and adapted to simulate twenty-first-century climate projections for the Gulf of Fonseca (Central America, Pacific Coast) using Coupled Model Intercomparison Project (CMIP5) climate models. The downscaling methodology is adjusted after looking for good predictor fields for this area (where the geostrophic approximation fails and the real wind fields are the most applicable). The method's performance for daily precipitation and maximum and minimum temperature is analysed and revealed suitable results for all variables. For instance, the method is able to simulate the characteristic cycle of the wet season for this area, which includes a mid-summer drought between two peaks. Future projections show a gradual temperature increase throughout the twenty-first century and a change in the features of the wet season (the first peak and mid-summer rainfall being reduced relative to the second peak, earlier onset of the wet season and a broader second peak).

  8. Climate sensitivity to the lower stratospheric ozone variations

    NASA Astrophysics Data System (ADS)

    Kilifarska, N. A.

    2012-12-01

    The strong sensitivity of the Earth's radiation balance to variations in the lower stratospheric ozone—reported previously—is analysed here by the use of non-linear statistical methods. Our non-linear model of the land air temperature (T)—driven by the measured Arosa total ozone (TOZ)—explains 75% of total variability of Earth's T variations during the period 1926-2011. We have analysed also the factors which could influence the TOZ variability and found that the strongest impact belongs to the multi-decadal variations of galactic cosmic rays. Constructing a statistical model of the ozone variability, we have been able to predict the tendency in the land air T evolution till the end of the current decade. Results show that Earth is facing a weak cooling of the surface T by 0.05-0.25 K (depending on the ozone model) until the end of the current solar cycle. A new mechanism for O3 influence on climate is proposed.

  9. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Primeau, François W.

    2016-05-01

    Mass conservation and metabolic theory place constraints on how marine export production (EP) scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate significant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a threefold variation in the globally integrated carbon flux (~4-12 Pg C yr-1) when applied to climatological satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment further show that biome-specific scaling alters the predicted response of EP to simulated increases of atmospheric CO2. These results highlight the need to better understand distinct pathways of carbon export across unique ecological biomes and may help guide proposed efforts for in situ observations of the ocean carbon cycle.

  10. [The reentrant binomial model of nuclear anomalies growth in rhabdomyosarcoma RA-23 cell populations under increasing doze of rare ionizing radiation].

    PubMed

    Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I

    2008-01-01

    Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.

  11. SNAP Participants' Eating Patterns over the Benefit Month: A Time Use Perspective.

    PubMed

    Hamrick, Karen S; Andrews, Margaret

    2016-01-01

    Individuals receiving monthly benefits through the U.S. Supplemental Nutrition Assistance Program (SNAP) often fall short of food at the end of the month and some report feelings of hunger. To investigate this situation, we used time diaries from the 2006-08 American Time Use Survey and Eating & Health Module to identify the timing of days where respondents reported no eating occurrences. Analysis includes descriptive statistics, a logit model, and a simulated benefit month. We found that SNAP participants were increasingly more likely than nonparticipants to report a day with no eating occurrences over the benefit issuance cycle. This supports the view that there is a monthly cycle in food consumption associated with the SNAP monthly benefit issuance policy.

  12. The Hog Cycle of Law Professors: An Econometric Time Series Analysis of the Entry-Level Job Market in Legal Academia

    PubMed Central

    Hamann, Hanjo

    2016-01-01

    The (German) market for law professors fulfils the conditions for a hog cycle: In the short run, supply cannot be extended or limited; future law professors must be hired soon after they first present themselves, or leave the market; demand is inelastic. Using a comprehensive German dataset, we show that the number of market entries today is negatively correlated with the number of market entries eight years ago. This suggests short-sighted behavior of young scholars at the time when they decide to prepare for the market. Using our statistical model, we make out-of-sample predictions for the German academic market in law until 2020. PMID:27467518

  13. Design solutions for the solar cell interconnect fatigue fracture problem

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1982-01-01

    Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.

  14. Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System

    NASA Astrophysics Data System (ADS)

    Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.

    2015-12-01

    Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.

  15. SNAP Participants’ Eating Patterns over the Benefit Month: A Time Use Perspective

    PubMed Central

    2016-01-01

    Individuals receiving monthly benefits through the U.S. Supplemental Nutrition Assistance Program (SNAP) often fall short of food at the end of the month and some report feelings of hunger. To investigate this situation, we used time diaries from the 2006–08 American Time Use Survey and Eating & Health Module to identify the timing of days where respondents reported no eating occurrences. Analysis includes descriptive statistics, a logit model, and a simulated benefit month. We found that SNAP participants were increasingly more likely than nonparticipants to report a day with no eating occurrences over the benefit issuance cycle. This supports the view that there is a monthly cycle in food consumption associated with the SNAP monthly benefit issuance policy. PMID:27410962

  16. The effect of a graphical interpretation of a statistic trend indicator (Trigg's Tracking Variable) on the detection of simulated changes.

    PubMed

    Kennedy, R R; Merry, A F

    2011-09-01

    Anaesthesia involves processing large amounts of information over time. One task of the anaesthetist is to detect substantive changes in physiological variables promptly and reliably. It has been previously demonstrated that a graphical trend display of historical data leads to more rapid detection of such changes. We examined the effect of a graphical indication of the magnitude of Trigg's Tracking Variable, a simple statistically based trend detection algorithm, on the accuracy and latency of the detection of changes in a micro-simulation. Ten anaesthetists each viewed 20 simulations with four variables displayed as the current value with a simple graphical trend display. Values for these variables were generated by a computer model, and updated every second; after a period of stability a change occurred to a new random value at least 10 units from baseline. In 50% of the simulations an indication of the rate of change was given by a five level graphical representation of the value of Trigg's Tracking Variable. Participants were asked to indicate when they thought a change was occurring. Changes were detected 10.9% faster with the trend indicator present (mean 13.1 [SD 3.1] cycles vs 14.6 [SD 3.4] cycles, 95% confidence interval 0.4 to 2.5 cycles, P = 0.013. There was no difference in accuracy of detection (median with trend detection 97% [interquartile range 95 to 100%], without trend detection 100% [98 to 100%]), P = 0.8. We conclude that simple statistical trend detection may speed detection of changes during routine anaesthesia, even when a graphical trend display is present.

  17. Crime Scenes and Mystery Players! Using Driving Questions to Support the Development of Statistical Literacy

    ERIC Educational Resources Information Center

    Leavy, Aisling; Hourigan, Mairead

    2016-01-01

    We argue that the development of statistical literacy is greatly supported by engaging students in carrying out statistical investigations. We describe the use of driving questions and interesting contexts to motivate two statistical investigations. The PPDAC cycle is use as an organizing framework to support the process statistical investigation.

  18. Complexities and potential pitfalls of clinical study design and data analysis in assisted reproduction.

    PubMed

    Patounakis, George; Hill, Micah J

    2018-06-01

    The purpose of the current review is to describe the common pitfalls in design and statistical analysis of reproductive medicine studies. It serves to guide both authors and reviewers toward reducing the incidence of spurious statistical results and erroneous conclusions. The large amount of data gathered in IVF cycles leads to problems with multiplicity, multicollinearity, and over fitting of regression models. Furthermore, the use of the word 'trend' to describe nonsignificant results has increased in recent years. Finally, methods to accurately account for female age in infertility research models are becoming more common and necessary. The pitfalls of study design and analysis reviewed provide a framework for authors and reviewers to approach clinical research in the field of reproductive medicine. By providing a more rigorous approach to study design and analysis, the literature in reproductive medicine will have more reliable conclusions that can stand the test of time.

  19. Single-cell analysis of transcription kinetics across the cell cycle

    PubMed Central

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  20. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  1. Crank inertial load has little effect on steady-state pedaling coordination.

    PubMed

    Fregly, B J; Zajac, F E; Dairaghi, C A

    1996-12-01

    Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state pedaling is largely unaffected, though less well regulated, when crank inertial load is increased.

  2. A comprehensive analysis of the performance characteristics of the Mount Laguna solar photovoltaic installation

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Sollock, S. G.

    1981-01-01

    This paper represents the first comprehensive survey of the Mount Laguna Photovoltaic Installation. The novel techniques used for performing the field tests have been effective in locating and characterizing defective modules. A comparative analysis on the two types of modules used in the array indicates that they have significantly different failure rates, different distributions in degradational space and very different failure modes. A life cycle model is presented to explain a multimodal distribution observed for one module type. A statistical model is constructed and it is shown to be in good agreement with the field data.

  3. Predictions of Solar Cycle 24: How are We Doing?

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2016-01-01

    Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.

  4. Housing and mobility demands of individual households and their life cycle assessment.

    PubMed

    Saner, Dominik; Heeren, Niko; Jäggi, Boris; Waraich, Rashid A; Hellweg, Stefanie

    2013-06-04

    Household consumption, apart from governmental consumption, is the main driver of worldwide economy. Attached to each household purchase are economic activities along the preceding supply chain, with the associated resource use and emissions. A method to capture and assess all these resource uses and emissions is life cycle assessment. We developed a model for the life cycle assessment of housing and land-based mobility (excluding air travel) consumption of individual households a small village in Switzerland. Statistical census and dwelling register data are the foundations of the model. In a case study performed on a midsized community, we found a median value of greenhouse gas emissions of 3.12 t CO2 equiv and a mean value of 4.30 t CO2 equiv per capita and year for housing and mobility. Twenty-one percent of the households in the investigated region were responsible for 50% of the total greenhouse gas emissions, meaning that if their emissions could be halved the total emissions of the community would be reduced by 25%. Furthermore, a cluster analysis revealed that driving factors for large environmental footprints are demands of large living area heated by fossil energy carriers, as well as large demands of motorized private transportation.

  5. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  6. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  7. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  8. Testing the Porcelli Sawtooth Trigger Module

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Nave, M. F. F.; Parail, V.

    2005-10-01

    The Porcelli sawtooth trigger model [1] is implemented as a module for the National Transport Code Collaboration Module Library [2] and is tested using BALDUR and JETTO integrated modeling simulations of JET and other tokamak discharges. Statistical techniques are used to compute the average sawtooth period and the random scatter in sawtooth periods obtained during selected time intervals in the simulations compared with the corresponding statistical measures obtained from experimental data. It is found that the results are affected systematically by the fraction of magnetic reconnection during each sawtooth crash and by the model that is used for transport within the sawtooth mixing region. The physical processes that affect the sawtooth cycle in the simulations are found to involve an interaction among magnetic diffusion, reheating within the sawtooth mixing region, the instabilities that trigger a sawtooth crash in the Porcelli model, and the magnetic reconnection produced by each sawtooth crash. [1] F. Porcelli, et al., Plasma Phys. Contol. Fusion 38 (1996) 2163. [2] A.H. Kritz, et al., Comput. Phys. Commun. 164 (2004) 108; http://w3.pppl.gov/NTCC. Supported by DOE DE-FG02-92-ER-54141.

  9. Effect of storage in artificial saliva and thermal cycling on Knoop hardness of resin denture teeth.

    PubMed

    Assunção, Wirley Gonçalves; Gomes, Erica Alves; Barão, Valentim Adelino Ricardo; Barbosa, Débora Barros; Delben, Juliana Aparecida; Tabata, Lucas Fernando

    2010-07-01

    This study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth. Eigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37+/-2 degrees C for 48+/-2h (control); (2) storage in artificial saliva at 37+/-2 degrees C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 degrees C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (alpha=.05). In general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P<.05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34+/-4.45 KHN) were statistically higher than those reached after thermal cycling (19.77+/-4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva. Storage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested. Copyright 2010 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1.

    PubMed

    Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi

    2010-04-01

    In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the length of a planet's habitable period.

  12. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.

    PubMed

    Orellana, Andrea; Laurenzi, Ian J; MacLean, Heather L; Bergerson, Joule A

    2018-02-06

    Greenhouse gas (GHG) emissions associated with extraction of bitumen from oil sands can vary from project to project and over time. However, the nature and magnitude of this variability have yet to be incorporated into life cycle studies. We present a statistically enhanced life cycle based model (GHOST-SE) for assessing variability of GHG emissions associated with the extraction of bitumen using in situ techniques in Alberta, Canada. It employs publicly available, company-reported operating data, facilitating assessment of inter- and intraproject variability as well as the time evolution of GHG emissions from commercial in situ oil sands projects. We estimate the median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO 2 eq/bbl bitumen (80% CI: 61-109 kg CO 2 eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO 2 eq/bbl bitumen (80% CI: 49-102 kg CO 2 eq/bbl). We also show that the median emissions intensity of Alberta's CSS and SAGD projects have been relatively stable from 2000 to 2013, despite greater than 6-fold growth in production. Variability between projects is the single largest source of variability (driven in part by reservoir characteristics) but intraproject variability (e.g., startups, interruptions), is also important and must be considered in order to inform research or policy priorities.

  13. Reconstruction of the 1997/1998 El Nino from TOPEX/POSEIDON and TOGA/TAO Data Using a Massively Parallel Pacific-Ocean Model and Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.

    1999-01-01

    Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.

  14. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    NASA Astrophysics Data System (ADS)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.

  15. Statistical testing of association between menstruation and migraine.

    PubMed

    Barra, Mathias; Dahl, Fredrik A; Vetvik, Kjersti G

    2015-02-01

    To repair and refine a previously proposed method for statistical analysis of association between migraine and menstruation. Menstrually related migraine (MRM) affects about 20% of female migraineurs in the general population. The exact pathophysiological link from menstruation to migraine is hypothesized to be through fluctuations in female reproductive hormones, but the exact mechanisms remain unknown. Therefore, the main diagnostic criterion today is concurrency of migraine attacks with menstruation. Methods aiming to exclude spurious associations are wanted, so that further research into these mechanisms can be performed on a population with a true association. The statistical method is based on a simple two-parameter null model of MRM (which allows for simulation modeling), and Fisher's exact test (with mid-p correction) applied to standard 2 × 2 contingency tables derived from the patients' headache diaries. Our method is a corrected version of a previously published flawed framework. To our best knowledge, no other published methods for establishing a menstruation-migraine association by statistical means exist today. The probabilistic methodology shows good performance when subjected to receiver operator characteristic curve analysis. Quick reference cutoff values for the clinical setting were tabulated for assessing association given a patient's headache history. In this paper, we correct a proposed method for establishing association between menstruation and migraine by statistical methods. We conclude that the proposed standard of 3-cycle observations prior to setting an MRM diagnosis should be extended with at least one perimenstrual window to obtain sufficient information for statistical processing. © 2014 American Headache Society.

  16. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  17. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  18. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  19. Ocean Carbon Flux, Transport, and Burial Within the Western and Eastern US Coastal Zones

    NASA Technical Reports Server (NTRS)

    McWilliams, James C.; Moisan, John R.; Haidvogel, Dale B.; Miller, Arthur J.; Cornuelle, Bruce; Stolzenbach, Keith D.

    2004-01-01

    This project has been to develop and apply a regional. eddy-resolving circulation and biogeochemistry model of both the western and eastern U.S. coastal regions, capable of simulating the processes that control the carbon cycle. Validation has been by statistical comparison with analyses from various satellite measurements, including those from EOS sensors, as well as from in situ measurements. Sensitivity studies were carried out to investigate how the coastal ecosystem and biogeochemical cycles respond to changes in climate, large-scale eutrophication from indus- trial pollution, and other anthropogenic induced changes. The research has been conducted in collaboration with research groups at UCLA. NASA/GSFC (Wallops), Rutgers, and SIO. Overall. the project was focused on several key modeling issues, each of which tie back into completing the primary task of developing a coastal carbon model for both the eastern and western US. coasts. Individual groups within the entire program are still collaborating to address these specific tasks. These include: implementation of the coupled circulation/biogeochemical model within the U.S. West Coast. including high-resolution, embedded subdomains for the Southern California Bight and Monterey Bay region; development of a biogeochemical model with resolved carbon, nitrogen and oxygen cycles; development of data assimilation techniques for use of satellite data sets; reconfiguration of the model domain to U.S. East Coast; development of coastal forcing fields: development of methods to compare the model against remotely sensed data; and, the test of model sensitivity to environmental conditions. Below, we present a summary of the progress made toward achieving these soak. Because this has been a multi-institutional, collaborative effort, we note the groups involved with particular activities.

  20. Turbulence intensity in a region of interest 2cm distal to the carotid bifurcation in a family of seven anthropomorphic flow phantoms

    NASA Astrophysics Data System (ADS)

    Powell, Janet L.; Poepping, Tamie L.

    2011-03-01

    An in vitro flow system has been used to assess the flow disturbances downstream of the stenosis in a family of seven carotid bifurcation phantoms modelling varying plaque build-up both axially symmetrically (concentrically) and asymmetrically (eccentrically). Radio frequency data were collected for 10 s at each of over 1000 sites within each model, and a sliding 1024-point FFT is applied to the data to extract the Doppler spectrum every 12 ms. From this, the ensemble average over 10 cardiac cycles of the spectral mean velocity, and the root mean square over these same 10 cardiac cycles - the turbulence intensity (TI), can be obtained as a function of an ensemble averaged cardiac cycle at each spatial point in all phantoms. TI was investigated by looking at the average over a 25 mm2 square region of interest in the ICA centered 2 cm distal to the apex of the bifurcation. TI in the region of interest increased with stenosis severity; at 23ms following peak systole, the time point when TI was maximal for the majority of models, this ranged from 2.4+/-0.1 cm/s in the non-diseased model to 6.6+/-0.3, 16.0+/-1.4 and 26.1+/-1.3 cm/s in the 30, 50 and 70% concentrically stenosed (by NASCET criteria) models, respectively. Similarly, TI was 8.3+/-0.7, 19.9+/-1.1, and 26.2+/-1.2 cm/s in the 30, 50 and 70% eccentrically stenosed models, respectively. Differences in TI between models, both in increasing stenosis severity and between eccentricities, were statistically different except between the 70% concentric and eccentric models.

  1. Demineralization of resin-sealed enamel by soft drinks in a clinically relevant pH cycling model.

    PubMed

    Bartels, Agata A; Evans, Carla A; Viana, Grace; Bedran-Russo, Ana K

    2016-04-01

    To compare the in vitro protective effect of orthodontic sealants on the enamel demineralization under a soft drink-induced erosive challenge. The facial surfaces of bovine incisors were sectioned into 5 mm x 4 mm x 4 mm enamel blocks. Specimens were randomly assigned to three surface protection measures: control (exposed enamel), coating with Transbond XT (unfilled resin primer), or coating with Opal Seal (filled and fluoride releasing primer). Thermocycling was used to simulate aging. The specimens were pH cycled through an acidic buffer, test beverage and a neutral buffer for a total of 7 days. Test beverages included water, Diet Mountain Dew, and Coke Classic. Quantitative light-induced fluorescence (QLF) images were taken at baseline and after aging. Final QLF images were taken to evaluate the demineralization of enamel. Data were analyzed statistically using a two-way ANOVA to compare the interaction between enamel surface protection and beverages as well as one-way ANOVA to compare surface protection and the test beverage levels. A statistically significant interaction was found between the surface protected groups and the test beverage groups (P < 0.05). Statistically significant differences were found among the test beverage groups (P < 0.05) and among the surface protection groups (P < 0.05). Coke Classic went through the sealant layer resulting in high enamel demineralization. Enamel coating with Opal Seal significantly reduced the erosive attack of beverages.

  2. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced epithelial ovarian cancer.

    PubMed

    Lesnock, Jamie L; Farris, Coreen; Krivak, Thomas C; Smith, Kenneth J; Markman, Maurie

    2011-09-01

    Randomized trials have demonstrated significant improvements in progression-free survival (PFS) with consolidation paclitaxel (P) and bevacizumab (B) following cytoreduction and adjuvant carboplatin/paclitaxel (CP) for advanced epithelial ovarian cancer (EOC). We sought to evaluate the cost-effectiveness (C/E) of these consolidation strategies. A decision model was developed based on Gynecologic Oncology Group (GOG) protocols #178 and #218. Arm 1 is 6 cycles of CP. Arm 2 is 6 cycles of CP followed by 12 cycles of P (CP+P). Arm 3 is 1 cycle of CP, 5 cycles of CPB, and 16 cycles of B (CPB+B). Parameters include PFS, overall survival (OS), cost, complications (neuropathy for P and bowel perforation for B), and quality-of-life utility values. Sensitivity analyses were performed. The incremental cost-effectiveness ratio (ICER) for CT+T is $13,402/quality adjusted life year (QALY) gained compared to CP. For CPB+B compared to CP, the ICER is $326,530/QALY. When compared simultaneously, CPB+B is dominated, i.e. is more costly and less effective than CP+P. Results were robust to parameter variation. At a willingness to pay threshold of $100,000/QALY, CP+P was the preferred option throughout most of the decision space. Sensitivity analyses suggest that CPB+B would become the preferred option if it were to improve OS by 6.1 years over CP+P. In this model, B consolidation for advanced EOC was associated with a modest improvement in effectiveness that is less than that with P consolidation and more costly. A statistically significant improvement in survival may improve the value of B consolidation. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The effect of the full moon on general practice consultation rates.

    PubMed

    Neal, R D; Colledge, M

    2000-12-01

    The effect of the full moon on human behaviour, the so-called 'Transylvania hypothesis', has fascinated the public and occupied the mind of researchers for centuries. The aim of the present study was to determine whether or not there was any change in general practice consultation patterns around the time of the full moon. We analysed data from the fourth national morbidity study of general practice. The data set was split into two groups and analysed separately: consultations on ordinary weekdays and consultations on weekends and bank holidays. The data were split randomly into two equal sets, one for model building and one for model validation. The lunar cycle effect was assumed to be sinusoidal, on the grounds that any effect would be maximal at the time of the full moon and decline to the new moon, following a cosine curve (with a period of 29.54 days, the mean length of a lunar cycle). There was a statistically significant, but small, effect associated with the lunar cycle of 1.8% of the mean value [95% confidence interval (CI) 0.9-2.7%]. This equates to an average difference between the two extremes during the cycle of 3.6%. For this data set, this accounts for 190 (95% CI 95-285) more consultations on days at the peak of the cycle compared with those at the bottom of the cycle, or, put another way, about three consultations per practice. We can speculate neither as to what the nature of these moon-related problems may be, nor as to the mechanisms underpinning such behaviour. However, we have confirmed that it does not seem to be related to anxiety and depression.

  4. Postmenopausal breast cancer risk and cumulative number of menstrual cycles.

    PubMed

    Chavez-MacGregor, Mariana; Elias, Sjoerd G; Onland-Moret, N Charlotte; van der Schouw, Yvonne T; Van Gils, Carla H; Monninkhof, Evelyn; Grobbee, Diederick E; Peeters, Petra H M

    2005-04-01

    To explore whether the lifetime cumulative number of menstrual cycles, as an index for total exposure to endogenous estrogens, and the number of menstrual cycles until a first full-term pregnancy (FFTP), are associated with breast cancer risk in postmenopausal women. Population-based study with data from the Prospect-European Prospective Investigation into Cancer and Nutrition study. Naturally menopausal participants were eligible (n = 6,718). The cumulative number of menstrual cycles was computed in 6,031 (90%) women. We calculated the number of cycles until FFTP among parous participants. The number of menstrual cycles was impossible to compute in women who reported to be always irregular; therefore, we added the "always irregular" category in the analysis. During the 46,746 person-years of follow-up, 168 breast cancer cases were identified. Cox regression models were used and adjustments were made to account for potential confounders. Even when our data does not show a clear linear gradient, we observed an increased breast cancer risk in women with a higher number of cumulative menstrual cycles in their lifetime. Using < or = 415 cycles as reference, the hazard ratio for the irregular group, 416-453, 454-490, and > or = 491 cycles was 1.11 (.56, 2.19), 1.88 (1.14, 3.12), 1.74 (1.05, 2.87), and 1.80 (1.09, 2.96), respectively. Although not statistically significant, and of less magnitude, the risk estimates for the number of cycles before FFTP showed the same tendency. Among women who underwent natural menopause, a higher number of menstrual cycles in lifetime, reflecting a longer exposure to endogenous estrogens, is associated with an increased breast cancer risk.

  5. Prediction of In Vivo Knee Joint Kinematics Using a Combined Dual Fluoroscopy Imaging and Statistical Shape Modeling Technique

    PubMed Central

    Li, Jing-Sheng; Tsai, Tsung-Yuan; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Freiberg, Andrew; Rubash, Harry E.; Li, Guoan

    2014-01-01

    Using computed tomography (CT) or magnetic resonance (MR) images to construct 3D knee models has been widely used in biomedical engineering research. Statistical shape modeling (SSM) method is an alternative way to provide a fast, cost-efficient, and subject-specific knee modeling technique. This study was aimed to evaluate the feasibility of using a combined dual-fluoroscopic imaging system (DFIS) and SSM method to investigate in vivo knee kinematics. Three subjects were studied during a treadmill walking. The data were compared with the kinematics obtained using a CT-based modeling technique. Geometric root-mean-square (RMS) errors between the knee models constructed using the SSM and CT-based modeling techniques were 1.16 mm and 1.40 mm for the femur and tibia, respectively. For the kinematics of the knee during the treadmill gait, the SSM model can predict the knee kinematics with RMS errors within 3.3 deg for rotation and within 2.4 mm for translation throughout the stance phase of the gait cycle compared with those obtained using the CT-based knee models. The data indicated that the combined DFIS and SSM technique could be used for quick evaluation of knee joint kinematics. PMID:25320846

  6. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  7. Contrail Tracking and ARM Data Product Development

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Russell, James, III

    2005-01-01

    A contrail tracking system was developed to help in the assessment of the effect of commercial jet contrails on the Earth's radiative budget. The tracking system was built by combining meteorological data from the Rapid Update Cycle (RUC) numerical weather prediction model with commercial air traffic flight track data and satellite imagery. A statistical contrail-forecasting model was created a combination of surface-based contrail observations and numerical weather analyses and forecasts. This model allows predictions of widespread contrail occurrences for contrail research on either a real-time basis or for long-term time scales. Satellite-derived cirrus cloud properties in polluted and unpolluted regions were compared to determine the impact of air traffic on cirrus.

  8. Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis.

    PubMed

    Lima, Ana Paula Barbosa; Vitti, Rafael Pino; Amaral, Marina; Neves, Ana Christina Claro; da Silva Concilio, Lais Regiane

    2018-04-01

    This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (α = .05). he results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values ( P <.05). No statistical differences were found for area of contact points among the groups ( P =.7150). The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

  9. Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, A.; Walkowicz, K.

    In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices ormore » existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.« less

  10. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  11. Data-optimized source modeling with the Backwards Liouville Test–Kinetic method

    DOE PAGES

    Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.; ...

    2017-09-14

    In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution were used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. Our study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra,more » Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less

  12. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  13. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  14. How young water fractions can delineate travel time distributions in contrasting catchments

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Zink, Matthias; Merz, Ralf

    2017-04-01

    Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.

  15. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A.; Guillas, S.; Petropavlovskikh, I.

    2013-11-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.

  16. Insolation-driven 100 kyr glacial cycles and millennial climate change

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.

    2013-12-01

    The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)

  17. Which Industries Are Sensitive to Business Cycles?

    ERIC Educational Resources Information Center

    Berman, Jay; Pfleeger, Janet

    1997-01-01

    An analysis of the 1994-2005 Bureau of Labor Statistics employment projections can be used to identify industries that are projected to move differently with business cycles in the future than with those of the past, and can be used to identify the industries and occupations that are most prone to business cycle swings. (Author)

  18. 40 CFR 1065.12 - Approval of alternate procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine meets all applicable emission standards according to specified procedures. (iii) Use statistical.... (e) We may give you specific directions regarding methods for statistical analysis, or we may approve... statistical tests. Perform the tests as follows: (1) Repeat measurements for all applicable duty cycles at...

  19. Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles

    PubMed Central

    Bakewell, David J; Holmes, David

    2013-01-01

    A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius–Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies. PMID:23172363

  20. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  1. Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.

    PubMed

    Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N

    2015-06-01

    The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.

  2. H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle.

    PubMed

    Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R; Nguyen, Diep M N; Schut, Gerrit J; Adams, Michael W W; Peters, John W; Boyd, Eric S; Bothner, Brian

    2018-01-01

    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP + oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron‑sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Partitioning nitrogen losses by natural abundance nitrogen isotope composition in a process-based statistical modelling framework

    NASA Astrophysics Data System (ADS)

    Dong, Ning; Wright, Ian; Prentice, Iain Colin

    2017-04-01

    Natural abundance of the stable isotope 15N is an under-utilized resource for research on the global terrestrial nitrogen cycle. Mass balance considerations suggest that if reactive N inputs have a roughly constant isotopic signature, soil δ15N should be mainly determined by the fraction of N losses by leaching - which barely discriminates against 15N - versus gaseous N losses, which discriminate strongly against 15N. We defined simple process-oriented functions of runoff (frunoff) and soil temperature (ftemp) and investigated the dependencies of soil and foliage δ15N (from global compilations of both types of measurement) on their ratio. Both plant and soil δ15N were found to systematically increase with ftemp/frunoff. Consistent with previous analyses, foliage δ15N was offset (more negative) with respect to soil δ15N, with significant differences in this offset between (from largest to smallest offset) ericoid, ectomycorrhizal, arbuscular mycorrhizal and non-mycorrhizal associated plants. δ15N values tend to be large and positive in the driest environments and to decline as frunoff increases, while also being lower in cold environments and increasing as ftemp increases. The fitted statistical model was used to estimate the gaseous fraction of total N losses from ecosystems (fgas) on a global grid basis. In common with earlier results, the largest values of fgas are predicted in the tropics and semi-arid subtropics. This analysis provides an indirectly estimated global mapping of fgas, which could be used as an improved benchmark for terrestrial nitrogen cycle models.

  4. Increasing Pap smear rates at an urban Aboriginal Community Controlled Health Service through translational research and continuous quality improvement.

    PubMed

    Dorrington, Melanie S; Herceg, Ana; Douglas, Kirsty; Tongs, Julie; Bookallil, Marianne

    2015-01-01

    This article describes translational research (TR) and continuous quality improvement (CQI) processes used to identify and address barriers and facilitators to Pap smear screening within an urban Aboriginal Community Controlled Health Service (ACCHS). Rapid Plan-Do-Study-Act (PDSA) cycles were conducted, informed by client surveys, a data collection tool, focus groups and internal research. There was a statistically significant increase in Pap smear numbers during PDSA cycles, continuing at 10 months follow up. The use of TR with CQI appears to be an effective and acceptable way to affect Pap smear screening. Community and service collaboration should be at the core of research in Aboriginal and Torres Strait Islander health settings. This model is transferrable to other settings and other health issues.

  5. Thin endometrium in donor oocyte recipients: enigma or obstacle for implantation?

    PubMed

    Dain, Lena; Bider, David; Levron, Jacob; Zinchenko, Viktor; Westler, Sharon; Dirnfeld, Martha

    2013-11-01

    To evaluate the combined effect of endometrial thickness and anatomic uterine factors on clinical outcome in oocyte donation recipients. Retrospective analysis of oocyte donation cycles conducted between 2005 and 2010. Two private IVF centers. A total of 737 donor oocyte cycles. None. Clinical pregnancy and live birth rates. No statistically significant difference was found in clinical pregnancy rates and live birth rates in cycles with endometrial thickness <6 mm compared with those with endometrial thickness >10 mm. However, a relatively high rate of live births was found within a medium range of endometrial thickness (8.2-10 mm). All intrauterine adhesion cases occurred in cycles with thinner endometrium. No statistically significant difference was found in clinical pregnancy rates and live birth rates in cycles with endometrial thickness <6 mm compared with those with thickness >6 mm. A relatively high rate of live births was found within a medium range of endometrial thickness (9.1-10 mm). Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. The benefits of bad economies: Business cycles and time-based work-life conflict.

    PubMed

    Barnes, Christopher M; Lefter, Alexandru M; Bhave, Devasheesh P; Wagner, David T

    2016-04-01

    Recent management research has indicated the importance of family, sleep, and recreation as nonwork activities of employees. Drawing from entrainment theory, we develop an expanded model of work-life conflict to contend that macrolevel business cycles influence the amount of time employees spend on both work and nonwork activities. Focusing solely on working adults, we test this model in a large nationally representative dataset from the Bureau of Labor Statistics that spans an 8-year period, which includes the "Great Recession" from 2007 through 2009. We find that during economic booms, employees work more and therefore spend less time with family, sleeping, and recreating. In contrast, in recessionary economies, employees spend less time working and therefore more time with family, sleeping, and recreating. Thus, we extend the theory on time-based work-to-family conflict, showing that there are potential personal and relational benefits for employees in recessionary economies. (c) 2016 APA, all rights reserved).

  7. Post-hoc analysis of randomised, placebo-controlled, double-blind study (MCI186-19) of edaravone (MCI-186) in amyotrophic lateral sclerosis.

    PubMed

    Takei, Koji; Takahashi, Fumihiro; Liu, Shawn; Tsuda, Kikumi; Palumbo, Joseph

    2017-10-01

    Post-hoc analyses of the ALS Functional Rating Scale-Revised (ALSFRS-R) score data, the primary endpoint in the 24-week double-blind placebo-controlled study of edaravone (MCI186-19, NCT01492686), were performed to confirm statistical robustness of the result. The previously reported original analysis had used a last observation carried forward (LOCF) method and also excluded patients with fewer than three completed treatment cycles. The post-hoc sensitivity analyses used different statistical methods as follows: 1) including all patients regardless of treatment cycles received (ALL LOCF); 2) a mixed model for repeated measurements (MMRM) analysis; and 3) the Combined Assessment of Function and Survival (CAFS) endpoint. Findings were consistent with the original primary analysis in showing superiority of edaravone over placebo. We also investigated the distribution of change in ALSFRS-R total score across all patients in the study as well as which ALSFRS-R items and domains may have contributed to the overall efficacy findings. The distribution of changes in ALSFRS-R total score from baseline to the end of cycle 6 (ALL LOCF) shifted in favour of edaravone compared to placebo. Edaravone was descriptively favoured for each ALSFRS-R item and each of the four ALSFRS-R domains at the end of cycle 6 (ALL LOCF), suggesting a generalised effect of edaravone in slowing functional decline across all anatomical regions. The effect of edaravone appeared to be similar in patients with bulbar onset and limb onset. Together, these observations would be consistent with its putative neuroprotective effects against the development of oxidative damage unspecific to anatomical regions.

  8. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    DOE PAGES

    Grotjahn, Richard; Black, Robert; Leung, Ruby; ...

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less

  9. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  10. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  11. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    PubMed

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  12. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  13. Stochastic modelling for biodosimetry: Predicting the chromosomal response to radiation at different time points after exposure

    NASA Astrophysics Data System (ADS)

    Deperas-Standylo, Joanna; Gudowska-Nowak, Ewa; Ritter, Sylvia

    2014-07-01

    Cytogenetic data accumulated from the experiments with peripheral blood lymphocytes exposed to densely ionizing radiation clearly demonstrate that for particles with linear energy transfer (LET) >100 keV/ μm the derived relative biological effectiveness (RBE) will strongly depend on the time point chosen for the analysis. A reasonable prediction of radiation-induced chromosome damage and its distribution among cells can be achieved by exploiting Monte Carlo methodology along with the information about the radius of the penetrating ion-track and the LET of the ion beam. In order to examine the relationship between the track structure and the distribution of aberrations induced in human lymphocytes and to clarify the correlation between delays in the cell cycle progression and the aberration burden visible at the first post-irradiation mitosis, we have analyzed chromosome aberrations in lymphocytes exposed to Fe-ions with LET values of 335 keV/ μm and formulated a Monte Carlo model which reflects time-delay in mitosis of aberrant cells. Within the model the frequency distributions of aberrations among cells follow the pattern of local energy distribution and are well approximated by a time-dependent compound Poisson statistics. The cell-division cycle of undamaged and aberrant cells and chromosome aberrations are modelled as a renewal process represented by a random sum of (independent and identically distributed) random elements S N = ∑ N i=0 X i . Here N stands for the number of particle traversals of cell nucleus, each leading to a statistically independent formation of X i aberrations. The parameter N is itself a random variable and reflects the cell cycle delay of heavily damaged cells. The probability distribution of S N follows a general law for which the moment generating function satisfies the relation Φ S N = Φ N ( Φ X i ). Formulation of the Monte Carlo model which allows to predict expected fluxes of aberrant and non-aberrant cells has been based on several input information: (i) experimentally measured mitotic index in the population of irradiated cells; (ii) scored fraction of cells in first cell cycle; (iii) estimated average number of particle traversals per cell nucleus. By reconstructing the local dose distribution in the biological target, the relevant amount of lesions induced by ions is estimated from the biological effect induced by photons at the same dose level. Moreover, the total amount of aberrations induced within the entire population has been determined. For each subgroup of intact (non-hit) and aberrant cells the cell-division cycle has been analyzed reproducing correctly an expected correlation between mitotic delay and the number of aberrations carried by a cell. This observation is of particular importance for the proper estimation of the biological efficiency of ions and for the estimation of health risks associated with radiation exposure.

  14. Crying, oral contraceptive use and the menstrual cycle.

    PubMed

    Romans, Sarah E; Clarkson, Rose F; Einstein, Gillian; Kreindler, David; Laredo, Sheila; Petrovic, Michele J; Stanley, James

    2017-01-15

    Crying, a complex neurobiological behavior with psychosocial and communication features, has been little studied in relationship to the menstrual cycle. In the Mood and Daily Life study (MiDL), a community sample of Canadian women aged 18-43 years, n=76, recorded crying proneness and crying frequency daily for six months along with menstrual cycle phase information. Crying proneness was most likely during the premenstruum, a little less likely during menses and least likely during the mid-cycle phase, with statistically significant differences although the magnitude of these differences were small. By contrast, actual crying did not differ between the three menstrual cycle phases. Oral contraceptive use did not alter the relationship between menstrual cycle phase and either crying variable. A wide range of menstrual cycle phase - crying proneness patterns were seen with visual inspection of the individual women's line graphs. timing of ovulation was not ascertained. Using a three phase menstrual cycle division precluded separate late follicular and early luteal data analysis. The sample size was inadequate for a robust statistical test of actual crying. reproductive aged women as a group report feeling more like crying premenstrually but may not actually cry more during this menstrual cycle phase. Individual patterns vary substantially. Oral contraceptive use did not affect these relationships. Suggestions for future research are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Weight fluctuations could increase blood pressure in android obese women.

    PubMed

    Guagnano, M T; Pace-Palitti, V; Carrabs, C; Merlitti, D; Sensi, S

    1999-06-01

    Recent studies have documented a relationship between increased morbidity and mortality from cardiovascular diseases and a history of weight cycling (WC) in obese subjects. We performed a cross-sectional analysis in 96 weight-cycling android obese women, matched with 96 non-weight-cycling android obese women by age, body mass index (BMI) and waist-to-hip ratio (WHR), to evaluate any increase in blood pressure (BP) levels in association with WC. The patients were all between 20 and 45 years old, were non-menopausal, did not smoke, did not take any medication, had normal glucose tolerance and were otherwise healthy. A history of WC was established on the basis of at least five weight losses in the previous 5 years due to dieting, with a weight loss of at least 4.5 kg per cycle. We documented higher levels of casual BP in the weight-cycling obese compared with the non-weight-cycling subjects: 147+/-12/90+/-8 mmHg versus 125+/-14/79+/-8 mmHg (P<0.001). The women with WC showed a statistically significant positive correlation between BP and age, weight, BMI, waist circumference, WHR, total weight regained and weight cycling index (WCI). However, in a multiple regression model only the WHR and WCI contributed significantly to the BP variability. These findings could support the hypothesis that it is the combined exposure of central-type obesity and WC that strongly raises the prediction of hypertension.

  16. Sensitivities of the hydrologic cycle to model physics, grid resolution, and ocean type in the aquaplanet Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.; Medeiros, Brian; Clement, Amy C.; Pendergrass, Angeline G.

    2017-06-01

    Precipitation distributions and extremes play a fundamental role in shaping Earth's climate and yet are poorly represented in many global climate models. Here, a suite of idealized Community Atmosphere Model (CAM) aquaplanet simulations is examined to assess the aquaplanet's ability to reproduce hydroclimate statistics of real-Earth configurations and to investigate sensitivities of precipitation distributions and extremes to model physics, horizontal grid resolution, and ocean type. Little difference in precipitation statistics is found between aquaplanets using time-constant sea-surface temperatures and those implementing a slab ocean model with a 50 m mixed-layer depth. In contrast, CAM version 5.3 (CAM5.3) produces more time mean, zonally averaged precipitation than CAM version 4 (CAM4), while CAM4 generates significantly larger precipitation variance and frequencies of extremely intense precipitation events. The largest model configuration-based precipitation sensitivities relate to choice of horizontal grid resolution in the selected range 1-2°. Refining grid resolution has significant physics-dependent effects on tropical precipitation: for CAM4, time mean zonal mean precipitation increases along the Equator and the intertropical convergence zone (ITCZ) narrows, while for CAM5.3 precipitation decreases along the Equator and the twin branches of the ITCZ shift poleward. Increased grid resolution also reduces light precipitation frequencies and enhances extreme precipitation for both CAM4 and CAM5.3 resulting in better alignment with observational estimates. A discussion of the potential implications these hydrologic cycle sensitivities have on the interpretation of precipitation statistics in future climate projections is also presented.Plain Language SummaryPrecipitation plays a fundamental role in shaping Earth's climate. Global climate models predict the average precipitation reasonably well but often struggle to accurately represent how often it precipitates and at what intensity. Model precipitation errors are closely tied to imperfect representations of physical processes too small to be resolved on the model grid. The problem is compounded by the complexity of contemporary climate models and the many model configuration options available. In this study, we use an aquaplanet, a simplified global climate model entirely devoid of land masses, to explore the response of precipitation to several aspects of model configuration in a present-day climate state. Our results suggest that critical precipitation patterns, including extreme precipitation events that have large socio-economic impacts, are strongly sensitive to horizontal grid resolution and the representation of unresolved physical processes. Identification and understanding of such model configuration-related precipitation responses in the present-day climate will provide a more accurate estimate of model uncertainty necessary for an improved interpretation of precipitation changes in global warming projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25814397','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25814397"><span>Changes in the elasticity of fibroadenoma during the menstrual cycle determined by real-time sonoelastography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kılıç, Fahrettin; Kayadibi, Yasemin; Kocael, Pinar; Velidedeoglu, Mehmet; Bas, Ahmet; Bakan, Selim; Aydogan, Fatih; Karatas, Adem; Yılmaz, Mehmet Halit</p> <p>2015-06-01</p> <p>Shear-wave elastography (SWE) presents quantitative data that thought to represent intrinsic features of the target tissue. Factors affecting the metabolism of the breast parenchyma as well as age, menstrual cycle, hormone levels, pregnancy and lactation, pre-compression artifact during the examination could affect these elastic intrinsic features. Aim of our study is to determine variation of fibroadenoma elasticity during the menstrual cycle (MC) by means of real-time shear-wave elastography (SWE) and identify the optimal time for SWE evaluation. Thirty volunteers (aged 20-40 years) who had biopsy-proven fibroadenoma greater than 1cm in diameter, with regular menstrual cycle and without contraceptive medication underwent SWE (ShearWave on Aixplorer, France) once weekly during MC. Statistical data were processed by using the software Statistical Package for the Social Sciences (SPSS) 19.0. A repeated measures analysis of variance was used for each lesion where the repeated factor was the elastographic measurements (premenstrual, menstrual and postmenstrual). Pillai's trace test was used. Pairwise correlation was calculated using Bonferroni correction. Values of p<0.05 were considered statistically significant. The mean elasticity value of fibroadenomas in mid-cycle was 28.49 ± 12.92 kPa, with the highest value obtained in the third week corresponding to the premenstrual stage (32.98 ± 13.35 kPa) and the lowest value obtained in the first week corresponding to the postmenstrual stage (25.39 ± 10.21 kPa). Differences between the elasticity values of fibroadenomas in premenstrual and postmenstrual periods were statistically significant (p<0.001). There were no significant differences in lesion size between the different phases of the menstrual cycle (p>0.05). In this study, we found that there is significant difference between the elasticity values of fibroadenomas on premenstrual and postmenstrual period. We propose that one week after menstruation would be appropriate time to perform breast SWE. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24130072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24130072"><span>A comparative analysis of prognostic factor models for follicular lymphoma based on a phase III trial of CHOP-rituximab versus CHOP + 131iodine--tositumomab.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Press, Oliver W; Unger, Joseph M; Rimsza, Lisa M; Friedberg, Jonathan W; LeBlanc, Michael; Czuczman, Myron S; Kaminski, Mark; Braziel, Rita M; Spier, Catherine; Gopal, Ajay K; Maloney, David G; Cheson, Bruce D; Dakhil, Shaker R; Miller, Thomas P; Fisher, Richard I</p> <p>2013-12-01</p> <p>There is currently no consensus on optimal frontline therapy for patients with follicular lymphoma. We analyzed a phase III randomized intergroup trial comparing six cycles of CHOP-R (cyclophosphamide-Adriamycin-vincristine-prednisone (Oncovin)-rituximab) with six cycles of CHOP followed by iodine-131 tositumomab radioimmunotherapy (RIT) to assess whether any subsets benefited more from one treatment or the other, and to compare three prognostic models. We conducted univariate and multivariate Cox regression analyses of 532 patients enrolled on this trial and compared the prognostic value of the FLIPI (follicular lymphoma international prognostic index), FLIPI2, and LDH + β2M (lactate dehydrogenase + β2-microglobulin) models. Outcomes were excellent, but not statistically different between the two study arms [5-year progression-free survival (PFS) of 60% with CHOP-R and 66% with CHOP-RIT (P = 0.11); 5-year overall survival (OS) of 92% with CHOP-R and 86% with CHOP-RIT (P = 0.08); overall response rate of 84% for both arms]. The only factor found to potentially predict the impact of treatment was serum β2M; among patients with normal β2M, CHOP-RIT patients had better PFS compared with CHOP-R patients, whereas among patients with high serum β2M, PFS by arm was similar (interaction P value = 0.02). All three prognostic models (FLIPI, FLIPI2, and LDH + β2M) predicted both PFS and OS well, though the LDH + β2M model is easiest to apply and identified an especially poor risk subset. In an exploratory analysis using the latter model, there was a statistically significant trend suggesting that low-risk patients had superior observed PFS if treated with CHOP-RIT, whereas high-risk patients had a better PFS with CHOP-R. ©2013 AACR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26557512','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26557512"><span>Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brar, Tejinder Kaur; Singh, K D; Kumar, Avnish</p> <p>2015-10-01</p> <p>Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student's pair t-test. The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4625231','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4625231"><span>Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Singh, K. D.; Kumar, Avnish</p> <p>2015-01-01</p> <p>Background Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. Aims and Objectives The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. Materials and Methods A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student’s pair t-test. Results The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. Conclusion From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase. PMID:26557512</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1233543-uncertainty-quantification-nuclear-density-functional-theory-information-content-new-measurements','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1233543-uncertainty-quantification-nuclear-density-functional-theory-information-content-new-measurements"><span>Uncertainty quantification for nuclear density functional theory and information content of new measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>McDonnell, J. D.; Schunck, N.; Higdon, D.; ...</p> <p>2015-03-24</p> <p>Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1179409','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1179409"><span>Uncertainty quantification for nuclear density functional theory and information content of new measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDonnell, J. D.; Schunck, N.; Higdon, D.</p> <p>2015-03-24</p> <p>Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031248&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbalance%2Bgeneral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031248&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbalance%2Bgeneral"><span>Climatology and natural variability of the global hydrologic cycle in the GLA atmospheric general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, K.-M.; Mehta, V. M.; Sud, Y. C.; Walker, G. K.</p> <p>1994-01-01</p> <p>Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric moisture transport. The present results indicate that globally coherent natural variability of the GHC in the GLA GCM has two basic timescales in the absence of annual cycles of external forcings: a long-term trend associated with atmosphere-soil moisture interaction which affects the model atmosphere mostly over midlatitude continental regions and a large-scale 2- to 3-month variability associated with atmospheric moist processes over the western Pacific Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28734504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28734504"><span>[Relationship between family variables and conjugal adjustment].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiménez-Picón, Nerea; Lima-Rodríguez, Joaquín-Salvador; Lima-Serrano, Marta</p> <p>2018-04-01</p> <p>To determine whether family variables, such as type of relationship, years of marriage, existence of offspring, number of members of family, stage of family life cycle, transition between stages, perceived social support, and/or stressful life events are related to conjugal adjustment. A cross-sectional and correlational study using questionnaires. Primary care and hospital units of selected centres in the province of Seville, Spain. Consecutive stratified sampling by quotas of 369 heterosexual couples over 18years of age, who maintained a relationship, with or without children, living in Seville. A self-report questionnaire for the sociodemographic variables, and the abbreviated version of the Dyadic Adjustment Scale, Questionnaire MOS Perceived Social Support, and Social Readjustment Rating Scale, were used. Descriptive and inferential statistics were performed with correlation analysis and multivariate regression. Statistically significant associations were found between conjugal adjustment and marriage years (r=-10: P<.05), stage of family life cycle (F=2.65; P<.05), the transition between stages (RPB=.11; P<.05) and perceived social support (r=.44; P<.001). The regression model showed the predictive power of perceived social support and the family life cycle stage (mature-aged stage) on conjugal adjustment (R2=.21; F=9.9; df=356; P<.001). Couples may be assessed from Primary Care and be provide with resources and support. In addition, it can identify variables that may help improve the conjugal relationship. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930009786&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930009786&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle"><span>Evidence of orbital forcing in 510 to 530 million year old shallow marine cycles, Utah and western Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bond, Gerard C.; Beavan, John; Kominz, Michelle A.; Devlin, William</p> <p>1992-01-01</p> <p>Spectral analyses of two sequences of shallow marine sedimentary cycles that were deposited between 510 and 530 million years ago were completed. One sequence is from Middle Cambrian rocks in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In spite of the antiquity of these strata, and even though there are differences in the age, location, and cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly similar periodicities. A null model constructed to test for significance of the spectral peaks and circulatory in the methodology indicates that all but one of the spectral peaks are significant at the 90 percent confidence level. When the ratios between the statistically significant peaks are measured, we find a consistent relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and Canadian examples imply that a significant amount of the variance in the cyclic records is driven by the short eccentricity (approximately 109 ky) and by the precessional (approximately 21 ky) components of the Earth's orbital variations. Neither section contains a significant component of variance at the period of the obliquity cycle, however.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21910337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21910337"><span>[Therapeutic efficacy of modified zigui decoction in treatment of polycystic ovary syndrome of gan-shen yin deficiency syndrome].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiao-ping; Lin, Shu; Ye, Shuang</p> <p>2011-08-01</p> <p>To study the therapeutic efficacy of Modified Zigui Decoction (MZD) in treatment of polycystic ovary syndrome of Gan-Shen yin deficiency syndrome. 66 polycystic ovary syndrome patients of Gan-Shen yin deficiency syndrome were randomly assigned to the MZD group (Group A) and the Westem medicine group (Group B), 33 patients in each. Patients in Group A orally took MZD, while those in Group B orally took Diane-35. Their menstrual cycle rate, basal body temperature (BBT), the ovarian size, the number of follicles, and changes of endocrine hormones were observed before treatment, the first menstrual cycle, and the sixth menstrual cycle after treatment. (1) The normal rate of one menstrual cycle after stopping taking medicine was 57.58% in Group A and 63.64% in Group B. There was no statistical difference between the two groups (P>0.05). The normal rate of six menstrual cycles after stopping taking medicine was 45. 45% in Group A and 21.21% in Group B. The former was superior to the latter, showing statistical difference (P<0.05). (2) The biphasic BBT rates of one menstrual cycle after stopping taking medicine were somewhat elevated in the two groups, better than before treatment respectively (P<0.01). But there was no statistical difference between the two groups (P>0.05). The biphasic BBT rate of six menstrual cycles after stopping taking medicine was 45.45% in Group A and 18.18% in Group B. The former was superior to the latter, showing statistical difference (P<0.05). (3) The bilateral ovarian volume of one menstrual cycle after stopping taking medicine was obviously reduced in both groups (P<0.01). The bilateral ovarian volume of six menstrual cycles after stopping taking medicine was still more reduced than before treatment in Group A (P<0.01), while it returned to the size of before treatment in Group B (P>0.05). (4) The number of follicles of one menstrual cycle after stopping taking medicine was obviously reduced in both groups (P<0.01). The number of follicles of six menstrual cycles after stopping taking medicine was still reduced in Group A (P<0.01), while it returned to the number before treatment in Group B (P>0.05). (5) The luteinizing hormone (LH), testosterone (T), LH/FSH ratio of one menstrual cycle after stopping taking medicine were obviously reduced in both groups (P<0.01). They were still more reduced six menstrual cycles after stopping taking medicine than before treatment in Group A (P<0.01), while they returned to the levels of before treatment in Group B (P>0.05). MZD could effectively treat patients with polycystic ovary syndrome of Gan-Shen yin deficiency syndrome. Besides, its long-term efficacy was more stable and lasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CTM....21.1080H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CTM....21.1080H"><span>Evaluation of the flame propagation within an SI engine using flame imaging and LES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes</p> <p>2017-11-01</p> <p>This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/57447-interannual-oscillations-northern-temperate-total-ozone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/57447-interannual-oscillations-northern-temperate-total-ozone"><span>On the interannual oscillations in the northern temperate total ozone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krzyscin, J.W.</p> <p>1994-07-01</p> <p>The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29054668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29054668"><span>WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten</p> <p>2018-05-01</p> <p>We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules undergoing treatment as well as the country specific wastewater treatment levels. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1225M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1225M"><span>Energetic Particles in the Inner Heliosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malandraki, Olga</p> <p>2016-07-01</p> <p>Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030067962','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030067962"><span>Sensor Based Engine Life Calculation: A Probabilistic Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guo, Ten-Huei; Chen, Philip</p> <p>2003-01-01</p> <p>It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614023D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614023D"><span>Modelling total solar irradiance using a flux transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami</p> <p>2014-05-01</p> <p>Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20075726-el-nino-southern-oscillation-second-hadley-centre-coupled-model-its-response-greenhouse-warming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20075726-el-nino-southern-oscillation-second-hadley-centre-coupled-model-its-response-greenhouse-warming"><span>The El Nino-Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Collins, M.</p> <p></p> <p>This paper describes El Nino-Southern Oscillation (ENSO) interannual variability simulated in the second Handley Centre coupled model under control and greenhouse warming scenarios. The model produces a very reasonable simulation of ENSO in the control experiment--reproducing the amplitude, spectral characteristics, and phase locking to the annual cycle that are observed in nature. The mechanism for the model ENSO is shown to be a mixed SST-ocean dynamics mode that can be interpreted in terms of the ocean recharge paradigm of Jin. In experiments with increased levels of greenhouse gases, no statistically significant changes in ENSO are seen until these levels approachmore » four times preindustrial values. In these experiments, the model ENSO has an approximately 20% larger amplitude, a frequency that is approximately double that of the current ENSO (implying more frequent El Ninos and La Ninas), and phase locks to the annual cycle at a different time of year. It is shown that the increase in the vertical gradient of temperature in the thermocline region, associated with the model's response to increased greenhouse gases, is responsible for the increase in the amplitude of ENSO, while the increase in meridional temperature gradients on either side of the equator, again associated with the models response to increasing greenhouse gases, is responsible for the increased frequency of ENSO events.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4549737','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4549737"><span>OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Battilani, Paola; Camardo Leggieri, Marco</p> <p>2015-01-01</p> <p>Ochratoxin A (OTA) is a fungal metabolite dangerous for human and animal health due to its nephrotoxic, immunotoxic, mutagenic, teratogenic and carcinogenic effects, classified by the International Agency for Research on Cancer in group 2B, possible human carcinogen. This toxin has been stated as a wine contaminant since 1996. The aim of this study was to develop a conceptual model for the dynamic simulation of the A. carbonarius life cycle in grapes along the growing season, including OTA production in berries. Functions describing the role of weather parameters in each step of the infection cycle were developed and organized in a prototype model called OTA-grapes. Modelling the influence of temperature on OTA production, it emerged that fungal strains can be shared in two different clusters, based on the dynamic of OTA production and according to the optimal temperature. Therefore, two functions were developed, and based on statistical data analysis, it was assumed that the two types of strains contribute equally to the population. Model validation was not possible because of poor OTA contamination data, but relevant differences in OTA-I, the output index of the model, were noticed between low and high risk areas. To our knowledge, this is the first attempt to assess/model A. carbonarius in order to predict the risk of OTA contamination in grapes. PMID:26258791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996msfc.reptR....W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996msfc.reptR....W"><span>On Determining the Rise, Size, and Duration Classes of a Sunspot Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.</p> <p>1996-09-01</p> <p>The behavior of ascent duration, maximum amplitude, and period for cycles 1 to 21 suggests that they are not mutually independent. Analysis of the resultant three-dimensional contingency table for cycles divided according to rise time (ascent duration), size (maximum amplitude), and duration (period) yields a chi-square statistic (= 18.59) that is larger than the test statistic (= 9.49 for 4 degrees-of-freedom at the 5-percent level of significance), thereby, inferring that the null hypothesis (mutual independence) can be rejected. Analysis of individual 2 by 2 contingency tables (based on Fisher's exact test) for these parameters shows that, while ascent duration is strongly related to maximum amplitude in the negative sense (inverse correlation) - the Waldmeier effect, it also is related (marginally) to period, but in the positive sense (direct correlation). No significant (or marginally significant) correlation is found between period and maximum amplitude. Using cycle 22 as a test case, we show that by the 12th month following conventional onset, cycle 22 appeared highly likely to be a fast-rising, larger-than-average-size cycle. Because of the inferred correlation between ascent duration and period, it also seems likely that it will have a period shorter than average length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960050464','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960050464"><span>On Determining the Rise, Size, and Duration Classes of a Sunspot Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.</p> <p>1996-01-01</p> <p>The behavior of ascent duration, maximum amplitude, and period for cycles 1 to 21 suggests that they are not mutually independent. Analysis of the resultant three-dimensional contingency table for cycles divided according to rise time (ascent duration), size (maximum amplitude), and duration (period) yields a chi-square statistic (= 18.59) that is larger than the test statistic (= 9.49 for 4 degrees-of-freedom at the 5-percent level of significance), thereby, inferring that the null hypothesis (mutual independence) can be rejected. Analysis of individual 2 by 2 contingency tables (based on Fisher's exact test) for these parameters shows that, while ascent duration is strongly related to maximum amplitude in the negative sense (inverse correlation) - the Waldmeier effect, it also is related (marginally) to period, but in the positive sense (direct correlation). No significant (or marginally significant) correlation is found between period and maximum amplitude. Using cycle 22 as a test case, we show that by the 12th month following conventional onset, cycle 22 appeared highly likely to be a fast-rising, larger-than-average-size cycle. Because of the inferred correlation between ascent duration and period, it also seems likely that it will have a period shorter than average length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC21C0558K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC21C0558K"><span>On Improving the Quality and Interpretation of Environmental Assessments using Statistical Analysis and Geographic Information Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karuppiah, R.; Faldi, A.; Laurenzi, I.; Usadi, A.; Venkatesh, A.</p> <p>2014-12-01</p> <p>An increasing number of studies are focused on assessing the environmental footprint of different products and processes, especially using life cycle assessment (LCA). This work shows how combining statistical methods and Geographic Information Systems (GIS) with environmental analyses can help improve the quality of results and their interpretation. Most environmental assessments in literature yield single numbers that characterize the environmental impact of a process/product - typically global or country averages, often unchanging in time. In this work, we show how statistical analysis and GIS can help address these limitations. For example, we demonstrate a method to separately quantify uncertainty and variability in the result of LCA models using a power generation case study. This is important for rigorous comparisons between the impacts of different processes. Another challenge is lack of data that can affect the rigor of LCAs. We have developed an approach to estimate environmental impacts of incompletely characterized processes using predictive statistical models. This method is applied to estimate unreported coal power plant emissions in several world regions. There is also a general lack of spatio-temporal characterization of the results in environmental analyses. For instance, studies that focus on water usage do not put in context where and when water is withdrawn. Through the use of hydrological modeling combined with GIS, we quantify water stress on a regional and seasonal basis to understand water supply and demand risks for multiple users. Another example where it is important to consider regional dependency of impacts is when characterizing how agricultural land occupation affects biodiversity in a region. We developed a data-driven methodology used in conjuction with GIS to determine if there is a statistically significant difference between the impacts of growing different crops on different species in various biomes of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26574863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26574863"><span>Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo</p> <p>2015-01-01</p> <p>To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4258094','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4258094"><span>Building integral projection models: a user's guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rees, Mark; Childs, Dylan Z; Ellner, Stephen P; Coulson, Tim</p> <p>2014-01-01</p> <p>In order to understand how changes in individual performance (growth, survival or reproduction) influence population dynamics and evolution, ecologists are increasingly using parameterized mathematical models. For continuously structured populations, where some continuous measure of individual state influences growth, survival or reproduction, integral projection models (IPMs) are commonly used. We provide a detailed description of the steps involved in constructing an IPM, explaining how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diagnose potential problems with your IPM. We emphasize how the study organism's life cycle, and the timing of censuses, together determine the structure of the IPM kernel and important aspects of the statistical analysis used to parameterize an IPM using data on marked individuals. An IPM based on population studies of Soay sheep is used to illustrate the complete process of constructing, implementing and evaluating an IPM fitted to sample data. We then look at very general approaches to parameterizing an IPM, using a wide range of statistical techniques (e.g. maximum likelihood methods, generalized additive models, nonparametric kernel density estimators). Methods for selecting models for parameterizing IPMs are briefly discussed. We conclude with key recommendations and a brief overview of applications that extend the basic model. The online Supporting Information provides commented R code for all our analyses. PMID:24219157</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cos..rept....3S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cos..rept....3S"><span>Summary of the COS Cycle 22 Calibration Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sonnentrucker, Paule; Becker, George; Bostroem, Azalee; Debes, John H.; Ely, Justin; Fox, Andrew; Lockwood, Sean; Oliveira, Cristina; Penton, Steven; Proffitt, Charles; Roman-Duval, Julia; Sahnow, David; Sana, Hugues; Taylor, Jo; Welty, Alan D.; Wheeler, Thomas</p> <p>2016-09-01</p> <p>We summarize the calibration activities for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope during Cycle 22 which ran from November 2014 through October 2015. We give an overview of the COS calibration plan, COS usage statistics and we briefly describe major changes with respect to the previous cycle. High-level executive summaries for each calibration program comprising Cycle 22 are also given here. Results of the analysis attached to each program are published in separate ISRs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1372053-additive-effects-high-voltage-layered-oxide-cells-statistics-mixtures-approach','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1372053-additive-effects-high-voltage-layered-oxide-cells-statistics-mixtures-approach"><span>Additive effects in high-voltage layered-oxide cells: A statistics of mixtures approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sahore, Ritu; Peebles, Cameron; Abraham, Daniel P.; ...</p> <p>2017-07-20</p> <p>Li 1.03(Ni 0.5Mn 0.3Co 0.2) 0.97O 2 (NMC)-based coin cells containing the electrolyte additives vinylene carbonate (VC) and tris(trimethylsilyl)phosphite (TMSPi) in the range of 0-2 wt% were cycled between 3.0 and 4.4 V. The changes in capacity at rates of C/10 and C/1 and resistance at 60% state of charge were found to follow linear-with-time kinetic rate laws. Further, the C/10 capacity and resistance data were amenable to modeling by a statistics of mixtures approach. Applying physical meaning to the terms in the empirical models indicated that the interactions between the electrolyte and additives were not simple. For example, theremore » were strong, synergistic interactions between VC and TMSPi affecting C/10 capacity loss, as expected, but there were other, more subtle interactions between the electrolyte components. In conclusion, the interactions between these components controlled the C/10 capacity decline and resistance increase.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9835683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9835683"><span>Gonotrophic cycle and survivorship of Anopheles vestitipennis (Diptera: Culicidae) in two different ecological areas of southern Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arredondo-Jiménez, J I; Rodríguez, M H; Washino, R K</p> <p>1998-11-01</p> <p>The duration of the gonotrophic cycle and survivorship of Anopheles vestitipennis Dyar & Knab was estimated in 2 malarious areas of Chiapas, Mexico: the Lacandon Forest and the Pacific Ocean Coastal Plain. Blood-engorged females held in an outdoor cage required 2.75 d for egg maturation, and 3.75 d for the duration of the gonotrophic cycle. Duration of the gonotrophic cycle also was estimated by parous-nulliparous dynamics for 20 consecutive days and autocorrelation time-series analysis, and by mark-recapture techniques. These methods depicted differences between the Lacandon Forest (3-d cycle) and the Coastal Plain (2-3 d cycles). Daily survival rates were estimated vertically and were generally higher in the Lacandon Forest (0.68) than in the Coastal Plain (0.45-0.58). The probability of mosquitoes surviving the sporogonic cycle was 10-100 times greater in the Lacandon Forest. The pregravid rate was 8.2%, and 29.3% of females with primary follicles beyond Christophers' stage III had traces of red blood in the gut. The 1st statistic indicated that 8.2% of females required > 1 blood meal for initial egg development, the 2nd statistic indicated that 29.3% of females take > 1 blood meal during a gonotrophic cycle. In summary, the enhanced vectorial role of this species is explained partially by high longevity and multiple blood-feeding habits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522577','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522577"><span>GnRH agonist for final oocyte maturation in GnRH antagonist co-treated IVF/ICSI treatment cycles: Systematic review and meta-analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Youssef, M.A.F.; Abdelmoty, Hatem I.; Ahmed, Mohamed A.S.; Elmohamady, Maged</p> <p>2015-01-01</p> <p>Final oocyte maturation in GnRH antagonist co-treated IVF/ICSI cycles can be triggered with HCG or a GnRH agonist. We conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the efficacy and safety of the final oocyte maturation trigger in GnRH antagonist co-treated cycles. Outcome measures were ongoing pregnancy rate (OPR) and ovarian hyperstimulation syndrome (OHSS) incidence. Searches: were conducted in MEDLINE, EMBASE, Science Direct, Cochrane Library, and databases of abstracts. There was a statistically significant difference against the GnRH agonist for OPR in fresh autologous cycles (n = 1024) with an odd ratio (OR) of 0.69 (95% CI: 0.52–0.93). In oocyte-donor cycles (n = 342) there was no evidence of a difference (OR: 0.91; 95% CI: 0.59–1.40). There was a statistically significant difference in favour of GnRH agonist regarding the incidence of OHSS in fresh autologous cycles (OR: 0.06; 95% CI: 0.01–0.33) and donor cycles respectively (OR: 0.06; 95% CI: 0.01–0.27). In conclusion GnRH agonist trigger for final oocyte maturation trigger in GnRH antagonist cycles is safer but less efficient than HCG. PMID:26257931</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11L0160W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11L0160W"><span>The Impact of US SO2 Emissions on Clouds and the Hydrological Cycle at Global and Regional Scales in Three Coupled Chemistry-Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westervelt, D. M.</p> <p>2016-12-01</p> <p>It is widely expected that global and regional emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. Although there is some evidence that these aerosol reductions may lead to significant regional and global climate impacts, we currently lack a full understanding of the magnitude, spatial and temporal pattern, and statistical significance of these influences, especially for clouds and precipitation. Further, we often lack robust understanding of the processes by which regional aerosols influence local and remote climate. Here, we aim to quantify systematically the cloud and hydrological cycle response to regional changes in aerosols through model simulations using three fully coupled chemistry-climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Community Earth System Model (NCAR-CESM1), and NASA Goddard Institute for Space Studies ModelE2 (GISS-E2). The central approach we use is to contrast a long control experiment (400 years) with a collection of long individual perturbation experiments ( 200 years). We perturb emissions of sulfur dioxide (SO2; precursor to sulfate aerosol) in the United States and determine which responses are significant relative to internal variability and robust across the three models. Initial results show robust, statistically significant decreases in cloud droplet number and liquid water path in the source region across the three models due to decreases in sulfate aerosols. Setting SO2 emissions to zero over the U.S. causes both local and remote impacts in precipitation, with notable significant increases in Sahel and Arctic precipitation. In 13 of the 15 regions we analyze, the precipitation response to zero U.S. SO2 emissions agrees in sign, with agreement in magnitude to within one standard deviation in many of those regions. U.S. sulfate also impacts the timing of the arrival of the Sahel rainy season. Our approach enables us to develop a basis for understanding the response of regional emissions of aerosols and their precursors, and will be expanded to other regions and aerosol species in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1009185','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1009185"><span>Approaching Career Criminals With An Intelligence Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-12-01</p> <p>including arrest statistics and “arrest statistics have been used as the main barometer of juvenile delinquent activity, (but) many juvenile... Statistical Briefing Book,” 187. 26 guided by theories about the causes of delinquent behavior, but there was no determination if those efforts achieved the...children.”110 However, the most evidence-based comparison of juvenile delinquency reduction programs is the statistical meta-analysis (a systematic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19690970','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19690970"><span>Genetic variants in the cell cycle control pathways contribute to early onset colorectal cancer in Lynch syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Jinyun; Etzel, Carol J; Amos, Christopher I; Zhang, Qing; Viscofsky, Nancy; Lindor, Noralane M; Lynch, Patrick M; Frazier, Marsha L</p> <p>2009-11-01</p> <p>Lynch syndrome is an autosomal dominant syndrome of familial malignancies resulting from germ line mutations in DNA mismatch repair (MMR) genes. Our goal was to take a pathway-based approach to investigate the influence of polymorphisms in cell cycle-related genes on age of onset for Lynch syndrome using a tree model. We evaluated polymorphisms in a panel of cell cycle-related genes (AURKA, CDKN2A, TP53, E2F2, CCND1, TP73, MDM2, IGF1, and CDKN2B) in 220 MMR gene mutation carriers from 129 families. We applied a novel statistical approach, tree modeling (Classification and Regression Tree), to the analysis of data on patients with Lynch syndrome to identify individuals with a higher probability of developing colorectal cancer at an early age and explore the gene-gene interactions between polymorphisms in cell cycle genes. We found that the subgroup with CDKN2A C580T wild-type genotype, IGF1 CA-repeats >or=19, E2F2 variant genotype, AURKA wild-type genotype, and CCND1 variant genotype had the youngest age of onset, with a 45-year median onset age, while the subgroup with CDKN2A C580T wild-type genotype, IGF1 CA-repeats >or=19, E2F2 wild-type genotype, and AURKA variant genotype had the latest median age of onset, which was 70 years. Furthermore, we found evidence of a possible gene-gene interaction between E2F2 and AURKA genes related to CRC age of onset. Polymorphisms in these cell cycle-related genes work together to modify the age at the onset of CRC in patients with Lynch syndrome. These studies provide an important part of the foundation for development of a model for stratifying age of onset risk among those with Lynch syndrome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080868','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080868"><span>Confronting Models with Data: The GEWEX Cloud Systems Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randall, David; Curry, Judith; Duynkerke, Peter; Krueger, Steven; Moncrieff, Mitchell; Ryan, Brian; Starr, David OC.; Miller, Martin; Rossow, William; Tselioudis, George</p> <p>2002-01-01</p> <p>The GEWEX Cloud System Study (GCSS; GEWEX is the Global Energy and Water Cycle Experiment) was organized to promote development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on the climate applications. The strategy of GCSS is to use two distinct kinds of models to analyze and understand observations of the behavior of several different types of clouds systems. Cloud-system-resolving models (CSRMs) have high enough spatial and temporal resolutions to represent individual cloud elements, but cover a wide enough range of space and time scales to permit statistical analysis of simulated cloud systems. Results from CSRMs are compared with detailed observations, representing specific cases based on field experiments, and also with statistical composites obtained from satellite and meteorological analyses. Single-column models (SCMs) are the surgically extracted column physics of atmospheric general circulation models. SCMs are used to test cloud parameterizations in an un-coupled mode, by comparison with field data and statistical composites. In the original GCSS strategy, data is collected in various field programs and provided to the CSRM Community, which uses the data to "certify" the CSRMs as reliable tools for the simulation of particular cloud regimes, and then uses the CSRMs to develop parameterizations, which are provided to the GCM Community. We report here the results of a re-thinking of the scientific strategy of GCSS, which takes into account the practical issues that arise in confronting models with data. The main elements of the proposed new strategy are a more active role for the large-scale modeling community, and an explicit recognition of the importance of data integration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513750D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513750D"><span>A reconstruction of solar irradiance using a flux transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami</p> <p>2013-04-01</p> <p>Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1610.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1325465-toward-optimal-integration-terrestrial-biosphere-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1325465-toward-optimal-integration-terrestrial-biosphere-models"><span>Toward “optimal” integration of terrestrial biosphere models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Schwalm, Christopher R.; Huntzinger, Deborah N.; Fisher, Joshua B.; ...</p> <p>2015-06-10</p> <p>Multimodel ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill based for present-day carbon cycling) versus naive (one model-one vote) integration. MsTMIP optimal and naive mean land sink strength estimates (-1.16 versus -1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materially changemore » MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Finally, resolving this issue requires addressing specific uncertainty types (initial conditions, structure, and references) and a change in model development paradigms currently dominant in the TBM community.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000070722','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000070722"><span>Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric</p> <p>2000-01-01</p> <p>The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A33A0873B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A33A0873B"><span>A Novel Analysis Of The Connection Between Indian Monsoon Rainfall And Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharyya, S.; Narasimha, R.</p> <p>2005-12-01</p> <p>The existence of possible correlations between the solar cycle period as extracted from the yearly means of sunspot numbers and any periodicities that may be present in the Indian monsoon rainfall has been addressed using wavelet analysis. The wavelet transform coefficient maps of sunspot-number time series and those of the homogeneous Indian monsoon rainfall annual time series data reveal striking similarities, especially around the 11-year period. A novel method to analyse and quantify this similarity devising statistical schemes is suggested in this paper. The wavelet transform coefficient maxima at the 11-year period for the sunspot numbers and the monsoon rainfall have each been modelled as a point process in time and a statistical scheme for identifying a trend or dependence between the two processes has been devised. A regression analysis of parameters in these processes reveals a nearly linear trend with small but systematic deviations from the regressed line. Suitable function models for these deviations have been obtained through an unconstrained error minimisation scheme. These models provide an excellent fit to the time series of the given wavelet transform coefficient maxima obtained from actual data. Statistical significance tests on these deviations suggest with 99% confidence that the deviations are sample fluctuations obtained from normal distributions. In fact our earlier studies (see, Bhattacharyya and Narasimha, 2005, Geophys. Res. Lett., Vol. 32, No. 5) revealed that average rainfall is higher during periods of greater solar activity for all cases, at confidence levels varying from 75% to 99%, being 95% or greater in 3 out of 7 of them. Analysis using standard wavelet techniques reveals higher power in the 8--16 y band during the higher solar activity period, in 6 of the 7 rainfall time series, at confidence levels exceeding 99.99%. Furthermore, a comparison between the wavelet cross spectra of solar activity with rainfall and noise (including those simulating the rainfall spectrum and probability distribution) revealed that over the two test-periods respectively of high and low solar activity, the average cross power of the solar activity index with rainfall exceeds that with the noise at z-test confidence levels exceeding 99.99% over period-bands covering the 11.6 y sunspot cycle (see, Bhattacharyya and Narasimha, SORCE 2005 14-16th September, at Durango, Colorado USA). These results provide strong evidence for connections between Indian rainfall and solar activity. The present study reveals in addition the presence of subharmonics of the solar cycle period in the monsoon rainfall time series together with information on their phase relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4349572','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4349572"><span>Assessment of luteal function in the vervet monkey as a means to develop a model for obesity-related reproductive phenotype</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kundu, Mila C.; May, Margaret C.; Chosich, Justin; Bradford, Andrew P.; Lasley, Bill; Gee, Nancy; Santoro, Nanette; Appt, Susan E.; Polotsky, Alex J.</p> <p>2015-01-01</p> <p>The objective of the current study was to characterize luteal function in vervet monkeys. Urine from 12 adult female vervets housed at an academic research center was collected for 10 weeks from single-caged monkeys in order to assess evidence of luteal activity (ELA) as determined by urinary excretion of pregnanediol glucuronide (Pdg) and estrone conjugates (E1c). Dual energy X-ray absorptiometry (DXA) was performed on the monkeys to assess body composition, bone density, and fat mass. Menstrual cyclicity was determined using records of vaginal bleeding. ELA was observed in 9 monkeys and was characterized by a late follicular rise in E1c followed by a progressive increase in Pdg excretion. Mean menstrual cycle length was 26.7 ± 3.8 days and the average day of luteal transition was 14 ± 1.8. Three monkeys without ELA had a clearly defined E1c rise (mean 12-fold from nadir) followed by an E1c drop that was not accompanied by Pdg rise and coincided with vaginal bleeding. Among the 9 ELA monkeys, excretion of E1c tended to negatively associate with fat mass, although this finding did not reach statistical significance (r = −0.61, p = 0.08). Similar to women, vervet monkeys experience an increase in E1c late in the follicular phase of the menstrual cycle which is followed by a subsequent luteal Pdg peak. Assessment of urinary reproductive hormones allows for identification of cardinal menstrual cycle events; thus, the similarity of vervet cycles to human menstrual cycles makes them a useful model for obesity-related human reproductive impairment. PMID:23278149</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....48.0703P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....48.0703P"><span>The Complexity of Solar and Geomagnetic Indices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pesnell, W. Dean</p> <p>2017-08-01</p> <p>How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26574857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26574857"><span>Coating dental implant abutment screws with diamondlike carbon doped with diamond nanoparticles: the effect on maintaining torque after mechanical cycling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette</p> <p>2015-01-01</p> <p>To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210234P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210234P"><span>Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric</p> <p>2010-05-01</p> <p>Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21821343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21821343"><span>Simulation and source identification of X-ray contrast media in the water cycle of Berlin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knodel, J; Geissen, S-U; Broll, J; Dünnbier, U</p> <p>2011-11-01</p> <p>This article describes the development of a model to simulate the fate of iodinated X-ray contrast media (XRC) in the water cycle of the German capital, Berlin. It also handles data uncertainties concerning the different amounts and sources of input for XRC via source densities in single districts for the XRC usage by inhabitants, hospitals, and radiologists. As well, different degradation rates for the behavior of the adsorbable organic iodine (AOI) were investigated in single water compartments. The introduced model consists of mass balances and includes, in addition to naturally branched bodies of water, the water distribution network between waterways and wastewater treatment plants, which are coupled to natural surface waters at numerous points. Scenarios were calculated according to the data uncertainties that were statistically evaluated to identify the scenario with the highest agreement among the provided measurement data. The simulation of X-ray contrast media in the water cycle of Berlin showed that medical institutions have to be considered as point sources for congested urban areas due to their high levels of X-ray contrast media emission. The calculations identified hospitals, represented by their capacity (number of hospital beds), as the most relevant point sources, while the inhabitants served as important diffusive sources. Deployed for almost inert substances like contrast media, the model can be used for qualitative statements and, therefore, as a decision-support tool. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25920524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25920524"><span>Predictive factors of early moderate/severe ovarian hyperstimulation syndrome in non-polycystic ovarian syndrome patients: a statistical model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ashrafi, Mahnaz; Bahmanabadi, Akram; Akhond, Mohammad Reza; Arabipoor, Arezoo</p> <p>2015-11-01</p> <p>To evaluate demographic, medical history and clinical cycle characteristics of infertile non-polycystic ovary syndrome (NPCOS) women with the purpose of investigating their associations with the prevalence of moderate-to-severe OHSS. In this retrospective study, among 7073 in vitro fertilization and/or intracytoplasmic sperm injection (IVF/ICSI) cycles, 86 cases of NPCO patients who developed moderate-to-severe OHSS while being treated with IVF/ICSI cycles were analyzed during the period of January 2008 to December 2010 at Royan Institute. To review the OHSS risk factors, 172 NPCOS patients without developing OHSS, treated at the same period of time, were selected randomly by computer as control group. We used multiple logistic regression in a backward manner to build a prediction model. The regression analysis revealed that the variables, including age [odds ratio (OR) 0.9, confidence interval (CI) 0.81-0.99], antral follicles count (OR 4.3, CI 2.7-6.9), infertility cause (tubal factor, OR 11.5, CI 1.1-51.3), hypothyroidism (OR 3.8, CI 1.5-9.4) and positive history of ovarian surgery (OR 0.2, CI 0.05-0.9) were the most important predictors of OHSS. The regression model had an area under curve of 0.94, presenting an allowable discriminative performance that was equal with two strong predictive variables, including the number of follicles and serum estradiol level on human chorionic gonadotropin day. The predictive regression model based on primary characteristics of NPCOS patients had equal specificity in comparison with two mentioned strong predictive variables. Therefore, it may be beneficial to apply this model before the beginning of ovarian stimulation protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13K1536M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13K1536M"><span>Performance of CMIP3 and CMIP5 GCMs to simulate observed rainfall characteristics over the Western Himalayan region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meher, J. K.; Das, L.</p> <p>2017-12-01</p> <p>The Western Himalayan Region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902-2005. Annual and seasonal rainfall change over WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from the coupled model intercomparison project phase 3 (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend whereas 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30-years) trend-estimates than for the longer term (99-years). GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in pre-monsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high resolution version of the MIROC3.2 model (MIROC3.2 hires) and MIROC5 at the top in CMIP3 and CMIP5 respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the model as compared to other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41H2389L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41H2389L"><span>Using Perturbed Physics Ensembles and Machine Learning to Select Parameters for Reducing Regional Biases in a Global Climate Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.</p> <p>2017-12-01</p> <p>This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900043077&hterms=accounting+cycle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Daccounting%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900043077&hterms=accounting+cycle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Daccounting%2Bcycle"><span>Detection of the diurnal cycle in rainfall from the TRMM satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Thomas L.</p> <p>1989-01-01</p> <p>Consideration is given to the process of detecting the diurnal cycle from data that will be collected by the Tropical Rainfall Measuring Mission satellite. The analysis of data for the diurnal cycle is discussed, accounting for the fact that satellite visits will be irregularly spaced in time. The accuracy with which the first few harmonics of the diurnal cycle can be detected from several months of satellite data is estimated using rainfall statistics observed during the GARP Atlantic Tropical Experiment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4014535','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4014535"><span>AN INVERSE MODELING APPROACH FOR STRESS ESTIMATION IN MITRAL VALVE ANTERIOR LEAFLET VALVULOPLASTY FOR IN-VIVO VALVULAR BIOMATERIAL ASSESSMENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Chung-Hao; Amini, Rouzbeh; Gorman, Robert C.; Gorman, Joseph H.; Sacks, Michael S.</p> <p>2013-01-01</p> <p>Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL. PMID:24275434</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19508322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19508322"><span>Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinto, Luciana de Rezende; Acosta, Emílio José T Rodríguez; Távora, Flora Freitas Fernandes; da Silva, Paulo Maurício Batista; Porto, Vinícius Carvalho</p> <p>2010-06-01</p> <p>The aim of this study was to assess the effect of repeated cycles of five chemical disinfectant solutions on the roughness and hardness of three hard chairside reliners. A total of 180 circular specimens (30 mm x 6 mm) were fabricated using three hard chairside reliners (Jet; n = 60, Kooliner; n = 60, Tokuyama Rebase II Fast; n = 60), which were immersed in deionised water (control), and five disinfectant solutions (1%, 2%, 5.25% sodium hypochlorite; 2% glutaraldehyde; 4% chlorhexidine gluconate). They were tested for Knoop hardness (KHN) and surface roughness (microm), before and after 30 simulated disinfecting cycles. Data was analysed by the factorial scheme (6 x 2), two-way analysis of variance (anova), followed by Tukey's test. For Jet (from 18.74 to 13.86 KHN), Kooliner (from 14.09 to 8.72 KHN), Tokuyama (from 12.57 to 8.28 KHN) a significant decrease in hardness was observed irrespective of the solution used on all materials. For Jet (from 0.09 to 0.11 microm) there was a statistically significant increase in roughness. Kooliner (from 0.36 to 0.26 microm) presented a statistically significant decrease in roughness and Tokuyama (from 0.15 to 0.11 microm) presented no statistically significant difference after 30 days. This study showed that all disinfectant solutions promoted a statistically significant decrease in hardness, whereas with roughness, the materials tested showed a statistically significant increase, except for Tokuyama. Although statistically significant values were registered, these results could not be considered clinically significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28647496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28647496"><span>A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don</p> <p>2017-09-21</p> <p>Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5305Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5305Y"><span>Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yano, Jun-Ichi</p> <p>2015-04-01</p> <p>Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this cycle system under a zero-dimensional configuration. Preliminary simulations of this cycle system over a two-dimensional domain will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17269352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17269352"><span>[Modeling of carbon cycling in terrestrial ecosystem: a review].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Liuxi; Sun, Yanling; Yan, Xiaodong</p> <p>2006-11-01</p> <p>Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26364081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26364081"><span>Frozen-thawed embryo transfer in a natural or mildly hormonally stimulated cycle in women with regular ovulatory cycles: a RCT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peeraer, Karen; Couck, Isabelle; Debrock, Sophie; De Neubourg, Diane; De Loecker, Peter; Tomassetti, Carla; Laenen, Annouschka; Welkenhuysen, Myriam; Meeuwis, Luc; Pelckmans, Sofie; Meuleman, Christel; D'Hooghe, Thomas</p> <p>2015-11-01</p> <p>Can ovarian stimulation with low dose hMG improve the implantation rate (IR) per frozen-thawed embryo transferred (FET) when compared with natural cycle in an FET programme in women with a regular ovulatory cycle? Both IR and live birth rate (LBR) per FET were similar in the group with mild ovarian stimulation and the natural cycle group. Different cycle regimens for endometrial preparation are used prior to FET: spontaneous ovulatory cycles, cycles with artificial endometrial preparation using estrogen and progesterone hormones, and cycles stimulated with gonadotrophins or clomiphene citrate. At present, it is not clear which regimen results in the highest IR or LBR. More specifically, there are no RCTs in ovulatory women comparing reproductive outcome after FET during a natural cycle and during a hormonally stimulated cycle. A total of 410 women scheduled for FET during 579 cycles (December 2003-September 2013) were enrolled in an open-label RCT to natural cycle (NC FET group, n = 291) or to a cycle hormonally stimulated with s.c. gonadotrophins (hMG FET group, 37.5-75 IU per day, n = 288). A total of 672 embryos were transferred during 434 cycles (332 embryos and 213 cycles in the NC FET group; 340 embryos and 221 cycles in the hMG FET group). Assuming a = 0.05 and 80% power, it was calculated that 219 frozen-thawed embryos were required for transfer in each group to demonstrate a difference of 10% in IR. Women were eligible according to the following inclusion criteria: regular ovulatory cycle, female age ≥21 years and ≤45 years, informed consent. FET cycles with preimplantation genetic screening were excluded. The primary outcome was IR per embryo transferred. Secondary outcomes included IR with fetal heart beat (FHB), LBR per embryo transferred and endometrial thickness on the day of hCG administration. Statistical analysis was by intention to treat and controlled for the presence of multiple measures, as eligible women could be randomized in more than one cycle. Chi-square and independent t-test were used to compare categorical and continuous variables. The relative risk (RR) was estimated using a Poisson model with log link. Hierarchical models with random intercepts for patient and cycle were considered to account for clustering of cycles within patients and of embryos within cycles. The primary outcome, IR per embryo transferred, was not statistically different between the NC FET group (41/332 (12.35%)) and in the hMG FET group (55/340 (16.18%)) (RR 1.3 (95% confidence interval (CI) 0.9-2.0), P = 0.19). Similarly, the secondary outcome, IR with FHB per embryo transferred, was 34/332 (10.24%) in the NC FET group and 48/340 (14.12%) in the hMG FET group (RR 1.4 (95% CI 0.9-2.1), P = 0.15). The LBR per embryo transferred was 32/332 (9.64%) in the NC FET group and 45/340 (13.24%) in the hMG FET group (RR 1.4 (95% CI 0.9-2.2), P = 0.17). Endometrial thickness was also similar in both groups [8.9 (95% CI 8.7-9.1) in the NC FET group and 8.9 (95% CI 8.7-9.1) in the hMG FET group]. The duration of the follicular phase was significantly shorter (P < 0.001) in the hMG FET group [13.7 days (95% CI 13.2-14.2)] than in the NC FET group [15.4 days (95% CI 14.8-15.9)]. Randomization of cycles instead of patients; open-label design; relatively long period of recruitment. Our observation that the IR per embryo transferred is not significantly increased after FET during natural or gonadotrophin stimulated cycle, suggests that the effect of mild hormonal stimulation with gonadotrophins is smaller than what was considered clinically relevant with respect to reproductive outcome after FET. These data suggest that endometrial receptivity is not relevantly improved, but also not impaired after hormonal stimulation with gonadotrophins. Since FET during a natural cycle is cheaper and more patient-friendly, we recommend this regimen as the treatment of choice for women with regular cycles undergoing FET. clinicaltrials.gov NCT00492934. 26 June 2007. 1 December 2003. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050177223&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddata%2Bsets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050177223&hterms=data+sets&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddata%2Bsets"><span>Regression Analysis of Long-Term Profile Ozone Data Set from BUV Instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stolarski, Richard S.</p> <p>2005-01-01</p> <p>We have produced a profile merged ozone data set (MOD) based on the SBUV/SBUV2 series of nadir-viewing satellite backscatter instruments, covering the period from November 1978 - December 2003. In 2004, data from the Nimbus 7 SBUV and NOAA 9, ll, and 16 SBUV/2 instruments were reprocessed using the Version 8 (V8) algorithm and most recent calibrations. More recently, data from the Nimbus 4 BUT instrument, which was operational from 1970 - 1977, were also reprocessed using the V8 algorithm. As part of the V8 profile calibration, the Nimbus 7 and NOAA 9 (1993-1997 only) instrument calibrations have been adjusted to match the NOAA 11 calibration, which was established based on comparisons with SSBUV shuttle flight data. Differences between NOAA 11, Nimbus 7 and NOAA 9 profile zonal means are within plus or minus 5% at all levels when averaged over the respective periods of data overlap. NOAA 16 SBUV/2 data have insufficient overlap with NOAA 11, so its calibration is based on pre-flight information. Mean differences over 4 months of overlap are within plus or minus 7%. Given the level of agreement between the data sets, we simply average the ozone values during periods of instrument overlap to produce the MOD profile data set. Initial comparisons of coincident matches of N4 BUV and Arosa Umkehr data show mean differences of 0.5 (0.5)% at 30km; 7.5 (0.5)% at 35 km; and 11 (0.7)% at 40 km, where the number in parentheses is the standard error of the mean. In this study, we use the MOD profile data set (1978-2003) to estimate the change in profile ozone due to changing stratospheric chlorine levels. We use a standard linear regression model with proxies for the seasonal cycle, solar cycle, QBO, and ozone trend. To account for the non-linearity of stratospheric chlorine levels since the late 1990s, we use a time series of Effective Chlorine, defined as the global average of Chlorine + 50 * Bromine at 1 hPa, as the trend proxy. The Effective Chlorine data are taken from the 3-D Goddard CTM. We will show the latest trend results using this statistical model. In addition, the Nimbus 4 BUV data offer an opportunity to test the physical properties of our statistical model. From ground-based comparisons we will establish an uncertainty range for the Nimbus 4 data. We then extrapolate our statistical model fit backwards in time and compare to the Nimbus 4 data. We compare the characteristics of the residual, defined as the difference between the data and statistical regression fit, during the Nimbus 4 time period and the 1978-2003 period over which the statistical model coefficients were estimated, and present these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhyA..387.3852D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhyA..387.3852D"><span>Economic dynamics with financial fragility and mean-field interaction: A model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Guilmi, C.; Gallegati, M.; Landini, S.</p> <p>2008-06-01</p> <p>Following Aoki’s statistical mechanics methodology [Masanao Aoki, New Approaches to Macroeconomic Modeling, Cambridge University Press, 1996; Masanao Aoki, Modeling Aggregate Behaviour and Fluctuations in Economics, Cambridge University Press, 2002; Masanao Aoki, and Hiroshi Yoshikawa, Reconstructing Macroeconomics, Cambridge University Press, 2006], we provide some insights into the well-known works of [Bruce Greenwald, Joseph Stiglitz, Macroeconomic models with equity and credit rationing, in: R. Hubbard (Ed.), Information, Capital Markets and Investment, Chicago University Press, Chicago, 1990; Bruce Greenwald, Joseph Stiglitz, Financial markets imperfections and business cycles, Quarterly journal of Economics (1993)]. Specifically, we reach analytically a closed form solution of their models overcoming the aggregation problem. The key idea is to represent the economy as an evolving complex system, composed by heterogeneous interacting agents, that can be partitioned into a space of macroscopic states. This meso level of aggregation permits to adopt mean-field interaction modeling and master equation techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1413855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1413855"><span>Analysis of mortality data from the former USSR: age-period-cohort analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Willekens, F; Scherbov, S</p> <p>1992-01-01</p> <p>The objective of this article is to review research on age-period-cohort (APC) analysis of mortality and to trace the effects of contemporary and historical factors on mortality change in the former USSR. Several events in USSR history have exerted a lasting influence on its people. These influences may be captured by an APC model in which the period effects measure the impact of contemporary factors and the cohort effects the past history of individuals which cannot be attributed to age or stage in the life cycle. APC models are extensively applied in the study of mortality. This article presents the statistical theory of the APC models and shows that they belong to the family of generalized linear models. The parameters of the APC model may therefore be estimated by any package of loglinear analysis that allows for hybrid loglinear models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1225928','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1225928"><span>Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lopp, Sean; Wood, Eric; Duran, Adam</p> <p></p> <p>Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grademore » in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14762743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14762743"><span>Masticatory motion after surgical or nonsurgical treatment for unilateral fractures of the mandibular condylar process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Throckmorton, Gaylord S; Ellis, Edward; Hayasaki, Haruaki</p> <p>2004-02-01</p> <p>We sought to compare mandibular motion during mastication in patients treated in either an open or a closed fashion for unilateral fractures of the mandibular condylar process. Eighty-one male patients with unilateral condylar process fractures were treated either with (n = 37) or without (n = 44) surgical reduction and rigid fixation of their condylar process fractures. At 6 weeks, 6 months, 1 year, and 2 years after treatment, the subjects' chewing cycles were recorded using a magnetic sensor array (Sirognathograph; Siemens Corp, Bensheim, Germany) while chewing Gummi-Bears (HARIBO, Bonn, Germany) unilaterally on the same side as the fracture and on the opposite side. The chewing cycles were analyzed using a custom computer program, and the duration, excursive ranges, and 3-dimensional cycle shape were compared between the 2 treatment groups at each time interval using multilevel linear modeling statistics. The 2 treatment groups did not differ significantly for any measure of cycle duration or any excursive range (except lateral excursions at 1 year post-treatment) at any of the time intervals. However, the 3-dimensional cycle shapes of the 2 groups did differ significantly at all time intervals. Surgical correction of unilateral condylar process fractures has relatively little effect on the more standard measures (duration and excursive ranges) of masticatory function. However, surgical correction better normalizes opening incisor pathways during mastication on the side opposite the fracture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1511G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1511G"><span>Solar Radio Burst Statistics and Implications for Space Weather Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giersch, O. D.; Kennewell, J.; Lynch, M.</p> <p>2017-11-01</p> <p>Solar radio bursts have the potential to affect space and terrestrial navigation, communication, and other technical systems that are sometimes overlooked. However, over the last decade a series of extreme L band solar radio bursts in December 2006 have renewed interest in these effects. In this paper we point out significant deficiencies in the solar radio data archives of the National Centers for Environmental Information (NCEI) that are used by most researchers in analyzing and producing statistics on solar radio burst phenomena. In particular, we examine the records submitted by the United States Air Force (USAF) Radio Solar Telescope Network (RSTN) and its predecessors from the period 1966 to 2010. Besides identifying substantial missing burst records we show that different observatories can have statistically different burst distributions, particularly at 245 MHz. We also point out that different solar cycles may show statistically different distributions and that it is a mistake to assume that the Sun shows similar behavior in different sunspot cycles. Large solar radio bursts are not confined to the period around sunspot maximum, and prediction of such events that utilize historical data will invariably be an underestimate due to archive data deficiencies. It is important that researchers and forecasters use historical occurrence frequency with caution in attempting to predict future cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005slfh.book....9A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005slfh.book....9A"><span>Sir Fred Hoyle and the theory of the synthesis of the elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnett, David</p> <p></p> <p>Some of Fred Hoyle's pioneering ideas about the site and the nature of the synthesis of the elements are examined in a modern context of theory, experiment and observations. Hoyle's ideas concerning the nucleosynthesis cycle of stellar birth and death, rotational instability of supernovae, the onion-skin model of presupernovae, neutronization, nuclear statistical equilibrium and core collapse, thermonuclear supernovae, nucleosynthesis processes and freeze-out are discussed. The history of the clash of theory and experiment on the second excited state of 8Be and helium ignition in red giants is reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17519201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17519201"><span>A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carpenter, Peter W; Kudar, Karen L; Ali, Reza; Sen, Pradeep K; Davies, Christopher</p> <p>2007-10-15</p> <p>We present a relatively simple, deterministic, theoretical model for the sublayer streaks in a turbulent boundary layer based on an analogy with Klebanoff modes. Our approach is to generate the streamwise vortices found in the buffer layer by means of a vorticity source in the form of a fictitious body force. It is found that the strongest streaks correspond to a spanwise wavelength that lies within the range of the experimentally observed values for the statistical mean streak spacing. We also present results showing the effect of streamwise pressure gradient, Reynolds number and wall compliance on the sublayer streaks. The theoretical predictions for the effects of wall compliance on the streak characteristics agree well with experimental data. Our proposed theoretical model for the quasi-periodic bursting cycle is also described, which places the streak modelling in context. The proposed bursting process is as follows: (i) streamwise vortices generate sublayer streaks and other vortical elements generate propagating plane waves, (ii) when the streaks reach a sufficient amplitude, they interact nonlinearly with the plane waves to produce oblique waves that exhibit transient growth, and (iii) the oblique waves interact nonlinearly with the plane wave to generate streamwise vortices; these in turn generate the sublayer streaks and so the cycle is renewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20410672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20410672"><span>The contribution of work and non-work factors to the onset of psychological distress: an eight-year prospective study of a representative sample of employees in Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marchand, Alain; Blanc, Marie-Eve</p> <p>2010-01-01</p> <p>This study examined how occupation and work organization conditions contributed, over 8 yr, to the onset of psychological distress after adjusting for non-work and individual characteristics. The data came from the five cycles (Cycle 1=1994-1995, Cycle 5=2002-2003) of Statistics Canada's National Population Health Survey. A sample of 5,270 workers nested in 1,122 neighborhoods and aged 15 to 55 yr with no psychological distress at baseline was analyzed with discrete time survival multilevel regression models. The onset of psychological distress decreased over time. Occupation was not significant, whereas social support at work decreased the risk. Substantial effects for non-work and individual factors were found, including neighborhood, social support outside the workplace, demographics, physical health, personality traits, and life habits. This study found that work characteristics made a limited contribution to the onset of psychological distress, but social support in the workplace clearly proved to be an important protective factor. Enterprises must pay special attention to how colleagues and supervisors act to help workers complete tasks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000Natur.405..562T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000Natur.405..562T"><span>Are lemmings prey or predators?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.</p> <p>2000-06-01</p> <p>Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058220&hterms=water+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwater%2Bfilters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058220&hterms=water+filters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwater%2Bfilters"><span>Simplification of the Kalman filter for meteorological data assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dee, Dick P.</p> <p>1991-01-01</p> <p>The paper proposes a new statistical method of data assimilation that is based on a simplification of the Kalman filter equations. The forecast error covariance evolution is approximated simply by advecting the mass-error covariance field, deriving the remaining covariances geostrophically, and accounting for external model-error forcing only at the end of each forecast cycle. This greatly reduces the cost of computation of the forecast error covariance. In simulations with a linear, one-dimensional shallow-water model and data generated artificially, the performance of the simplified filter is compared with that of the Kalman filter and the optimal interpolation (OI) method. The simplified filter produces analyses that are nearly optimal, and represents a significant improvement over OI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047328&hterms=Global+Positioning+System&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DThe%2BGlobal%2BPositioning%2BSystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047328&hterms=Global+Positioning+System&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DThe%2BGlobal%2BPositioning%2BSystem"><span>Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christensen, E. J.; Haines, B. J.; Mccoll, K. C.; Nerem, R. S.</p> <p>1994-01-01</p> <p>We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA512529','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA512529"><span>Flow Measurements Using Particle Image Velocimetry in the Ultra Compact Combustor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-12-01</p> <p>addition effectively increases the flow velocity resulting in increased thrust. The afterburning cycle is much less efficient than the Brayton cycle used...31. Rekab, K., & Shaikh, M., Statistical Design of Experiments with Engineering Applications, Florida: CRC Press, Taylor & Francis Group, 2005</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JMiMi..23c5039M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JMiMi..23c5039M"><span>The effects of DRIE operational parameters on vertically aligned micropillar arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An</p> <p>2013-03-01</p> <p>Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8435453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8435453"><span>Graphical and statistical techniques for cardiac cycle time (phase) dependent changes in interbeat interval: problems with the Jennings et al. (1991) proposals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barry, R J</p> <p>1993-01-01</p> <p>Two apparently new effects in human cardiac responding, "primary bradycardia" and "vagal inhibition", were first described by the Laceys. These effects have been considered by some researchers to reflect differential cardiac innervation, analogous to similar effects observed in animal preparations with direct vagal stimulation. However, it has been argued that such effects arise merely from the data-analytic techniques introduced by the Laceys, and hence are not genuine cardiac cycle effects. Jennings, van der Molen, Somsen and Ridderinkhoff (Psychophysiology, 28 (1991) 596-606) recently proposed a plotting technique and statistical procedure in an attempt to resolve this issue. The present paper demonstrates that the plotting technique fails to achieve their stated aim, since it identifies data from identical cardiac responses as showing cardiac-cycle effects. In addition, the statistical procedure is shown to be reducible to a trivial test of response occurrence. The implication of these demonstrations, in the context of other work, is that this area of investigation has reached a dead end.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...854L...2M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...854L...2M"><span>Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.</p> <p>2018-02-01</p> <p>Precise measurements of the time-dependent intensity of the low-energy (<50 GeV) galactic cosmic rays (GCRs) are fundamental to test and improve the models that describe their propagation inside the heliosphere. In particular, data spanning different solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.843a2034P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.843a2034P"><span>Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plekhov, O. A.; Kostina, A. A.</p> <p>2017-05-01</p> <p>The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53A0265P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53A0265P"><span>Statistical properties of cloud and precipitation events in Central Amazonia using GoAmazon2014/5 data: revisiting deep convection timescales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pauliquevis, T.; Alves, C. F.; Barbosa, H. M.</p> <p>2016-12-01</p> <p>Previous studies in Amazon have shown a clear discrepance between models and observations of convection. From the observational stand point convection in Amazonia has a typical diurnal cycle, which is characterized by shallow convection and followed by shallow to deep transition (usually in early afternoon) and rain. Differently, numerical models based in cumulus parameterizations put heavy rain in the early hours of the morning. In this context, observations are crucial both to constraint as well to validate improvement in models. In this study we investigated statistical properties of clouds, precipitation and convection employing several instruments operated during GoAmazon2014/5-DOE/ARM at Manacapuru, AM (Brazil) combined with Cloud Top Temperature data obtained by GOES. Previous studies (e.g. Adams et al., 2013) defined deep convection events as connected to rapid CTT decrease, PWV increase (convergence) and precipitation. They also observed that the average deep convection event has two characteristic time-scales of its formation, in the sense that water vapor convergence begins to build 12 hs before precipitation, with an invigoration 4 hs before rain occur. In this study we revisited this approach using GoAmazon2014/5 measurement with special focus to its statistical variability. Preliminar results for the wet season of 2014 showed that events with rapid decrease in CTT were associated with 60% of the observed precipitation at ground. Defining t0 as the central time of CTT (rapid) decrease and analyzing only events with rain volume > 10 mm it was possible to observe that precipitation maximums distributed around t0 with mean difference Δ = 24 ± 82 minutes. Most of events presented several maxima (up to 16), and the general structure was similar to beatings in oscillatory systems. In several cases eve the first maximum of rain rate was 1 hour shifted from t0. In this presentation, the above results will be discussed combined with radiometer measurements (T, RH, LWP and PWV). Special attention to differences in diurnal cycles of convective and not convective days, as well as some mean vertical profiles of those variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2610K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2610K"><span>Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumari, K.; Oberheide, J.</p> <p>2017-12-01</p> <p>Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26777288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26777288"><span>Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ford, Trent W; Frauenfeld, Oliver W</p> <p>2016-01-18</p> <p>Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD18008H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD18008H"><span>Analysis of the cycle-to-cycle pressure distribution variations in dynamic stall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan</p> <p>2017-11-01</p> <p>Dynamic stall is an unsteady flow phenomenon observed on blades and wings that, despite decades of focused study, remains a challenging problem for rotorcraft and wind turbine applications. Traditionally, dynamic stall has been studied on pitch-oscillating airfoils by measuring the unsteady pressure distribution that is phase-averaged, by which the typical flow pattern may be observed and quantified. In cases where light to deep dynamic stall are observed, pressure distributions with high levels of variance are present in regions of separation. It was recently observed that, under certain conditions, this scatter may be the result of a two-state flow solution - as if there were a bifurcation in the unsteady pressure distribution behavior on the suction side of the airfoil. This is significant since phase-averaged dynamic stall data are often used to tune dynamic stall models and for validation of simulations of dynamic stall. In order to better understand this phenomenon, statistical analysis of the pressure data using probability density functions (PDFs) and other statistical approaches has been carried out for the SC 1094R8, DU97-W-300, and NACA 0015 airfoil geometries. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G54A..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G54A..05J"><span>Seasonal Water Storage, the Resulting Deformation and Stress, and Occurrence of Earthquakes in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.</p> <p>2015-12-01</p> <p>In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.126..575K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.126..575K"><span>Local air temperature tolerance: a sensible basis for estimating climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kärner, Olavi; Post, Piia</p> <p>2016-11-01</p> <p>The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1402073-parallel-multi-cycle-les-optical-pent-roof-disi-engine-under-motored-operating-conditions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1402073-parallel-multi-cycle-les-optical-pent-roof-disi-engine-under-motored-operating-conditions"><span>Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei</p> <p></p> <p>The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual enginemore » cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA13C..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA13C..07F"><span>Hemispheric asymmetries in high-latitude ionospheric convection and upper atmosphere neutral wind circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foerster, M.; Cnossen, I.; Haaland, S.</p> <p>2015-12-01</p> <p>Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern polar regions. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained over almost a full solar cycle during the first decade of this century by measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP spacecraft, respectively. The asymmetries are attributed to the non-dipolar portions of the Earth's magnetic field that constitute hemispheric differences in magnetic flux densities, different offsets of the invariant geomagnetic poles, and generally in different field configurations of both hemispheres. Seasonal and solar cycle effects of the asymmetries are considered and first trials to explain the effects by numerical modeling are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5006988','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5006988"><span>Lunar Cycle Influences Spontaneous Delivery in Cows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yonezawa, Tomohiro; Uchida, Mona; Tomioka, Michiko; Matsuki, Naoaki</p> <p>2016-01-01</p> <p>There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition. PMID:27580019</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1090179-seasonality-soil-co2-efflux-temperate-forest-biophysical-effects-snowpack-spring-freezethaw-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1090179-seasonality-soil-co2-efflux-temperate-forest-biophysical-effects-snowpack-spring-freezethaw-cycles"><span>Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze–thaw cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Chuankuan; Han, Yi; Chen, Jiquan</p> <p>2013-08-15</p> <p>Changes in characteristics of snowfall and spring freeze–thaw-cycle (FTC) events under the warming climate make it critical to understand biophysical controls on soil CO2 efflux (RS) in seasonally snow-covered ecosystems. We conducted a snow removal experiment and took year-round continuous automated measurements of RS, soil temperature (T5) and soil volumetric water content at the 5 cm depth (W5) with a half-hour interval in a Chinese temperate forest in 2010–2011. Our objectives were to: (1) develop statistical models to describe the seasonality of RS in this forest; (2) quantify the contribution of seasonal RS to the annual budget; (3) examine biophysicalmore » effects of snowpack on RS; and (4) test the hypothesis that an FTC-induced enhancement of RS is jointly driven by biological and physical processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3105790','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3105790"><span>Household and farm transitions in environmental context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deane, Glenn D.; Gutmann, Myron P.</p> <p>2010-01-01</p> <p>Recent debate in the literature on population, environment, and land use questions the applicability of theory that patterns of farm extensification and intensification correspond to the life course of farmers and to the life cycle of farm families. This paper extends the debate to the agricultural development of the United States Great Plains region, using unique data from 1875 to 1930 that link families to farms over time in 25 environmentally diverse Kansas townships. Results of multilevel statistical modeling indicate that farmer’s age, household size, and household structure are simultaneously related to both the extent of farm operations and the intensity of land use, taking into account local environmental conditions and time trends as Kansas was settled and developed. These findings validate farm- and life cycle theories and offer support for intergenerational motivations for farm development that include both daughters and sons. Environmental variation in aridity was a key driver of farm structure. PMID:21643468</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29890172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29890172"><span>Optimization of Primary Drying in Lyophilization during Early Phase Drug Development using a Definitive Screening Design with Formulation and Process Factors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram</p> <p>2018-06-08</p> <p>Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26848114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26848114"><span>Effects of meteorological factors and the lunar cycle on onset of parturition in cows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ammann, T; Hässig, M; Rüegg, S; Bleul, U</p> <p>2016-04-01</p> <p>The present paper summarizes a comprehensive retrospective study that was undertaken to investigate effects of meteorological factors and lunar cycle on gestation length and daily birth rate in cows. To this end, all cattle births in Switzerland between 2008 and 2010 (n=2,091,159) were related to detailed matched weather recordings. The study revealed some statistically significant effects of climate (temperature, barometric pressure, relative humidity) and weather (thunderstorms, heat index) on gestational length. Thunderstorms on the day before birth reduced the gestation length by 0.5 days. An increase in the birth rate was correlated with the temperature on the day before birth and the barometric pressure 3 days before birth. Differences in the barometric pressure >15hPa increased the birth rate by 4%. Nevertheless, the effects were not consistent and the modeled size of effect was so small that a clinical implication is unlikely. Although the daily birth rate was unevenly distributed across the lunar cycle, no clear pattern could be identified. Compared to the mean birth rate across the lunar cycle the highest daily birth rate was detected on day 4 after new moon (+1.9%) and the lowest on day 20 (-2.1%). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016usc..confE..67L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016usc..confE..67L"><span>Coronal Holes and Magnetic Flux Ropes Interweaving Solar Cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowder, Chris; Yeates, Anthony; Leamon, Robert; Qiu, Jiong</p> <p>2016-10-01</p> <p>Coronal holes, dark patches observed in solar observations in extreme ultraviolet and x-ray wavelengths, provide an excellent proxy for regions of open magnetic field rooted near the photosphere. Through a multi-instrument approach, including SDO data, we are able to stitch together high resolution maps of coronal hole boundaries spanning the past two solar activity cycles. These observational results are used in conjunction with models of open magnetic field to probe physical solar parameters. Magnetic flux ropes are commonly defined as bundles of solar magnetic field lines, twisting around a common axis. Photospheric surface flows and magnetic reconnection work in conjunction to form these ropes, storing magnetic stresses until eruption. With an automated methodology to identify flux ropes within observationally driven magnetofrictional simulations, we can study their properties in detail. Of particular interest is a solar-cycle length statistical description of eruption rates, spatial distribution, magnetic orientation, flux, and helicity. Coronal hole observations can provide useful data about the distribution of the fast solar wind, with magnetic flux ropes yielding clues as to ejected magnetic field and the resulting space weather geo-effectiveness. With both of these cycle-spanning datasets, we can begin to form a more detailed picture of the evolution and consequences of both sets of solar magnetic features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JHyd..329..636K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JHyd..329..636K"><span>Daily pan evaporation modelling using a neuro-fuzzy computing technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kişi, Özgür</p> <p>2006-10-01</p> <p>SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010013812','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010013812"><span>Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20010013812'); toggleEditAbsImage('author_20010013812_show'); toggleEditAbsImage('author_20010013812_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20010013812_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20010013812_hide"></p> <p>2000-01-01</p> <p>The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48.1249P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48.1249P"><span>Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodó, Xavier</p> <p>2017-02-01</p> <p>El Niño (EN) is a dominant feature of climate variability on inter-annual time scales driving changes in the climate throughout the globe, and having wide-spread natural and socio-economic consequences. In this sense, its forecast is an important task, and predictions are issued on a regular basis by a wide array of prediction schemes and climate centres around the world. This study explores a novel method for EN forecasting. In the state-of-the-art the advantageous statistical technique of unobserved components time series modeling, also known as structural time series modeling, has not been applied. Therefore, we have developed such a model where the statistical analysis, including parameter estimation and forecasting, is based on state space methods, and includes the celebrated Kalman filter. The distinguishing feature of this dynamic model is the decomposition of a time series into a range of stochastically time-varying components such as level (or trend), seasonal, cycles of different frequencies, irregular, and regression effects incorporated as explanatory covariates. These components are modeled separately and ultimately combined in a single forecasting scheme. Customary statistical models for EN prediction essentially use SST and wind stress in the equatorial Pacific. In addition to these, we introduce a new domain of regression variables accounting for the state of the subsurface ocean temperature in the western and central equatorial Pacific, motivated by our analysis, as well as by recent and classical research, showing that subsurface processes and heat accumulation there are fundamental for the genesis of EN. An important feature of the scheme is that different regression predictors are used at different lead months, thus capturing the dynamical evolution of the system and rendering more efficient forecasts. The new model has been tested with the prediction of all warm events that occurred in the period 1996-2015. Retrospective forecasts of these events were made for long lead times of at least two and a half years. Hence, the present study demonstrates that the theoretical limit of ENSO prediction should be sought much longer than the commonly accepted "Spring Barrier". The high correspondence between the forecasts and observations indicates that the proposed model outperforms all current operational statistical models, and behaves comparably to the best dynamical models used for EN prediction. Thus, the novel way in which the modeling scheme has been structured could also be used for improving other statistical and dynamical modeling systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20198698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20198698"><span>Biomedical research of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Weipeng; Shao, Jianmin</p> <p>2010-08-01</p> <p>The biomedical properties of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline were analyzed in this article. The cytotoxicity of the copolymer films was tested in vitro using human embryonic kidney (HEK) 293 cells. The cell proliferation, cell cycle, cell apoptosis, and hemolysis of the polymers were also investigated. No significant cytotoxic response was detected statistically by cytotoxicity assay, and the results of cell apoptosis and cell cycle showed that there were no statistically significant differences in them. Generally, the cells spread and grew well on polymer film. Meanwhile, the extent of hemolysis on the polymers was acceptable. Evaluation of cytotoxicity by cell cycle and apoptosis as a supplementary assay is correspondingly discussed in this article. (c) 2010 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11970197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11970197"><span>Statistical mechanics of self-driven Carnot cycles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, E</p> <p>1999-10-01</p> <p>The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27565042','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27565042"><span>Evaluating the impact of bike network indicators on cyclist safety using macro-level collision prediction models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Osama, Ahmed; Sayed, Tarek</p> <p>2016-12-01</p> <p>Many cities worldwide are recognizing the important role that cycling plays in creating green and livable communities. However, vulnerable road users such as cyclists are usually subjected to an elevated level of injury risk which discourages many road users to cycle. This paper studies cyclist-vehicle collisions at 134 traffic analysis zones in the city of Vancouver to assess the impact of bike network structure on cyclist safety. Several network indicators were developed using Graph theory and their effect on cyclist safety was investigated. The indicators included measures of connectivity, directness, and topography of the bike network. The study developed several macro-level (zonal) collision prediction models that explicitly incorporated bike network indicators as explanatory variables. As well, the models incorporated the actual cyclist exposure (bike kilometers travelled) as opposed to relying on proxies such as population or bike network length. The macro-level collision prediction models were developed using generalized linear regression and full Bayesian techniques, with and without spatial effects. The models showed that cyclist collisions were positively associated with bike and vehicle exposure. The exponents of the exposure variables were less than one which supports the "safety in numbers" hypothesis. Moreover, the models showed positive associations between cyclist collisions and the bike network connectivity and linearity indicators. In contrast, negative associations were found between cyclist collisions and the bike network continuity and topography indicators. The spatial effects were statistically significant in all of the developed models. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17408503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17408503"><span>Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bosl, William J</p> <p>2007-02-15</p> <p>Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24064221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24064221"><span>Cumulative estrogen exposure, number of menstrual cycles, and Alzheimer's risk in a cohort of British women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, Molly; Berzuini, Carlo; Knapp, Leslie A</p> <p>2013-12-01</p> <p>The effect of estrogen on Alzheimer's Disease (AD) risk has received substantial research and media attention, especially in terms of hormone replacement therapy. But reproductive history is also an important modifier of estrogenic exposure, and deserves further investigation. Importantly, there is wide variation in reproductive patterns that modifies estrogen exposure during the reproductive span, which previous AD studies have not incorporated into their calculations. We measured degree of Alzheimer's-type dementia in a cohort of elderly British women, and collected detailed reproductive and medical history information, which we used to estimate number of months with estrogen exposure and number of months with menstrual cycles. Using Cox proportional-hazards models, we find that longer duration of estrogen exposure may have a protective effect against AD risk, such that for every additional month with estrogen, women experienced on average a 0.5% decrease in AD risk (N=89, p=0.02). More menstrual cycles may also have a protective effect against AD risk, although this result was of borderline statistical significance (p<0.10). These results build upon previous methodologies by taking into account a variety of parameters including oral contraceptive use, breastfeeding, post-partum anovulation, abortions, and miscarriages. Additionally, Cox models revealed that longer reproductive span, age>21 at first birth, and more months in lifetime spent pregnant had protective effects against AD risk. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29153528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29153528"><span>Modeling greenhouse gas emissions from dairy farms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rotz, C Alan</p> <p>2017-11-15</p> <p>Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SoPh..278..457Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SoPh..278..457Z"><span>Sunspot Time Series - Relations Inferred from the Location of the Longest Spotless Segments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zięba, Stanisław; Nieckarz, Zenon</p> <p>2012-06-01</p> <p>Spotless days ( i.e., days when no sunspots are observed on the Sun) occur during the interval between the declining phase of the old sunspot cycle and the rising phase of the new sunspot cycle, being greatest in number and of longest continuous length near a new cycle minimum. In this paper, we introduce the concept of the longest spotless segment (LSS) and examine its statistical relation to selected characteristic points in the sunspot time series (STS), such as the occurrences of first spotless day and sunspot maximum. The analysis has revealed statistically significant relations that appear to be of predictive value. For example, for Cycle 24 the last spotless day during its rising phase should be about August 2012 (± 9.1 months), the daily maximum sunspot number should be about 227 (± 50; occurring about January 2014±9.5 months), and the maximum Gaussian smoothed sunspot number should be about 87 (± 25; occurring about July 2014). Using the Gaussian-filtered values, slightly earlier dates of August 2011 and March 2013 are indicated for the last spotless day and sunspot maximum for Cycle 24, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28081229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28081229"><span>Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne</p> <p>2017-01-01</p> <p>Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5231378','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5231378"><span>Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne</p> <p>2017-01-01</p> <p>Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made. PMID:28081229</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31B1396X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31B1396X"><span>Linking water and carbon cycles through salinity observed from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, X.; Liu, W. T.</p> <p>2017-12-01</p> <p>The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24361781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24361781"><span>Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Mozo, H; Yaezel, L; Oteros, J; Galán, C</p> <p>2014-03-01</p> <p>Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20623335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20623335"><span>Development of partial life-cycle experiments to assess the effects of endocrine disruptors on the freshwater gastropod Lymnaea stagnalis: a case-study with vinclozolin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ducrot, Virginie; Teixeira-Alves, Mickaël; Lopes, Christelle; Delignette-Muller, Marie-Laure; Charles, Sandrine; Lagadic, Laurent</p> <p>2010-10-01</p> <p>Long-term effects of endocrine disruptors (EDs) on aquatic invertebrates remain difficult to assess, mainly due to the lack of appropriate sensitive toxicity test methods and relevant data analysis procedures. This study aimed at identifying windows of sensitivity to EDs along the life-cycle of the freshwater snail Lymnaea stagnalis, a candidate species for the development of forthcoming test guidelines. Juveniles, sub-adults, young adults and adults were exposed for 21 days to the fungicide vinclozolin (VZ). Survival, growth, onset of reproduction, fertility and fecundity were monitored weekly. Data were analyzed using standard statistical analysis procedures and mixed-effect models. No deleterious effect on survival and growth occurred in snails exposed to VZ at environmentally relevant concentrations. A significant impairment of the male function occurred in young adults, leading to infertility at concentrations exceeding 0.025 μg/L. Furthermore, fecundity was impaired in adults exposed to concentrations exceeding 25 μg/L. Biological responses depended on VZ concentration, exposure duration and on their interaction, leading to complex response patterns. The use of a standard statistical approach to analyze those data led to underestimation of VZ effects on reproduction, whereas effects could reliably be analyzed by mixed-effect models. L. stagnalis may be among the most sensitive invertebrate species to VZ, a 21-day reproduction test allowing the detection of deleterious effects at environmentally relevant concentrations of the fungicide. These results thus reinforce the relevance of L. stagnalis as a good candidate species for the development of guidelines devoted to the risk assessment of EDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=private+AND+universities&pg=2&id=EJ1045630','ERIC'); return false;" href="https://eric.ed.gov/?q=private+AND+universities&pg=2&id=EJ1045630"><span>Impact of Accreditation on Public and Private Universities: A Comparative Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dattey, Kwame; Westerheijden, Don F.; Hofman, Wiecher H. Adriaan</p> <p>2014-01-01</p> <p>Based on two cycles of assessments for accreditation, this study assesses the differential impacts of accreditation on public and private universities in Ghana. Analysis of the evaluator reports indicates no statistically significant difference--improvement or deterioration--between the two cycles of evaluations for both types of institutions. A…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31D1547S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31D1547S"><span>Temporal scaling and spatial statistical analyses of groundwater level fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, H.; Yuan, L., Sr.; Zhang, Y.</p> <p>2017-12-01</p> <p>Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMIN31B1009M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMIN31B1009M"><span>IsoMAP (Isoscape Modeling, Analysis, and Prediction)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, C. C.; Bowen, G. J.; Zhang, T.; Zhao, L.; West, J. B.; Liu, Z.; Rapolu, N.</p> <p>2009-12-01</p> <p>IsoMAP is a TeraGrid-based web portal aimed at building the infrastructure that brings together distributed multi-scale and multi-format geospatial datasets to enable statistical analysis and modeling of environmental isotopes. A typical workflow enabled by the portal includes (1) data source exploration and selection, (2) statistical analysis and model development; (3) predictive simulation of isotope distributions using models developed in (1) and (2); (4) analysis and interpretation of simulated spatial isotope distributions (e.g., comparison with independent observations, pattern analysis). The gridded models and data products created by one user can be shared and reused among users within the portal, enabling collaboration and knowledge transfer. This infrastructure and the research it fosters can lead to fundamental changes in our knowledge of the water cycle and ecological and biogeochemical processes through analysis of network-based isotope data, but it will be important A) that those with whom the data and models are shared can be sure of the origin, quality, inputs, and processing history of these products, and B) the system is agile and intuitive enough to facilitate this sharing (rather than just ‘allow’ it). IsoMAP researchers are therefore building into the portal’s architecture several components meant to increase the amount of metadata about users’ products and to repurpose those metadata to make sharing and discovery more intuitive and robust to both expected, professional users as well as unforeseeable populations from other sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24219157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24219157"><span>Building integral projection models: a user's guide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rees, Mark; Childs, Dylan Z; Ellner, Stephen P</p> <p>2014-05-01</p> <p>In order to understand how changes in individual performance (growth, survival or reproduction) influence population dynamics and evolution, ecologists are increasingly using parameterized mathematical models. For continuously structured populations, where some continuous measure of individual state influences growth, survival or reproduction, integral projection models (IPMs) are commonly used. We provide a detailed description of the steps involved in constructing an IPM, explaining how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diagnose potential problems with your IPM. We emphasize how the study organism's life cycle, and the timing of censuses, together determine the structure of the IPM kernel and important aspects of the statistical analysis used to parameterize an IPM using data on marked individuals. An IPM based on population studies of Soay sheep is used to illustrate the complete process of constructing, implementing and evaluating an IPM fitted to sample data. We then look at very general approaches to parameterizing an IPM, using a wide range of statistical techniques (e.g. maximum likelihood methods, generalized additive models, nonparametric kernel density estimators). Methods for selecting models for parameterizing IPMs are briefly discussed. We conclude with key recommendations and a brief overview of applications that extend the basic model. The online Supporting Information provides commented R code for all our analyses. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12653182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12653182"><span>Is motivation influenced by geomagnetic activity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Starbuck, S; Cornélissen, G; Halberg, F</p> <p>2002-01-01</p> <p>To eventually build a scientific bridge to religion by examining whether non-photic, non-thermic solar effects may influence (religious) motivation, invaluable yearly world wide data on activities from 1950 to 1999 by Jehovah's Witnesses on behalf of their church were analyzed chronobiologically. The time structure (chronome) of these archives, insofar as it is able to be evaluated in yearly means for up to half a century, was assessed. Least squares spectra in a frequency range from one cycle in 42 to one in 2.1 years of data on the average number of hours per month spent in work for the church, available from 103 different geographic locations, as well as grand totals also including other sites, revealed a large peak at one cycle in about 21 years. The non-linear least squares fit of a model consisting of a linear trend and a cosine curve with a trial period of 21.0 years, numerically approximating that of the Hale cycle, validated the about 21.0-year component in about 70% of the data series, with the non-overlap of zero by the 95% confidence interval of the amplitude estimate. Estimates of MESOR (midline-estimating statistic of rhythm, a rhythm (or chronome) adjusted mean), amplitude and period were further regressed with geomagnetic latitude. The period estimate did not depend on geomagnetic latitude. The about 21.0-year amplitude tends to be larger at low and middle than at higher latitudes and the resolution of the about 21.0-year cycle, gauged by the width of 95% confidence intervals for the period and amplitude, is higher (the 95% confidence intervals are statistically significantly smaller) at higher than at lower latitudes. Near-matches of periods in solar activity and human motivation hint that the former may influence the latter, while the dependence on latitude constitutes evidence that geomagnetic activity may affect certain brain areas involved in motivation, just as it was earlier found that it is associated with effects on the electrocardiogram and anthropometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28028698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28028698"><span>A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marzuoli, Riccardo; Finco, Angelo; Chiesa, Maria; Gerosa, Giacomo</p> <p>2017-12-01</p> <p>The present study investigated the response to ozone (O 3 ) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O 3 were applied, ambient O 3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O 3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O 3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O 3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O 3 m -2  s -1 (POD 6 ); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O 3 critical level of 1 mmol O 3 m -2 of POD 6 for a 15% of marketable yield loss was found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28841578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28841578"><span>Psychiatric Presentations During All 4 Phases of the Lunar Cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Francis, Omar J; Kopke, Bryan J; Affatato, Anthony J; Jarski, Robert W</p> <p>2017-01-01</p> <p>Context • Anecdotal evidence concerning a relationship between human illnesses and a full moon is frequently claimed by as many as 81% of mental health workers. Previous scientific investigations have studied only the full-moon phase and its possible effect on psychiatric presentations. However, information is limited about all 4 phases of the lunar cycle and their effects on different types of psychiatric disorders. Objective • This study primarily intended to evaluate the number of psychiatric presentations to a hospital's emergency department across all 4 phases of the lunar cycle. The secondary objective was to investigate the statistical differences among 5 categories of common mental disorders in relation to the 4 lunar phases. Design • This study was an observational analytic cohort study. Setting • The study took place in the emergency department of a 140-bed, community-teaching hospital. Participants • Participants were 1857 patients who were aged >17 y and who had had a psychiatric component to a visit to the emergency department. Outcome Measures • Data from electronic medical records were collected for 41 consecutive months. The participants were divided into 5 diagnostic groups based on the Diagnostic and Statistical Manual of Mental Disorders, 5th ed (DSM-5). The study measured the number of psychiatric presentations for each group during the 4 National Aeronautics and Space Administration (NASA)-defined phases of the lunar cycle, and the study was statistically powered to detect small effects. Results • The following psychiatric presentations occurred: (1) 464 during the new moon; (2) 483 during the first quarter; (3) 449 during the full moon; and (4) 461 during the third quarter (4-group overall χ2, P = .89). Differences between the 5 diagnostic categories across the 4 lunar phases were not statistically significant (4-group overall χ2, P = .85 for the 5 diagnostic categories). Conclusions • Although many traditional and nontraditional providers believe in effects caused by the full moon based on casual observation or anecdotal evidence, this perception was not supported in the current study. Furthermore, no evidence demonstrated increased psychiatric presentations during the other 3 phases of the lunar cycle. The study found that the lunar cycle did not have an effect on the incidence of psychiatric presentations or on the DSM-5 categories. If lunar effects exist, they are probably small or infrequent, making them difficult to validate statistically. The current study's results, in concert with those of most other studies on the subject, provide evidence that should help dismiss misconceptions about the magnitude or frequency of lunar effects on psychiatric illnesses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1236592-application-high-performance-computing-studying-cyclic-variability-dilute-internal-combustion-engines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1236592-application-high-performance-computing-studying-cyclic-variability-dilute-internal-combustion-engines"><span>Application of high performance computing for studying cyclic variability in dilute internal combustion engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>FINNEY, Charles E A; Edwards, Kevin Dean; Stoyanov, Miroslav K</p> <p>2015-01-01</p> <p>Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allowmore » rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhD...47h5502H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhD...47h5502H"><span>A contact mechanics model for ankle implants with inclusion of surface roughness effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodaei, M.; Farhang, K.; Maani, N.</p> <p>2014-02-01</p> <p>Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1221484-toward-optimal-integration-terrestrial-biosphere-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1221484-toward-optimal-integration-terrestrial-biosphere-models"><span>Toward “optimal” integration of terrestrial biosphere models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schwalm, Christopher R.; Huntingzger, Deborah; Fisher, Joshua B.</p> <p>2015-06-10</p> <p>Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) integration. MsTMIP optimal and naïve mean land sink strength estimates (–1.16 vs. –1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materiallymore » change MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty types (initial conditions, structure, references) and a change in model development paradigms currently dominant in the TBM community.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IzAOP..42..300E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IzAOP..42..300E"><span>Sensitivity of amplitude-phase characteristics of the surface air temperature annual cycle to variations in annual mean temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eliseev, A. V.; Mokhov, I. I.; Guseva, M. S.</p> <p>2006-05-01</p> <p>The ERA40 and NCEP/NCAR data over 1958 1998 were used to estimate the sensitivity of amplitude-phase characteristics (APCs) of the annual cycle (AC) of the surface air temperature (SAT) T s. The results were compared with outputs of the ECHAM4/OPYC3, HadCM3, and INM RAS general circulation models and the IAP RAS climate model of intermediate complexity, which were run with variations in greenhouse gases and sulfate aerosol specified over 1860 2100. The analysis was performed in terms of the linear regression coefficients b of SAT AC APCs on the local annual mean temperature and in terms of the sensitivity characteristic D = br 2, which takes into account not only the linear regression coefficient but also its statistical significance (via the correlation coefficient r). The reanalysis data were used to reveal the features of the tendencies of change in the SAT AC APCs in various regions, including areas near the snow-ice boundary, storm-track ocean regions, large desert areas, and the tropical Pacific. These results agree with earlier observations. The model computations are in fairly good agreement with the reanalysis data in regions of statistically significant variations in SAT AC APCs. The differences between individual models and the reanalysis data can be explained, in particular, in terms of the features of the sea-ice schemes used in the models. Over the land in the middle and high latitudes of the Northern Hemisphere, the absolute values of D for the fall phase time and the interval of exceeding exhibit a positive intermodel correlation with the absolute value of D for the annual-harmonic amplitude. Over the ocean, the models reproducing larger (in modulus) sensitivity parameters of the SAT annual-harmonic amplitude are generally characterized by larger (in modulus) negative sensitivity values of the semiannual-harmonic amplitude T s, 2, especially at latitudes characteristic of the sea-ice boundary. In contrast to the averaged fields of AC APCs and their interannual standard deviations, the sensitivity parameters of the SAT AC APCs on a regional scale vary noticeably for various types of anthropogenic forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29760070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29760070"><span>Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crampton, James S; Meyers, Stephen R; Cooper, Roger A; Sadler, Peter M; Foote, Michael; Harte, David</p> <p>2018-05-29</p> <p>Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1664709','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1664709"><span>Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taylor, Graham K; Żbikowski, Rafał</p> <p>2005-01-01</p> <p>Previous studies of insect flight control have been statistical in approach, simply correlating wing kinematics with body kinematics or force production. Kinematics and forces are linked by Newtonian mechanics, so adopting a dynamics-based approach is necessary if we are to place the study of insect flight on its proper physical footing. Here we develop semi-empirical models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. We use instantaneous force–moment measurements from individual locusts to parametrize the nonlinear rigid body equations of motion. Since the instantaneous forces are approximately periodic, we represent them using Fourier series, which are embedded in the equations of motion to give a nonlinear time-periodic (NLTP) model. This is a proper mathematical generalization of an earlier linear-time invariant (LTI) model of locust flight dynamics, developed using previously published time-averaged versions of the instantaneous force recordings. We perform various numerical simulations, within the fitted range of the model, and across the range of body angles used by free-flying locusts, to explore the likely behaviour of the locusts upon release from the tether. Solutions of the NLTP models are compared with solutions of the nonlinear time-invariant (NLTI) models to which they reduce when the periodic terms are dropped. Both sets of models are unstable and therefore fail to explain locust flight stability fully. Nevertheless, whereas the measured forces include statistically significant harmonic content up to about the eighth harmonic, the simulated flight trajectories display no harmonic content above the fundamental forcing frequency. Hence, manoeuvre control in locusts will not directly reflect subtle changes in the higher harmonics of the wing beat, but must operate on a coarser time-scale. A state-space analysis of the NLTP models reveals orbital trajectories that are impossible to capture in the LTI and NLTI models, and inspires the hypothesis that asymptotic orbital stability is the proper definition of stability in flapping flight. Manoeuvre control on the scale of more than one wing beat would then consist in exciting transients from one asymptotically stable orbit to another. We summarize these hypotheses by proposing a limit-cycle analogy for flapping flight control and suggest experiments for verification of the limit-cycle control analogy hypothesis. PMID:16849180</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29160661','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29160661"><span>Multimodel simulations of forest harvesting effects on long‐term productivity and CN cycling in aspen forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Fugui; Mladenoff, David J; Forrester, Jodi A; Blanco, Juan A; Schelle, Robert M; Peckham, Scott D; Keough, Cindy; Lucash, Melissa S; Gower, Stith T</p> <p></p> <p>The effects of forest management on soil carbon (C) and nitrogen (N) dynamics vary by harvest type and species. We simulated long-term effects of bole-only harvesting of aspen (Populus tremuloides) on stand productivity and interaction of CN cycles with a multiple model approach. Five models, Biome-BGC, CENTURY, FORECAST, LANDIS-II with Century-based soil dynamics, and PnET-CN, were run for 350 yr with seven harvesting events on nutrient-poor, sandy soils representing northwestern Wisconsin, United States. Twenty CN state and flux variables were summarized from the models' outputs and statistically analyzed using ordination and variance analysis methods. The multiple models' averages suggest that bole-only harvest would not significantly affect long-term site productivity of aspen, though declines in soil organic matter and soil N were significant. Along with direct N removal by harvesting, extensive leaching after harvesting before canopy closure was another major cause of N depletion. These five models were notably different in output values of the 20 variables examined, although there were some similarities for certain variables. PnET-CN produced unique results for every variable, and CENTURY showed fewer outliers and similar temporal patterns to the mean of all models. In general, we demonstrated that when there are no site-specific data for fine-scale calibration and evaluation of a single model, the multiple model approach may be a more robust approach for long-term simulations. In addition, multimodeling may also improve the calibration and evaluation of an individual model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..131G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..131G"><span>The substorm cycle as reproduced by global MHD models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordeev, E.; Sergeev, V.; Tsyganenko, N.; Kuznetsova, M.; Rastäetter, L.; Raeder, J.; Tóth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.</p> <p>2017-01-01</p> <p>Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized 2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to postprocessing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008032&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcycles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008032&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcycles"><span>The Substorm Cycle as Reproduced by Global MHD Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gordeev, E.; Sergee, V.; Tsyganenko, N.; Kuznetsova, M.; Rastaetter, Lutz; Raeder, J.; Toth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.</p> <p>2017-01-01</p> <p>Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to post processing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC54C1347B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC54C1347B"><span>Salmon Life Cycle Models Illuminate Population Consequences of Disparate Survival and Behavior Between Hatchery- and Wild-Origin Fish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beakes, M.; Satterthwaite, W.; Petrik, C.; Hendrix, N.; Danner, E.; Lindley, S. T.</p> <p>2016-02-01</p> <p>In past decades there has been a heavy reliance on the production of hatchery-reared fish to supplement declining population numbers of Pacific salmon. In some cases, the benefits of hatchery supplementation have been negligible despite concerted long-term stocking efforts. The management and conservation of depressed salmon populations, via hatchery practices or otherwise, can be improved by expanding our understanding of the dissimilarities between hatchery and wild salmon and how each interacts with the environment. In this study we use a stage-structured salmon life-cycle model to explore the population consequences of disparate survival and behavior between hatchery and wild-origin fall-run Chinook Salmon (Oncorhynchus tshawytscha) in the California Central Valley. We couple empirically-based statistical functions with deterministic theoretical models to identify how environmental conditions (e.g., water temperature, flow) and habitat drive the survival and abundance of both hatchery and wild salmon as they integrate across riverscapes and cross marine and freshwater ecosystem boundaries during their life cycle. Results from this study suggest that hatchery practices can lead to dissimilar interactions between hatchery and wild salmon and the environmental conditions they experience. As such, the population dynamics of fall-run Chinook Salmon in the California Central Valley are partly dependent on the composition of individuals that make up their populations. In total, this study improves out ability to conserve imperiled salmonids by identifying mechanistic linkages between the natal origin of salmon, survival and behavior, and the environment at spatiotemporal scales relevant to salmon populations and fisheries management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627120"><span>Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008-2010 Society for Assisted Reproductive Technology registry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Provost, Meredith P; Acharya, Kelly S; Acharya, Chaitanya R; Yeh, Jason S; Steward, Ryan G; Eaton, Jennifer L; Goldfarb, James M; Muasher, Suheil J</p> <p>2016-03-01</p> <p>To examine the effect of body mass index (BMI) on IVF outcomes in fresh autologous cycles. Retrospective cohort study. Not applicable. A total of 239,127 fresh IVF cycles from the 2008-2010 Society for Assisted Reproductive Technology registry were stratified into cohorts based on World Health Organization BMI guidelines. Cycles reporting normal BMI (18.5-24.9 kg/m(2)) were used as the reference group (REF). Subanalyses were performed on cycles reporting purely polycystic ovary syndrome (PCOS)-related infertility and those with purely male-factor infertility (34,137 and 89,354 cycles, respectively). None. Implantation rate, clinical pregnancy rate, pregnancy loss rate, and live birth rate. Success rates and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for all pregnancy outcomes were most favorable in cohorts with low and normal BMIs and progressively worsened as BMI increased. Obesity also had a negative impact on IVF outcomes in cycles performed for PCOS and male-factor infertility, although it did not always reach statistical significance. Success rates in fresh autologous cycles, including those done for specifically PCOS or male-factor infertility, are highest in those with low and normal BMIs. Furthermore, there is a progressive and statistically significant worsening of outcomes in groups with higher BMIs. More research is needed to determine the causes and extent of the influence of BMI on IVF success rates in other patient populations. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27203090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27203090"><span>Cost-Effectiveness of the Freeze-All Policy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roque, Matheus; Valle, Marcello; Guimarães, Fernando; Sampaio, Marcos; Geber, Selmo</p> <p>2015-08-01</p> <p>To evaluate the cost-effectiveness of freeze-all cycles when compared to fresh embryo transfer. This was an observational study with a cost-effectiveness analysis. The analysis consisted of 530 intracytoplasmic sperm injection (ICSI) cycles in a private center in Brazil between January 2012 and December 2013. A total of 530 intracytoplasmic sperm injection (ICSI) cycles - 351 fresh embryo transfers and 179 freeze-all cycles - with a gonadotropin-releasing hormone (GnRH) antagonist protocol and day 3 embryo transfers. The pregnancy rate was 31.1% in the fresh group and 39.7% in the freeze-all group. We performed two scenario analyses for costs. In scenario 1, we included those costs associated with the ICSI cycle (monitoring during controlled ovarian stimulation [COS], oocyte retrieval, embryo transfer, IVF laboratory, and medical costs), embryo cryopreservation of supernumerary embryos, hormone measurements during COS and endometrial priming, medication use (during COS, endometrial priming, and luteal phase support), ultrasound scan for frozen- thawed embryo transfer (FET), obstetric ultrasounds, and miscarriage. The total cost (in USD) per pregnancy was statistically lower in the freeze-all cycles (19,156.73 ± 1,732.99) when compared to the fresh cycles (23,059.72 ± 2,347.02). Even in Scenario 2, when charging all of the patients in the freeze-all group for cryopreservation (regardless of supernumerary embryos) and for FET, the fresh cycles had a statistically significant increase in treatment costs per ongoing pregnancy. The results presented in this study suggest that the freeze-all policy is a cost-effective strategy when compared to fresh embryo transfer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27063120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27063120"><span>[The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiang-fen; Zheng, Ping; Xu, Li; Su, Qin</p> <p>2015-12-01</p> <p>To investigate the effects of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 types of nickel-titanium rotary instruments (K3, Mtwo, ProTaper). Three brands of NiTi rotary endodontic instruments of the same size (tip diameter 0.25 mm and constant 0.06 taper) were selected: K3, Mtwo and Protaper (F2). 24 instruments for each brand were used to evaluate the effects of autoclave sterilization on inner character in the as-received condition and after subjection to 0, 1, 5, and 10 sterilization cycles (6 for each group). Time to fracture (TtF) from the start of the test to the moment of file breakage and the length of the fractured fragment were recorded. Means and standard deviations of TtF and fragment length were calculated. The data was analyzed with SPSS13.0 software package. Another 12 NiTi rotary instruments for each brand were used, 6 subjected to 10 autoclave sterilization cycles and the other as control. Scanning electron microscope was used to observe the changes in surface topography and inner character. For cyclic fatigue resistance, when sterilization was not performed, K3 showed the highest value of TtF means and ProTaper the lowest. The differences between each brand were statistically significant (P<0.05).When disinfection was performed, K3 brand showed greater fatigue resistance in comparison with the control when autoclave sterilization cycled 5 times and 10 times. The difference between 10 cycles of sterilization and the control was statistically significant (P<0.05); ProTaper brand showed significantly greater fatigue resistance in all the disinfected groups compared with the control (P<0.05) and 5 cycles of sterilization led to the greatest increment; The fatigue resistance of Mtwo brands increased with sterilization cycles and the difference between 5/10 cycles and the control were statistically significant (P<0.05). For surface characteristics, under scanning electron microscope, surface and inner imperfections in all instruments were intensified greatly after 10 cycles of sterilization. Cycle fatigue resistance is different among instruments of different brands. Autoclave sterilization may increase fatigue resistance of the 3 brands. Autoclave sterilization may increase the surface roughness and inner defects in cross section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007324','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007324"><span>Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela</p> <p>2014-01-01</p> <p>Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23D2394H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23D2394H"><span>Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.</p> <p>2017-12-01</p> <p>Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm"><span>Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Fuyao; Yu, Yan; Notaro, Michael</p> <p></p> <p>This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394474-advancing-model-validated-statistical-method-decomposing-key-oceanic-drivers-regional-climate-focus-northern-tropical-african-climate-variability-community-earth-system-model-cesm"><span>Advancing a Model-Validated Statistical Method for Decomposing the Key Oceanic Drivers of Regional Climate: Focus on Northern and Tropical African Climate Variability in the Community Earth System Model (CESM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Fuyao; Yu, Yan; Notaro, Michael; ...</p> <p>2017-09-27</p> <p>This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1106782.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1106782.pdf"><span>Making Decisions with Data: Are We Environmentally Friendly?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>English, Lyn; Watson, Jane</p> <p>2016-01-01</p> <p>Statistical literacy is a vital component of numeracy. Students need to learn to critically evaluate and interpret statistical information if they are to become informed citizens. This article examines a Year 5 unit of work that uses the data collection and analysis cycle within a sustainability context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10342E..1HM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10342E..1HM"><span>Interactive educational technologies as a method of communicative competency development of optical and fiber optic communication systems specialists</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matveeva, Tatiana U.; Osadchiy, Igor S.; Husnutdinova, Marina N.</p> <p>2017-04-01</p> <p>The article examines the process of formation of communicative competencies of optic and fiber optic communication systems specialists; the role of communicative competencies is examined in the structure of professionally important skills, together with the contents of professional activity. The stages of empirical research into formation of communicative competencies have been presented, and the values of statistical reliability of data have been provided. The model of formation of communicative competency using interactive technology has been developed based on the research done, and main stages of model implementation and motives of formation of communicative competency have been highlighted. A scheme of "Communicative competence as a base of future success" training session has been suggested as one of the basic interactive technologies. Main components of education that are used during the stages of the training cycle have been examined. The statistical data on the effectiveness of use of interactive educational technologies has been presented; it allowed development of communicative competency of specialists in the field of optical and fiber optic communication system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27639340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27639340"><span>Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007-2010.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lewis, Ryan C; Johns, Lauren E; Meeker, John D</p> <p>2016-12-01</p> <p>Human exposure to molybdenum (Mo) may play a role in reducing bone mineral density (BMD) by interfering with steroid sex hormone levels. To begin to address gaps in the literature on this topic, the potential relationship between urinary Mo (U-Mo) and BMD at the femoral neck (FN-BMD) and lumbar spine (LS-BMD) was explored in a sample of 1496 adults participating in the 2007-2010 cycles of the National Health and Nutrition Examination Survey. Associations were assessed using multiple linear regression models stratified on sex and age. In adjusted models for 50-80+ year-old women, there was a statistically significant inverse relationship between natural log-U-Mo and LS-BMD (p-value: 0.002), and a statistically significant dose-dependent decrease in LS-BMD with increasing U-Mo quartiles (trend p-value: 0.002). A suggestive (trend p-value: 0.08), dose-dependent decrease in FN-BMD with increasing U-Mo quartiles was noted in this group of women as well. All other adjusted models revealed no statistically significant or suggestive relationships between U-Mo and FN-BMD or LS-BMD. Bone health is important for overall human health and well-being and, given the exploratory nature of this work, additional studies are needed to confirm the results in other populations, and clarify the potential underlying mechanisms of Mo on BMD. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJBm...55..119S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJBm...55..119S"><span>Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, João A.; Malheiro, Aureliano C.; Karremann, Melanie K.; Pinto, Joaquim G.</p> <p>2011-03-01</p> <p>The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24800863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24800863"><span>Entrainment to periodic initiation and transition rates in a computational model for gene translation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Margaliot, Michael; Sontag, Eduardo D; Tuller, Tamir</p> <p>2014-01-01</p> <p>Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B12B..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B12B..01C"><span>The role of climate in the global patterns of ecosystem carbon turnover rates - contrasts between data and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.</p> <p>2012-12-01</p> <p>The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.167..146B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.167..146B"><span>Statistical analysis of midlatitude spread F using multi-station digisonde observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhaneja, P.; Earle, G. D.; Bullett, T. W.</p> <p>2018-01-01</p> <p>A comprehensive statistical study of midlatitude spread F (MSF) is presented for five midlatitude stations in the North American sector. These stations include Ramey AFB, Puerto Rico (18.5°N, 67.1°W, -14° declination angle), Wallops Island, Virginia (37.95°N, 75.5°W, -11° declination angle), Dyess, Texas (32.4°N, 99.8°W, 6.9° declination angle), Boulder, Colorado (40°N, 105.3°W, 10° declination angle), and Vandenberg AFB, California (34.8°N, 120.5°W, 13° declination angle). Pattern recognition algorithms are used to determine the presence of both range and frequency spread F. Data from 1996 to 2011 are analyzed, covering all of Solar Cycle 23 and the beginning of Solar Cycle 24. Variations with respect to season and solar activity are presented, including the effects of the extended minimum between cycles 23 and 24.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CKA....14..283K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CKA....14..283K"><span>Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kudashkina, L. S.; Andronov, I. L.</p> <p>2017-12-01</p> <p>For a group of the Mira-type stars, semi-regular variables and some RV Tau - type stars the limit cycles were computed and plotted using the phase plane diagrams. As generalized coordinates x and x', we have used φ - the brightness of the star and its phase derivative. We have used mean phase light curves using observations of various authors from the databases of AAVSO, AFOEV, VSOLJ, ASAS and approximated using a trigonometric polynomial of statistically optimal degree. For a simple sine-like light curve, the limit cycle is a simple ellipse. In a case of more complicated light curve, in which harmonics are statistically significant, the limit cycle has deviations from the ellipse. In an addition to a classical analysis, we use the error estimates of the smoothing function and its derivative to constrain an "error corridor" in the phase plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890062593&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890062593&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo"><span>Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baldwin, Mark P.; Dunkerton, Timothy J.</p> <p>1989-01-01</p> <p>The 10.7-cm solar flux is observed to be highly correlated with North Pole stratospheric temperatures when partitioned according to the phase of the equatorial stratospheric winds (the quasi-biennial oscillation, or QBO). Calculations show that temperatures over most of the Northern Hemisphere are highly correlated or anticorrelated with North Pole temperatures. The observed spatial pattern of solar-cycle correlations at high latitudes is shown to be not unique to the solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29243443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29243443"><span>[Effect of clomiphene citrate and Dingkun Dan on ovulation induction and clinical pregnancy of polycystic ovary syndrome].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Lan; Tan, Yong; Chen, Shu-Ping</p> <p>2017-10-01</p> <p>The evaluation is based on clomiphene citrate (CC)+gonadotropin (Gn), clinical study on CC and Dingkun Dan's treatment on ovulation induction and clinical pregnancy effect of PCOS, and to provide ideas and methods for traditional Chinese medicine assisted reproductive treatment. This study selected 60 PCOS infertility patients treated with ovulation induction in reproductive medicine clinic, Jiangsu Province Hospital of traditional Chinese medicine during 2015-10-01-2017-04-23. They were randomly divided into two groups: Group A (CC+Gn+HCG) and Group B (CC+Gn+Dingkun Dan). These results were observed and compared including cycle ovulation rate, cycle cancellation rate, cycle pregnancy rate, cumulative pregnancy rate, endometrial thickness, duration of Gn, total amount of Gn, the occurring rate of luteinized unruptured follicle syndrome and ovarian hyperstimulation syndrome. Group A had lower cycle ovulation rate, cycle pregnancy rate, cumulative pregnancy rate and endometrial thickness, compared with Group B, the difference was statistically significant(P<0.05). However, Group A had higher cycle cancellation rate, duration of Gn and total amount of Gn, compared with Group B, the difference was statistically significant(P<0.05). In this study, no case of LUFS or OHSS was found in all patients. CC and Dingkun Dan had the effect of promoting ovulation on PCOS infertility patients, and CC+Gn+Dingkun Dan could elevate clinical pregnancy rate. Copyright© by the Chinese Pharmaceutical Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20931804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20931804"><span>[Sonographic ovarian vascularization and volume in women with polycystic ovary syndrome treated with clomiphene citrate and metformin].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de la Fuente-Valero, Jesús; Zapardiel-Gutiérrez, Ignacio; Orensanz-Fernández, Inmaculada; Alvarez-Alvarez, Pilar; Engels-Calvo, Virginia; Bajo-Arenas, José Manuel</p> <p>2010-01-01</p> <p>To measure the vascularization and ovarian volume with three-dimensional sonography in patients diagnosed of polycystic ovary syndrome with stimulated ovulation treatment, and to analyse the differences between the patients treated with clomiphen citrate versus clomiphen citrate and metformin. Therty patients were studied. Twenty ovulation cycles were obtained with clomiphen citrate and 17 with clomiphen citrate plus merformin (added in case of obesity or hyperglucemy/hyperinsulinemia). Ovarian volumes and vascular indexes were studied with 3D-sonography and results were analysed by treatment. There were no statistical differences of ovarian volume by treatment along the cycles, although bigger volume were found in ovulatory cycles compared to non-ovulatory ones (20,36 versus 13,89 ml, p = 0,026). No statistical differences were also found concerning vascular indexes, neither by treatment nor by the obtention of ovulation in the cycle. Ovarian volume and vascular indexes measured with three-dimensional sonography in patients diagnosed of polycystic ovary syndrome do not show differents values in patients treated with clomiphen citrate alone versus clomiphen citrate plus metformin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5967..307Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5967..307Z"><span>Research of epidermal cellular vegetal cycle of intravascular low level laser irradiation in treatment of psoriasis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jing; Bao, Xiaoqing; Zhang, Mei-Jue</p> <p>2005-07-01</p> <p>Objective: To research epidermal cellular vegetal cycle and the difference of DNA content between pre and post Intravascular Low Level Laser Irradiation treatment of psoriasis. Method: 15 patients suffered from psoriasis were treated by intravascular low level laser irradiation (output power: 4-5mw, 1 hour per day, a course of treatment is 10 days). We checked the different DNA content of epidermal cell between pre and post treatment of psoriasis and 8 natural human. Then the percentage of each phase among the whole cellular cycle was calculated and the statistical analysis was made. Results: The mean value of G1/S phase is obviously down while G2+M phase increased obviously. T test P<0.05.The related statistical analysis showed significant difference between pre and post treatments. Conclusions: The Intravascular Low Level Laser Irradiation (ILLLI) in treatment of psoriasis is effective according to the research of epidermal cellular vegetal cycle and the difference DNA content of Intravascular Low Level Laser Irradiation between pre and post treatment of psoriasis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6334913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6334913"><span>The influence of economic business cycles on United States suicide rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wasserman, I M</p> <p>1984-01-01</p> <p>A number of social science investigators have shown that a downturn in the economy leads to an increase in the suicide rate. However, the previous works on the subject are flawed by the fact that they employ years as their temporal unit of analysis. This time period is so large that it makes it difficult for investigators to precisely determine the length of the lag effect, while at the same time removing the autocorrelation effects. Also, although most works on suicide and the business cycle employ unemployment as a measure of a downturn in the business cycle, the average duration of unemployment represents a better measure for determining the social impact of an economic downturn. From 1947 to 1977 the average monthly duration of unemployment is statistically related to the suicide rate using multivariate time-series analysis. From 1910 to 1939 the Ayres business index, a surrogate measure for movement in the business cycle, is statistically related to the monthly suicide rate. An examination of the findings confirms that in most cases a downturn in the economy causes an increase in the suicide rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PhRvE..52.1403L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PhRvE..52.1403L"><span>Evolution of probability densities in stochastic coupled map lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Losson, Jérôme; Mackey, Michael C.</p> <p>1995-08-01</p> <p>This paper describes the statistical properties of coupled map lattices subjected to the influence of stochastic perturbations. The stochastic analog of the Perron-Frobenius operator is derived for various types of noise. When the local dynamics satisfy rather mild conditions, this equation is shown to possess either stable, steady state solutions (i.e., a stable invariant density) or density limit cycles. Convergence of the phase space densities to these limit cycle solutions explains the nonstationary behavior of statistical quantifiers at equilibrium. Numerical experiments performed on various lattices of tent, logistic, and shift maps with diffusivelike interelement couplings are examined in light of these theoretical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.2917L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.2917L"><span>Investigation of Sunspot Area Varying with Sunspot Number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, K. J.; Li, F. Y.; Zhang, J.; Feng, W.</p> <p>2016-11-01</p> <p>The statistical relationship between sunspot area (SA) and sunspot number (SN) is investigated through analysis of their daily observation records from May 1874 to April 2015. For a total of 1607 days, representing 3 % of the total interval considered, either SA or SN had a value of zero while the other parameter did not. These occurrences most likely reflect the report of short-lived spots by a single observatory and subsequent averaging of zero values over multiple stations. The main results obtained are as follows: i) The number of spotless days around the minimum of a solar cycle is statistically negatively correlated with the maximum strength of solar activity of that cycle. ii) The probability distribution of SA generally decreases monotonically with SA, but the distribution of SN generally increases first, then it decreases as a whole. The different probability distribution of SA and SN should strengthen their non-linear relation, and the correction factor [k] in the definition of SN may be one of the factors that cause the non-linearity. iii) The non-linear relation of SA and SN indeed exists statistically, and it is clearer during the maximum epoch of a solar cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39..418D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39..418D"><span>A reconstruction of solar irradiance using a flux transport model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie</p> <p>2012-07-01</p> <p>Solar irradiance is one of the important drivers of the Earth's global climate, but it has only been measured for the past 33 years. Its reconstructions are therefore crucial to study longer term variations relevant to climate timescales. Most successful in reproducing the measured irradiance variations have being the models that are based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field. Our SATIRE-S model is one of these, which uses solar full-disc magnetograms as an input, and these are available for less than four decades. To reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. The concept of overlapping ephemeral region cycles is used to describe the secular change in the irradiance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16880395','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16880395"><span>Structural kinetic modeling of metabolic networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steuer, Ralf; Gross, Thilo; Selbig, Joachim; Blasius, Bernd</p> <p>2006-08-08</p> <p>To develop and investigate detailed mathematical models of metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, kinetic modeling is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a quantitative account of the dynamical capabilities of a metabolic system, without requiring any explicit information about the functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a statistical exploration of the comprehensive parameter space. The method is exemplified on two paradigmatic metabolic systems: the glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160001113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160001113"><span>Estimating Uncertainties in the Multi-Instrument SBUV Profile Ozone Merged Data Set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frith, Stacey; Stolarski, Richard</p> <p>2015-01-01</p> <p>The MOD data set is uniquely qualified for use in long-term ozone analysis because of its long record, high spatial coverage, and consistent instrument design and algorithm. The estimated MOD uncertainty term significantly increases the uncertainty over the statistical error alone. Trends in the post-2000 period are generally positive in the upper stratosphere, but only significant at 1-1.6 hPa. Remaining uncertainties not yet included in the Monte Carlo model are Smoothing Error ( 1 from 10 to 1 hPa) Relative calibration uncertainty between N11 and N17Seasonal cycle differences between SBUV records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApCM...24..965L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApCM...24..965L"><span>Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Longbiao, Li</p> <p>2017-08-01</p> <p>In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409983-low-cloud-characteristics-over-tropical-western-pacific-from-arm-observations-cam5-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409983-low-cloud-characteristics-over-tropical-western-pacific-from-arm-observations-cam5-simulations"><span>Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chandra, Arunchandra S.; Zhang, Chidong; Klein, Stephen A.; ...</p> <p>2015-09-10</p> <p>Here, this study evaluates the ability of the Community Atmospheric Model version 5 (CAM5) to reproduce low clouds observed by the Atmospheric Radiation Measurement (ARM) cloud radar at Manus Island of the tropical western Pacific during the Years of Tropical Convection. Here low clouds are defined as clouds with their tops below the freezing level and bases within the boundary layer. Low-cloud statistics in CAM5 simulations and ARM observations are compared in terms of their general occurrence, mean vertical profiles, fraction of precipitating versus nonprecipitating events, diurnal cycle, and monthly time series. Other types of clouds are included to putmore » the comparison in a broader context. The comparison shows that the model overproduces total clouds and their precipitation fraction but underestimates low clouds in general. The model, however, produces excessive low clouds in a thin layer between 954 and 930 hPa, which coincides with excessive humidity near the top of the mixed layer. This suggests that the erroneously excessive low clouds stem from parameterization of both cloud and turbulence mixing. The model also fails to produce the observed diurnal cycle in low clouds, not exclusively due to the model coarse grid spacing that does not resolve Manus Island. Lastly, this study demonstrates the utility of ARM long-term cloud observations in the tropical western Pacific in verifying low clouds simulated by global climate models, illustrates issues of using ARM observations in model validation, and provides an example of severe model biases in producing observed low clouds in the tropical western Pacific.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSP...142.1324Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSP...142.1324Q"><span>The More the Merrier?. Entropy and Statistics of Asexual Reproduction in Freshwater Planarians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quinodoz, Sofia; Thomas, Michael A.; Dunkel, Jörn; Schötz, Eva-Maria</p> <p>2011-04-01</p> <p>The trade-off between traits in life-history strategies has been widely studied for sexual and parthenogenetic organisms, but relatively little is known about the reproduction strategies of asexual animals. Here, we investigate clonal reproduction in the freshwater planarian Schmidtea mediterranea, an important model organism for regeneration and stem cell research. We find that these flatworms adopt a randomized reproduction strategy that comprises both asymmetric binary fission and fragmentation (generation of multiple offspring during a reproduction cycle). Fragmentation in planarians has primarily been regarded as an abnormal behavior in the past; using a large-scale experimental approach, we now show that about one third of the reproduction events in S. mediterranea are fragmentations, implying that fragmentation is part of their normal reproductive behavior. Our analysis further suggests that certain characteristic aspects of the reproduction statistics can be explained in terms of a maximum relative entropy principle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995chfo.conf.....T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995chfo.conf.....T"><span>Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tong, Howell</p> <p>1995-04-01</p> <p>The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010078964&hterms=Lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLagrangian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010078964&hterms=Lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLagrangian"><span>A Finite-Volume "Shaving" Method for Interfacing NASA/DAO''s Physical Space Statistical Analysis System to the Finite-Volume GCM with a Lagrangian Control-Volume Vertical Coordinate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Shian-Jiann; DaSilva, Arlindo; Atlas, Robert (Technical Monitor)</p> <p>2001-01-01</p> <p>Toward the development of a finite-volume Data Assimilation System (fvDAS), a consistent finite-volume methodology is developed for interfacing the NASA/DAO's Physical Space Statistical Analysis System (PSAS) to the joint NASA/NCAR finite volume CCM3 (fvCCM3). To take advantage of the Lagrangian control-volume vertical coordinate of the fvCCM3, a novel "shaving" method is applied to the lowest few model layers to reflect the surface pressure changes as implied by the final analysis. Analysis increments (from PSAS) to the upper air variables are then consistently put onto the Lagrangian layers as adjustments to the volume-mean quantities during the analysis cycle. This approach is demonstrated to be superior to the conventional method of using independently computed "tendency terms" for surface pressure and upper air prognostic variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PMB....53..197V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PMB....53..197V"><span>NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.</p> <p>2008-06-01</p> <p>The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22548305-su-determinations-optimal-phase-respiratory-gated-radiotherapy-from-statistical-analysis-using-visible-guidance-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22548305-su-determinations-optimal-phase-respiratory-gated-radiotherapy-from-statistical-analysis-using-visible-guidance-system"><span>SU-E-T-247: Determinations of the Optimal Phase for Respiratory Gated Radiotherapy From Statistical Analysis Using a Visible Guidance System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oh, S; Yea, J; Kang, M</p> <p></p> <p>Purpose: Respiratory gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung cancer patients. Determination of the optimal point in the respiratory phase of a patient is important in RGRT but it is not easy. The goal of the present study was to see if a visible guidance system is helpful in determining the optimal phase in respiratory gated therapy. Methods: The breathing signals of 23 lung cancer patients were recorded with a Real-time Position Management (RPM) respiratory gating system (Varian, USA). The patients underwent breathing training with our visible guidance system, after whichmore » their breathing signals were recorded during 5 min of free breathing and 5 min of guided breathing. The breathing signals recorded between 3 and 5 min before and after training were compared. We performed statistical analysis of the breathing signals to find the optimal duty cycle in guided breathing for RGRT. Results: The breathing signals aided by the visible guidance system had more regular cycles over time and smaller variations in the positions of the marker block than the free breathing signals. Of the 23 lung cancer patients, 19 showed statistically significant differences by time when the values obtained before and after breathing were compared (p < 0.05); 30% and 40% of the duty cycle, respectively, was determined to be the most effective, and the corresponding phases were 30 60% (duty cycle, 30%; p < 0.05) and 30 70% (duty cycle, 40%; p < 0.05). Conclusion: Respiratory regularity was significantly improved with the use of the RPM with our visible guiding system; therefore, it would help improve the accuracy and efficiency of RGRT.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22570214-general-solution-strategy-modified-power-method-higher-mode-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22570214-general-solution-strategy-modified-power-method-higher-mode-solutions"><span>A general solution strategy of modified power method for higher mode solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr</p> <p>2016-01-15</p> <p>A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33D1574B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33D1574B"><span>Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byun, K.; Hamlet, A. F.; Chiu, C. M.</p> <p>2016-12-01</p> <p>There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29554616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29554616"><span>Inflammatory markers as predictors of depression and anxiety in adolescents: Statistical model building with component-wise gradient boosting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walss-Bass, Consuelo; Suchting, Robert; Olvera, Rene L; Williamson, Douglas E</p> <p>2018-07-01</p> <p>Immune system abnormalities have been repeatedly observed in several psychiatric disorders, including severe depression and anxiety. However, whether specific immune mediators play an early role in the etiopathogenesis of these disorders remains unknown. In a longitudinal design, component-wise gradient boosting was used to build models of depression, assessed by the Mood-Feelings Questionnaire-Child (MFQC), and anxiety, assessed by the Screen for Child Anxiety Related Emotional Disorders (SCARED) in 254 adolescents from a large set of candidate predictors, including sex, race, 39 inflammatory proteins, and the interactions between those proteins and time. Each model was reduced via backward elimination to maximize parsimony and generalizability. Component-wise gradient boosting and model reduction found that female sex, growth- regulated oncogene (GRO), and transforming growth factor alpha (TGF-alpha) predicted depression, while female sex predicted anxiety. Differential onset of puberty as well as a lack of control for menstrual cycle may also have been responsible for differences between males and females in the present study. In addition, investigation of all possible nonlinear relationships between the predictors and the outcomes was beyond the computational capacity and scope of the present research. This study highlights the need for novel statistical modeling to identify reliable biological predictors of aberrant psychological behavior. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSP...161..250C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSP...161..250C"><span>To Each His Own</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carter, Jason A.; Lind, Christine H.; Truong, M. Phuong; Collins, Eva-Maria S.</p> <p>2015-10-01</p> <p>Planarians are among the most complex animals with the ability to regenerate complete organisms from small tissue pieces. This ability allows them to reproduce by splitting themselves into a head and a tail piece, making them a rare example of asexual reproduction via transverse fission in multi-cellular organisms. Due to the stochastic nature of long reproductive cycles, which range from days to months, few and primarily qualitative studies have been conducted to understand the reproductive behaviors of asexual planarians. We have executed the largest long-term study on planarian asexual reproduction to date, tracking more than 23,000 reproductive events of three common planarian species found in Europe, North America, and Asia, respectively: Schmidtea mediterranea, Dugesia tigrina, and Dugesia japonica. This unique data collection allowed us to perform a detailed statistical analysis of their reproductive strategies. Since the three species share a similar anatomy and mode of reproduction by transverse division, we were surprised to find that each species had acquired its own distinct strategy for optimizing its reproductive success. We statistically examined each strategy, associated trade-offs, and the potential regulatory mechanisms on the population level. Interestingly, models for cell cycle length regulation in unicellular organisms could be directly applied to describe reproductive cycle lengths of planarians, despite the difference in underlying biological mechanisms. Finally, we examined the ecological implications of each strategy through intra- and inter-species competition experiments and found that D. japonica outcompeted the other two species due to its relatively equal distribution of resources on head and tail pieces, its cannibalistic behaviors and ability to thrive in crowded environments. These results show that this species would pose a serious threat to endogenous planarian populations if accidentally introduced in their habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23748303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23748303"><span>The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M</p> <p>2013-01-01</p> <p>The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRD..11314109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRD..11314109L"><span>Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Tao; Leblanc, Thierry; McDermid, I. Stuart</p> <p>2008-07-01</p> <p>The Jet Propulsion Laboratory Rayleigh-Raman lidar at Mauna Loa Observatory (MLO), Hawaii (19.5°N, 155.6°W) has been measuring atmospheric temperature vertical profiles routinely since 1993. Linear regression analysis was applied to the 13.5-yearlong (January 1994 to June 2007) deseasonalized monthly mean lidar temperature time series for each 1-km altitude bin between 15 and 85 km. The regression analysis included components representing the Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), and the 11-year solar cycle. Where overlapping was possible, the results were compared to those obtained from the twice-daily National Weather Service (NWS) radiosonde profiles at Hilo (5-30 km) located 60 km east-north-east of the lidar site, and the four-times-daily temperature analysis of the European Centre for Medium Range Weather Forecast (ECMWF). The analysis revealed the dominance of the QBO (1-3 K) in the stratosphere and mesosphere, and a strong winter signature of ENSO in the troposphere and lowermost stratosphere (˜1.5 K/MEI). Additionally, and for the first time, a statistically significant signature of ENSO was observed in the mesosphere, consistent with the findings of recent model simulations. The annual mean response to the solar cycle shows two statistically significant maxima of ˜1.3 K/100 F10.7 units at 35 and 55 km. The temperature responses to QBO, ENSO, and solar cycle are all maximized in winter. Comparisons with the global ECMWF temperature analysis clearly showed that the middle atmosphere above MLO is under a subtropical/extratropical regime, i.e., generally out-of-phase with that in the equatorial regions, and synchronized to the northern hemisphere winter/spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756882','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3756882"><span>Step-stress analysis for predicting dental ceramic reliability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Borba, Márcia; Cesar, Paulo F.; Griggs, Jason A.; Bona, Álvaro Della</p> <p>2013-01-01</p> <p>Objective To test the hypothesis that step-stress analysis is effective to predict the reliability of an alumina-based dental ceramic (VITA In-Ceram AL blocks) subjected to a mechanical aging test. Methods Bar-shaped ceramic specimens were fabricated, polished to 1µm finish and divided into 3 groups (n=10): (1) step-stress accelerating test; (2) flexural strength- control; (3) flexural strength- mechanical aging. Specimens from group 1 were tested in an electromagnetic actuator (MTS Evolution) using a three-point flexure fixture (frequency: 2Hz; R=0.1) in 37°C water bath. Each specimen was subjected to an individual stress profile, and the number of cycles to failure was recorded. A cumulative damage model with an inverse power law lifetime-stress relation and Weibull lifetime distribution were used to fit the fatigue data. The data were used to predict the stress level and number of cycles for mechanical aging (group 3). Groups 2 and 3 were tested for three-point flexural strength (σ) in a universal testing machine with 1.0 s in 37°C water. Data were statistically analyzed using Mann-Whitney Rank Sum test. Results Step-stress data analysis showed that the profile most likely to weaken the specimens without causing fracture during aging (95% CI: 0–14% failures) was: 80 MPa stress amplitude and 105 cycles. The median σ values (MPa) for groups 2 (493±54) and 3 (423±103) were statistically different (p=0.009). Significance The aging profile determined by step-stress analysis was effective to reduce alumina ceramic strength as predicted by the reliability estimate, confirming the study hypothesis. PMID:23827018</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23827018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23827018"><span>Step-stress analysis for predicting dental ceramic reliability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borba, Márcia; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro</p> <p>2013-08-01</p> <p>To test the hypothesis that step-stress analysis is effective to predict the reliability of an alumina-based dental ceramic (VITA In-Ceram AL blocks) subjected to a mechanical aging test. Bar-shaped ceramic specimens were fabricated, polished to 1μm finish and divided into 3 groups (n=10): (1) step-stress accelerating test; (2) flexural strength-control; (3) flexural strength-mechanical aging. Specimens from group 1 were tested in an electromagnetic actuator (MTS Evolution) using a three-point flexure fixture (frequency: 2Hz; R=0.1) in 37°C water bath. Each specimen was subjected to an individual stress profile, and the number of cycles to failure was recorded. A cumulative damage model with an inverse power law lifetime-stress relation and Weibull lifetime distribution were used to fit the fatigue data. The data were used to predict the stress level and number of cycles for mechanical aging (group 3). Groups 2 and 3 were tested for three-point flexural strength (σ) in a universal testing machine with 1.0MPa/s stress rate, in 37°C water. Data were statistically analyzed using Mann-Whitney Rank Sum test. Step-stress data analysis showed that the profile most likely to weaken the specimens without causing fracture during aging (95% CI: 0-14% failures) was: 80MPa stress amplitude and 10(5) cycles. The median σ values (MPa) for groups 2 (493±54) and 3 (423±103) were statistically different (p=0.009). The aging profile determined by step-stress analysis was effective to reduce alumina ceramic strength as predicted by the reliability estimate, confirming the study hypothesis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28965742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28965742"><span>Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K</p> <p>2017-11-01</p> <p>Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890018258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890018258"><span>Statistical study of the correlation of hard X-ray and type 3 radio bursts in solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hamilton, Russell J.; Petrosian, Vahe</p> <p>1989-01-01</p> <p>A large number of hard X-ray events which were recorded by the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) during the maximum of the 21st solar cycle (circa 1980) are analyzed in order to study their statistical correlation with type 3 bursts. The earlier finding by Kane (1981) are confirmed qualitatively that flares with stronger hard X-ray emission, especially those with harder spectra, are more likely to produce a type 3 burst. The observed distribution of hard X-ray and type 3 events and their correlations are shown to be satisfactorily described by a bivariate distribution consistent with the assumption of statistical linear dependence of X-ray and radio burst intensities. From this analysis it was determined that the distribution of the ratio of X-ray intensity (in counts/s) to type 3 intensity (in solar flux units) which has a wide range and a typical value for this ratio of about 10. The implications of the results for impulsive phase models are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADP014089','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADP014089"><span>Research of Extension of the Life Cycle of Helicopter Rotor Blade in Hungary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-02-01</p> <p>Radiography (DXR), and (iii) Vibration Diagnostics (VD) with Statistical Energy Analysis (SEA) were semi- simultaneously applied [1]. The used three...2.2. Vibration Diagnostics (VD)) Parallel to the NDT measurements the Statistical Energy Analysis (SEA) as a vibration diagnostical tool were...noises were analysed with a dual-channel real time frequency analyser (BK2035). In addition to the Statistical Energy Analysis measurement a small</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.3103T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.3103T"><span>Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, R. K.; Rajesh, Rekapalli</p> <p>2014-05-01</p> <p>Multiple spectral and statistical analyses of a 700 yearlong temporal record of groundwater recharge from the dry lands, Badain Jaran Desert (Inner Mongolia) of Northwest China reveal a stationary harmonic cycle at ~200 ± 20 year. Interestingly, the underlying periodicity in groundwater recharge fluctuations is similar to those of solar-induced climate cycle "Suess wiggles" and appears to be coherent with phases of the climate fluctuations and solar cycles. Matching periodicity of groundwater recharge rates and solar and climate cycles renders a strong impression that solar-induced climate signals may act as a critical amplifier for driving the underlying hydrographic cycle through the common coupling of long-term Sun-climate groundwater linkages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22195107','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22195107"><span>Auditing hierarchical cycles to locate other inconsistencies in the UMLS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Halper, Michael; Morrey, C Paul; Chen, Yan; Elhanan, Gai; Hripcsak, George; Perl, Yehoshua</p> <p>2011-01-01</p> <p>A cycle in the parent relationship hierarchy of the UMLS is a configuration that effectively makes some concept(s) an ancestor of itself. Such a structural inconsistency can easily be found automatically. A previous strategy for disconnecting cycles is to break them with the deletion of one or more parent relationships-irrespective of the correctness of the deleted relationships. A methodology is introduced for auditing of cycles that seeks to discover and delete erroneous relationships only. Cycles involving three concepts are the primary consideration. Hypotheses about the high probability of locating an erroneous parent relationship in a cycle are proposed and confirmed with statistical confidence and lend credence to the auditing approach. A cycle may serve as an indicator of other non-structural inconsistencies that are otherwise difficult to detect automatically. An extensive auditing example shows how a cycle can indicate further inconsistencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3243212','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3243212"><span>Auditing Hierarchical Cycles to Locate Other Inconsistencies in the UMLS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Halper, Michael; Morrey, C. Paul; Chen, Yan; Elhanan, Gai; Hripcsak, George; Perl, Yehoshua</p> <p>2011-01-01</p> <p>A cycle in the parent relationship hierarchy of the UMLS is a configuration that effectively makes some concept(s) an ancestor of itself. Such a structural inconsistency can easily be found automatically. A previous strategy for disconnecting cycles is to break them with the deletion of one or more parent relationships—irrespective of the correctness of the deleted relationships. A methodology is introduced for auditing of cycles that seeks to discover and delete erroneous relationships only. Cycles involving three concepts are the primary consideration. Hypotheses about the high probability of locating an erroneous parent relationship in a cycle are proposed and confirmed with statistical confidence and lend credence to the auditing approach. A cycle may serve as an indicator of other non-structural inconsistencies that are otherwise difficult to detect automatically. An extensive auditing example shows how a cycle can indicate further inconsistencies. PMID:22195107</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20004273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20004273"><span>Efficacy of the low-dose combined oral contraceptive chlormadinone acetate/ethinylestradiol: physical and emotional benefits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heskamp, Marie-Luise S; Schramm, Georg A K</p> <p>2010-01-01</p> <p>This study investigated the effects of the low-dose combined oral contraceptive (COC) 2.0 mg chlormadinone acetate (CMA)/0.03 mg ethinylestradiol (EE) (Belara, Balanca) on cycle-related physical and emotional disorders in women >or=25 years of age. A prospective, non-interventional, observational study of 3772 women over six cycles was conducted in 303 office-based gynecological centers throughout Germany. CMA/EE provided high contraceptive efficacy with a Pearl index of 0 (95% confidence interval=0.00-0.22) and was generally well tolerated, with no statistically significant weight changes during the observation period (p=.147). CMA/EE intake resulted in a statistically significant improvement in cycle-related physical and emotional symptoms, with a 67% overall reduction in sum score for number and intensity of cycle-related symptoms per patient. The results of this study in women >or=25 years of age support previous findings that 2.0 mg CMA/0.03 mg EE is an effective low-dose COC, with an excellent tolerability profile, with the additional benefits of significantly reducing both cycle-related physical and emotional symptoms (p<or=.001); women with the respective preexisting symptoms may, therefore, benefit from CMA/EE contraceptive treatment. Further research is warranted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28426205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28426205"><span>Euro 6 Unregulated Pollutant Characterization and Statistical Analysis of After-Treatment Device and Driving-Condition Impact on Recent Passenger-Car Emissions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinet, Simon; Liu, Yao; Louis, Cédric; Tassel, Patrick; Perret, Pascal; Chaumond, Agnès; André, Michel</p> <p>2017-05-16</p> <p>This study aims to measure and analyze unregulated compound emissions for two Euro 6 diesel and gasoline vehicles. The vehicles were tested on a chassis dynamometer under various driving cycles: Artemis driving cycles (urban, road, and motorway), the New European Driving Cycle (NEDC) and the World Harmonized Light-Duty Test Cycle (WLTC) for Europe, and world approval cycles. The emissions of unregulated compounds (such as total particle number (PN) (over 5.6 nm); black carbon (BC); NO 2 ; benzene, toluene, ethylbenzene, and xylene (BTEX); carbonyl compounds; and polycyclic aromatic hydrocarbons (PAHs)) were measured with several online devices, and different samples were collected using cartridges and quartz filters. Furthermore, a preliminary statistical analysis was performed on eight Euro 4-6 diesel and gasoline vehicles to study the impacts of driving conditions and after-treatment and engine technologies on emissions of regulated and unregulated pollutants. The results indicate that urban conditions with cold starts induce high emissions of BTEX and carbonyl compounds. Motorway conditions are characterized by high emissions of particle numbers and CO, which mainly induced by gasoline vehicles. Compared with gasoline vehicles, diesel vehicles equipped with catalyzed or additive DPF emit fewer particles but more NO x and carbonyl compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SoPh..289.3159Z"><span>Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Du, A. M.; Du, D.; Sun, W.</p> <p>2014-08-01</p> <p>We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T23C2948Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T23C2948Y"><span>Geoscience in the Big Data Era: Are models obsolete?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuen, D. A.; Zheng, L.; Stark, P. B.; Morra, G.; Knepley, M.; Wang, X.</p> <p>2016-12-01</p> <p>In last few decades, the velocity, volume, and variety of geophysical data have increased, while the development of the Internet and distributed computing has led to the emergence of "data science." Fitting and running numerical models, especially based on PDEs, is the main consumer of flops in geoscience. Can large amounts of diverse data supplant modeling? Without the ability to conduct randomized, controlled experiments, causal inference requires understanding the physics. It is sometimes possible to predict well without understanding the system—if (1) the system is predictable, (2) data on "important" variables are available, and (3) the system changes slowly enough. And sometimes even a crude model can help the data "speak for themselves" much more clearly. For example, Shearer (1991) used a 1-dimensional velocity model to stack long-period seismograms, revealing upper mantle discontinuities. This was a "big data" approach: the main use of computing was in the data processing, rather than in modeling, yet the "signal" became clear. In contrast, modelers tend to use all available computing power to fit even more complex models, resulting in a cycle where uncertainty quantification (UQ) is never possible: even if realistic UQ required only 1,000 model evaluations, it is never in reach. To make more reliable inferences requires better data analysis and statistics, not more complex models. Geoscientists need to learn new skills and tools: sound software engineering practices; open programming languages suitable for big data; parallel and distributed computing; data visualization; and basic nonparametric, computationally based statistical inference, such as permutation tests. They should work reproducibly, scripting all analyses and avoiding point-and-click tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGeod..87..609Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGeod..87..609Q"><span>Bayesian methods for outliers detection in GNSS time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qianqian, Zhang; Qingming, Gui</p> <p>2013-07-01</p> <p>This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20554944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20554944"><span>Essential role of TRPC6 channels in G2/M phase transition and development of human glioma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Xia; He, Zhuohao; Zhou, Kechun; Cheng, Ju; Yao, Hailan; Lu, Dongliang; Cai, Rong; Jin, Yening; Dong, Bin; Xu, Yinghui; Wang, Yizheng</p> <p>2010-07-21</p> <p>Patients with glioblastoma multiforme, the most aggressive form of glioma, have a median survival of approximately 12 months. Calcium (Ca(2+)) signaling plays an important role in cell proliferation, and some members of the Ca(2+)-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of many types of cancer cells. In this study, we investigated the role of TRPC6 in cell cycle progression and in the development of human glioma. TRPC6 protein and mRNA expression were assessed in glioma (n = 33) and normal (n = 17) brain tissues from patients and in human glioma cell lines U251, U87, and T98G. Activation of TRPC6 channels was tested by platelet-derived growth factor-induced Ca(2+) imaging. The effect of inhibiting TRPC6 activity or expression using the dominant-negative mutant TRPC6 (DNC6) or RNA interference, respectively, was tested on cell growth, cell cycle progression, radiosensitization of glioma cells, and development of xenografted human gliomas in a mouse model. The green fluorescent protein (GFP) and wild-type TRPC6 (WTC6) were used as controls. Survival of mice bearing xenografted tumors in the GFP, DNC6, and WTC6 groups (n = 13, 15, and 13, respectively) was compared using Kaplan-Meier analysis. All statistical tests were two-sided. Functional TRPC6 was overexpressed in human glioma cells. Inhibition of TRPC6 activity or expression attenuated the increase in intracellular Ca(2+) by platelet-derived growth factor, suppressed cell growth and clonogenic ability, induced cell cycle arrest at the G2/M phase, and enhanced the antiproliferative effect of ionizing radiation. Cyclin-dependent kinase 1 activation and cell division cycle 25 homolog C expression regulated the cell cycle arrest. Inhibition of TRPC6 activity also reduced tumor volume in a subcutaneous mouse model of xenografted human tumors (P = .014 vs GFP; P < .001 vs WTC6) and increased mean survival in mice in an intracranial model (P < .001 vs GFP or WTC6). In this preclinical model, TRPC6 channels were essential for glioma development via regulation of G2/M phase transition. This study suggests that TRPC6 might be a new target for therapeutic intervention of human glioma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5106667-variation-distribution-crack-lengths-during-corrosion-fatigue','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5106667-variation-distribution-crack-lengths-during-corrosion-fatigue"><span>Variation of the distribution of crack lengths during corrosion fatigue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ishihara, S.; Miyao, K.; Shiozawa, K.</p> <p>1984-07-01</p> <p>The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5785775','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5785775"><span>Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>In de novo drug design, computational strategies are used to generate novel molecules with good affinity to the desired biological target. In this work, we show that recurrent neural networks can be trained as generative models for molecular structures, similar to statistical language models in natural language processing. We demonstrate that the properties of the generated molecules correlate very well with the properties of the molecules used to train the model. In order to enrich libraries with molecules active toward a given biological target, we propose to fine-tune the model with small sets of molecules, which are known to be active against that target. Against Staphylococcus aureus, the model reproduced 14% of 6051 hold-out test molecules that medicinal chemists designed, whereas against Plasmodium falciparum (Malaria), it reproduced 28% of 1240 test molecules. When coupled with a scoring function, our model can perform the complete de novo drug design cycle to generate large sets of novel molecules for drug discovery. PMID:29392184</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29780976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29780976"><span>Modeling Individual Cyclic Variation in Human Behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pierson, Emma; Althoff, Tim; Leskovec, Jure</p> <p>2018-04-01</p> <p>Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5959299','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5959299"><span>Modeling Individual Cyclic Variation in Human Behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pierson, Emma; Althoff, Tim; Leskovec, Jure</p> <p>2018-01-01</p> <p>Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets—of human menstrual cycle symptoms and physical activity tracking data—yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model. PMID:29780976</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..557..910S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..557..910S"><span>Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrestha, P.; Sulis, M.; Simmer, C.; Kollet, S.</p> <p>2018-02-01</p> <p>Biotic leaf transpiration (T) and abiotic evaporation (E) are the two major pathways by which water is transferred from land surfaces to the atmosphere. Earth system models simulating the terrestrial water, carbon and energy cycle are required to reliably embed the role of soil and vegetation processes in order to realistically reproduce both fluxes including their relative contributions to total evapotranspiration (ET). Earth system models are also being used with increasing spatial resolutions to better simulate the effects of surface heterogeneity on the regional water and energy cycle and to realistically include effects of subsurface lateral flow paths, which are expected to feed back on the exchange fluxes and their partitioning in the model. Using the hydrological component of the Terrestrial Systems Modeling Platform (TerrSysMP), we examine the uncertainty in the estimates of T/ET ratio due to horizontal model grid resolution for a dry and wet year in the Inde catchment (western Germany). The aggregation of topography results in smoothing of slope magnitudes and the filtering of small-scale convergence and divergence zones, which directly impacts the surface-subsurface flow. Coarsening of the grid resolution from 120 m to 960 m increased the available soil moisture for ground evaporation, and decreased T/ET ratio by about 5% and 8% for dry and wet year respectively. The change in T/ET ratio was more pronounced for agricultural crops compared to forested areas, indicating a strong local control of vegetation on the ground evaporation, affecting the domain average statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=beetle&pg=4&id=EJ121473','ERIC'); return false;" href="https://eric.ed.gov/?q=beetle&pg=4&id=EJ121473"><span>A Laboratory Exercise for Ecology Teaching: The Use of Photographs in Detecting Dispersion Patterns in Animals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lenton, G. M.</p> <p>1975-01-01</p> <p>Photographs of a beetle, Catamerus rugosus, were taken at different stages in its life cycle. Students were asked to relate these to real life and carry out a statistical analysis to determine the degree of dispersion of animals. Results demonstrate a change in dispersion throughout the life cycle. (Author/EB)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol34/pdf/CFR-2013-title40-vol34-sec1039-505.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol34/pdf/CFR-2013-title40-vol34-sec1039-505.pdf"><span>40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>.... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol34/pdf/CFR-2012-title40-vol34-sec1039-505.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol34/pdf/CFR-2012-title40-vol34-sec1039-505.pdf"><span>40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>.... You may extend the sampling time to improve measurement accuracy of PM emissions, using good..., you may omit speed, torque, and power points from the duty-cycle regression statistics if the... mapped. (2) For variable-speed engines without low-speed governors, you may omit torque and power points...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29881452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29881452"><span>Prevalence and correlates of burnout among collegiate cycle students in Sri Lanka: a school-based cross-sectional study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wickramasinghe, Nuwan Darshana; Dissanayake, Devani Sakunthala; Abeywardena, Gihan Sajiwa</p> <p>2018-01-01</p> <p>Even though the concept of burnout has been widely explored across the globe, the evidence base on burnout among high school students in the South Asian context is scanty. Against the backdrop of ever-increasing educational demands and expectations, the present study was designed to determine the prevalence and correlates of burnout among collegiate cycle students in Sri Lanka. A school-based cross-sectional study was conducted among 872 grade thirteen students in 15 government schools in an educational zone, Kegalle district, Sri Lanka selected by a stratified cluster sampling technique. The validated Sinhala version of the 15-item Maslach Burnout Inventory-Student Survey (MBI-SS) was used to assess burnout. The adjusted prevalence of burnout was computed based on the clinically validated cut-off values using the "exhaustion + 1" criterion. Multivariable logistic regression was carried out using backward elimination method to quantify the association between burnout and selected correlates identified at bivariate analysis at p value less than 0.05. The response rate was 91.3% (n = 796). The adjusted prevalence of burnout among grade thirteen students was 28.8% (95% CI = 25.0-32.7%). Multivariable analysis elicited a multitude of statistically significant associations with burnout when controlled for other factors included in the model (p < 0.05). Perceived satisfaction related to the school environment (classroom and library facilities), school curriculum (scope, relevance, and difficulty of the subject content), study enthusiasm (preferred subject stream), study support (support from parents to teachers), and future expectations (personal and parental expectations) emerged as statistically significant negative associations with burnout, whereas having to encounter disturbances while studying and being subjected to bullying at school emerged as statistically significant positive associations with burnout. The burnout prevalence among grade thirteen students in the selected educational zone, Sri Lanka is high. Most of the significant correlates of burnout are directly related to the academic endeavours. It is recommended to strengthen the counseling services at the school level to rectify the problems related to burnout among collegiate cycle students in Sri Lanka.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5480931-observations-statistical-simulations-proposed-solar-cycle-qbo-weather-relationship','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5480931-observations-statistical-simulations-proposed-solar-cycle-qbo-weather-relationship"><span>Observations and statistical simulations of a proposed solar cycle/QBO/weather relationship</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baldwin, M.P.; Dunkerton, T.J.</p> <p>1989-08-01</p> <p>The 10.7 cm solar flux is observed to be highly correlated with north pole stratospheric temperatures when partitioned according to the phase of the equatorial stratospheric winds (the quasi-biennial oscillation, or QBO). The authors supplement observations with calculations showing that temperatures over most of the northern hemisphere are highly correlated or anticorrelated with north pole temperatures. The observed spatial pattern of solar cycle correlations at high latitudes is shown to be not unique to the solar cycle. The authors present results, similar to the observed solar cycle correlations, with simulated harmonics of various periods replacing the solar cycle. These calculationsmore » demonstrate the correlations at least as high as those for the solar cycle results may be obtained using simulated harmonics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034222','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1034222"><span>Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, K.; Earleywine, M.; Wood, E.</p> <p>2011-11-01</p> <p>Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVsmore » under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18056644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18056644"><span>Observational evidence for volcanic impact on sea level and the global water cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grinsted, A; Moore, J C; Jevrejeva, S</p> <p>2007-12-11</p> <p>It has previously been noted that there are drops in global sea level (GSL) after some major volcanic eruptions. However, observational evidence has not been convincing because there is substantial variability in the global sea level record over periods similar to those at which we expect volcanoes to have an impact. To quantify the impact of volcanic eruptions we average monthly GSL data from 830 tide gauge records around five major volcanic eruptions. Surprisingly, we find that the initial response to a volcanic eruption is a significant rise in sea level of 9 +/- 3 mm in the first year after the eruption. This rise is followed by a drop of 7 +/- 3 mm in the period 2-3 years after the eruption relative to preeruption sea level. These results are statistically robust and no particular volcanic eruption or ocean region dominates the signature we find. Neither the drop nor especially the rise in GSL can be explained by models of lower oceanic heat content. We suggest that the mechanism is a transient disturbance of the water cycle with a delayed response of land river runoff relative to ocean evaporation and global precipitation that affects global sea level. The volcanic impact on the water cycle and sea levels is comparable in magnitude to that of a large El Niño-La Niña cycle, amounting to approximately 5% of global land precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......266S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......266S"><span>Life cycle cost analysis of aging aircraft airframe maintenance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sperry, Kenneth Robert</p> <p></p> <p>Scope and method of study. The purpose of this study was to examine the relationship between an aircraft's age and its annual airframe maintenance costs. Common life cycle costing methodology has previously not recognized the existence of this cost growth potential, and has therefor not determined the magnitude nor significance of this cost element. This study analyzed twenty-five years of DOT Form 41-airframe maintenance cost data for the Boeing 727, 737, 747 and McDonnell Douglas DC9 and DC-10 aircraft. Statistical analysis included regression analysis, Pearson's r, and t-tests to test the null hypothesis. Findings and conclusion. Airframe maintenance cost growth was confirmed to be increasing after an aircraft's age exceeded its designed service objective of approximately twenty-years. Annual airframe maintenance cost growth increases were measured ranging from 3.5% annually for a DC-9, to approximately 9% annually for a DC-10 aircraft. Average measured coefficient of determination between age and airframe maintenance, exceeded .80, confirming a strong relationship between cost: and age. The statistical significance of the difference between airframe costs sampled in 1985, compared to airframe costs sampled in 1998 was confirmed by t-tests performed on each subject aircraft group. Future cost forecasts involving aging aircraft subjects must address cost growth due to aging when attempting to model an aircraft's economic service life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT.......193M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT.......193M"><span>Theoretical and computational studies in protein folding, design, and function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrissey, Michael Patrick</p> <p>2000-10-01</p> <p>In this work, simplified statistical models are used to understand an array of processes related to protein folding and design. In Part I, lattice models are utilized to test several theories about the statistical properties of protein-like systems. In Part II, sequence analysis and all-atom simulations are used to advance a novel theory for the behavior of a particular protein. Part I is divided into five chapters. In Chapter 2, a method of sequence design for model proteins, based on statistical mechanical first-principles, is developed. The cumulant design method uses a mean-field approximation to expand the free energy of a sequence in temperature. The method successfully designs sequences which fold to a target lattice structure at a specific temperature, a feat which was not possible using previous design methods. The next three chapters are computational studies of the double mutant cycle, which has been used experimentally to predict intra-protein interactions. Complete structure prediction is demonstrated for a model system using exhaustive, and also sub-exhaustive, double mutants. Nonadditivity of enthalpy, rather than of free energy, is proposed and demonstrated to be a superior marker for inter-residue contact. Next, a new double mutant protocol, called exchange mutation, is introduced. Although simple statistical arguments predict exchange mutation to be a more accurate contact predictor than standard mutant cycles, this hypothesis was not upheld in lattice simulations. Reasons for this inconsistency will be discussed. Finally, a multi-chain folding algorithm is introduced. Known as LINKS, this algorithm was developed to test a method of structure prediction which utilizes chain-break mutants. While structure prediction was not successful, LINKS should nevertheless be a useful tool for the study of protein-protein and protein-ligand interactions. The last chapter of Part I utilizes the lattice to explore the differences between standard folding, from the fully denatured state, and cotranslational folding, whereby one end of a protein is synthesized and released before the other. Cotranslational folding is shown to accelerate folding kinetics, particularly when the target backbone contains many local contacts. Additionally, cotranslation is shown capable of "guiding" a model protein into a metastable, local contact-rich state, despite the existence of a true native state of much lower energy. In Part II, a model is developed for the behavior of PrP, a unique mammalian protein which has been shown to possess two native states. The pathogenic "scrapie" state PrPSc, which has not been structurally characterized, is known to trigger conversion of the characterized endogenous conformation PrPC into additional PrPSc, Residues 144--153 are shown to form the most hydrophilic naturally occurring alpha-helix, out of a broad database with more than 10,000 candidates. The novel beta-nucleation model proposes that PrPSc, is not a distinct mono-molecular state, but is rather a beta-sheet-like aggregate centered around helix-1 components of multiple PrP molecules. The remainder of Part II uses molecular dynamics simulations to support the beta-nucleation hypothesis, and to propose a system of peptide ligands which may arrest the process of prion propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011A%26A...534A..47C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011A%26A...534A..47C"><span>Statistical properties of superactive regions during solar cycles 19-23</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, A. Q.; Wang, J. X.; Li, J. W.; Feynman, J.; Zhang, J.</p> <p>2011-10-01</p> <p>Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims: We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods: We select 45 SARs in solar cycles 21-23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19-23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19-23 are studied statistically. Results: Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21-23, and that all the SARs are likely to produce a very fast CME. The latitudinal distributions of SARs display the Maunder butterfly diagrams and SARs occur preferentially in the maximum period of each solar cycle. Northern hemisphere SARs dominated in solar cycles 19 and 20 and southern hemisphere SARs dominated in solar cycles 21 and 22. In solar cycle 23, however, SARs occurred about equally in each hemisphere. There are two active longitudes in both the northern and southern hemispheres, about 160°-200° apart. Applying the improved dynamic reference frame to SARs, we find that SARs rotate faster than the Carrington rate and there is no significant difference between the two hemispheres. The synodic periods are 27.19 days and 27.25 days for the northern and southern hemispheres, respectively. The longitudinal distribution of SARs is significantly non-axisymmetric and about 75% SARs occurred near two active longitudes with half widths of 45°. Appendix A is available in electronic form at http://www.aanda.org</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617729"><span>Strong evidence for the influence of solar cycles on a Late Miocene lake system revealed by biotic and abiotic proxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kern, A.K.; Harzhauser, M.; Piller, W.E.; Mandic, O.; Soliman, A.</p> <p>2012-01-01</p> <p>The Late Miocene paleogeography of central Europe and its climatic history are well studied with a resolution of c. 106 years. Small-scale climatic variations are yet unresolved. Observing past climatic change of short periods, however, would encourage the understanding of the modern climatic system. Therefore, past climate archives require a resolution on a decadal to millennial scale. To detect such a short-term evolution, a continuous 6-m-core of the Paleo-Lake Pannon was analyzed in 1-cm-sample distance to provide information as precise and regular as possible. Measurements of the natural gamma radiation and magnetic susceptibility combined with the total abundance of ostracod shells were used as proxies to estimate millennial- to centennial scale environmental changes during the mid-Tortonian warm period. Patterns emerged, but no indisputable age model can be provided for the core, due to the lack of paleomagnetic reversals and the lack of minerals suitable for absolute dating. Therefore, herein we propose another method to determine a hypothetic time frame for these deposits. Based on statistical processes, including Lomb–Scargle and REDFIT periodograms along with Wavelet spectra, several distinct cyclicities could be detected. Calculations considering established off-shore sedimentation rates of the Tortonian Vienna Basin revealed patterns resembling Holocene solar-cycle-records well. The comparison of filtered data of Miocene and Holocene records displays highly similar patterns and comparable modulations. A best-fit adjustment of sedimentation rate results in signals which fit to the lower and upper Gleissberg cycle, the de Vries cycle, the unnamed 500-year- and 1000-year-cycles, as well as the Hallstatt cycle. Each of these cycles has a distinct and unique expression in the investigated environmental proxies, reflecting a complex forcing-system. Hence, a single-proxy-analysis, as often performed on Holocene records, should be considered cautiously as it might fail to capture the full range of solar cycles. PMID:23564975</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..163L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..163L"><span>On the predictive potential of Pc5 ULF waves to forecast relativistic electrons based on their relationships over two solar cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lam, Hing-Lan</p> <p>2017-01-01</p> <p>A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023751','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023751"><span>Advanced Gear Alloys for Ultra High Strength Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, Tony; Krantz, Timothy; Sebastian, Jason</p> <p>2011-01-01</p> <p>Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27160428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27160428"><span>Memory impairment is associated with the loss of regular oestrous cycle and plasma oestradiol levels in an activity-based anorexia animal model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paulukat, Lisa; Frintrop, Linda; Liesbrock, Johanna; Heussen, Nicole; Johann, Sonja; Exner, Cornelia; Kas, Martien J; Tolba, Rene; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen</p> <p>2016-06-01</p> <p>Patients with anorexia nervosa (AN) suffer from neuropsychological deficits including memory impairments. Memory partially depends on 17β-oestradiol (E2), which is reduced in patients with AN. We assessed whether memory functions correlate with E2 plasma levels in the activity-based anorexia (ABA) rat model. Nine 4-week-old female Wistar rats were sacrificed directly after weight loss of 20-25% (acute starvation), whereas 17 animals had additional 2-week weight-holding (chronic starvation). E2 serum levels and novel object recognition tasks were tested before and after starvation and compared with 21 normally fed controls. Starvation disrupted menstrual cycle and impaired memory function, which became statistically significant in the chronic state (oestrous cycle (P < 0.001), E2 levels (P = 0.011) and object recognition memory (P = 0.042) compared to controls). E2 reduction also correlated with the loss of memory in the chronic condition (r = 0.633, P = 0.020). Our results demonstrate that starvation reduces the E2 levels which are associated with memory deficits in ABA rats. These effects might explain reduced memory capacity in patients with AN as a consequence of E2 deficiency and the potentially limited effectiveness of psychotherapeutic interventions in the starved state. Future studies should examine whether E2 substitution could prevent cognitive deficits and aid in earlier readiness for therapy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26110279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26110279"><span>Association of Climatic Variability, Vector Population and Malarial Disease in District of Visakhapatnam, India: A Modeling and Prediction Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Srimath-Tirumula-Peddinti, Ravi Chandra Pavan Kumar; Neelapu, Nageswara Rao Reddy; Sidagam, Naresh</p> <p>2015-01-01</p> <p>Malarial incidence, severity, dynamics and distribution of malaria are strongly determined by climatic factors, i.e., temperature, precipitation, and relative humidity. The objectives of the current study were to analyse and model the relationships among climate, vector and malaria disease in district of Visakhapatnam, India to understand malaria transmission mechanism (MTM). Epidemiological, vector and climate data were analysed for the years 2005 to 2011 in Visakhapatnam to understand the magnitude, trends and seasonal patterns of the malarial disease. Statistical software MINITAB ver. 14 was used for performing correlation, linear and multiple regression analysis. Perennial malaria disease incidence and mosquito population was observed in the district of Visakhapatnam with peaks in seasons. All the climatic variables have a significant influence on disease incidence as well as on mosquito populations. Correlation coefficient analysis, seasonal index and seasonal analysis demonstrated significant relationships among climatic factors, mosquito population and malaria disease incidence in the district of Visakhapatnam, India. Multiple regression and ARIMA (I) models are best suited models for modeling and prediction of disease incidences and mosquito population. Predicted values of average temperature, mosquito population and malarial cases increased along with the year. Developed MTM algorithm observed a major MTM cycle following the June to August rains and occurring between June to September and minor MTM cycles following March to April rains and occurring between March to April in the district of Visakhapatnam. Fluctuations in climatic factors favored an increase in mosquito populations and thereby increasing the number of malarial cases. Rainfall, temperatures (20°C to 33°C) and humidity (66% to 81%) maintained a warmer, wetter climate for mosquito growth, parasite development and malaria transmission. Changes in climatic factors influence malaria directly by modifying the behaviour and geographical distribution of vectors and by changing the length of the life cycle of the parasite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4482491','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4482491"><span>Association of Climatic Variability, Vector Population and Malarial Disease in District of Visakhapatnam, India: A Modeling and Prediction Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Srimath-Tirumula-Peddinti, Ravi Chandra Pavan Kumar; Neelapu, Nageswara Rao Reddy; Sidagam, Naresh</p> <p>2015-01-01</p> <p>Background Malarial incidence, severity, dynamics and distribution of malaria are strongly determined by climatic factors, i.e., temperature, precipitation, and relative humidity. The objectives of the current study were to analyse and model the relationships among climate, vector and malaria disease in district of Visakhapatnam, India to understand malaria transmission mechanism (MTM). Methodology Epidemiological, vector and climate data were analysed for the years 2005 to 2011 in Visakhapatnam to understand the magnitude, trends and seasonal patterns of the malarial disease. Statistical software MINITAB ver. 14 was used for performing correlation, linear and multiple regression analysis. Results/Findings Perennial malaria disease incidence and mosquito population was observed in the district of Visakhapatnam with peaks in seasons. All the climatic variables have a significant influence on disease incidence as well as on mosquito populations. Correlation coefficient analysis, seasonal index and seasonal analysis demonstrated significant relationships among climatic factors, mosquito population and malaria disease incidence in the district of Visakhapatnam, India. Multiple regression and ARIMA (I) models are best suited models for modeling and prediction of disease incidences and mosquito population. Predicted values of average temperature, mosquito population and malarial cases increased along with the year. Developed MTM algorithm observed a major MTM cycle following the June to August rains and occurring between June to September and minor MTM cycles following March to April rains and occurring between March to April in the district of Visakhapatnam. Fluctuations in climatic factors favored an increase in mosquito populations and thereby increasing the number of malarial cases. Rainfall, temperatures (20°C to 33°C) and humidity (66% to 81%) maintained a warmer, wetter climate for mosquito growth, parasite development and malaria transmission. Conclusions/Significance Changes in climatic factors influence malaria directly by modifying the behaviour and geographical distribution of vectors and by changing the length of the life cycle of the parasite. PMID:26110279</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/measurements-modeling/model-life-cycle-training-module','PESTICIDES'); return false;" href="https://www.epa.gov/measurements-modeling/model-life-cycle-training-module"><span>The Model Life-cycle: Training Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C41B0621G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C41B0621G"><span>Are weather models better than gridded observations for precipitation in the mountains? (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutmann, E. D.; Rasmussen, R.; Liu, C.; Ikeda, K.; Clark, M. P.; Brekke, L. D.; Arnold, J.; Raff, D. A.</p> <p>2013-12-01</p> <p>Mountain snowpack is a critical storage component in the water cycle, and it provides drinking water for tens of millions of people in the Western US alone. This water store is susceptible to climate change both because warming temperatures are likely to lead to earlier melt and a temporal shift of the hydrograph, and because changing atmospheric conditions are likely to change the precipitation patterns that produce the snowpack. Current measurements of snowfall in complex terrain are limited in number due in part to the logistics of installing equipment in complex terrain. We show that this limitation leads to statistical artifacts in gridded observations of current climate including errors in precipitation season totals of a factor of two or more, increases in wet day fraction, and decreases in storm intensity. In contrast, a high-resolution numerical weather model (WRF) is able to reproduce observed precipitation patterns, leading to confidence in its predictions for areas without measurements and new observations support this. Running WRF for a future climate scenario shows substantial changes in the spatial patterns of precipitation in the mountains related to the physics of hydrometeor production and detrainment that are not captured by statistical downscaling products. The stationarity in statistical downscaling products is likely to lead to important errors in our estimation of future precipitation in complex terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B54B..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B54B..06B"><span>A "high severity" spruce beetle outbreak in Wyoming causes moderate-severity carbon cycle perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berryman, E.; Frank, J. M.; Speckman, H. N.; Bradford, J. B.; Ryan, M. G.; Massman, W. J.; Hawbaker, T. J.</p> <p>2017-12-01</p> <p>Bark beetle outbreaks in Western North American forests are often considered a high-severity disturbance from a carbon (C) cycling perspective, but field measurements that quantify impacts on C dynamics are very limited. Often, factors out of the researcher's control complicate the separation of beetle impacts from other drivers of C cycling variability and restrict statistical inference. Fortuitously, we had four years of pre-spruce beetle outbreak C cycle measurements in a subalpine forest in southeastern Wyoming (Glacier Lakes Ecosystem Experiments Site, or GLEES) and sustained intermittent monitoring for nearly a decade after the outbreak. Here, we synthesize published and unpublished pre- and post-outbreak measurements of key C cycle stocks and fluxes at GLEES. Multiple lines of evidence, including chamber measurements, eddy covariance measurements, and tracking of soil and forest floor C pools over time, point to the GLEES outbreak as a moderate-severity disturbance for C loss to the atmosphere, despite 70% to 80% of overstory tree death. Reductions in NEE were short-lived and the forest quickly returned to a carbon-neutral state, likely driven by an uptick in understory growth. Effect of mortality on the C cycle was asymmetrical, with a 50% reduction in net carbon uptake (NEE) two years into the outbreak, yet no measureable change in either ecosystem or growing season soil respiration. A small pulse in soil respiration occurred but was only detectable during the winter and amounted to < 10% of NEE. Possible reasons for the lack of measureable respiration response are discussed with emphasis on lessons learned for monitoring and modeling future outbreaks. We suggest a comprehensive assessment and definition of "moderate-severity" disturbances for Western forests and suggest that all tree mortality events may not be high-severity when it comes to C fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51B2481L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51B2481L"><span>The extreme dipolarization during the Galaxy 15 spacecraft anomaly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loto'aniu, P. T. M.; Redmon, R. J.; Welling, D. T.; Rodriguez, J. V.; Haiducek, J. D.</p> <p>2016-12-01</p> <p>The substorm just prior to the Galaxy 15 spacecraft anomaly on 5 April 2010 was intriguing for a number of reasons, including that multiple spacecraft were well located near-midnight to observe the event. Another reason is that the associated dipolarization was one of the most severe ever observed by GOES satellites, even though the solar wind conditions were moderate. In this study, we compare the Galaxy 15 event to other substorms in order to understand why the dipolarization was so extreme. Presented will be simulations from the Space Weather Modeling Framework (SWMF) of different storms and comparisons made to model results for the Galaxy 15 anomaly event. The SWMF does well in predicting some storms, particularly when heavier O+ ions outflowing from the ionosphere are included. However, the SWMF significantly under-predicts the magnitude of the Galaxy 15 event, regardless of the inclusion of a heavy ion outflow model. The model dipolarization occurs around 30 minutes later than the observed event, while the strength of the dipolarization in terms of the magnetic field was not predicted by the model, although, the model does well overall predicting Dst and Kp. We will also present statistical results representing a survey of dipolarizations observed by the GOES spacecraft over a solar cycle when the satellites were located in the near-midnight local time region. The statistical results are used to determine the occurrence rate and characteristics of similar events to the Galaxy 15 dipolarization event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H53L..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H53L..02B"><span>The Relationship Between Sediment Properties and Sedimentation Patterns on a Macrotidal Gravel Beach over a Semi-lunar Tidal Cycle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buscombe, D.; Masselink, G.</p> <p>2007-12-01</p> <p>Detailed measurements of profile and sediment dynamics have been obtained from a macrotidal gravel barrier beach in southern England. Surface and sub-surface sediment samples, beach profiles, and disturbance depths were taken from the intertidal zone on consecutive low tides over semi-lunar tidal cycles, along with continuous wave and tide measurements. Results from two separate field surveys are presented, representing 26 and 24 consecutive low tides, respectively. A combination of Canonical Correlation Analysis (CCA) and Empirical Orthogonal Function (EOF) analysis was used to identify a number of consistent relationships in morphological and sedimentological variables not readily apparent using ordinary correlations. The disadvantage of such statistical models is that the relationships obtained cannot be expressed in physically meaningful units, which does limit its utility in physical-numerical modelling. However, the results reveal some interesting relationships between gravel beachface sedimentology and morphological change. For example, beachface morphology and sedimentology are more similar at a given spatial location over time than over space (cross-shore) at any individual time. Subsurface sedimentology over the depth of disturbance indicates that the beach step can be traced through the sediment characteristics. Indeed, the study suggests that gravel beachface sedimentology is 'slaved' to morphological change rather than vice-versa; and that the relationship becomes more evident as secondary morphological features develop on the beachface. The results imply that median sediment size and geometric sorting are suitable parameters for detecting such relationships. Strong hysteresis over space was present in the EOF modes associated with the most variance in the data sets, for both sediment size and sorting. Statistically significant relationships were found between the temporal modes of (absolute) size/sorting and net sedimentation associated with the largest variance in the non-decomposed respective data sets. Finally, significant relationships were found between a suite of measured hydrodynamic time-series and pairs of significantly correlated morpho-sedimentary eigenmodes. The techniques used were thus able to objectively demonstrate linear association between morphological and sedimentological change on a gravel beachface over a semi-lunar tidal cycle; and also that simultaneous changes in each could be linearly correlated to hydrodynamic forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850032491&hterms=photovoltaic+cells&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphotovoltaic%2Bcells','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850032491&hterms=photovoltaic+cells&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphotovoltaic%2Bcells"><span>Solar-cell interconnect design for terrestrial photovoltaic modules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.</p> <p>1984-01-01</p> <p>Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984ATJSE.106..379M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984ATJSE.106..379M"><span>Solar-cell interconnect design for terrestrial photovoltaic modules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.</p> <p>1984-11-01</p> <p>Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11763868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11763868"><span>In vitro evaluation of endodontic posts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drummond, J L</p> <p>2000-05-01</p> <p>To compare stainless steel posts and three different fibrous posts with respect to pullout (shear) strength from extracted third molars embedded in denture acrylic. Post space was prepared and the posts cemented with a resin cement according to manufacturer's instructions. Single step and multi-step dentin bonding systems were also evaluated. The testing was in tension at a loading rate of 2 mm/min. The statistical analysis indicated no significant difference in the pullout (shear) strength between any of the post groups tested. Also evaluated was the flexure strength of the fibrous posts before and after thermal cycling. Statistical analysis indicated a significant decrease in flexure strength for the respective fibrous posts following thermal cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23266357','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23266357"><span>Exploring alternate specifications to explain agency-level effects in placement decisions regarding aboriginal children: further analysis of the Canadian Incidence Study of Reported Child Abuse and Neglect Part B.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chabot, Martin; Fallon, Barbara; Tonmyr, Lil; MacLaurin, Bruce; Fluke, John; Blackstock, Cindy</p> <p>2013-01-01</p> <p>This paper builds upon the analyses presented in two companion papers (Fluke et al., 2010; Fallon et al., 2013) using data from the 1998 and 2003 cycles of the Canadian Incidence Study of Reported Child Abuse and Neglect (CIS-1998 and CIS-2003) to examine the influence of clinical and organizational characteristics on the decision to place a child in out-of-home care at the conclusion of a child maltreatment investigation. This paper explores various model specifications to explain the effect of an agency-level factor, proportion of Aboriginal reports, which emerged as a stable and significant factor through the two data collection cycles. It addresses the issue of data comparability between the two cycles and explores various re-specifications and descriptive analyses of reported models to evaluate their solidity with regards to the sampling schemes and the precise contribution of a multi-level specification. The decision to place a child in out-of-home care was examined using data from the CIS-2003. This child welfare dataset collected information about the results of nearly 12,000 child maltreatment investigations as well as a description of the characteristics of the workers and organization responsible for conducting those investigations. Multi-level statistical models were developed using MPlus software, which can accommodate dichotomous outcome variables and are more reflective of decision-making in child welfare. The models are thus multi-level binary logistic regressions. Final models revealed that two agency-level variables, 'Education degree of majority of workers' and 'Degree of centralization in the agency' clarify the nature of the effect of 'Proportion of Aboriginal reports', a stable, key second level predictor of the placement decision. The comparability of the effect of this agency-level variable across the 1998 and 2003 cycles becomes further evident through this analysis. By using a unified database including both cycles and various specifications of models, the comparability was found to be robust, in addition to clarifying the precise contribution of a multi-level specification. This third paper in a series establishes the 'Proportion of Aboriginal reports' received by the child welfare agency as an important agency level predictor associated with a child's likelihood of being placed in the Canadian child protection system. While the more complex models give support to the notion that unequal resources subtend those results, more analyses are needed to confirm this hypothesis. Unequal resources for agencies with larger Aboriginal caseloads may explain the persistence of the results. These findings suggest that specific resource constraints related to worker education may be explanatory. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........78N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........78N"><span>Idealized Numerical Modeling Experiments of the Diurnal Cycle of Tropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navarro, Erika L.</p> <p></p> <p>Numerical experiments are performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in the high cloudiness of tropical cyclones (TCs) has been well documented in the past, the impact to storm structure and intensity remains unknown. Previous modeling work attributes differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. Here, a numerically-simulated TC in a statistical steady-state is examined to quantify the TC response to the daily cycle of radiation, and a modified, Sawyer-Eliassen approach is applied to evaluate the dynamical mechanism. Fourier analysis in time reveals a spatially coherent pattern in the temperature, wind, and latent heating tendency fields that is statistically significant at the 95% level. This signal accounts for up to 62% of the variance in the temperature field of the upper troposphere, and is mainly concentrated in the TC outflow layer. Composite analysis reveals a cycle in the storm intensity in the low-levels, which lags a periodic response in the latent heating tendency by 6 h. Average magnitudes of the azimuthal wind anomalies near the radius of maximum wind (RMW) are 1 m/s and account for 21% of the overall variance. A hypothesis is drawn from these results that the TC diurnal cycle is comprised of two distinct, periodic circulations: (1) a radiatively-driven circulation in the TC outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation in the lower and middle troposphere due to anomalous latent heating from convection. These responses are coupled and are periodic with respect to the diurnal cycle. Using a modified, Sawyer-Eliassen approach for time-varying heating, these hypotheses are evaluated to determine the impact of periodic diurnal heating on a balanced vortex. Periodic heating near the top of the vortex produces a local overturning circulation in the region of heating that manifests as inertia-buoyancy waves in the storm environment. Periodic heating in the lower troposphere drives an overturning circulation that resembles the Sawyer-Eliassen solution. This low-level heating induces a positive perturbation azimuthal wind response of 4 m/s near the RMW, which lags the maximum in streamfunction by 6 h. Comparison of these solutions to the numerically-simulated TC reveals a close correspondence of results, suggesting that the axisymmetric TC diurnal cycle is a balanced response driven by periodic heating. The sensitivity of these results to the length of the diurnal period and the vortex intensity are evaluated using the modified, Sawyer-Eliassen approach. Although the true diurnal period is fixed in nature, these experiments allow for the relationship between the magnitude and structure of the TC diurnal signal to the length of the diurnal period to be explored. Results demonstrate that the TC diurnal cycle exhibits large variance, even for the same heating distributions. High-frequency forcing projects mainly onto inertia-buoyancy waves, while low-frequency produces a balanced response resembling the Sawyer-Eliassen solution. Comparison to two, numerically simulated TCs with modified diurnal periods show similar results. In addition, stronger diurnal signals are observed for stronger vortices, suggesting a dependence of the TC diurnal signal on the underlying state of the vortex. These results imply that the magnitude and structure of the TC diurnal signal in nature varies throughout the storm lifetime, and is a function of the structure and intensity of the vortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20132755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20132755"><span>Biomechanical comparison of blade plate and intramedullary nail fixation for tibiocalcaneal arthrodesis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Arthur T; Sundberg, Eric B; Lindsey, Derek P; Harris, Alex H S; Chou, Loretta B</p> <p>2010-02-01</p> <p>Tibiocalcaneal arthrodesis is an uncommon salvage procedure used for complex problems of the ankle and hindfoot. A biomechanical evaluation of the fixation constructs of this procedure has not been studied previously. The purpose of this study was to compare intramedullary nail to blade plate fixation in a deformity model in fatigue endurance testing and load to failure. Nine matched pairs of fresh frozen cadaveric legs underwent talectomy followed by fixation with a blade plate and 6.5-mm fully threaded cancellous screw or an ankle arthrodesis intramedullary nail. The specimens were loaded to 270 N at a rate of 3 Hz for a total of 250,000 cycles, followed by loading to failure. Intramedullary nail fixation demonstrated greater mean stiffness throughout the fatigue endurance testing, from cycles 10 through 250,000 (blade plate versus intramedullary nail; cycle 10, 93 +/- 34 N/mm versus 117 +/- 40 N/mm (t = 2.33, p = 0.04); cycle 100, 89 +/- 34 N/mm versus 118 +/- 42 N/mm (t = 3.16, p = 0.01); cycle 1000, 86 +/- 32 N/mm versus 120 +/- 45 N/mm (t = 3.52, p = 0.01); cycle 10,000, 83 +/- 36 N/mm versus 128 +/- 50 N/mm (t = 3.80, p = 0.01); cycle 100,000, 82 +/- 34 N/mm versus 126 +/- 52 N/mm (t = 3.70, p = 0.01); cycle 250,000, 80 +/- 31 N/mm versus 125 +/- 49 N/mm (t = 4.2, p = 0.003). There was no statistically significant difference between the intramedullary nail and blade plate fixation in cycle one or in load to failure; cycle 10, blade plate 70 +/- 38 N/mm and intramedullary nail 67 +/- 20 N/mm (t = 0.60, p = 0.56); load to failure, blade plate 808 +/- 193 N, IMN 1074 +/- 290 N) (p = 0.15). Intramedullary nail fixation was biomechanically superior to blade plate and screw fixation in a tibiocalcaneal arthrodesis construct. The ankle arthrodesis intramedullary nail provides greater stiffness for fixation in tibiocalcaneal arthrodesis, which may improve healing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED33D0806O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED33D0806O"><span>The Fusion of Financial Analysis and Seismology: Statistical Methods from Financial Market Analysis Applied to Earthquake Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohyanagi, S.; Dileonardo, C.</p> <p>2013-12-01</p> <p>As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100033708&hterms=Pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPollution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100033708&hterms=Pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPollution"><span>Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong</p> <p>2009-01-01</p> <p>We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720014220','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720014220"><span>Planetary resonances, bi-stable oscillation modes, and solar activity cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sleeper, H. P., Jr.</p> <p>1972-01-01</p> <p>The natural resonance structure of the planets in the solar system yields resonance periods of 11.08 and 180 years. The 11.08 year period is due to resonance of the sidereal periods of the three inner planets. The 180-year period is due to synodic resonances of the four major planets. These periods are also observed in the sunspot time series. The 11-year sunspot cycles from 1 to 19 are separated into categories of positive and negative cycles, Mode 1 and Mode 2 cycles, and typical and anomalous cycles. Each category has a characteristic shape, magnitude, or duration, so that statistical prediction techniques are improved when a cycle can be classified in a given category. These categories provide evidence for bistable modes of solar oscillation. The next minimum is expected in 1977 and the next maximum in 1981 or later. These epoch values are 2.5 years later than those based on typical cycle characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........79J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........79J"><span>Predictability of current and future multi-river discharges: Ganges, Brahmaputra, Yangtze, Blue Nile, and Murray-Darling rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, Jun</p> <p>2007-12-01</p> <p>Determining river discharge is of critical importance to many societies as they struggle with fresh water supply and risk of flooding. In Bangladesh, floods occur almost every year but with sufficient irregularity to have adverse social and economical consequences. Important goals are to predict the discharge to be used for the optimization of agricultural practices, disaster mitigation and water resource management. The aim of this study is to determine the predictability of river discharge in a number of major rivers on time scale varying from weeks to a century. We investigated predictability considering relationship between SST and discharge. Next, we consider IPCC model projections of river discharge while the models are statistically adjusted against observed discharges. In this study, we consider five rivers, the Ganges, the Brahmaputra, the Yangtze, the Blue Nile, and the Murray-Darling Rivers. On seasonal time scales, statistically significant correlations are found between mean monthly equatorial Pacific sea surface temperature (SST) and the summer Ganges discharge with lead times of 2-3 months due to oscillations of the El Nino-Southern Oscillation (ENSO) phenomena. In addition, there are strong correlations in the southwest and northeast Pacific. These, too, appear to be tied to the ENSO cycle. The Brahmaputra discharge, on the other hand, shows somewhat weaker relationships with tropical SST. Strong lagged correlations relationships are found with SST in the Bay of Bengal but these are the result of very warm SSTs and exceptional Brahmaputra discharge during the summer of 1998. When this year is removed from the time series, relationships weaken everywhere except in the northwestern Pacific for the June discharge and in areas of the central Pacific straddling the equator for the July discharge. The relationships are relative strong, but they are persistent from month to month and suggest that two different and sequential factors influence Brahmaputra river flow. Second goal is to project the behavior of future river discharge forced by the increasing greenhouse gases (GHGs) and aerosols from natural and anthropogenic sources. Three more rivers, the Yangtze, Blue Nile, and Murray-Darling rivers are considered. It is meaningful to people living within the watershed, which would experience flooding or drought in the next 100-years. The original precipitation output from the third phase of Coupled Model Inter-comparison Project (CMIP3) project has large inter-model variability, which limits the ability to quantify the regional precipitation or runoff trends. With a basic statistical Quantile-to-Quantile (Q-Q) technique, a mapping index was built to link each modeled precipitation averaged over river catchment and observational discharge measured close to the mouth. Using the climatological annual cycle to choose the "good" models, the observational river discharges are well reproduced from the 20th century run (20C3M) model results. Furthermore, with the same indices, the future 21st century river discharge of the Yangtze, the Ganges, the Brahmaputra, and the Blue Nile are simulated under different SRES scenarios. The Murray-Darling River basin does not have the similar seasonal cycle of discharge with modeled precipitations. So we choose to build the link between satellite imaged and modeled precipitations and use it to simulate the future precipitation. The Yangtze, Ganges, Brahmaputra River mean wet season discharges are projected to increase up to 15-25% at the end of the 21st century under the most abundant GHGs scenarios (SRESA1B and SRESA2). The risks of flooding also reach to a high level throughout the time. Inter-model deviations increase dramatically under all scenarios except for the fixed-2000 level concentration (COMMIT). With large uncertainty, the Blue Nile River discharge and Murray-Darling River basin annual precipitation do not suggest a sign of change on multi-model mean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24235098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24235098"><span>Exploring the efficacy of cyclic vs static aspiration in a cerebral thrombectomy model: an initial proof of concept study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth</p> <p>2014-11-01</p> <p>Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2200664','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2200664"><span>Revealing cell cycle control by combining model-based detection of periodic expression with novel cis-regulatory descriptors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andersson, Claes R; Hvidsten, Torgeir R; Isaksson, Anders; Gustafsson, Mats G; Komorowski, Jan</p> <p>2007-01-01</p> <p>Background We address the issue of explaining the presence or absence of phase-specific transcription in budding yeast cultures under different conditions. To this end we use a model-based detector of gene expression periodicity to divide genes into classes depending on their behavior in experiments using different synchronization methods. While computational inference of gene regulatory circuits typically relies on expression similarity (clustering) in order to find classes of potentially co-regulated genes, this method instead takes advantage of known time profile signatures related to the studied process. Results We explain the regulatory mechanisms of the inferred periodic classes with cis-regulatory descriptors that combine upstream sequence motifs with experimentally determined binding of transcription factors. By systematic statistical analysis we show that periodic classes are best explained by combinations of descriptors rather than single descriptors, and that different combinations correspond to periodic expression in different classes. We also find evidence for additive regulation in that the combinations of cis-regulatory descriptors associated with genes periodically expressed in fewer conditions are frequently subsets of combinations associated with genes periodically expression in more conditions. Finally, we demonstrate that our approach retrieves combinations that are more specific towards known cell-cycle related regulators than the frequently used clustering approach. Conclusion The results illustrate how a model-based approach to expression analysis may be particularly well suited to detect biologically relevant mechanisms. Our new approach makes it possible to provide more refined hypotheses about regulatory mechanisms of the cell cycle and it can easily be adjusted to reveal regulation of other, non-periodic, cellular processes. PMID:17939860</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25623135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25623135"><span>Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark</p> <p>2015-04-01</p> <p>The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>