Application of Life Cycle Assessment on Electronic Waste Management: A Review.
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
Application of Life Cycle Assessment on Electronic Waste Management: A Review
NASA Astrophysics Data System (ADS)
Xue, Mianqiang; Xu, Zhenming
2017-04-01
Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.
NASA Astrophysics Data System (ADS)
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong
2017-01-01
China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.
The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Improving integrated waste management at the regional level: the case of Lombardia.
Rigamonti, Lucia; Falbo, Alida; Grosso, Mario
2013-09-01
The article summarises the main results of the 'Gestione Rifiuti in Lombardia: Analisi del ciclo di vita' (Waste management in Lombardia region: Life cycle assessment; GERLA) project. Life cycle assessment (LCA) has been selected by Regione Lombardia as a strategic decision support tool in the drafting of its new waste management programme. The goal was to use the life cycle thinking approach to assess the current regional situation and thus to give useful strategic indications for the future waste management. The first phase of the study consisted of the LCA of the current management of municipal waste in the Lombardia region (reference year: 2009). The interpretation of such results has allowed the definition of four possible waste management scenarios for the year 2020, with the final goal being to improve the environmental performance of the regional system. The results showed that the current integrated waste management of Lombardia region is already characterised by good energy and environmental performances. However, there is still room for further improvement: actions based, on the one hand, on a further increase in recycling rates and, on the other hand, on a series of technological modifications, especially in food waste and residual waste management, can be undertaken to improve the overall system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori
Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less
Rigamonti, L; Falbo, A; Grosso, M
2013-11-01
This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.
cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental
The paper is an update on U.S. research to develop tools and information for evaluating integrated solid waste management strategies. In the past, waste management systems consisted primarily of waste collection and disposal at a local landfill. Today's municipal solid waste ma...
Optimisation of the Management of Higher Activity Waste in the UK - 13537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Ciara; Buckley, Matthew
2013-07-01
The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interimmore » storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Life cycle assessment of a packaging waste recycling system in Portugal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt
Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less
Waste management through life cycle assessment of products
NASA Astrophysics Data System (ADS)
Borodin, Yu V.; Aliferova, T. E.; Ncube, A.
2015-04-01
The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.
Exploring the life cycle management of industrial solid waste in the case of copper slag.
Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo
2013-06-01
Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.
Application of life cycle assessment for hospital solid waste management: A case study.
Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz
2016-10-01
This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.
Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devotedmore » to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.« less
Electronic waste management approaches: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com
2013-05-15
Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less
APPLICATION OF THE US DECISION SUPPORT TOOL FOR MATERIALS AND WASTE MANAGEMENT
EPA¿s National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management plans or recycling...
Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.
Pikoń, Krzysztof; Gaska, Krzysztof
2010-07-01
Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2017-11-01
When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Bovea, M D; Ibáñez-Forés, V; Gallardo, A; Colomer-Mendoza, F J
2010-11-01
The aim of this study is to compare, from an environmental point of view, different alternatives for the management of municipal solid waste generated in the town of Castellón de la Plana (Spain). This town currently produces 207 ton of waste per day and the waste management system employed today involves the collection of paper/cardboard, glass and light packaging from materials banks and of rest waste at street-side containers. The proposed alternative scenarios were based on a combination of the following elements: selective collection targets to be accomplished by the year 2015 as specified in the Spanish National Waste Plan (assuming they are reached to an extent of 50% and 100%), different collection models implemented nationally, and diverse treatments of both the separated biodegradable fraction and the rest waste to be disposed of on landfills. This resulted in 24 scenarios, whose environmental behaviour was studied by applying the life cycle assessment methodology. In accordance with the ISO 14040-44 (2006) standard, an inventory model was developed for the following stages of the waste management life cycle: pre-collection (bags and containers), collection, transport, pre-treatment (waste separation) and treatment/disposal (recycling, composting, biogasification+composting, landfill with/without energy recovery). Environmental indicators were obtained for different impact categories, which made it possible to identify the key variables in the waste management system and the scenario that offers the best environmental behaviour. Finally, a sensitivity analysis was used to test some of the assumptions made in the initial life cycle inventory model. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhre, W.L.
This book was written to help the environmental and safety student learn about the field and to help the working professional manage hazardous material and waste issues. For example, one issue that will impact virtually all of these people mentioned is the upcoming environmental standardization movement. The International Standards Organization (ISO) is in the process of adding comprehensive environmental and hazardous waste management systems to their future certification requirements. Most industries worldwide will be working hard to achieve this new level of environmental management. This book presents many of the systems needed to receive certification. In order to properly managemore » hazardous waste, it is important to consider the entire life cycle, including when the waste was a useful chemical or hazardous material. Waste minimization is built upon this concept. Understanding the entire life cycle is also important in terms of liability, since many regulations hold generators responsible from cradle to grave. This book takes the life-cycle concept even further, in order to provide additional insight. The discussion starts with the conception of the chemical and traces its evolution into a waste and even past disposal. At this point the story continues into the afterlife, where responsibility still remains.« less
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte
2016-03-01
This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Morettini, Emanuela
2015-10-15
Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh watermore » eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.« less
Improvement of the material and transport component of the system of construction waste management
NASA Astrophysics Data System (ADS)
Kostyshak, Mikhail; Lunyakov, Mikhail
2017-10-01
Relevance of the topic of selected research is conditioned with the growth of construction operations and growth rates of construction and demolition wastes. This article considers modern approaches to the management of turnover of construction waste, sequence of reconstruction or demolition processes of the building, information flow of the complete cycle of turnover of construction and demolition waste, methods for improvement of the material and transport component of the construction waste management system. Performed analysis showed that mechanism of management of construction waste allows to increase efficiency and environmental safety of this branch and regions.
High-level waste program progress report, April 1, 1980-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.
USER'S GUIDE FOR THE MUNICIPAL SOLID WASTE LIFE-CYCLE DATABASE
The report describes how to use the municipal solid waste (MSW) life cycle database, a software application with Microsoft Access interfaces, that provides environmental data for energy production, materials production, and MSW management activities and equipment. The basic datab...
Resource Cycles: A Curriculum for Middle and High School Teachers.
ERIC Educational Resources Information Center
San Francisco Recycling Program, CA.
Learning about issues such as natural resources, solid waste management, waste reduction, and the economics of recycling can encourage people to make better choices for the future. This curriculum provides teachers and students with background information and activities relating to four major ecological issues: natural resources, waste management,…
Redesigning Urban Carbon Cycles: from Waste Stream to Commodity
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Fitzstevens, M. G.
2013-12-01
While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in supporting urban agriculture. We are now extending this approach to additional large U.S. and European urban centers where different philosophical and technological approaches to managing urban waste carbon have resulted in a range of infrastructures, from highly distributed systems (Germany) to centralized mega facilities (London). Ultimately, this research will lead to a decision-making matrix model that will permit cities to customize their urban carbon waste stream facilities and transform this waste into a usable commodity.
Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas
2018-03-01
In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.
Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactivemore » waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.« less
Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.
Chen, Tsao-Chou; Lin, Cheng-Fang
2008-06-30
When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.
Life cycle assessment of ship-generated waste management of Luka Koper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuin, Stefano, E-mail: sz.cvr@vegapark.ve.i; Belac, Elvis; Marzi, Boris
2009-12-15
Sea ports and the related maritime activities (e.g. shipping, shipbuilding, etc.) are one of the main driver of Europe's growth, jobs, competitiveness and prosperity. The continuously growth of shipping sectors has however introduced some environmental concerns, particularly with respect to ship-generated waste management. The port of Koper, one of the major ports on the northern Adriatic Coast, is the focus of this study. In this paper, a life cycle assessment was performed to identify and quantify the environmental impacts caused by the ship-generated waste management of port of Koper. Carcinogens substance (e.g. dioxins) and inorganic emissions, especially heavy metals, resultedmore » to be the most critical environmental issues, while the fossil fuels consumption is reduced by recovery of ship-generated oils. Moreover, the final treatment of ship waste was found to be critical phase of the management, and the landfill have a significant contribute to the overall environmental load. These results can be useful in the identification of the best practices and in the implementation of waste management plans in ports.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-15
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-01
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.
Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H
2008-02-01
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes weremore » considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.« less
Finnveden, Göran; Björklund, Anna; Moberg, Asa; Ekvall, Tomas
2007-06-01
A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.
Mapping of information and identification of construction waste at project life cycle
NASA Astrophysics Data System (ADS)
Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia
2018-03-01
The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.
Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer
2014-06-01
Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.
The artificial water cycle: emergy analysis of waste water treatment.
Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco
2003-04-01
The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.
Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji
2010-06-01
In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
Engineering Greener Processes--Laser Cutter Transforms Printing Waste
ERIC Educational Resources Information Center
Xu, Renmei; Flowers, Jim
2011-01-01
Many of today's students have embraced an environmental ethic and are motivated by efforts to reduce waste or to remanufacture waste into viable products. In-class efforts to reuse and remanufacture waste can be especially motivating. They can also help students develop a better understanding of life-cycle analysis, waste-stream management,…
Closed Fuel Cycle Waste Treatment Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, J. D.; Collins, E. D.; Crum, J. V.
This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less
Understanding the role of waste prevention in local waste management: A literature review.
Zacho, Kristina O; Mosgaard, Mette A
2016-10-01
Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.
Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro
2016-09-01
The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.
Municipal waste management in Sicily: practices and challenges.
Messineo, Antonio; Panno, Domenico
2008-01-01
There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.
A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carelli, M.D.; Franceschini, F.; Lahoda, E.J.
2012-07-01
A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less
Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba
2013-12-01
Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport. Copyright © 2013. Published by Elsevier Ltd.
Healthcare waste management research: A structured analysis and review (2005-2014).
Thakur, Vikas; Ramesh, A
2015-10-01
The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.
Nessi, Simone; Rigamonti, Lucia; Grosso, Mario
2015-09-01
A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.
Laso, J; Margallo, M; Celaya, J; Fullana, P; Bala, A; Gazulla, C; Irabien, A; Aldaco, R
2016-08-01
The anchovy canning industry has high importance in the Cantabria Region (North Spain) from economic, social and touristic points of view. The Cantabrian canned anchovy is world-renowned owing to its handmade and traditional manufacture. The canning process generates huge amounts of several food wastes, whose suitable management can contribute to benefits for both the environment and the economy, closing the loop of the product life cycle. Life cycle assessment methodology was used in this work to assess the environmental performance of two waste management alternatives: Head and spine valorisation to produce fishmeal and fish oil; and anchovy meat valorisation to produce anchovy paste. Fuel oil production has been a hotspot of the valorisation of heads and spines, so several improvements should be applied. With respect to anchovy meat valorisation, the production of polypropylene and glass for packaging was the least environmentally friendly aspect of the process. Furthermore, the environmental characterisation of anchovy waste valorisation was compared with incineration and landfilling alternatives. In both cases, the valorisation management options were the best owing to the avoided burdens associated with the processes. Therefore, it is possible to contribute to the circular economy in the Cantabrian canned anchovy industry. © The Author(s) 2016.
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Cycles for Science: Curriculum Supplement for Chemistry (Grades 9-12).
ERIC Educational Resources Information Center
Rogers, Diana, Ed.
This document was developed in cooperation with secondary teachers and solid waste management professionals. The goal is to integrate steel recycling, natural resource conservation, and solid waste management into science learning. Basic concepts from the following chemistry units have been used to design the lessons and activities: transition…
de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto
2017-05-01
Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Lakey, L.T.; Silviera, D.J.
The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorneloe, S.; Weitz, K.; Nishtala, S.
1998-08-01
Municipal solid waste (MSW) management increasingly is based on integrated systems. The US initiated research in 1994 through funding by the US Environmental Protection Agency and the US Department of Energy to develop (1) a decision support tool; (2) a database; and (3) case studies. This paper provides an overview of the research that is in process.
Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.
Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard
2016-04-19
Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.
Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L
2017-01-01
Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Lei; Templer, Richard; Murphy, Richard J
2012-09-01
This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.
The paper discusses a computer-based decision support tool that has been developed to assist local governments in evaluating the cost and environmental performance of integrated municipal solid waste (MSW) managment systems. ongoing case studies of the tool at the local level are...
Hanandeh, Ali El; El-Zein, Abbas
2010-05-01
This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
From waste to sustainable materials management: Three case studies of the transition journey.
Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen
2017-03-01
Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Comparative Analysis of Life-Cycle Assessment Tools for End-of-Life Materials Management Systems
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal s...
Morris, Jeffrey; Brown, Sally; Cotton, Matthew; Matthews, H Scott
2017-05-16
This study reviewed 147 life cycle studies, with 28 found suitable for harmonizing food waste management methods' climate and energy impacts. A total of 80 scientific soil productivity studies were assessed to rank management method soil benefits. Harmonized climate impacts per kilogram of food waste range from -0.20 kg of carbon dioxide equivalents (CO 2 e) for anaerobic digestion (AD) to 0.38 kg of CO 2 e for landfill gas-to-energy (LFGTE). Aerobic composting (AC) emits -0.10 kg of CO 2 e. In-sink grinding (ISG) via a food-waste disposer and flushing for management with other sewage at a wastewater treatment plant emits 0.10 kg of CO 2 e. Harmonization reduced climate emissions versus nonharmonized averages. Harmonized energy impacts range from -0.32 MJ for ISG to 1.14 MJ for AC. AD at 0.27 MJ and LFGTE at 0.40 MJ fall in between. Rankings based on soil studies show AC first for carbon storage and water conservation, with AD second. AD first for fertilizer replacement, with AC second, and AC and AD tied for first for plant yield increase. ISG ranks third and LFGTE fourth on all four soil-quality and productivity indicators. Suggestions for further research include developing soil benefits measurement methods and resolving inconsistencies in the results between life-cycle assessments and soil science studies.
Medical Waste Management in Community Health Centers.
Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz
2018-02-01
Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.
Li, Hua; Nitivattananon, Vilas; Li, Peng
2015-05-01
This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. © The Author(s) 2015.
International nuclear waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahms, C W; Patridge, M D; Widrig, J E
1995-11-01
The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
Lean-Six Sigma: tools for rapid cycle cost reduction.
Caldwell, Chip
2006-10-01
Organizational costs can be grouped as process cost, cost of quality, and cost of poor quality. Providers should train managers in the theory and application of Lean-Six Sigma, including the seven categories of waste and how to remove them. Healthcare financial executives should work with managers in eliminating waste to improve service and reduce costs.
Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Maalouf, Amani; El-Fadel, Mutasem
2017-11-01
In this study, the carbon footprint of introducing a food waste disposer (FWD) policy was examined in the context of its implications on solid waste and wastewater management with economic assessment of environmental externalities emphasizing potential carbon credit and increased sludge generation. For this purpose, a model adopting a life cycle inventory approach was developed to integrate solid waste and wastewater management processes under a single framework and test scenarios for a waste with high organic food content typical of developing economies. For such a waste composition, the results show that a FWD policy can reduce emissions by nearly ∼42% depending on market penetration, fraction of food waste ground, as well as solid waste and wastewater management schemes, including potential energy recovery. In comparison to baseline, equivalent economic gains can reach ∼28% when environmental externalities including sludge management and emissions variations are considered. The sensitivity analyses on processes with a wide range in costs showed an equivalent economic impact thus emphasizing the viability of a FWD policy although the variation in the cost of sludge management exhibited a significant impact on savings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2018-01-01
Municipal food waste (FW) represents 35-45% of household residual waste in Australia, with the nation generating 1.6Tg annually. It is estimated that 91% of this FW ends up in landfill. This study used life cycle assessment to determine and compare the environmental impact of seven contemporary FW management systems for two real-life jurisdictions; incorporating the complete waste service and expanding the system to include inert and garden waste. Although, no system exhibited a best ranking across all impact categories, FW digestion based systems were all revealed to have a lower global warming potential than composting and landfilling systems. Mechanical biological treatment, anaerobic co-digestion, and home composting all demonstrated the lowest environmental impacts for two or more of the environmental impact categories assessed. The assessment included market and technological specific variables and uncertainties providing a framework for robust decision making at a municipality level. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Sustainable WEE management in Malaysia: present scenarios and future perspectives
NASA Astrophysics Data System (ADS)
Rezaul Hasan Shumon, Md; Ahmed, S.
2013-12-01
Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.
Electronic waste management approaches: an overview.
Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H
2013-05-01
Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça
2017-03-01
An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental evaluation of municipal waste prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk
Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less
Applications of life cycle assessment and cost analysis in health care waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br; Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br; Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br
Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of USmore » $$ 0.12 kg{sup -1} for the waste treated with microwaves, US$$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.« less
Rigamonti, L; Grosso, M; Giugliano, M
2009-02-01
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2017-01-01
This study used life cycle assessment to evaluate the environmental impact of anaerobic co-digestion (AcoD) and compared it against the current waste management system in two case study areas. Results indicated AcoD to have less environmental impact for all categories modelled excluding human toxicity, despite the need to collect and pre-treat food waste separately. Uncertainty modelling confirmed that AcoD has a 100% likelihood of a smaller global warming potential, and for acidification, eutrophication and fossil fuel depletion AcoD carried a greater than 85% confidence of inducing a lesser impact than the current waste service. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Griffin, Sharoon; Sarfraz, Muhammad; Farida, Verda; Nasim, Muhammad Jawad; Ebokaiwe, Azubuike P; Keck, Cornelia M; Jacob, Claus
2018-03-15
Modern food processing results in considerable amounts of side-products, such as grape seeds, walnut shells, spent coffee grounds, and harvested tomato plants. These materials are still rich in valuable and biologically active substances and therefore of interest from the perspective of waste management and "up-cycling". In contrast to traditional, often time consuming and low-value uses, such as vermicomposting and anaerobic digestion, the complete conversion into nanosuspensions unlocks considerable potentials of and new applications for such already spent organic materials without the need of extraction and without producing any additional waste. In this study, nanosuspensions were produced using a sequence of milling and homogenization methods, including High Speed Stirring (HSS) and High Pressure Homogenization (HPH) which reduced the size of the particles to 200-400 nm. The resulting nanosuspensions demonstrated nematicidal and antimicrobial activity and their antioxidant activities exceeded the ones of the bulk materials. In the future, this simple nanosizing approach may fulfil several important objectives, such as reducing and turning readily available waste into new value and eventually closing a crucial cycle of agricultural products returning to their fields - with a resounding ecological impact in the fields of medicine, agriculture, cosmetics and fermentation. Moreover, up-cycling via nanosizing adds an economical promise of increased value to residue-free waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of an Integrated Waste Plan for Chalk River Laboratories - 13376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.
2013-07-01
To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)« less
Modular life cycle assessment of municipal solid waste management.
Haupt, M; Kägi, T; Hellweg, S
2018-05-31
Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.
Guide to radioactive waste management literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, B.L.; Holoway, C.F.; Madewell, D.G.
Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less
International nuclear fuel cycle fact book. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
International Nuclear Fuel Cycle Fact Book. Revision 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês
2018-05-01
Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.
International waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya, J P; LaMarche, M N; Upton, J F
1997-10-01
Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.
Ibáñez-Forés, Valeria; Bovea, María D; Coutinho-Nóbrega, Claudia; de Medeiros-García, Hozana R; Barreto-Lins, Raissa
2018-02-01
The aim of this study is to analyse the evolution of the municipal solid waste management system of João Pessoa (Brazil), which was one of the Brazilian pioneers cities in implementing door-to-door selective collection programmes, in order to analyse the effect of policy decisions adopted in last decade with regard to selective collection. To do it, this study focuses on analysing the evolution, from 2005 to 2015, of the environmental performance of the municipal solid waste management (MSWM) system implemented in different sorting units with selective collection programmes by applying the Life Cycle Assessment (LCA) methodology and using as a starting point data collected directly from the different stakeholders involved in the MSWM system. This article presents the temporal evolution of environmental indicators measuring the environmental performance of the MSWM system implemented in João Pessoa by sorting unit, for each stage of the life cycle of the waste (collection, classification, intermediate transports, recycling and landfilling), for each waste fraction and for each collection method (selective collection or mixed collection), with the aim of identifying the key aspects with the greatest environmental impact and their causes. Results show on one hand, that environmental behaviour of waste management in a door-to-door selective collection programme significantly improves the behaviour of the overall waste management system. Consequently, the potential to reduce the existing environmental impact based on citizens' increased participation in selective collection is evidenced, so the implementation of awareness-raising campaigns should be one of the main issues of the next policies on solid waste. On the other hand, increasing the amount of recyclable wastes collected selectively, implementing alternative methods for valorising the organic fraction (compost/biomethanization) and improving the efficiency of the transportation stage by means of optimizing vehicles or routes, are essential actions to reduce the overall net environmental impact generated by the MSWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identifying potential environmental impacts of waste handling strategies in textile industry.
Yacout, Dalia M M; Hassouna, M S
2016-08-01
Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.
Blengini, Gian Andrea; Fantoni, Moris; Busto, Mirko; Genon, Giuseppe; Zanetti, Maria Chiara
2012-09-01
The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modeling for waste management associated with environmental-impact abatement under uncertainty.
Li, P; Li, Y P; Huang, G H; Zhang, J L
2015-04-01
Municipal solid waste (MSW) treatment can generate significant amounts of pollutants, and thus pose a risk on human health. Besides, in MSW management, various uncertainties exist in the related costs, impact factors, and objectives, which can affect the optimization processes and the decision schemes generated. In this study, a life cycle assessment-based interval-parameter programming (LCA-IPP) method is developed for MSW management associated with environmental-impact abatement under uncertainty. The LCA-IPP can effectively examine the environmental consequences based on a number of environmental impact categories (i.e., greenhouse gas equivalent, acid gas emissions, and respiratory inorganics), through analyzing each life cycle stage and/or major contributing process related to various MSW management activities. It can also tackle uncertainties existed in the related costs, impact factors, and objectives and expressed as interval numbers. Then, the LCA-IPP method is applied to MSW management for the City of Beijing, the capital of China, where energy consumptions and six environmental parameters [i.e., CO2, CO, CH4, NOX, SO2, inhalable particle (PM10)] are used as systematic tool to quantify environmental releases in entire life cycle stage of waste collection, transportation, treatment, and disposal of. Results associated with system cost, environmental impact, and the related policy implication are generated and analyzed. Results can help identify desired alternatives for managing MSW flows, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty.
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko
2016-07-01
Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.
Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning
2018-06-01
Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.
Yadav, Pooja; Samadder, S R
2017-04-01
This study reviewed the municipal solid waste (MSW) composition, the management practices, and the use of life cycle assessment (LCA) tool for MSW management (MSWM) options in the various income group countries. LCA studies require inventory data, which is difficult to procure for any country including higher income group countries, and this issue gets compounded in low-income and lower middle-income group countries, which limits the implementation of LCA. This paper compared the use of LCA for MSWM between high-income and low-income group countries and also highlights the gap in using LCA for MSWM. A very limited number of LCA studies on MSWM were found for low-income group countries in comparison to high-income group countries. The study also provided a critical discussion on the challenges in applications of LCA in MSWM for better solid waste management in low-income and lower middle-income group countries. The study will help in taking up LCA studies in low-income countries to improve the overall MSWM efficiency.
Decision support models for solid waste management: Review and game-theoretic approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos
Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less
Sustainable Materials Management (SMM) WasteWise Data
EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources
Life cycle assessment of a national policy proposal - the case of a Swedish waste incineration tax.
Björklund, Anna E; Finnveden, Göran
2007-01-01
At the core of EU and Swedish waste policy is the so-called waste hierarchy, according to which waste should first be prevented, but should otherwise be treated in the following order of prioritisation: reuse, recycling when environmentally motivated, energy recovery, and last landfilling. Some recent policy decisions in Sweden aim to influence waste management in the direction of the waste hierarchy. In 2001 a governmental commission assessed the economic and environmental impacts of introducing a weight-based tax on waste incineration, the purpose of which would be to encourage waste reduction and increase materials recycling and biological treatment. This paper presents the results of a life cycle assessment (LCA) of the waste incineration tax proposal. It was done in the context of a larger research project concerning the development and testing of a framework for Strategic Environmental Assessment (SEA). The aim of this paper is to assess the life cycle environmental impacts of the waste incineration tax proposal, and to investigate whether there are any possibilities of more optimal design of such a tax. The proposed design of the waste incineration tax results in increased recycling, but only in small environmental improvements. A more elaborate tax design is suggested, in which the tax level would partly be related to the fossil carbon content of the waste.
Haight, M
2005-01-01
Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.
Life cycle costing of food waste: A review of methodological approaches.
De Menna, Fabio; Dietershagen, Jana; Loubiere, Marion; Vittuari, Matteo
2018-03-01
Food waste (FW) is a global problem that is receiving increasing attention due to its environmental and economic impacts. Appropriate FW prevention, valorization, and management routes could mitigate or avoid these effects. Life cycle thinking and approaches, such as life cycle costing (LCC), may represent suitable tools to assess the sustainability of these routes. This study analyzes different LCC methodological aspects and approaches to evaluate FW management and valorization routes. A systematic literature review was carried out with a focus on different LCC approaches, their application to food, FW, and waste systems, as well as on specific methodological aspects. The review consisted of three phases: a collection phase, an iterative phase with experts' consultation, and a final literature classification. Journal papers and reports were retrieved from selected databases and search engines. The standardization of LCC methodologies is still in its infancy due to a lack of consensus over definitions and approaches. Research on the life cycle cost of FW is limited and generally focused on FW management, rather than prevention or valorization of specific flows. FW prevention, valorization, and management require a consistent integration of LCC and Life Cycle Assessment (LCA) to avoid tradeoffs between environmental and economic impacts. This entails a proper investigation of methodological differences between attributional and consequential modelling in LCC, especially with regard to functional unit, system boundaries, multi-functionality, included cost, and assessed impacts. Further efforts could also aim at finding the most effective and transparent categorization of costs, in particular when dealing with multiple stakeholders sustaining costs of FW. Interpretation of results from LCC of FW should take into account the effect on larger economic systems. Additional key performance indicators and analytical tools could be included in consequential approaches. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.
Sharma, Bhupendra K; Chandel, Munish K
2017-01-01
Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.
Koo, Ja-Kong; Jeong, Seung-Ik
2015-05-01
Since medical insurance was introduced in the Republic of Korea, there have been several increases concerning medical waste. In order to solve these problems, we have applied life cycle assessment and life cycle cost. But these methods cannot be a perfect decision-making tool because they can only evaluate environmental and economic burdens. Thus, as one of many practical methods the shared smart and mutual - green growth considers economic growth, environmental protection, social justice, science technology and art, and mutual voluntarism when applied to medical waste management in the Republic of Korea. Four systems were considered: incineration, incineration with heat recovery, steam sterilisation, and microwave disinfection. This research study aimed to assess pollutant emissions from treatment, transport, and disposal. Global warming potential, photochemical oxidant creation potential, acidifications potential, and human toxicity are considered to be environmental impacts. Total investment cost, transport cost, operation, and maintenance cost for the medical waste are considered in the economy evaluations though life cycle cost. The social development, science technology and art, and mutual voluntarism are analysed through the Delphi-method conducted by expert groups related to medical waste. The result is that incineration with heat recovery is the best solution. However, when heat recovery is impossible, incineration without heat recovery becomes the next best choice. That is why 95% of medical waste is currently treated by both incineration and incineration with heat recovery within the Republic of Korea. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, W
This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team wasmore » expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing wastes. (7) M-TSD staff participated in a series of meetings of the US-Japan GNEP Working Group on Waste Management, developing the content for the first deliverable of the working group.« less
Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Andersen, Jacob K.; Christensen, Thomas H.
2011-07-15
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categoriesmore » and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.« less
Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.
Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H
2011-07-01
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao
1997-03-01
The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less
Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
Ikhlayel, Mahdi
2017-10-01
This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Life cycle costing of waste management systems: Overview, calculation principles and case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard
2015-02-15
Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and −0.3 M€/year saved on incineration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.
Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting frommore » various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning.« less
BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT
Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...
Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A
2016-08-16
New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.
Beylot, Antoine; Villeneuve, Jacques; Bellenfant, Gaël
2013-02-01
GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA. Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas. Biogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses. However the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hossain, Md Uzzal; Wu, Zezhou; Poon, Chi Sun
2017-11-01
This study aimed to compare the environmental performance of building construction waste management (CWM) systems in Hong Kong. Life cycle assessment (LCA) approach was applied to evaluate the performance of CWM systems holistically based on primary data collected from two real building construction sites and secondary data obtained from the literature. Different waste recovery rates were applied based on compositions and material flow to assess the influence on the environmental performance of CWM systems. The system boundary includes all stages of the life cycle of building construction waste (including transportation, sorting, public fill or landfill disposal, recovery and reuse, and transformation and valorization into secondary products). A substitutional LCA approach was applied for capturing the environmental gains due to the utilizations of recovered materials. The results showed that the CWM system by using off-site sorting and direct landfilling resulted in significant environmental impacts. However, a considerable net environmental benefit was observed through an on-site sorting system. For example, about 18-30kg CO 2 eq. greenhouse gases (GHGs) emission were induced for managing 1 t of construction waste through off-site sorting and direct landfilling, whereas significant GHGs emission could be potentially avoided (considered as a credit -126 to -182kg CO 2 eq.) for an on-site sorting system due to the higher recycling potential. Although the environmental benefits mainly depend on the waste compositions and their sortability, the analysis conducted in this study can serve as guidelines to design an effective and resource-efficient building CWM system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Parkes, Olga; Lettieri, Paola; Bogle, I David L
2015-06-01
This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.
Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen
2010-01-01
Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.
Paper waste - recycling, incineration or landfilling? A review of existing life cycle assessments.
Villanueva, A; Wenzel, H
2007-01-01
A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Gurauskiene, Inga; Stasiskiene, Zaneta
2011-07-01
Electrical and electronic equipment (EEE) has penetrated everyday life. The EEE industry is characterized by a rapid technological change which in turn prompts consumers to replace EEE in order to keep in step with innovations. These factors reduce an EEE life span and determine the exponential growth of the amount of obsolete EEE as well as EEE waste (e-waste). E-waste management systems implemented in countries of the European Union (EU) are not able to cope with the e-waste problem properly, especially in the new EU member countries. The analysis of particular e-waste management systems is essential in evaluation of the complexity of these systems, describing and quantifying the flows of goods throughout the system, and all the actors involved in it. The aim of this paper is to present the research on the regional agent based material flow analysis in e-waste management systems, as a measure to reveal the potential points for improvement. Material flow analysis has been performed as a flow of goods (EEE). The study has shown that agent-based EEE flow analysis incorporating a holistic and life cycle thinking approach in national e-waste management systems gives a broader view to the system than a common administrative one used to cover. It helps to evaluate the real efficiency of e-waste management systems and to identify relevant impact factors determining the current operation of the system.
Environmental issues elimination through circular economy
NASA Astrophysics Data System (ADS)
Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.
2016-04-01
Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
2014 Zero Waste Strategic Plan Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wrons, Ralph J.
Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Servicesmore » and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.« less
Material and energy recovery in integrated waste management systems: a life-cycle costing approach.
Massarutto, Antonio; de Carli, Alessandro; Graffi, Matteo
2011-01-01
A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Wang, Michael
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Lee, Uisung; Han, Jeongwoo; Wang, Michael
2017-08-05
Various waste-to-energy (WTE) conversion technologies can generate energy products from municipal solid waste (MSW). Accurately evaluating landfill gas (LFG, mainly methane) emissions from base case landfills is critical to conducting a WTE life-cycle analysis (LCA) of their greenhouse gas (GHG) emissions. To reduce uncertainties in estimating LFG, this study investigated key parameters for its generation, based on updated experimental results. These results showed that the updated parameters changed the calculated GHG emissions from landfills significantly depending on waste stream; they resulted in a 65% reduction for wood (from 2412 to 848 t CO 2e/dry t) to a 4% increase formore » food waste (from 2603 to 2708 t CO 2e/dry t). Landfill GHG emissions also vary significantly based on LFG management practices and climate. In LCAs of WTE conversion, generating electricity from LFG helps reduce GHG emissions indirectly by displacing regional electricity. When both active LFG collection and power generation are considered, GHG emissions are 44% less for food waste (from 2708 to 1524 t CO 2e/dry t), relative to conventional MSW landfilling. The method developed and data collected in this study can help improve the assessment of GHG impacts from landfills, which supports transparent decision-making regarding the sustainable treatment, management, and utilization of MSW.« less
Catalán, Eva; Komilis, Dimitrios; Sánchez, Antoni
2017-07-01
One of the wastes associated with leather production in tannery industries is the hair residue generated during the dehairing process. Hair wastes are mainly dumped or managed through composting but recent studies propose the treatment of hair wastes through solid-state fermentation (SSF) to obtain proteases and compost. These enzymes are suitable for its use in an enzymatic dehairing process, as an alternative to the current chemical dehairing process. In the present work, two different scenarios for the valorization of the hair waste are proposed and assessed by means of life-cycle assessment: composting and SSF for protease production. Detailed data on hair waste composting and on SSF protease production are gathered from previous studies performed by our research group and from a literature survey. Background inventory data are mainly based on Ecoinvent version 3 from software SimaPro® 8. The main aim of this study was to identify which process results in the highest environmental impact. The SSF process was found to have lower environmental impacts than composting, due to the fact that the enzyme use in the dehairing process prevents the use of chemicals traditionally used in the dehairing process. This permits to reformulate an industrial process from the classical approach of waste management to a novel alternative based on circular economy.
Martinez-Sanchez, Veronica; Levis, James W; Damgaard, Anders; DeCarolis, Joseph F; Barlaz, Morton A; Astrup, Thomas F
2017-03-21
The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO 2 , CH 4 , N 2 O, PM 2.5 , PM 10 , NO x , SO 2 , VOC, CO, NH 3 , Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO 2 , NO x , PM 2.5 , CH 4 , fossil CO 2 , and NH 3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.
Life cycle costing of waste management systems: overview, calculation principles and case studies.
Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard
2015-02-01
This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and -0.3 M€/year saved on incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.
E-waste management and sustainability: a case study in Brazil.
Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano
2017-11-01
The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.
Classroom and Field Experiments for Florida's Environmental Resources.
ERIC Educational Resources Information Center
Lewis, Jim
This booklet is intended to help teachers in Florida manage the growing interest in environmental education. Fourteen experiments are grouped into the environmental areas of the water cycle, groundwater, water pollution, waste and water treatment, air pollution, and field experiments. Experiments include demonstrations of the water cycle, the…
Environmental performance of household waste management in Europe - An example of 7 countries.
Andreasi Bassi, Susanna; Christensen, Thomas H; Damgaard, Anders
2017-11-01
An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der
2012-05-01
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.
Tank waste remediation system configuration management implementation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
1998-03-31
The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less
Liang, Sai; Zhang, Tianzhu; Xu, Yijian
2012-03-01
Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 VERSION 2005.0 VOLUME 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
2005-04-13
The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This report is an annual update to the SWIFT 2004.1 report that was published in August 2004. The SWIFT Report is published in two volumes. SWIFT Volume II provides detailed analyses of the data, graphical representation, comparison to previous years, and waste generator specific information. The data contained in this report are the official data for solid waste forecasting. In this revision, the volume numbers have been switched to reflect the timingmore » of their release. This particular volume provides the following data reports: (1) Summary volume data by DOE Office, company, and location; (2) Annual volume data by waste generator; (3) Annual waste specification record and physical waste form volume; (4) Radionuclide activities and dose-equivalent curies; and (5) Annual container type data by volume and count.« less
Zhao, Wei; Huppes, Gjalt; van der Voet, Ester
2011-06-01
The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.
An Indian tribal view of the back end of the nuclear fuel cycle: Historical and cultural lessons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tano, M.L.; Reuben, J.H.; Powaukee, D.
Indian tribes of the western United States, including the Nez Perce Tribe, the Confederated Tribes of the Umatilla Indian Reservation, and the Yakama Indian Nation, have entered into cooperative agreements with the U.S. Department of Energy to oversee the cleanup of the Hanford Reservation, in Washington state. These and other tribes considering involvement in nuclear waste management programs have been subjected to severe criticism from some Indians and non-Indians, accusing them of aiding and abetting the violation of Mother Earth by acquiescing in the contamination of lands by radioactive wastes. We`d like to suggest that this view of the Indianmore » relationship to nature and the environment is too narrow. While the purpose of this article is not to suggest that Indian beliefs support the location of waste management facilities on Indian lands, we will describe aspects of Indian religion and culture that support tribal involvement in radioactive waste management and environmental restoration, and participation in radioactive waste management decision making.« less
Environmental impact assessment of solid waste management in Beijing City, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yan; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Tsinghua University, 100084 Beijing; Christensen, Thomas H.
2011-04-15
The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significantmore » environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.« less
Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...
Electricity production from municipal solid waste in Brazil.
Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena
2017-07-01
Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.
Life cycle assessment on food waste and its application in China
NASA Astrophysics Data System (ADS)
Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa
2018-01-01
Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.
Environmental issues elimination through circular economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.
Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition.more » Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.« less
Integrating repositories with fuel cycles: The airport authority model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.
2012-07-01
The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuelmore » fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)« less
Tabata, Tomohiro; Wakabayashi, Yohei; Tsai, Peii; Saeki, Takashi
2017-03-01
Although it is important that disaster waste be demolished and removed as soon as possible after a natural disaster, it is also important that its treatment is environmentally friendly and economic. Local municipalities do not conduct environmental and economic feasibility studies of pre-disaster waste management; nevertheless, pre-disaster waste management is extremely important to promote treatment of waste after natural disasters. One of the reasons that they cannot conduct such evaluations is that the methods and inventory data required for the environmental and economic evaluation does not exist. In this study, we created the inventory data needed for evaluation and constructed evaluation methods using life cycle assessment (LCA) and life cycle cost (LCC) methodologies for future natural disasters. We selected the Japanese town of Minami-Ise for the related case study. Firstly, we estimated that the potential disaster waste generation derived from dwellings would be approximately 554,000t. Based on this result, the land area required for all the temporary storage sites for storing the disaster waste was approximately 55ha. Although the public domain and private land area in this case study is sufficient, several sites would be necessary to transport waste to other sites with enough space because local space is scarce. Next, we created inventory data of each process such as waste transportation, operation of the temporary storage sites, and waste treatment. We evaluated the environmental burden and cost for scenarios in which the disaster waste derived from specified kinds of home appliances (refrigerators, washing machines, air-conditioners and TV sets) was transported, stored and recycled. In the scenario, CO 2 , SO x , NO X and PM emissions and total cost were 142t, 7kg, 257kg, 38kg and 1772 thousand USD, respectively. We also focused on SO x emission as a regional pollution source because transportation and operation of the temporary storage sites generates air pollution. If the treatment of all waste were finished in 3years, the environmental standard would be satisfied by setting work duration to 4.8h/d. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prioritizing and optimizing sustainable measures for food waste prevention and management.
Cristóbal, Jorge; Castellani, Valentina; Manfredi, Simone; Sala, Serenella
2018-02-01
Food waste has gained prominence in the European political debate thanks to the recent Circular Economy package. Currently the waste hierarchy, introduced by the Waste Framework Directive, has been the rule followed to prioritize food waste prevention and management measures according to the environmental criteria. But when considering other criteria along with the environmental one, such as the economic, other tools are needed for the prioritization and optimization. This paper addresses the situation in which a decision-maker has to design a food waste prevention programme considering the limited economic resources in order to achieve the highest environmental impact prevention along the whole food life cycle. A methodology using Life Cycle Assessment and mathematical programing is proposed and its capabilities are shown through a case study. Results show that the order established in the waste hierarchy is generally followed. The proposed methodology revealed to be especially helpful in identifying "quick wins" - measures that should be always prioritized since they avoid a high environmental impact at a low cost. Besides, in order to aggregate the environmental scores related to a variety of impact categories, different weighting sets were proposed. In general, results show that the relevance of the weighting set in the prioritization of the measures appears to be limited. Finally, the correlation between reducing food waste generation and reducing environmental impact along the Food Supply Chain has been studied. Results highlight that when planning food waste prevention strategies, it is important to set the targets at the level of environmental impact instead of setting the targets at the level of avoided food waste generation (in mass). Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Hupponen, M; Grönman, K; Horttanainen, M
2018-03-22
This study focuses on commercial waste, which has received less attention than household waste in regards to greenhouse gas emission research. First, the global warming potential (GWP) of commercial waste management was calculated. Second, the impacts of different waste fractions and the processes of waste management were recognised. Third, the key areas on which to focus when aiming to reduce the greenhouse gas emissions of commercial waste management were determined. This study was conducted on the waste generated by a real hypermarket in South-East Finland and included eight different waste fractions. The waste treatment plants were selected based on the actual situation. Three different scenarios were employed to evaluate the environmental impact of managing mixed waste: landfilling, combustion and more accurate source separation. The GaBi software and impact assessment methodology CML 2001 were used to perform a life cycle assessment of the environmental impacts associated with the waste management. The results indicated that the total GWP of commercial waste management could be reduced by 93% by directing the mixed waste to combustion instead of landfill. A further 5% GWP reduction could be achieved by more accurate source separation of the mixed waste. Utilisation of energy waste had the most significant influence (41-52%) on the total GWP (-880 to -860 kgCO 2 -eq./t), followed by landfilling of mixed waste (influence 15-23% on the total GWP, 430 kgCO 2 -eq./t), recycling polyethylene (PE) plastic (influence 18-21% on the total GWP, -1800 kgCO 2 -eq./t) and recycling cardboard (influence 11-13% on the total GWP, 51 kgCO 2 -eq./t). A key focus should be placed on treatment processes and substitutions, especially in terms of substitutions of energy waste and PE plastic. This study also clarified the importance of sorting PE plastic, even though the share of this waste fraction was not substantial. The results of this paper were compared to those of previous studies. The output of this analysis indicated that the total GWP can be significantly reduced by identifying an alternative recycling or incineration location for cardboard where it is used to substitute virgin material or replace fossil fuels respectively. In conclusion, it is essential to note that waste management companies have a notable influence on the emissions of commercial waste management because they choose the places at which the waste fractions are treated and utilised. Copyright © 2018 Elsevier Ltd. All rights reserved.
Discourse coalitions in Swiss waste management: gridlock or winds of change?
Duygan, Mert; Stauffacher, Michael; Meylan, Grégoire
2018-02-01
As a complex socio-technical system, waste management is crucially important for the sustainable management of material and energy flows. Transition to better performing waste management systems requires not only determining what needs to be changed but also finding out how this change can be realized. Without understanding the political context, insights from decision support tools such as life cycle assessment (LCA) are likely to be lost in translation to decision and policy making. This study strives to provide a first insight into the political context and address the opportunities and barriers pertinent to initiating a change in Swiss waste management. For this purpose, the discourses around a major policy process are analysed to uncover the policy beliefs and preferences of actors. Discourse coalitions are delineated by referring to the Advocacy Coalition Framework (Sabatier, 1998) and using the Discourse Network Analysis (Leifeld and Haunss, 2012) method. The results display an incoherent regime (Fuenfschilling and Truffer, 2014) with divergent belief clusters on core issues in waste management. Yet, some actors holding different beliefs appear to have overlapping interests on secondary issues such as the treatment of biogenic waste or plastics. Although the current political context hinders a system-wide disruptive change, transitions can be initiated at local or regional scale by utilizing the shared interest across different discourse coalitions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
Islam, K M Nazmul
2017-02-15
Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1994-10-11
The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less
Greenhouse gas accounting and waste management.
Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle
2009-11-01
Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.
Ground Vehicle Power and Mobility (GVPM) Powertrain Overview
2011-08-11
efficient on-board electrical power generation • Improved Fuel Efficiency • Thermoelectric Waste Heat Recovery • Advanced Engine Cycle Demo...Thermal Management • Militarized Power train Control Module and strategies devices for military vehicle transmissions FY11 FY12 FY13...Transmission): - Medium Combat Application (20-40 tons) - Medium Tactical Application (15-30 tons) Thermoelectric Waste Heat Recovery Energy Analysis
A thematic review of life cycle assessment (LCA) applied to pig production
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAuliffe, Graham A., E-mail: g.a.mcauliffe@umail.ucc.ie; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork; Chapman, Deborah V.
Commercial livestock production is known to have significant impacts on the environment. Pig production is a complex system which involves the production of animal feed, transportation, animal rearing and waste management. One tool for assessing the environmental performance of such complex systems is life cycle assessment (LCA). LCA has been applied to pig production considerably to date. This paper provides a chronological review of state-of-the-art pig production LCAs under three themes: feed production; entire-system livestock rearing; and waste management. The study considers how LCA applications have addressed technological improvements in animal husbandry, and highlights methodological limitations, particularly related to cross-studymore » comparisons. Recent research demonstrates crude protein reduction in feed and anaerobic treatment of pig excreta resulting in bioenergy production are the key targets for environmental performance improvements related to pig production. - Highlights: • An extensive review of LCA applied to pig production is provided chronologically over the past decade. • Individual studies have been categorised into feed, whole-system pig production and waste management themes. • We consider how LCAs have addressed state-of-the-art pig husbandry. • We offer a discussion on key findings, limitations and future research.« less
Starostina, Vlada; Damgaard, Anders; Eriksen, Marie K; Christensen, Thomas H
2018-04-01
The current waste management system, handling around 500,000 t of household, commercial, and institutional waste annually in the Irkutsk region, Siberia, is based on landfilling in an old landfill with no controls of leachate and gas. Life-cycle assessment modelling of the current system shows that it is a major load on the environment, while the simulation of seven alternative systems results in large savings in many impact categories. With respect to climate change, it is estimated that a saving of about 1200 kg CO 2 equivalents is possible per year, per inhabitant, which is a significant reduction in greenhouse gas emissions. The best alternatives involve efficient energy recovery from waste and recycling by source separation for commercial and institutional waste, the major waste type in the Irkutsk region. Recycling of household waste seems less attractive, and it is therefore recommended only to consider this option after experience has been gained with the commercial and institutional waste. Sensitivity analysis shows that recovery of energy - in particular electricity, heat, and steam - from waste is crucial to the environmental performance of the waste management system. This relates to the efficiencies of energy recovery as well as what the recovered energy substitutes, that is, the 'dirtier' the off-set energy, the higher the environmental savings for the waste management system. Since recovered energy may be utilised by only a few energy grids or industrial users, it is recommended to perform additional local assessments of the integration of the waste energy into existing systems and facilities.
Penteado, Carmenlucia Santos Giordano; Rosado, Laís Peixoto
2016-10-01
Brazil, as a result of economic development and strengthening of the construction industry in recent years, is generating an increasing amount of construction and demolition waste (CDW). Hence, environmental assessment of the management systems is vital. A life cycle assessment (LCA) is presented of CDW management in a medium-sized municipality located in the southeast region of Brazil, where the impacts of leaching were not considered due to absence of consistent data. Six different proposed scenarios for the current CDW management situation have been considered. These scenarios comprised the combined use of landfilling, sorting, and recycling, and the use of CDW as paving material for landfill roads, in different percentages. Considering 0.8 ton of waste as the functional unit, the life cycle inventory was performed using primary data obtained from field survey and secondary data from the database Ecoinvent version 3.1, and from the literature. The method CML 2 baseline 2001 was used for environmental impacts evaluation. The results highlight that recycling is beneficial when efficient CDW sorting takes place at construction sites, avoiding the transport of refuse to sorting and recycling facilities, and the distance between the generation source and the recycling unit is within 30 km. Thus, our results are helpful to ensure that the decision-making processes are based on environmental and technical aspects, and not only on economic and political factors, and also provide data and support for other LCA studies on CDW. © The Author(s) 2016.
Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).
Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H
2009-06-01
With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.
Eriksson, Mattias; Spångberg, Johanna
2017-02-01
Food waste is a problem with economic, environmental and social implications, making it both important and complex. Previous studies have addressed food waste management options at the less prioritised end of the waste hierarchy, but information on more prioritised levels is also needed when selecting the best available waste management options. Investigating the global warming potential and primary energy use of different waste management options offers a limited perspective, but is still important for validating impacts from the waste hierarchy in a local context. This study compared the effect on greenhouse gas emissions and primary energy use of different food waste management scenarios in the city of Växjö, Sweden. A life cycle assessment was performed for four waste management scenarios (incineration, anaerobic digestion, conversion and donation), using five food products (bananas, tomatoes, apples, oranges and sweet peppers) from the fresh fruit and vegetables department in two supermarkets as examples when treated as individual waste streams. For all five waste streams, the established waste hierarchy was a useful tool for prioritising the various options, since the re-use options (conversion and donation) reduced the greenhouse gas emissions and the primary energy use to a significantly higher degree than the energy recovery options (incineration and anaerobic digestion). The substitution of other products and services had a major impact on the results in all scenarios. Re-use scenarios where food was replaced therefore had much higher potential to reduce environmental impact than the energy recovery scenarios where fossil fuel was replaced. This is due to the high level of resources needed to produce food compared with production of fossil fuels, but also to fresh fruit and vegetables having a high water content, making them inefficient as energy carriers. Waste valorisation measures should therefore focus on directing each type of food to the waste management system that can substitute the most resource-demanding products or services, even when the whole waste flow cannot be treated with the same method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phosphorus cycling in Montreal's food and urban agriculture systems.
Metson, Geneviève S; Bennett, Elena M
2015-01-01
Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.
Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems
Metson, Geneviève S.; Bennett, Elena M.
2015-01-01
Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256
Life cycle design and design management strategies in fashion apparel manufacturing
NASA Astrophysics Data System (ADS)
Tutia, R.; Mendes, FD; Ventura, A.
2017-10-01
The generation of solid textile waste in the process of development and clothing production is an error that causes serious damages to the environment and must be minimized. The greatest volume of textile residues is generated by the department of cut, such as textiles parings and snips that are not used in the productive process. (MILAN et al, 2007). One way to conceive new products environmently conscious is turned to the adoption of a methodology based on Life Cycle Design (LCD) and Design Management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-05-01
Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)
Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S
2015-12-01
This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M
2015-01-20
Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide environmental information for the improvement of future integrated technologies and electronic waste management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.
Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less
Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H
2010-07-01
Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein
2015-01-01
Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743
Towards sets of hazardous waste indicators. Essential tools for modern industrial management.
Peterson, Peter J; Granados, Asa
2002-01-01
Decision-makers require useful tools, such as indicators, to help them make environmentally sound decisions leading to effective management of hazardous wastes. Four hazardous waste indicators are being tested for such a purpose by several countries within the Sustainable Development Indicator Programme of the United Nations Commission for Sustainable Development. However, these indicators only address the 'down-stream' end-of-pipe industrial situation. More creative thinking is clearly needed to develop a wider range of indicators that not only reflects all aspects of industrial production that generates hazardous waste but considers socio-economic implications of the waste as well. Sets of useful and innovative indicators are proposed that could be applied to the emerging paradigm shift away from conventional end-of-pipe management actions and towards preventive strategies that are being increasingly adopted by industry often in association with local and national governments. A methodological and conceptual framework for the development of a core-set of hazardous waste indicators has been developed. Some of the indicator sets outlined quantify preventive waste management strategies (including indicators for cleaner production, hazardous waste reduction/minimization and life cycle analysis), whilst other sets address proactive strategies (including changes in production and consumption patterns, eco-efficiency, eco-intensity and resource productivity). Indicators for quantifying transport of hazardous wastes are also described. It was concluded that a number of the indicators proposed could now be usefully implemented as management tools using existing industrial and economic data. As cleaner production technologies and waste minimization approaches are more widely deployed, and industry integrates environmental concerns at all levels of decision-making, it is expected that the necessary data for construction of the remaining indicators will soon become available.
Edelmann, W; Baier, U; Engeli, H
2005-01-01
In order to obtain more detailed information for better decision making in future biogenic waste treatment, different processes to treat biogenic wastes in plants with a treatment capacity of 10,000 tons of organic household wastes per year as well as agricultural codigestion plants were compared by life cycle assessments (LCA). With the tool EcoIndicator, anaerobic digestion is shown to be advantageous as compared to composting, incineration or a combination of digestion and composting, mainly because of a better energy balance. The management of the liquid manure in agricultural codigestion of organic solid wastes causes increased gaseous emissions, which have negative effects on the LCA, however. It is recommended to cover the slurry pit and to use an improved manure management in order to compensate for the additional gaseous emissions. In the LCAs, the quality of the digester output could only be taken into account to a small extent; the reasons are discussed.
NASA Astrophysics Data System (ADS)
Chakraborty, Bidisha; Murshed, Warefta E.; Chakraborty, Saikat
2018-04-01
Bhutan is a small landlocked country with an area of 38,394 km2 and population of 797,765 which is considered as the world's leading carbon negative country. Since Bhutan is a developing nation which is thriving to expand its social, cultural and economic boundaries, the country is facing increasing number of rural-urban migration as well as rapidly changing life style which are the major driving forces of increased waste generation in the cities especially at the urban centers like Thimphu. Irregular management and improper dumping leads to an unhealthy community, disturbs the natural ecosystem and dismantles the Life Cycle Assessment (LCA) of a product. This study basically assessed the constraints of the present strategies used in waste management practices in Thimphu associated with the increasing population pressure and the importance of having modern landfill and incinerator facilities with the use of innovative technologies which would help to develop the concept of Eco-city. Bhutan being a carbon negative country which could be a leading sign of eco-city might be questionable in near future for its improper management techniques. South Asian countries such as Bhutan need to be concerned about proper management of waste. It also contends that the current trend of using only landfills, cannot solve the waste management problem, but rather then that incinerators have the potential to be a better choice, if maintained properly for the development of an eco-city. Solid waste management (SWM) and partaking greener policy is a matter of concern for the eco-city. Use of proper waste management approaches is essential for having sustainable eco-city in the long run.
Pomace waste management scenarios in Québec--impact on greenhouse gas emissions.
Gassara, Fatma; Brar, S K; Pelletier, F; Verma, M; Godbout, S; Tyagi, R D
2011-09-15
Fruit processing industries generate tremendous amount of solid wastes which is almost 35-40% dry weight of the total produce used for the manufacturing of juices. These solid wastes, referred to as, "pomace" contain high moisture content (70-75%) and biodegradable organic load (high BOD and COD values) so that their management is an important issue. During the management of these pomace wastes by different strategies comprising incineration, landfill, composting, solid-state fermentation to produce high-value enzymes and animal feed, there is production of greenhouse gases (GHG) which must be taken into account. In this perspective, this study is unique that discusses the GHG emission analysis of agro-industrial waste management strategies, especially apple pomace waste management and repercussions of value-addition of these wastes in terms of their sustainability using life cycle assessment (LCA) model. The results of the analysis indicated that, among all the apple pomace management sub-models for a functional unit, solid-state fermentation to produce enzymes was the most effective method for reducing GHG emissions (906.81 tons CO(2) eq. per year), while apple pomace landfill resulted in higher GHG emissions (1841.00 tons CO(2) eq. per year). The assessment and inventory of GHG emissions during solid-state fermentation gave positive indications of environmental sustainability for the use of this strategy to manage apple pomace and other agricultural wastes, particularly in Quebec and also extended to other countries. The analysis and use of parameters in this study were drawn from various analytical approaches and data sources. There was absence of some data in the literature which led to consideration of some assumptions in order to calculate GHG emissions. Hence, supplementary experimental studies will be very important to calculate the GHG emissions coefficients during agro-industrial waste management. Copyright © 2011 Elsevier B.V. All rights reserved.
Material Recovery and Waste Form Development FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry Allen; Braase, Lori Ann
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less
Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia
2011-01-01
This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dong, Jun; Ni, Mingjiang; Chi, Yong; Zou, Daoan; Fu, Chao
2013-08-01
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and -86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.
Life cycle assessment of capital goods in waste management systems.
Brogaard, Line K; Christensen, Thomas H
2016-10-01
The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yazdanbakhsh, Ardavan
2018-04-27
Several pioneering life cycle assessment (LCA) studies have been conducted in the past to assess the environmental impact of specific methods for managing mineral construction and demolition waste (MCDW), such as recycling the waste for use in concrete. Those studies focus on comparing the use of recycled MCDW and that of virgin components to produce materials or systems that serve specified functions. Often, the approaches adopted by the studies do not account for the potential environmental consequence of avoiding the existing or alternative waste management practices. The present work focuses on how product systems need to be defined in recycling LCA studies and what processes need to be within the system boundaries. A bi-level LCA framework is presented for modelling alternative waste management approaches in which the impacts are measured and compared at two scales of strategy and decision-making. Different functional units are defined for each level, all of which correspond to the same flow of MCDW in a cascade of product systems. For the sole purpose of demonstrating how the framework is implemented an illustrative example is presented, based on real data and a number of simplifying assumptions, which compares the impacts of a number of potential MCDW management strategies in New York City. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia
2006-04-01
Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.
Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut; Christensen, Thomas H
2014-05-01
The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few years, the LCA modelling showed that introduction of a new and modern landfill with gas and leachate collection could improve the performance of the waste management system significantly. Collection of landfill gas and utilization for 30 years for electricity production (gas turbine) would reduce the global warming completely and result in a net saving of 100 000 CO2-equivalents per year due to storage of biogenic carbon in the landfill beyond 100 years. Considering other first-order degradation rates for the landfilled organic matter did not overtly affect the results, while assumptions about the top cover oxidation of methane significantly affected the results. This shows the importance of controlling the gas escape from the landfill.
A supply chain approach to biochar systems [Chapter 2
Nathaniel M. Anderson; Richard D. Bergman; Deborah S. Page-Dumroese
2017-01-01
Biochar systems are designed to meet four related primary objectives: improve soils, manage waste, generate renewable energy, and mitigate climate change. Supply chain models provide a holistic framework for examining biochar systems with an emphasis on product life cycle and end use. Drawing on concepts in supply chain management and engineering, this chapter presents...
Quality Improvement Methodologies Increase Autologous Blood Product Administration
Hodge, Ashley B.; Preston, Thomas J.; Fitch, Jill A.; Harrison, Sheilah K.; Hersey, Diane K.; Nicol, Kathleen K.; Naguib, Aymen N.; McConnell, Patrick I.; Galantowicz, Mark
2014-01-01
Abstract: Whole blood from the heart–lung (bypass) machine may be processed through a cell salvaging device (i.e., cell saver [CS]) and subsequently administered to the patient during cardiac surgery. It was determined at our institution that CS volume was being discarded. A multidisciplinary team consisting of anesthesiologists, perfusionists, intensive care physicians, quality improvement (QI) professionals, and bedside nurses met to determine the challenges surrounding autologous blood delivery in its entirety. A review of cardiac surgery patients’ charts (n = 21) was conducted for analysis of CS waste. After identification of practices that were leading to CS waste, interventions were designed and implemented. Fishbone diagram, key driver diagram, Plan–Do–Study–Act (PDSA) cycles, and data collection forms were used throughout this QI process to track and guide progress regarding CS waste. Of patients under 6 kg (n = 5), 80% had wasted CS blood before interventions, whereas those patients larger than 36 kg (n = 8) had 25% wasted CS before interventions. Seventy-five percent of patients under 6 kg who had wasted CS blood received packed red blood cell transfusions in the cardiothoracic intensive care unit within 24 hours of their operation. After data collection and didactic education sessions (PDSA Cycle I), CS blood volume waste was reduced to 5% in all patients. Identification and analysis of the root cause followed by implementation of education, training, and management of change (PDSA Cycle II) resulted in successful use of 100% of all CS blood volume. PMID:24783313
Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina
2012-10-01
Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO(2) and NO(x). The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive. Copyright © 2012 Elsevier Ltd. All rights reserved.
Christensen, Thomas H; Gentil, Emmanuel; Boldrin, Alessio; Larsen, Anna W; Weidema, Bo P; Hauschild, Michael
2009-11-01
Global warming potential (GWP) is an important impact category in life-cycle-assessment modelling of waste management systems. However, accounting of biogenic CO(2) emissions and sequestered biogenic carbon in landfills and in soils, amended with compost, is carried out in different ways in reported studies. A simplified model of carbon flows is presented for the waste management system and the surrounding industries, represented by the pulp and paper manufacturing industry, the forestry industry and the energy industry. The model calculated the load of C to the atmosphere, under ideal conditions, for 14 different waste management scenarios under a range of system boundary conditions and a constant consumption of C-product (here assumed to be paper) and energy production within the combined system. Five sets of criteria for assigning GWP indices to waste management systems were applied to the same 14 scenarios and tested for their ability to rank the waste management alternatives reflecting the resulting CO(2) load to the atmosphere. Two complete criteria sets were identified yielding fully consistent results; one set considers biogenic CO(2) as neutral, the other one did not. The results showed that criteria for assigning global warming contributions are partly linked to the system boundary conditions. While the boundary to the paper industry and the energy industry usually is specified in LCA studies, the boundary to the forestry industry and the interaction between forestry and the energy industry should also be specified and accounted for.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae
The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of thismore » paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.« less
Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Alexis, E-mail: alau@dtu.dk; Bakas, Ioannis; Clavreul, Julie
Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute tomore » answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.« less
Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang
2018-06-01
Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.
Material Recover and Waste Form Development--2016 Accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry A.; Vienna, John; Paviet, Patricia
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less
Separations and Waste Forms Research and Development FY 2013 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian
Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.
This curriculum module is designed to provide teachers with classroom activities that promote an understanding of environmental issues such as conservation, preservation, ecology, resource management, solid waste management, and recycling. The activities enable teachers, students in grades 4 through 8, and families to begin thinking about these…
Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H
2010-02-15
Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Yu-Chi, E-mail: clyde.weng@gmail.com; Fujiwara, Takeshi
2011-06-15
In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBAmore » framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.« less
Economic and environmental optimization of waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Münster, M.; Ravn, H.; Hedegaard, K.
2015-04-15
Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less
Plastic flexible films waste management - A state of art review.
Horodytska, O; Valdés, F J; Fullana, A
2018-04-21
Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste management systems was identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tools and Metrics for Environmental Sustainability
Within the U.S. Environmental Protection Agency’s Office of Research and Development the National Risk Management Research Laboratory has been developing tools to help design and evaluate chemical processes with a life cycle perspective. These tools include the Waste Reduction (...
POLLUTION PREVENTION AND LIFE CYCLE ASSESSMENT (CHAPTER 15)
Much has been accomplished internationally to establish industrial Pollution Prevention as an important component in environmental management. It includes approaches that reduce or eliminate the creation of pollutants or wastes at the source. However, the growing recognition th...
Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael
2006-02-01
A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
Balanced program plan. Analysis for biomedical and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
Major issues associated with the use of nuclear power are health hazards of exposure to radioactive materials; sources of radiation exposure; reactor accidents; sabotage of nuclear facilities; diversion of fissile material and its use for extortion; and the presence of plutonium in the environment. Fission fuel cycle technology is discussed with regard to milling, UF/sub 6/ production, uranium enrichment, plutonium fuel fabrication, power production, fuel processing, waste management, and fuel and waste transportation. The following problem areas of fuel cycle technology are briefly discussed: characterization, measurement, and monitoring; transport processes; health effects; ecological processes and effects; and integrated assessment. Estimatedmore » program unit costs are summarized by King-Muir Category. (HLW)« less
Global challenges for e-waste management: the societal implications.
Magalini, Federico
2016-03-01
Over the last decades the electronics industry and ICT Industry in particular has revolutionized the world: electrical and electronic products have become ubiquitous in today's life around the planet. After use, those products are discarded, sometimes after re-use cycles in countries different from those where they were initially sold; becoming what is commonly called e-waste. Compared to other traditional waste streams, e-waste handling poses unique and complex challenges. e-Waste is usually regarded as a waste problem, which can cause environmental damage and severe human health consequences if not safely managed. e-Waste contains significant amounts of toxic and environmentally sensitive materials and is, thus, extremely hazardous to humans and the environment if not properly disposed of or recycled. On the other hand, e-waste is often seen as a potential source of income for individuals and entrepreneurs who aim to recover the valuable materials (metals in particular) contained in discarded equipment. Recently, for a growing number of people, in developing countries in particular, recycling and separation of e-waste has become their main source of income. In most cases, this is done informally, with no or hardly any health and safety standards, exposing workers and the surrounding neighborhoods to extensive health dangers as well as leading to substantial environmental pollution. Treatment processes of e-waste aim to remove the hazardous components and recover as much reusable material (e.g. metals, glass and plastics) as possible; achieving both objectives is most desired. The paper discuss societal implications of proper e-waste management and key elements to be considered in the policy design at country level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batool, Syeda Adila; Chuadhry, Muhammad Nawaz
2009-01-15
The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclablesmore » with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.« less
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Comparing Life-Cycle Impacts of Solid Waste Management Strategies
The presentation is for a webinar by the Prodct Stewardship Institute (PSI)which is a national non-profit membership-based organization located in Boston, Massachusetts. PSI works with state and local government agencies to partner with manufacturers, retailers, environmental gr...
Damgaard, Anders; Riber, Christian; Fruergaard, Thilde; Hulgaard, Tore; Christensen, Thomas H
2010-07-01
Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Biodiesel production potential from fat fraction of municipal waste in Makkah
2017-01-01
In the Kingdom of Saudi Arabia (KSA), millions of Muslims come to perform Pilgrimage every year. Around one million ton of municipal solid waste (MSW) is generated in Makkah city annually. The collected MSW is disposed of in the landfills without any treatment or energy recovery. As a result, greenhouse gas (GHG) emissions and contamination of the soil and water bodies along with leachate and odors are occurring in waste disposal vicinities. The composition of MSW shows that food waste is the largest waste stream (up to 51%) of the total generated MSW. About 13% of the food waste consists of fat content that is equivalent to about 64 thousand tons per year. This study aims to estimate the production potential of biodiesel first time in Makkah city from fat/oil fractions of MSW and highlight its economic and environmental benefits. It has been estimated that 62.53, 117.15 and 6.38 thousand tons of biodiesel, meat and bone meal (MBM) and glycerol respectively could be produced in 2014. A total electricity potential of 852 Gigawatt hour (GWh) from all three sources based on their energy contents, Higher Heating Value (HHV) of 40.17, 18.33 and 19 MJ/kg, was estimated for 2014 that will increase up to 1777 GWh in 2050. The cumulative net savings from landfill waste diversion (256 to 533 million Saudi Riyal (SAR)), carbon credits (46 to 96 million SAR), fuel savings (146 to 303 million SAR) and electricity generation (273 to 569 million SAR) have a potential to add a total net revenue of 611 to 1274 million SAR every year to the Saudi economy, from 2014 to 2050 respectively. However, further studies including real-time data about annual slaughtering activities and the amount of waste generation and its management are critical to decide optimum waste management practices based on life cycle assessment (LCA) and life cycle costing (LCC) methodologies. PMID:28207856
Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas
2010-09-15
Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.
System and method for regulating EGR cooling using a Rankine cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Morris, Dave
This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.
System and method for regulating EGR cooling using a rankine cycle
Ernst, Timothy C.; Morris, Dave
2015-12-22
This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allegrini, E., E-mail: elia@env.dtu.dk; Butera, S.; Kosson, D.S.
Highlights: • Relevance of metal leaching in waste management system LCAs was assessed. • Toxic impacts from leaching could not be disregarded. • Uncertainty of toxicity, due to background activities, determines LCA outcomes. • Parameters such as pH and L/S affect LCA results. • Data modelling consistency and coverage within an LCA are crucial. - Abstract: Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products andmore » can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results of the study, recommendations are provided regarding the use of leaching data in LCA studies.« less
Contributions of basic nuclear physics to the nuclear waste management
NASA Astrophysics Data System (ADS)
Flocard, Hubert
2002-04-01
Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .
Controlled ecological life support system - biological problems
NASA Technical Reports Server (NTRS)
Moore, B., III (Editor); Macelroy, R. D. (Editor)
1982-01-01
The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it
Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less
Waste-to-energy: A review of life cycle assessment and its extension methods.
Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons
2018-01-01
This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.
LIFE CYCLE MANAGEMENT OF MUNICIPAL SOLID WASTE
This is a large, complex project in which a number of different research activities are taking place concurrently to collect data, develop cost and LCI methodologies, construct a database and decision support tool, and conduct case studies with communities to support the life cyc...
Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo
Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less
Bovea, M D; Powell, J C
2016-04-01
This paper provides a review of the literature that applies the life cycle assessment (LCA) methodology to the assessment of the environmental performance of the life cycle of construction and demolition waste (CDW) management systems. This article is focused on generating a general mapping of the literature and on identifying the best practices in compliance with LCA framework and proposing directions for future LCA studies in this field. The temporal evolution of the research in this field and the aim of the studies have grown in parallel with the legal framework related to waste and energy efficiency of buildings. Most studies have been published in Europe, followed by USA. Asia and Australia, being at an incipient application stage to the rest of the world. Topics related to "LCA of buildings, including their EoL" and "LCA of general CDW management strategies" are the most frequently analysed, followed by "LCA of EoL of construction elements" and "LCA of natural material vs recycled material". Regarding the strategies, recycling off-site and incineration, both combined with landfill for the rejected fractions, are the most commonly applied. Re-use or recycling on-site is the strategy least applied. The key aspect when LCA is applied to evaluate CDW management systems is the need to normalise which processes to include in the system boundary and the functional unit, the use of inventory data adapted to the context of the case study and the definition of a common set of appropriate impact assessment categories. Also, it is important to obtain results disaggregated by unit processes. This will allow the comparison between case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazile, F.
2007-07-01
The sustainability of an energy policy depends on the manner in which it satisfies environmental, economical and social requirements. Nuclear energy is not an exception. The objectives of the future nuclear systems, as defined in the Generation IV International Forum, tend to optimize the ability of nuclear energy to satisfy sustainable development goals. In this regard, they involve strong commitments concerning waste management policy : five designs in six are based on a closed fuel cycle, in order to minimize the volume and radiotoxicity of final waste, and to recycle the fissile materials to save natural resources. Since its beginnings,more » the French civil nuclear programme has considered a long-term perspective and has developed spent fuel reprocessing. The French current industrial technology has already permitted to recycle 96% of spent fuel materials, to save 30% of natural resources, to reduce by 5 the amount of waste and to reduce by 10 the waste radiotoxicity, all these benefits for less than 6% of the kWh total cost. This strategy has always been criticized by the nuclear opponents, precisely because they saw that it was a sustainable way, and didn't accept to consider nuclear energy as a sustainable source of power. Two arguments were put forward these criticisms. First, the cost of reprocessing versus once-through cycle and second, the risk of proliferation induced by U-Pu partitioning process. These arguments were also invoked in international debates, and they have also been pleaded by the anti-nukes during the National Debate on HLLLW, at the end of 2005, preceding the vote of a new law in 2006 by the French parliament. Fortunately they have not convinced public opinion in France nor political decision-makers. A majority of people with no regard to technical background understand that recycling and saving the natural resources are sustainable principles. And, from a technical point of view, the 6% over cost does not seem significant considering the economics of nuclear power. Lastly, the risk proliferation is more related to the front-end technologies than to the back-end ones. So, the 2006 French Law 'for a sustainable radioactive waste management' has reinforced the closed-cycle strategy and has paved the way for a long-term development of nuclear energy in the 21. century and beyond, towards the third and fourth generations of nuclear systems. It has defined an R and D programme including the continuation of partitioning-transmutation of minor actinides and their recycling in 4. generation fast reactors. In parallel, the French president has committed the French Atomic Energy Commission to implement a 4. generation prototype reactor by 2020, with international cooperation, to guarantee the permanence of technology progress. In this regard, the waste management strategy can't be built without taking into account the perspectives of development of nuclear energy. These perspectives must include the best available technologies and, in the other hand, an adaptation to the political evolutions of societies. (authors)« less
Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.
Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang
2014-01-01
China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.
Park, Joo Young; Gupta, Clare
2015-05-01
Localism or regionalization has become a popular topic in urban design, but recent critics raise the question of whether the local or regional scale is most desirable for industrial ecosystems. As a way to explore the claim that localized metabolism is more sustainable, this study examines the costs and benefits of two differentially scaled strategies for the management of post-consumer polyethylene terephthalate (PET) bottles originating in the city of Honolulu, Hawai'i: local incineration and trans-continental recycling. We first estimate total environmental impacts of two options using life cycle assessment, and then disaggregate them into local versus non-local impacts to examine the spatial distribution of costs and benefits. We further assess the environmental justification for localized waste management in relation to the broader socio-economic motivations that underlie the way that plastics are managed in Honolulu. In doing so we assess the scale at which waste management is optimized from an environmental standpoint as well as the non-environmental considerations such as security and safety that influence the politics of scale involved in urban metabolic design. By illustrating the trade-offs between a local versus global metabolic pathway for plastic waste, the results from our Honolulu case study are globally relevant for communities interested in sustainable urban design and in particular urban waste management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Weng, Yu-Chi; Fujiwara, Takeshi
2011-06-01
In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O&M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora
2012-05-01
As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roberts, Kelli G; Gloy, Brent A; Joseph, Stephen; Scott, Norman R; Lehmann, Johannes
2010-01-15
Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.
Technologies for Humans in Space with Terrestrial Application for Testing in :envihab
NASA Astrophysics Data System (ADS)
Belz, Stefan; Henn, Norbert
Technologies for humans in space and for a sustainable resource management on Earth are faced to similar recycling challenges. The main differences between life support systems (LSS) in human spaceflight and Earth’s environment are the buffer capacities and enormous diversity of material and organisms in Earth. Thus, LSS in space as a small-scale set-up show quickly the problems of artificial cycle management. Such a cycle management becomes more and more important with increase on world’s population and enlargement of (mega-)cities, in order to provide clean air, clean water and no wasting the environment. There is a need of technologies on Earth and for crewed long-term missions in space focusing on efficient and clean electricity generation, as well as on air, water, food, and waste management at lowest power demand. Existing technologies shall be adapted, and new technologies shall be developed for enhancing quality of life on Earth. The poster demonstrates some significant activities in Germany in the field of air revitalization, biomass and food production by microalgae cultivation, biological water regeneration, synergetic use of fuel cells and electrolyzers, respectively hydrogen and oxygen, in life support and energy systems. These technologies make a strong contribution to higher cycle closures, especially combined in an overall system configuration. The facility of :envihab (Environment and Habitat) in Cologne/Germany enables a unique testbed for integrative experiments from component level to system level, in order to demonstrate and investigate compatibilities, required peripherals devices and diagnostic tools.
Tank waste remediation system systems engineering management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, L.G.
1998-01-08
This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves.more » The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.« less
NASA Astrophysics Data System (ADS)
Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.
2018-03-01
The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C.W.; Giraud, K.M.
Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less
An attributional life cycle assessment for an Italian residential multifamily building.
Vitale, Pierluca; Arena, Umberto
2017-09-06
The study describes an attributional life cycle assessment carried out according to the ISO standards and focused on an Italian multifamily residential building. The aim was developing an exhaustive and reliable inventory of high-quality primary data, comparing the environmental impacts along the three stages of the building life cycle. The pre-use phase takes into account the production of all the construction materials, transportation, and on-site assembling. The use phase quantifies the resource consumptions for 50 years of the building utilization and ordinary maintenance. The end-of-life phase includes the building demolition and the management of generated wastes. The results quantify how the design criteria affect the environmental performances of the residential building along its life cycle. The role of the pre-use phase appears remarkable for global warming potential (GWP), due to the huge impacts of steel and concrete production processes. The use phase gives the largest contributions, which reach 77% and 84% of the total, for the categories of global warming and non-renewable energy. The end-of-life phase provides limited avoided impacts. A comparative analysis quantifies the improvements achievable with an alternative type of partitions and external walls. Acronyms: AC: air conditioning; C&DW: construction and demolition waste; CFL: compact fluorescent lamp; DHW: domestic hot water; EC: European Commission; EU: European Union; GDP: gross domestic product; GHG: greenhouse gases; GWP: global warming potential; LCA: life cycle assessment; LCI: life cycle inventory; LCIA: life cycle impact assessment; MFA: material flow analysis; NREP: non-renewable energy potential; RINP: respiratory inorganics potential; WFD: Waste Framework Directive.
The Green Pages: Environmental Education Activities K-12.
ERIC Educational Resources Information Center
Clearing, 1990
1990-01-01
Presented are 37 environmental science activities for students in grades K-12. Topics include water pollution, glaciers, protective coloration, shapes in nature, environmental impacts, recycling, creative writing, litter, shapes found in nature, color, rain cycle, waste management, plastics, energy, pH, landfills, runoff, watersheds,…
"Control-alt-delete": rebooting solutions for the E-waste problem.
Li, Jinhui; Zeng, Xianlai; Chen, Mengjun; Ogunseitan, Oladele A; Stevels, Ab
2015-06-16
A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations.
Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective
NASA Astrophysics Data System (ADS)
Zakaria, Izatul Husna; Ibrahim, Jafni Azhan; Othman, Abdul Aziz
2016-08-01
Green energy is becoming an important aspect of every country in the world toward energy security by reducing dependence on fossil fuel import and enhancing better life quality by living in the healthy environment. This conceptual paper is an approach toward determining physical flow's characteristic of waste wood biomass in high scale plantation toward producing gas fuel for electricity using gasification technique. The scope of this study is supply chain management of syngas fuel from wood waste biomass using direct gasification conversion technology. Literature review on energy security, Malaysia's energy mix, Biomass SCM and technology. This paper uses the theoretical framework of a model of transportation (Lumsden, 2006) and the function of the terminal (Hulten, 1997) for research purpose. To incorporate biomass unique properties, Biomass Element Life Cycle Analysis (BELCA) which is a novel technique develop to understand the behaviour of biomass supply. Theoretical framework used to answer the research questions are Supply Chain Operations Reference (SCOR) framework and Sustainable strategy development in supply chain management framework
Sustainability assessment and prioritisation of e-waste management options in Brazil.
de Souza, Ricardo Gabbay; Clímaco, João C Namorado; Sant'Anna, Annibal Parracho; Rocha, Tiago Barreto; do Valle, Rogério de Aragão Bastos; Quelhas, Osvaldo Luiz Gonçalves
2016-11-01
Brazil has an increasing rate of e-waste generation, but there are currently few adequate management systems in operation, with the largest share of Waste Electrical and Electronic Equipment (WEEE) going to landfill sites or entering informal chains. The National Solid Waste Policy (2010) enforces the implementation of reverse logistics systems under the shared responsibility of consumers, companies and governments. The objective of this paper is to assess sustainability and prioritise system alternatives for potential implementation in the metropolitan region of Rio de Janeiro. Sustainability criteria and decision alternatives were defined by elicitation of stakeholders. The adopted multicriteria approach combines Life Cycle Assessment with qualitative evaluations by a small sample of regional experts with knowledge of the problem. The recommended system consists of a hybrid WEEE collection scheme with delivery points at shops, metro stations and neighbourhood centres; a pre-treatment phase with the involvement of private companies, cooperatives and social enterprises; and full recycling of all components in the country. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evangelisti, Sara; Tagliaferri, Carla; Advanced Plasma Power
2015-09-15
Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially formore » biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams considered, mainly due to the avoided burdens associated with the production of electricity from the plant. The plasma convertor, key characteristic of the thermal process investigated, although utilising electricity shows a relatively small contribution to the overall environmental impact of the plant. The results do not significantly vary in the scenario analysis. Accounting for biogenic carbon enhanced the performance of biomass and refuse-derived fuel in terms of global warming potential. The main analysis of this study has been performed from a waste management perspective, using 1 ton of waste as functional unit. A comparison of the results when 1 kWhe of electricity produced is used as functional unit shows similar trends for the environmental impact categories considered.« less
Liu, Yili; Sun, Weixin; Liu, Jianguo
2017-10-01
Waste management is a major source of global greenhouse gas (GHG) emissions and many opportunities exist to reduce these emissions. To identify the GHG emissions from waste management in China, the characteristics of MSW and the current and future treatment management strategies, five typical management scenarios were modeled by EaseTech software following the principles of life cycle inventory and analyzed based on the carbon and energy flows. Due to the high organic fraction (50-70%) and moisture content (>50%) of Chinese municipal solid waste (MSW), the net GHG emissions in waste management had a significant difference from the developed countries. It was found that the poor landfill gas (LFG) collection efficiency and low carbon storage resulted landfilling with flaring and landfilling with biogas recovery scenarios were the largest GHG emissions (192 and 117 kgCO 2 -Eq/t, respectively). In contrast, incineration had the best energy recovery rate (19%), and, by grid emissions substitution, led to a substantial decrease in net GHG emissions (-124 kgCO 2 -Eq/t). Due to the high energy consumption in operation, the unavoidable leakage of CH 4 and N 2 O in treatment, and the further release of CH 4 in disposing of the digested residue or composted product, the scenarios with biological treatment of the organic fractions after sorting, such as composting or anaerobic digestion (AD), did not lead to the outstanding GHG reductions (emissions of 32 and -36 kgCO 2 -Eq/t, respectively) as expected. Copyright © 2017. Published by Elsevier Ltd.
The benefits of an advanced fast reactor fuel cycle for plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, W.H.; McFarlane, H.F.; Wade, D.C.
1996-12-31
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less
Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco
2014-01-01
The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy.
Radon exposure at a radioactive waste storage facility.
Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M
2014-06-01
The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.
Manfredi, Simone; Cristobal, Jorge
2016-09-01
Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.
Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueiae, S.; Fabjan, M.; Hrastar, U.
2008-07-01
The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Alexis, E-mail: alau@dtu.dk; Clavreul, Julie; Bernstad, Anna
Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of themore » provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.« less
Waste biorefineries: Enabling circular economies in developing countries.
Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak
2017-10-01
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Life cycle assessment of the end-of-life phase of a residential building.
Vitale, Pierluca; Arena, Noemi; Di Gregorio, Fabrizio; Arena, Umberto
2017-02-01
The study investigates the potential environmental impacts related to the end-of-life phase of a residential building, identified in a multifamily dwelling of three levels, constructed in the South of Italy by utilizing conventional materials and up-to-date procedures. An attributional life cycle assessment has been utilised to quantify the contributions of each stage of the end-of-life phase, with a particular attention to the management of the demolition waste. The investigation takes into account the selective demolition, preliminary sorting and collection of main components of the building, together with the processes of sorting, recycling and/or disposal of main fractions of the demolition waste. It quantifies the connections between these on-site and off-site processes as well as the main streams of materials sent to recycling, energy recovery, and final disposal. A sensitivity analysis has been eventually carried out by comparing the overall environmental performances of some alternative scenarios, characterised by different criteria for the demolition of the reference building, management of demolition waste and assessment of avoided burdens of the main recycled materials. The results quantify the advantage of an appropriate technique of selective demolition, which could increase the quality and quantity of residues sent to the treatment of resource recovery and safe disposal. They also highlight the contributions to the positive or negative environmental impact of each stage of the investigated waste management system. The recycling of reinforcing steel appears to play a paramount role, accounting for 65% of the total avoided impacts related to respiratory inorganics, 89% of those for global warming and 73% of those for mineral extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gu, Fu; Ma, Buqing; Guo, Jianfeng; Summers, Peter A; Hall, Philip
2017-10-01
Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer
2016-12-01
Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess capacity of the Norwegian WtE sector and to reach Norway's ambitious political goals for environmentally friendly energy systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sewage sludge disposal strategies for sustainable development.
Kacprzak, Małgorzata; Neczaj, Ewa; Fijałkowski, Krzysztof; Grobelak, Anna; Grosser, Anna; Worwag, Małgorzata; Rorat, Agnieszka; Brattebo, Helge; Almås, Åsgeir; Singh, Bal Ram
2017-07-01
The main objective of the present review is to compare the existing sewage sludge management solutions in terms of their environmental sustainability. The most commonly used strategies, that include treatment and disposal has been favored within the present state-of-art, considering existing legislation (at European and national level), characterization, ecotoxicology, waste management and actual routs used currently in particular European countries. Selected decision making tools, namely End-of-waste criteria and Life Cycle Assessment has been proposed in order to appropriately assess the possible environmental, economic and technical evaluation of different systems. Therefore, some basic criteria for the best suitable option selection has been described, in the circular economy "from waste to resources" sense. The importance of sewage sludge as a valuable source of matter and energy has been appreciated, as well as a potential risk related to the application of those strategies. Copyright © 2017 Elsevier Inc. All rights reserved.
Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H
2007-01-01
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.
Physics Features of TRU-Fueled VHTRs
Lewis, Tom G.; Tsvetkov, Pavel V.
2009-01-01
The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less
Public Resistance is Waste-Based and What to Do About That - 13412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Laurie
2013-07-01
'Nuclear Communicators' connect a highly advanced sci-tech world with the world of everyday living. One challenge is helping stakeholders fit together three Big Ideas: (1) the valuable nuclear energy resource, (2) nuclear energy's invisible mortal dangers and potential bad-guy threats, and (3) critical scientific and engineering knowledge that is far over the heads of average (grade 8) USA reading levels. This article provides an overview of what does - and does not - work in our public communications. What does not work: 1. Going off topic. Address what concerns people most: how to manage nuclear wastes. 2. Underestimating public intelligence.more » What works: 1. Doing your homework on community history regarding nuclear materials. 2. Having discussion forums and public meetings with special guests from industry, government, and local leaders. 3. Regular cycles of communication with community groups to build a long-term dialogue. Solutions to some communication challenges require handling four gaps and one jungle: 1. Facts gap - Honest information about waste disposition. 2. Time gap - The timelines associated with waste management include 300 years, 10,000 years, and 703.8 million years. How do we talk about this? 3. Money gap - Who pays for new waste management challenges and technologies? 4. Confidence gap - Link local options to regional, national, and global knowledge. 5. Decision jungle - How can we make waste management rules and infrastructure more logical and transparent? Public communication needs to be grounded in facts for people who want to be credible actors in the new nuclear world. (authors)« less
3 CFR 8453 - Proclamation 8453 of November 13, 2009. America Recycles Day, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... industry, employing 1.1 million workers nationwide in 56,000 businesses. On America Recycles Day, we celebrate the individuals, communities, local governments, and businesses that recycle their waste and... manage materials and products on a life-cycle basis, we must responsibly use and reuse our resources...
Environmental Sciences Division annual progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-04-01
This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)
Broadening GHG accounting with LCA: application to a waste management business unit.
Fallaha, Sophie; Martineau, Geneviève; Bécaert, Valérie; Margni, Manuele; Deschênes, Louise; Samson, Réjean; Aoustin, Emmanuelle
2009-11-01
In an effort to obtain the most accurate climate change impact assessment, greenhouse gas (GHG) accounting is evolving to include life-cycle thinking. This study (1) identifies similarities and key differences between GHG accounting and life-cycle assessment (LCA), (2) compares them on a consistent basis through a case study on a waste management business unit. First, GHG accounting is performed. According to the GHG Protocol, annual emissions are categorized into three scopes: direct GHG emissions (scope 1), indirect emissions related to electricity, heat and steam production (scope 2) and other indirect emissions (scope 3). The LCA is then structured into a comparable framework: each LCA process is disaggregated into these three scopes, the annual operating activities are assessed, and the environmental impacts are determined using the IMPACT2002+ method. By comparing these two approaches it is concluded that both LCA and GHG accounting provide similar climate change impact results as the same major GHG contributors are determined for scope 1 emissions. The emissions from scope 2 appear negligible whereas emissions from scope 3 cannot be neglected since they contribute to around 10% of the climate change impact of the waste management business unit. This statement is strengthened by the fact that scope 3 generates 75% of the resource use damage and 30% of the ecosystem quality damage categories. The study also shows that LCA can help in setting up the framework for a annual GHG accounting by determining the major climate change contributors.
Reactor-based management of used nuclear fuel: assessment of major options.
Finck, Phillip J; Wigeland, Roald A; Hill, Robert N
2011-01-01
This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society
Demertzi, Martha; Dias, Ana Cláudia; Matos, Arlindo; Arroja, Luís Manuel
2015-12-01
An important aspect of sustainable development is the implementation of effective and sustainable waste management strategies. The present study focuses on a Life Cycle Assessment (LCA) approach to different waste management strategies for natural cork stoppers, namely incineration at a municipal solid waste incinerator, landfilling in a sanitary landfill, and recycling. In the literature, there are no LCA studies analyzing in detail the end-of-life stage of natural cork stoppers as well as other cork products. In addition, cork is usually treated as wood at the end-of-life stage. Thus, the outcome of this study can provide an important insight into this matter. The results showed that different management alternatives, namely incineration and recycling, could be chosen depending on the impact category considered. The former alternative presented the best environmental results in the impact categories of climate change, ozone depletion and acidification, while the latter for photochemical ozone formation and mineral and fossil resource depletion. The landfilling alternative did not present the best environmental performance in any of the impact categories. However, when the biogenic carbon dioxide emission was assessed for the climate change category, the landfilling alternative was found to be the most effective since most of the biogenic carbon would be permanently stored in the cork products and not emitted into the atmosphere. A sensitivity analysis was performed and the results showed that there are various parameters that can significantly influence the results (e.g., carbon content in cork and decay rate of cork in the landfill). Thus, LCA studies should include a detailed description concerning their assumptions when the end-of-life stage is included in the boundaries since they can influence the results, and furthermore, to facilitate the comparison of different end-of-life scenarios. The present study and the obtained results could be useful for the decision-making process concerning public solid waste policies and industrial strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H; Hauschild, Michael Z
2014-03-01
Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Environmental management in North American mining sector.
Asif, Zunaira; Chen, Zhi
2016-01-01
This paper reviews the environmental issues and management practices in the mining sector in the North America. The sustainable measures on waste management are recognized as one of the most serious environmental concerns in the mining industry. For mining activities, it will be no surprise that the metal recovery reagents and acid effluents are a threat to the ecosystem as well as hazards to human health. In addition, poor air quality and ventilation in underground mines can lead to occupational illness and death of workers. Electricity usage and fuel consumption are major factors that contribute to greenhouse gases. On the other hand, many sustainability challenges are faced in the management of tailings and disposal of waste rock. This paper aims to highlight the problems that arise due to poor air quality and acid mine drainage. The paper also addresses some of the advantages and limitations of tailing and waste rock management that still have to be studied in context of the mining sector. This paper suggests that implementation of suitable environmental management tools like life cycle assessment (LCA), cleaner production technologies (CPTs), and multicriteria decision analysis (MCD) are important as it ultimately lead to improve environmental performance and enabling a mine to focus on the next stage of sustainability.
Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data
As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part of EPA's Sustainable Materials Management Program (SMM). SMM seeks to reduce the environmental impact of materials through their entire life cycle. This includes how they are extracted, manufactured, distributed, used, reused, recycled, and disposed. Organizations are encouraged to follow the Food Recovery Hierarchy (https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy) to prioritize their actions to prevent and divert wasted food. Each tier of the Food Recovery Hierarchy focuses on different management strategies for your wasted food. The program started in 2011 and the first data were made available in 2012. The FRC is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program.
Innovative dual-step management of semi-aerobic landfill in a tropical climate.
Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto
2018-04-01
Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the dual-step management evidencing how wastes reached a higher degree of stabilization and reference FSQ values for leachate were achieved over a one-year simulation period. Copyright © 2018 Elsevier Ltd. All rights reserved.
Allegrini, E; Butera, S; Kosson, D S; Van Zomeren, A; Van der Sloot, H A; Astrup, T F
2015-04-01
Residues from industrial processes and waste management systems (WMSs) have been increasingly reutilised, leading to landfilling rate reductions and the optimisation of mineral resource utilisation in society. Life cycle assessment (LCA) is a holistic methodology allowing for the analysis of systems and products and can be applied to waste management systems to identify environmental benefits and critical aspects thereof. From an LCA perspective, residue utilisation provides benefits such as avoiding the production and depletion of primary materials, but it can lead to environmental burdens, due to the potential leaching of toxic substances. In waste LCA studies where residue utilisation is included, leaching has generally been neglected. In this study, municipal solid waste incineration bottom ash (MSWI BA) was used as a case study into three LCA scenarios having different system boundaries. The importance of data quality and parameter selection in the overall LCA results was evaluated, and an innovative method to assess metal transport into the environment was applied, in order to determine emissions to the soil and water compartments for use in an LCA. It was found that toxic impacts as a result of leaching were dominant in systems including only MSWI BA utilisation, while leaching appeared negligible in larger scenarios including the entire waste system. However, leaching could not be disregarded a priori, due to large uncertainties characterising other activities in the scenario (e.g. electricity production). Based on the analysis of relevant parameters relative to leaching, and on general results of the study, recommendations are provided regarding the use of leaching data in LCA studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Raila, Emilia Mmbando; Anderson, David O
2017-04-01
Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.
Low-carbon building assessment and multi-scale input-output analysis
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.
2011-01-01
Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.
Advances and bottlenecks in microbial hydrogen production.
Stephen, Alan J; Archer, Sophie A; Orozco, Rafael L; Macaskie, Lynne E
2017-09-01
Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO 2 . Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarate, M.A.; Slotnick, J.; Ramos, M.
The development and implementation of a solid waste management program served to build local capacity in San Mateo Ixtatan between 2002 and 2003 as part of a public health action plan. The program was developed and implemented in two phases: (1) the identification and education of a working team from the community; and (2) the completion of a solid waste classification and quantification study. Social capital and the water cycle were two public health approaches utilized to build a sustainable program. The activities accomplished gained support from the community and municipal authorities. A description of the tasks completed and findingsmore » of the solid waste classification and quantification performed by a local working group are presented in this paper.« less
Impact assessment of waste management options in Singapore.
Tan, Reginald B H; Khoo, Hsien H
2006-03-01
This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.
The impact of municipal solid waste management on greenhouse gas emissions in the United States.
Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria
2002-09-01
Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, J.K.; Boldrin, A.; Christensen, T.H.
2012-01-15
An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compostmore » was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.« less
The use of LCA in selecting the best MSW management system.
De Feo, Giovanni; Malvano, Carmela
2009-06-01
This paper focuses on the study of eleven environmental impact categories produced by several municipal solid waste management systems (scenarios) operating on a provincial scale in Southern Italy. In particular, the analysis takes into account 12 management scenarios with 16 management phases for each one. The only difference among ten of the scenarios (separated kerbside collection of all recyclables, glass excepted, composting of putrescibles, RDF pressed bales production and incineration, final landfilling) is the percentage of separated collection varying in the range of 35-80%, while the other two scenarios, for 80% of separate collection, consider different alternatives in the disposal of treatment residues (dry residue sorting and final landfilling or direct disposal in landfill). The potential impacts induced on the environmental components were analysed using the life cycle assessment (LCA) procedure called "WISARD" (Waste Integrated System Assessment for Recovery and Disposal). Paper recycling was the phase with the greatest influence on avoided impacts, while the collection logistics of dry residue was the phase with the greatest influence on produced impacts. For six impact categories (renewable and total energy use, water, suspended solids and oxydable matters index, eutrophication and hazardous waste production), for high percentages of separate collection a management system based on recovery and recycling but without incineration would be preferable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques
Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessmentmore » perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.« less
Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio
2015-07-01
An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Back-end of the fuel cycle - Indian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattal, P.K.
Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less
Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Randy L; Harrison, Thomas J
IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less
FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, K.J.
1996-05-23
For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less
Dioxins from medical waste incineration: Normal operation and transient conditions.
Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons
2015-07-01
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.
Ibanescu, Dumitrita; Cailean Gavrilescu, Daniela; Teodosiu, Carmen; Fiore, Silvia
2018-03-01
The assessment of waste management systems for electrical and electronic equipment (WEEE) from developed economies (Germany, Sweden and Italy) and developing countries (Romania and Bulgaria), is discussed covering the period 2007-2014. The WEEE management systems profiles are depicted by indicators correlated to WEEE life cycle stages: collection, transportation and treatment. The sustainability of national WEEE management systems in terms of greenhouse gas emissions is presented, together with the greenhouse gas efficiency indicator that underlines the efficiency of WEEE treatment options. In the countries comparisons, the key elements are: robust versus fragile economies, the overall waste management performance and the existence/development of suitable management practices on WEEE. Over the life cycle perspective, developed economies (Germany, Sweden and Italy) manage one order of magnitude higher quantities of WEEE compared to developing countries (Romania and Bulgaria). Although prevention and reduction measures are encouraged, all WEEE quantities were larger in 2013, than in 2007. In 2007-2014, developed economies exceed the annual European collection target of 4 kg WEEE/capita, while collection is still difficult in developing countries. If collection rates are estimated in relationship with products placed on market, than similar values are registered in Sweden and Bulgaria, followed by Germany and Italy and lastly Romania. WEEE transportation shows different patterns among countries, with Italy as the greatest exporter (in 2014), while Sweden treats the WEEE nationally. WEEE reuse is a common practice in Germany, Sweden (from 2009) and Bulgaria (from 2011). By 2014, recycling was the most preferred WEEE treatment option, with the same kind of rates performance, over 80%, irrespective of the country, with efforts in each of the countries in developing special collection points, recycling facilities and support instruments. The national total and the recycling carbon footprints of WEEE are lower in 2013 than in 2007 for each country, the order in reducing the environmental impacts being: Germany, Italy, Sweden, Bulgaria and Romania. The negative values indicate savings in greenhouse gas emissions. In 2013, the GHG efficiency shows no differences of the WEEE management in the developed and developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of a French scenario with the INPRO methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasile, A.; Fiorini, G.L.; Cazalet, J.
2006-07-01
This paper presents the French contribution to the Joint Study of the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It concerns the application of the INPRO methodology to a French scenario, on the transition from present LWRs to EPRs in a first phase and to 4. generation fast reactors in a second phase during the 21. century. The scenario also considers the renewal of the present fuel cycle facilities by the third and the fourth generation ones. Present practice of plutonium recycling in PWR is replaced by the middle of the century by a global recyclingmore » of actinides, uranium, plutonium and minor actinides in fast reactors. The status and the evolution of the INPRO criteria and the corresponding indicators during the studied period are analyzed for each of the six considered areas: economics, safety, environment, waste management, proliferation resistance and infrastructure. Improvements on economic and safety are expected for both the EPR and the 4. generation systems having these improvements among their basic goals. The use of fast reactors and global recycling of actinides leads to a significant improvement on environment indicators and in particular on the natural resources utilization. The envisaged waste management policy results in significant reductions on mass, thermal loads and radiotoxicity of the final waste which only contains fission products. The use of fuels that do not relay on enriched uranium and separated plutonium increases the proliferation resistance characteristics of the future fuel cycle. The paper summarizes also some recommendations on the data, codes and methods used to support the continuous improvement of the INPRO methodology and help future assessors. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.
Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less
Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia
2013-10-01
The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less
10 CFR Appendix D to Subpart D of... - Classes of Actions That Normally Require EISs
Code of Federal Regulations, 2011 CFR
2011-01-01
.../operation/decommissioning of reactors D5. Main transmission system additions D6. Integrating transmission... waste) D1Strategic Systems, as defined in DOE Order 430.1, “Life-Cycle Asset Management,” and designated... facilities (that is, transmission system additions for integrating major new sources of generation into a...
And never the twain shall meet? Integrating revenue cycle and supply chain functions.
Matjucha, Karen A; Chung, Bianca
2008-09-01
Four initial steps to implementing a profit and loss management model are: Identify the supplies clinicians are using. Empower stakeholders to remove items that are not commonly used. Reduce factors driving wasted product. Review the chargemaster to ensure that supplies used in selected procedures are represented. Strategically set prices that optimize maximum allowable reimbursement.
Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A
2015-11-01
Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simões, Carla L; Pinto, Lígia M Costa; Bernardo, C A
2014-05-01
Manufacturers have been increasingly considering the implication of materials used in commercial products and the management of such products at the end of their useful lives (as waste or as post-consumer secondary materials). The present work describes the application of the life cycle thinking approach to a plastic product, specifically an anti-glare lamellae (used for road safety applications) made with high-density polyethylene (HDPE). This study shows that optimal environmental and economic outcomes associated with this product can be realized by recovering the material at the end of its useful life (end of life, EoL) and by using the recycled HDPE as a raw material in the production of new similar products. The study confirmed the applicability of the life cycle thinking approach by industry in sustainable products development, supporting the development of robust environmental and economic guidelines.
Environmental impacts of food waste: Learnings and challenges from a case study on UK.
Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard
2018-06-01
Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land. The Global Warming impact of the avoidable food waste was quantified between 2000 and 3600 kg CO 2 -eq. t -1 . The range reflected the different compositions of the waste in each sector. Prominent contributors to the impact, across all the environmental categories assessed, were land use changes and food production. Food preparation, for households and food service sectors, also provided an important contribution to the Global Warming impacts, while waste management partly mitigated the overall impacts by incurring significant savings when landfilling was replaced with anaerobic digestion and incineration. To further improve these results, it is recommended to focus future efforts on providing improved data regarding the breakdown of specific food products within the mixed waste, indirect land use change effects, and the share of food waste undergoing cooking. Learning from this and previous studies, we highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hansen, Trine Lund; Bhander, Gurbakhash S; Christensen, Thomas Højlund; Bruun, Sander; Jensen, Lars Stoumann
2006-04-01
A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment.
Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard
2013-10-15
In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Study of Waste-Heat-Boiler Size and Performance of a Conceptual Marine COGAS System.
1980-02-01
The addition of a waste-heat boiler which extracts heat from the gas turbine exhaust gas to operate a bottoming Rankine cycle is one way to improve the...do not change significantly. Higher saturation pressure actually results in a somewhat lower boiler heat transfer, but the Rankine - cycle performance...of heat transferred in the waste-heat boiler and (2) the conversion efficiency of the Rankine cycle . In sizing the waste-heat boiler, attention was
Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.
Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio
2015-03-01
Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of fuel cycle strategies and U.S. transition scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigeland, Roald; Taiwo, Temitope A.
2016-10-17
The nuclear fuel cycle Evaluation and Screening (E&S) study that was completed in October 2014 [1] enabled the identification of four fuel cycle groups that are considered most promising based on a set of nine evaluation criteria: (a) six benefit criteria of Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilization, and (b) three challenge criteria of Development and Deployment Risk, Institutional Issues, Financial Risk and Economics. The E&S study was conducted at a level of analysis that is "technology- neutral," that is, without consideration of specific technologies, but using the fundamental physics characteristics ofmore » each part of the fuel cycle. The study focused on the fuel cycle performance benefits at the fuel cycle equilibrium state, with only limited consideration of transition and deployment impacts. Common characteristics of the four most promising fuel cycle options include continuous recycle of all U/Pu or U/TRU, the use of fast-spectrum reactors, and no use of uranium enrichment once fuel cycle equilibrium has been established. The high-level wastes are mainly from processing of irradiated fuel, and there would be no disposal of any spent fuel. Building on the findings of the E&S study, additional studies have been conducted in the last two years following the information exchange meeting, the 13th IEMPT, which was held in Seoul, the Republic of Korea in 2014. Insights are presented from the recent studies on the benefits and challenges of recycling minor actinides, and transition considerations to some of the most promising fuel cycle options.« less
Thiry, Yves; Colle, Claude; Yoschenko, Vasyl; Levchuk, Svjatoslav; Van Hees, May; Hurtevent, Pierre; Kashparov, Valery
2009-12-01
Plantings of Scots pine (Pinus sylvestris L.) on a waste burial site in the Chernobyl Red Forest was shown to greatly influence the long term redistribution of radioactivity contained in sub-surfaces trenches. After 15 years of growth, aboveground biomass of the average tree growing on waste trench no.22 had accumulated 1.7 times more (137)Cs than that of trees growing off the trench, and 5.4 times more (90)Sr. At the scale of the trench and according to an average tree density of 3300 trees/ha for the study zone, tree contamination would correspond to 0.024% of the (137)Cs and 2.52% of the (90)Sr contained in the buried waste material. A quantitative description of the radionuclide cycling showed a potential for trees to annually extract up to 0.82% of the (90)Sr pool in the trench and 0.0038% of the (137)Cs. A preferential (90)Sr uptake from the deep soil is envisioned while pine roots would take up (137)Cs mostly from less contaminated shallow soil layers. The current upward flux of (90)Sr through vegetation appeared at least equal to downward loss in waste material leaching as reported by Dewiere et al. (2004, Journal of Environmental Radioactivity 74, 139-150). Using a prospective calculation model, we estimated that maximum (90)Sr cycling can be expected to occur at 40 years post-planting, resulting in 12% of the current (90)Sr content in the trench transferred to surface soils through biomass turnover and 7% stored in tree biomass. These results are preliminary, although based on accurate methodology. A more integrated ecosystem study leading to the coupling between biological and geochemical models of radionuclide cycling within the Red Forest seems opportune. Such a study would help in the adequate management of that new forest and the waste trenches upon which they reside.
Di Maria, Francesco; Sordi, Alessio; Micale, Caterina
2013-11-01
The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Battistoni, Paolo; Fatone, Francesco; Passacantando, Daniele; Bolzonella, David
2007-02-01
The use of food waste disposers (FWDs) can be an interesting option to integrate the management of municipal wastewaters and household organic waste in small towns and decentralized areas. This strategy can be even more environmentally friendly if a suitable treatment process of the resulting sewage is performed in order to control nutrients emission. However, still nowadays, part of the scientific and technical community considers the application of this technology a possible source of problems. In this study, the FWDs were applied, with a market penetration factor of 67%, in a mountain village of 250 inhabitants. Further, the existing wastewater treatment plant (WWTP) was upgraded by applying an automatically controlled alternate cycles process for the management of nutrients removal. With specific reference to the observed results, the impact of the ground food waste on the sewerage system did not show particular solids sedimentation or significant hydraulic overflows. Further, the WWTP was able to face the overloads of 11, 55 and 2g per capita per day of TSS, COD and TN, respectively. Then, the increase of the readily biodegradable COD (rbCOD/COD from 0.20 to 0.25) and the favourable COD/TN ratio (from 9.9 to 12) led to a specific denitrification rate of some 0.06kgNO(3)-N/(kg MLVSS day). Therefore, not only COD removal, but also the total nitrogen removal increased: the denitrification efficiency reached 85%. That led to a better exploitation of the nitrogen-bound oxygen and a consequent reduction of energy requirements of 39%. The final economic evaluation showed the benefits of the application of this technology with a pay back time of 4-5 years.
Network modeling for reverse flows of end-of-life vehicles.
Ene, Seval; Öztürk, Nursel
2015-04-01
Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles' recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of costs for three hypothetical alternative kitchen waste management systems.
Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen
2014-11-01
Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.
Role of compostable tableware in food service and waste management. A life cycle assessment study.
Fieschi, Maurizio; Pretato, Ugo
2018-03-01
It is estimated that in Europe 88-100 million tonnes of food waste are generated every year, with a Global Warming Potential (GWP) of around 227 MT of CO 2 equivalents generated for their collection and disposal. A 12% of this waste is estimated to arise from food service within the hospitality sector, which includes quick service restaurants, casual and fine dining, contract catering (canteens, prisons, hospitals, schools etc.) as well as indoor and outdoor events and exhibitions. Given this considerable amount and that the mixed unsorted collection is often the only practicable way to handle such waste flows, the choice of tableware and cutlery can make a big difference in facilitating waste collection as well as in reducing the overall environmental impact of food waste management. This study compares the environmental performance of using biodegradable & compostable single use tableware with organic recycling of food waste through composting against a traditional scenario using fossil-based plastic tableware and disposal of the waste flows through incineration and landfill. The study has taken into account the main requirements of the recently published Product Environmental Footprint (PEF) methodology of the European Commission. The results confirm that the use of biodegradable and compostable tableware combined with organic recycling is the preferred option for catering in quick service restaurants, contract catering and events, since it reduces significantly the carbon, water and resource footprint and is fully in line with the principles of a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
Linzalone, Nunzia; Coi, Alessio; Lauriola, Paolo; Luise, Daniela; Pedone, Alessandra; Romizi, Roberto; Sallese, Domenico; Bianchi, Fabrizio
2017-01-01
The lack of participatory tools in Health Impact Assessment (HIA) to support decision-makers is a critical factor that negatively affects the impacts of waste policies. This study describes the participatory HIA used in deciding on the possible doubling of the municipal solid waste incinerating plant located near the city of Arezzo, Italy. Within the framework of the new waste management plan, a methodology for the democratic participation of stakeholders was designed adopting the Local Agenda 21 methodology. Communication and participation events with the stakeholders were set up from the plan's development to its implementation. Eleven different categories of stakeholders including individual citizens were involved in 21 local events, reaching over 500 participants in three years. Actions were performed to build the commitment and ownership of the local administrators. Then, together with the environment and health agencies and a representative from the local committees, the local administrators collaborated with scientists and technicians in the knowledge-building and scoping stages. Focus groups of voluntary citizens worked together with the researchers to provide qualitative and quantitative evidence in the assessment stage. Periodic public forums were held to discuss processes, methods and findings. The local government authority considered the HIA results in the final decision and a new waste strategy was adopted both in the short term (increased curbside collection, waste sustainability program) and in the long term (limited repowering of the incinerator, new targets for separate collection). In conclusion, an effective participatory HIA was carried out at the municipal level to support decision makers in the waste management plan. The HIA21 study contributed to evidence-based decisions and to make a broadly participatory experience. The authors are confident that these achievements may improve the governance of the waste cycle and the trust in the public administration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H
2012-10-01
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beylot, Antoine; Villeneuve, Jacques
2013-12-01
Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-07-16
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-01-01
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189
Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing
2015-09-01
The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.
MAINTENANCE MANAGEMENT ACCOUNTING SYSTEM OF WASTE WATER DISPOSAL SYSTEMS
NASA Astrophysics Data System (ADS)
Hori, Michihiro; Tsuruta, Takashi; Kaito, Kiyoyuki; Kobayashi, Kiyoshi
Sewage works facilities consist of various assets groups. And there are many kinds of financial resources. In order to optimize the maintenance plan, and to secure the stability and sustainability of sewage works management, it is necessary to carry out financial simulation based on the life-cycle cost analysis. Furthermore, it is important to develop management accounting system that is interlinked with the financial accounting system, because many sewage administration bodies have their financial accounting systems as public enterprises. In this paper, a management accounting system, which is designed to provide basic information for asset management of sewage works facilities, is presented. Also the applicability of the management accounting system presented in this paper is examined through financial simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Harris R.; Blink, James A.; Halsey, William G.
2011-08-11
The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less
Biganzoli, L; Falbo, A; Forte, F; Grosso, M; Rigamonti, L
2015-08-15
Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams in Europe, whose content of hazardous substances as well as of valuable materials makes the study of the different management options particularly interesting. The present study investigates the WEEE management system in Lombardia Region (Italy) in the year 2011 by applying the life cycle assessment (LCA) methodology. An extensive collection of primary data was carried out to describe the main outputs and the energy consumptions of the treatment plants. Afterwards, the benefits and burdens associated with the treatment and recovery of each of the five categories in which WEEE is classified according to the Italian legislation (heaters and refrigerators - R1, large household appliances - R2, TV and monitors - R3, small household appliances - R4 and lighting equipment - R5) were evaluated. The mass balance of the treatment and recovery system of each of the five WEEE categories showed that steel and glass are the predominant streams of materials arising from the treatment; a non-negligible amount of plastic is also recovered, together with small amounts of precious metals. The LCA of the regional WEEE management system showed that the benefits associated with materials and energy recovery balance the burdens of the treatment processes, with the sole exception of two impact categories (human toxicity-cancer effects and freshwater ecotoxicity). The WEEE categories whose treatment and recovery resulted more beneficial for the environment and the human health are R3 and R5. The contribution analysis showed that overall the main benefits are associated with the recovery of metals, as well as of plastic and glass. Some suggestions for improving the performance of the system are given, as well as an indication for a more-in-depth analysis for the toxicity categories and a proposal for a new characterisation method for WEEE. Copyright © 2015 Elsevier B.V. All rights reserved.
Life cycle assessment-driven selection of industrial ecology strategies.
Ardente, Fulvio; Cellura, Maurizio; Lo Brano, Valerio; Mistretta, Marina
2010-01-01
The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an “eco-industrial cluster.” A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.
Ortiz, O; Pasqualino, J C; Castells, F
2010-04-01
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in terms of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, O., E-mail: oscarortiz@unipamplona.edu.c; University of Pamplona, Department of Industrial Engineering, Km 1 Via Bucaramanga, Pamplona, N de S; Pasqualino, J.C.
2010-04-15
The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in termsmore » of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts.« less
Hazardous Waste Cleanup: Cycle Chem Incorporated in Elizabeth, New Jersey
Cycle Chem is located at 217 South First Street in Elizabeth, New Jersey. Cycle Chem recovers spent solvents and treats both hazardous and non-hazardous wastes in containers and tanks. The site comprises two acres in an industrial area, surrounded by
Comparing Life-Cycle Carbon and Energy Impacts for Biofuel, Wood Product, and Forest Management
Bruce Lippke; Richard Gustafson; Richard Venditti; Philip Steele; Timothy A. Volk; Elaine Oneil; Leonard Johnson; Maureen E. Puettmann; Kenneth Skog
2012-01-01
The different uses of wood result in a hierarchy of carbon and energy impacts that can be characterized by their efficiency in displacing carbon emissions and/or in displacing fossil energy imports, both being current national objectives. When waste wood is used for biofuels (forest or mill residuals and thinnings) fossil fuels and their emissions are reduced without...
Li, Yangyang; Manandhar, Ashish; Li, Guoxue; Shah, Ajay
2018-03-20
Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO 2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO 2 , EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yucca Mountain nuclear waste repository prompts heated congressional hearing
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-11-01
Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.
Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, M.; Howard, D.; Elder, P.
2013-07-01
The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less
Tua, Camilla; Nessi, Simone; Rigamonti, Lucia; Dolci, Giovanni; Grosso, Mario
2017-04-01
In recent years, alternative food supply chains based on short distance production and delivery have been promoted as being more environmentally friendly than those applied by the traditional retailing system. An example is the supply of seasonal and possibly locally grown fruit and vegetables directly to customers inside a returnable crate (the so-called 'box scheme'). In addition to other claimed environmental and economic advantages, the box scheme is often listed among the packaging waste prevention measures. To check whether such a claim is soundly based, a life cycle assessment was carried out to verify the real environmental effectiveness of the box scheme in comparison to the Italian traditional distribution. The study focused on two reference products, carrots and apples, which are available in the crate all year round. An experience of a box scheme carried out in Italy was compared with some traditional scenarios where the product is distributed loose or packaged at the large-scale retail trade. The packaging waste generation, 13 impact indicators on environment and human health and energy consumptions were calculated. Results show that the analysed experience of the box scheme, as currently managed, cannot be considered a packaging waste prevention measure when compared with the traditional distribution of fruit and vegetables. The weaknesses of the alternative system were identified and some recommendations were given to improve its environmental performance.
Consonni, S; Giugliano, M; Grosso, M
2005-01-01
This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.
Significance of and prospects for fuel recycle in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otsuka, K.; Ikeda, K.
Japan's nuclear power plant capacity ranks fourth in the world at around 20 GW. But nuclear fuel cycle industries (enrichment, reprocessing and radioactive waste management) are still in their infancy compared with the size and stage of the power plants. Thus it is a matter of urgency to establish a nuclear fuel cycle in Japan which can promote nuclear energy as a quasi-indigenous energy source. Some moves toward establishing a nuclear fuel cycle have been observed recently. As a case in point, in July 1984, the Federation of Electric Power Companies has formally requested Aomori Prefecture to locate nuclear fuelmore » cycle facilities in the Shimokita Peninsula region. Plutonium recovered from spent fuel will be utilized in LWR, ATR, and FBR. Research and development activities on these technologies are in progress.« less
Corsini, Filippo; Rizzi, Francesco; Frey, Marco
2017-01-01
Extended Producer Responsibility (EPR) has been the backbone of product life cycle management in Europe since the 2000s. Unfortunately, EPR implementation has multiple impacts on the supply chain and, thus, its consequences are not always easily manageable. Although several studies have explored various examples within the EU, the determinants of the effectiveness of EPR management are still not fully understood. This research seeks to bridge this gap by making use of quantitative analyses to investigate how key issues related to: WEEE Directive transposition and organizational settings adopted by each Member State, influenced the results achieved in those Member States in terms of collection from households. In details, a latent class analysis (LCA) has been used to analyse different EPR management strategies based on the policy set, the supply chain structure, and the performance of the household collection of electronic waste. Results highlight the strong connection between allocation of responsibility and organizational model adopted in Member States and performance related to small households equipment's. Conclusions shows the need for stronger coordination of EPR and waste policies in order to achieve adequate levels of Waste Electrical and Electronic Equipment (WEEE) collection, the need of a clear delineation of the responsibilities of each subject of the supply chain and also the importance of "clearing houses" in moderating the impacts of short-sighted competition between collective schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P
2018-03-01
The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.
Issues that Drive Waste Management Technology Development for Space Missions
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai
2005-01-01
Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario, E-mail: mario.grosso@polimi.it
This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementationmore » of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.« less
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
De Feo, Giovanni; Ferrara, Carmen; Finelli, Alessio; Grosso, Alberto
2017-12-07
The main aim of this study was to perform a Life cycle assessment study as well as an economic evaluation of the recovery of recyclable materials in a municipal solid waste management system. If citizens separate erroneously waste fractions, they produce both environmental and economic damages. The environmental and economic evaluation was performed for the case study of Nola (34.349 inhabitants) in Southern Italy, with a kerbside system that assured a source separation of 62% in 2014. The economic analysis provided a quantification of the economic benefits obtainable for the population in function of the achievable percentage of source separation. The comparison among the environmental performance of four considered scenarios showed that the higher the level of source separation was, the lower the overall impacts were. This occurred because, even if the impacts of the waste collection and transport increased, they were overcome by the avoided impacts of the recycling processes. Increasing the source separation by 1% could avoid the emission of 5 kg CO 2 eq. and 5 g PM10 for each single citizen. The economic and environmental indicators defined in this study provide simple and effective information useful for a wide-ranging audience in a behavioural change programme perspective.
Nanoparticles: their potential toxicity, waste and environmental management.
Bystrzejewska-Piotrowska, Grazyna; Golimowski, Jerzy; Urban, Pawel L
2009-09-01
This literature review discusses specific issues related to handling of waste containing nanomaterials. The aims are (1) to highlight problems related to uncontrolled release of nanoparticles to the environment through waste disposal, and (2) to introduce the topics of nanowaste and nanotoxicology to the waste management community. Many nanoparticles used by industry contain heavy metals, thus toxicity and bioaccumulation of heavy metals contained in nanoparticles may become important environmental issues. Although bioavailability of heavy metals contained in nanoparticles can be lower than those present in soluble form, the toxicity resulting from their intrinsic nature (e.g. their size, shape or density) may be significant. An approach to the treatment of nanowaste requires understanding of all its properties--not only chemical, but also physical and biological. Progress in nanowaste management also requires studies of the environmental impact of the new materials. The authors believe Amara's law is applicable to the impact of nanotechnologies, and society might overestimate the short-term effects of these technologies, while underestimating the long-term effects. It is necessary to have basic information from companies about the level and nature of nanomaterials produced or emitted and about the expectation of the life cycle time of nanoproducts as a basis to estimate the level of nanowaste in the future. Without knowing how companies plan to use and store recycled and nonrecycled nanomaterials, development of regulations is difficult. Tagging of nanoproducts is proposed as a means to facilitate separation and recovery of nanomaterials.
Comparative life cycle assessment of disposable and reusable laryngeal mask airways.
Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi
2012-05-01
Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG emissions) and improving the energy efficiency of the autoclaving machines by 10% (-8% GHG emissions). For both environmental and cost considerations, management and operating procedures should be put in place to ensure that reusable LMAs are not discarded prematurely.
Potential resource and toxicity impacts from metals in waste electronic devices.
Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin
2016-04-01
As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices. © 2015 SETAC.
Rajcoomar, Avinash; Ramjeawon, Toolseeram
2017-03-01
The aim of this study was to use the life cycle assessment tool to assess, from an environmental point of view, the different possible municipal solid waste (MSW) management scenarios for the island of Mauritius. The scenarios include landfilling with energy recovery (S1), incineration with energy recovery (S2), composting, incineration and landfilling (S3) and finally composting, recycling, incineration and landfilling (S4). The MSW generated in 2010 was selected as the functional unit. Foreground data were collected through surveys and literature. Background data were obtained from ecoinvent data in SimaPro 8 libraries. The scenarios were compared both through the CML-IA baseline-midpoint method and the ReCiPe end-point method. From the midpoint method, the results obtained indicates that landfilling (S1) has the greatest impact in all the analyzed impact categories except ozone layer depletion and human toxicity, while incineration (S2) has the least impact on almost all the analyzed damage categories except in global warming potential and human toxicity. The collection and transportation of waste has a significant impact on the environment. From the end-point method, S4 reduces the damage impact categories on Human Health, Ecosystems and Resources due to the recycling process. S3 is not favorable due to the impact caused by the composting process. However, it is also very important to emphasize that for incineration, the best available technology with energy recovery shall be considered. It is recommended that S2 and S4 are considered for strategic planning.
NASA Astrophysics Data System (ADS)
Susmono
2017-03-01
Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support, both technically and non technically aspects such as new appropriate technology development, new integration management especially between formal and informal organizations, acceleration of community education/empowerment, new required regulations development and law enforcement support. Political will of government. In the beginning, government and people of Indonesia follow the paradigm that municipal solid waste management could be managed by Collecting-Transferring-Dumping system only. This paradigm is appropriate if no problem increase of land providing for solid waste dumping site. Most of local governments are not able to decide it because so many aspects and complexity of problems such as choosing an appropriate technology, finding location for solid waste transfer stations and dumping site, developing of waste management, limitation of affordability, improving people behaviour to increase their low health environment consciousness, as well as lack of professional staffs. Indonesia Ministry of Environment who is responsible for solid waste handling regulations and Ministry of Public Works who is responsible for urban infrastructures development have changed their paradigm that in municipal solid waste handling it is better to reduce as soon as possible. The new approach is to introduce 3R methods from the sources to the solid waste dumping site for minimizing cost of transportation and dumping site area. The Municipal Solid Waste Management Law no 18/2008 stated that municipal solid waste handling consists of Reduction-Reuse-Recycling of waste and running waste management services such as collection of the rest to transport, treat and dumping in the end of the system. Based on the Autonomous Law, the local governments are still the main responsible governments to handle municipal solid waste management in their administrative area. Community participation. During the last few years many solid waste communal and non-governmental organizations were grown and developed, some solid waste communal leaders were born, and solid waste handling motivation and participation of community are grown. To accelerate this situation, the government introduces many training and education to produce more municipal solid waste handling facilitators. Since 2007, environment sanitation motivation activities runs through the yearly Sanitation Jamboree that educate, short train, motivate junior school children and competition among other. Technology innovation. Local governments, with or without central government support, are being to make some improvement how to handle municipal solid waste and through Sister City Program, many innovations were developed such as in Surabaya City (home Takakura composter), Depok (waste separation and composting), Bogor City (management), Malang City, Makasar City and others. The new Closing the Loops of solid waste handling approaches should be introduced in the future to break the bottle neck that always happened in the past. Integration between solid waste management and the farming activities, land plantation rehabilitations, city landscaping and gardening is very urgent to develop, including integration of 3R stakeholders in the region. The challenges. The municipal solid waste problem in urban areas is relative more complicated compared with the same problem in the rural areas. Accurate data collection and analyzing periodically is very important. Road map development and mobilizing of all stake holders both in central government and in local government such as NGOs, private sectors, education and research institutions, civil societies and the community are very urgent. New research action is required to find our new urban municipal solid waste characteristic and our appropriate technology and management to give some input to the central government, local governments and the community or others who involve in the municipal solid waste handling due to the recent fast growing of urban people income and changing of their life style. Conclusion. For the future, the strengthening of central and local governments’ political will is still required including financial mobilization, community education and/or empowerment, law enforcement, technical innovations, management development, providing required urban and regional solid waste management infrastructures, and Public Private Partnership promotion.
Environmental impact of PV cell waste scenario.
Bogacka, M; Pikoń, K; Landrat, M
2017-12-01
Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...
Healthcare waste management: current practices in selected healthcare facilities, Botswana.
Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew
2008-01-01
Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.
Chiu, Sam L H; Lo, Irene M C
2016-12-01
In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.
Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.
Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier
2015-12-01
This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Breivik, Knut; Armitage, James M; Wania, Frank; Sweetman, Andrew J; Jones, Kevin C
2016-01-19
Elevated concentrations of various industrial-use Persistent Organic Pollutants (POPs), such as polychlorinated biphenyls (PCBs), have been reported in some developing areas in subtropical and tropical regions known to be destinations of e-waste. We used a recent inventory of the global generation and exports of e-waste to develop various global scale emission scenarios for industrial-use organic contaminants (IUOCs). For representative IUOCs (RIUOCs), only hypothetical emissions via passive volatilization from e-waste were considered whereas for PCBs, historical emissions throughout the chemical life-cycle (i.e., manufacturing, use, disposal) were included. The environmental transport and fate of RIUOCs and PCBs were then simulated using the BETR Global 2.0 model. Export of e-waste is expected to increase and sustain global emissions beyond the baseline scenario, which assumes no export. A comparison between model predictions and observations for PCBs in selected recipient regions generally suggests a better agreement when exports are accounted for. This study may be the first to integrate the global transport of IUOCs in waste with their long-range transport in air and water. The results call for integrated chemical management strategies on a global scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto
Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less
Life cycle assessment of electronic waste treatment.
Hong, Jinglan; Shi, Wenxiao; Wang, Yutao; Chen, Wei; Li, Xiangzhi
2015-04-01
Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies have a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers). Copyright © 2015 Elsevier Ltd. All rights reserved.
Ash from thermal power plants as secondary raw material.
Cudić, Vladica; Kisić, Dragica; Stojiljković, Dragoslava; Jovović, Aleksandar
2007-06-01
The basic characteristic of thermal power plants in the Republic of Serbia is that they use low-grade brown coal (lignite) as a fuel. Depending on the location of coal mines, lignite may have different properties such as heating value, moisture, and mineral content, resulting in different residue upon combustion. Because of several million tonnes of ash and slag generated every year, their granularmetric particle size distribution, and transport and disposal methods, these plants have a negative impact on the environment. According to the waste classification system in the Republic of Serbia, ash and slag from thermal power plants are classified as hazardous waste, but with an option of usability. The proposed revision of waste legislation in Serbia brings a number of simple and modern solutions. A procedure is introduced which allows for end-of-waste criteria to be set, clarifying the point where waste ceases to be waste, and thereby introducing regulatory relief for recycled products or materials that represent low risk for the environment. The new proposal refocuses waste legislation on the environmental impacts of the generation and management of waste, taking into account the life cycle of resources, and develops new waste prevention programmes. Stakeholders, as well as the general public, should have the opportunity to participate in the drawing up of the programmes, and should have access to them.
Waste Generation Overview, Course 23263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less
Public concerns and behaviours towards solid waste management in Italy.
Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F
2010-12-01
A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.
Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective
2017-01-01
Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150
Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finster, Molly; Clark, Corrie; Schroeder, Jenna
2015-10-01
Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less
Eriksson, Ola; Bisaillon, Mattias; Haraldsson, Mårten; Sundberg, Johan
2016-06-15
Management of municipal solid waste is an efficient method to increase resource efficiency, as well as to replace fossil fuels with renewable energy sources due to that (1) waste to a large extent is renewable as it consists of food waste, paper, wood etc. and (2) when energy and materials are recovered from waste treatment, fossil fuels can be substituted. In this paper results from a comprehensive system study of future biological treatment of readily degradable waste in two Swedish regions are presented. Different collection and separation systems for food waste in households have been applied as well as technical improvements of the biogas process as to reduce environmental impact. The results show that central sorting of a mixed fraction into recyclables, combustibles, biowaste and inert is a competitive option compared to source separation. Use of pellets is beneficial compared to direct spreading as fertiliser. Fuel pellets seem to be the most favourable option, which to a large extent depends on the circumstances in the energy system. Separation and utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of technologies which decreases environmental impact drastically, however to a substantial cost in some cases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.
Pinheiro, B C A; Holanda, J N F
2013-03-30
This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Chuanbin; Jiang, Daqian; Zhao, Zhilan
2017-01-03
Municipal solid waste (MSW) disposal represents one of the largest sources of anthropogenic greenhouse gas (GHG) emissions. However, the biogenic GHG emissions in the predisposal stage of MSW management (i.e., the time from waste being dropped off in community or household garbage bins to being transported to disposal sites) are excluded from the IPCC inventory methodology and rarely discussed in academic literature. Herein, we quantify the effluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from garbage bins in five communities along the urban-rural gradient in Beijing in four seasons. We find that the annual average CO 2 , CH 4 , and N 2 O effluxes in the predisposal stage were (1.6 ± 0.9)10 3 , 0.049 ± 0.016, and 0.94 ± 0.54 mg kg -1 h -1 (dry matter basis) and had significant seasonal differences (24- to 159-fold) that were strongly correlated with temperature. According to our estimate, the N 2 O emission in the MSW predisposal stage amounts to 20% of that in the disposal stage in Beijing, making the predisposal stage a nontrivial source of waste-induced N 2 O emissions. Furthermore, the CO 2 and CH 4 emissions in the MSW predisposal account for 5% (maximum 10% in summer) of the total carbon contents in a Beijing's household food waste stream, which has significance in the assessment of MSW-related renewable energy potential and urban carbon cycles.
System analyses on advanced nuclear fuel cycle and waste management
NASA Astrophysics Data System (ADS)
Cheon, Myeongguk
To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.
NASA Astrophysics Data System (ADS)
Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Sugawara, Takanori; Kurata, Yuji; Takei, Hayanori; Saito, Shigeru; Sasa, Toshinobu; Obayashi, Hironari
2011-08-01
Reduction of burden caused by radioactive waste management is one of the most critical issues for the sustainable utilization of nuclear power. The Partitioning and Transmutation (P&T) technology provides the possibility to reduce the amount of the radiotoxic inventory of the high-level radioactive waste (HLW) dramatically and to extend the repository capacity. The accelerator-driven system (ADS) is regarded as a powerful tool to effectively transmute minor actinides (MAs) in the "double-strata" fuel cycle strategy. The ADS has a potential to flexibly manage MA in the transient phase from light water reactors (LWRs) to fast breeder reactors (FBRs), and can co-exist with FBR symbiotically and complementarily to enhance the reliability and the safety of the commercial FBR cycle. The concept of ADS in JAEA is a lead-bismuth eutectic (LBE) cooled, tank-type subcritical reactor with the power of 800 MWth driven by a 30 MW superconducting LINAC. By such an ADS, 250 kg of MA can be transmuted annually, which corresponds to the amount of MA produced in 10 units of LWR with 1 GWe. The design study was performed mainly for the subcritical reactor and the spallation target with a beam window. In Japan, Atomic Energy Commission (AEC) has implemented the check and review (C&R) on P&T technology from 2008 to 2009. In the C&R, the benefit of P&T technology, the current status of the R&D, and the way forward to promote it were discussed.
Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.
Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A
2015-11-01
In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.
Girgenti, Vincenzo; Peano, Cristiana; Baudino, Claudio; Tecco, Nadia
2014-03-01
In this study, we analysed the environmental profile of the strawberry industry in Northern Italy. The analysis was conducted using two scenarios as reference systems: strawberry crops grown in unheated plastic tunnels using currently existing cultivation techniques, post-harvest management practices and consumption patterns (scenario 1) and the same strawberry cultivation chain in which some of the materials used were replaced with bio-based materials (scenario 2). In numerous studies, biodegradable polymers have been shown to be environmentally friendly, thus potentially reducing environmental impacts. These materials can be recycled into carbon dioxide and water through composting. Many materials, such as Mater-BI® and PLA®, are also derived from renewable resources. The methodology chosen for the environmental analysis was a life cycle assessment (LCA) based on a consequential approach developed to assess a product's overall environmental impact from the production system to its usage and disposal. In the field stage, a traditional mulching film (non-biodegradable) could be replaced with a biodegradable product. This change would result in waste production of 0 kg/ha for the bio-based product compared to 260 kg/ha of waste for polyethylene (PE). In the post-harvest stage, the issue addressed was the use and disposal of packaging materials. The innovative scenario evaluated herein pertains to the use of new packaging materials that increase the shelf life of strawberries, thereby decreasing product losses while increasing waste management efficiency at the level of a distribution platform and/or sales outlet. In the event of product deterioration or non-sale of the product, the packaging and its contents could be collected together as organic waste without any additional processes because the packaging is compostable according to EN13432. Scenario 2 would achieve reductions of 20% in the global warming potential and non-renewable energy impact categories. Copyright © 2013 Elsevier B.V. All rights reserved.
Pardo, Guillermo; Moral, Raúl; Del Prado, Agustín
2017-01-01
On-farm anaerobic digestion (AD) has been promoted due to its improved environmental performance, which is based on a number of life cycle assessments (LCA). However, the influence of site-specific conditions and practices on AD performance is rarely captured in LCA studies and the effects on C and N cycles are often overlooked. In this paper, a new model for AD (SIMS WASTE-AD ) is described in full and tested against a selection of available measured data. Good agreement between modelled and measured values was obtained, reflecting the model capability to predict biogas production (r 2 =0.84) and N mineralization (r 2 =0.85) under a range of substrate mixtures and operational conditions. SIMS WASTE-AD was also used to simulate C and N flows and GHG emissions for a set of scenarios exploring different AD technology levels, feedstock mixtures and climate conditions. The importance of post-digestion emissions and its relationship with the AD performance have been stressed as crucial factors to reduce the net GHG emissions (-75%) but also to enhance digestate fertilizer potential (15%). Gas tight digestate storage with residual biogas collection is highly recommended (especially in temperate to warm climates), as well as those operational conditions that can improve the process efficiency on degrading VS (e.g. thermophilic range, longer hydraulic retention time). Beyond the effects on the manure management stage, SIMS WASTE-AD also aims to help account for potential effects of AD on other stages by providing the C and nutrient flows. While primarily designed to be applied within the SIMS DAIRY modelling framework, it can also interact with other models implemented in integrated approaches. Such system scope assessments are essential for stakeholders and policy makers in order to develop effective strategies for reducing GHG emissions and environmental issues in the agriculture sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Environmental-benefit analysis of two urban waste collection systems.
Aranda Usón, Alfonso; Ferreira, Germán; Zambrana Vásquez, David; Zabalza Bribián, Ignacio; Llera Sastresa, Eva
2013-10-01
Sustainable transportation infrastructure and travel policies aim to optimise the use of transportation systems to achieve economic and related social and environmental goals. To this end, a novel methodology based on life cycle assessment (LCA) has been developed in this study, with the aim of quantifying, in terms of CO2 emissions equivalent, the impact associated with different alternatives of waste collection systems in different urban typologies. This new approach is focussed on saving energy and raw materials and reducing the environmental impact associated with the waste collection system in urban areas, as well as allowing the design and planning of the best available technologies and most environment-friendly management. The methodology considers a large variety of variables from the point of view of sustainable urban transport such as the location and size of the urban area, the amount of solid waste generated, the level of social awareness on waste separation procedures, the distance between houses and waste collection points and the distance from the latter to the possible recovery plants and/or landfills, taking into account the material and energy recovery ratio within an integrated waste management system. As a case study, two different waste collection systems have been evaluated with this methodology in the ecocity Valdespartera located in Zaragoza, Spain, consisting of approximately 10,000 homes: (i) a system based on traditional truck transportation and manual collection, and (ii) a stationary vacuum waste collection system. Results show that, when operating at loads close to 100%, the stationary collection system has the best environmental performance in comparison with the conventional system. In contrast, when operating at load factors around 13% the environmental benefits in terms of net CO2-eq. emissions for the stationary collection system are around 60% lower in comparison with the conventional one. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina
Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system.more » One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.« less
Assessment of Hyperspectral and SAR Remote Sensing for Solid Waste Landfill Management
NASA Astrophysics Data System (ADS)
Ottavianelli, Giuseppe; Hobbs, Stephen; Smith, Richard; Bruno, Davide
2005-06-01
Globally, waste management is one of the most critical environmental concerns that modern society is facing. Controlled disposal to land (landfill) is currently important, and due to the potentially harmful effects of gas emissions and leachate land contamination, the monitoring of a landfill is inherent in all phases of the site's life cycle. Data from satellite platforms can provide key support to a number of landfill management and monitoring practices, potentially reducing operational costs and hazards, and meeting the challenges of the future waste management agenda.The few previous studies performed show the value of EO data for mapping landcover around landfills and monitoring vegetation health. However, these were largely qualitative studies limited to single sensor types. The review of these studies highlights three key aspects. Firstly, with regard to leachate and gas monitoring, space-borne remote sensing has not proved to be a valid tool for an accurate quantitative analysis, it can only support ground remediation efforts based on the expertise of the visual interpreter and the knowledge of the landfill operator. Secondly, the additional research that focuses on landfill detection concentrates only on the images' data dimension (spatial and spectral), paying less attention to the sensor-independent bio- and geo-physical variables and the modelling of remote sensing physical principles for both active and restored landfill sites. These studies show some ambiguity in their results and additional aerial images or ground truth visits are always required to support the results. Thirdly, none of the studies explores the potential of Synthetic Aperture Radar (SAR) remote sensing and SAR interferometric processing to achieve a more robust automatic detection algorithm and extract additional information and knowledge for landfill management.Based on our previous work with ERS radar images and SAR interferometry, expertise in the waste management sector, and practical knowledge of landfill management practices, we propose to evaluate the use of hyperspectral and radar images for landfill monitoring and management. CHRIS offers hyperspectral data of commensurate spatial resolution with Envisat radarimages and thus appears ideally suited for studies using multi-sensor data fusion.The goal of the research is to identify practical ways in which EO data can support landfill management and monitoring, providing quantitative data where possible. Our objectives (based on fieldwork in UK landfills) are (1) to develop robust methods of detecting and mapping landfill sites, (2) to correlate EO data with on-site operational procedures, and (3) to investigate data fusion techniques based on our findings with the separate sensors. Dissemination of the findings will be through scientific journals, professional waste management publications and workshops. It is expected that the research will help the development of techniques which could be applied to monitor waste disposal to land beyond the UK scope of this study, including global monitoring.
Global capacity, potentials and trends of solid waste research and management.
Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan
2017-09-01
In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se; Cour Jansen, J. la
2012-12-15
Highlights: Black-Right-Pointing-Pointer GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. Black-Right-Pointing-Pointer System-boundary settings often vary largely in reviewed studies. Black-Right-Pointing-Pointer Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seenmore » between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.« less
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2014 CFR
2014-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2013 CFR
2013-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2012 CFR
2012-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2010 CFR
2010-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.
Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia
2016-09-01
Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of Biofilms on the Design and Operation of ISS Life Support Systems
NASA Technical Reports Server (NTRS)
Carter, Donald Layne; Brown, Chris
2017-01-01
Biofilm growth has been an ongoing issue for US and Russian water systems on the International Space Station, and is a critical issue for exploration missions in which water systems must be designed to accommodate dormant periods of up to one year. On ISS, Russian condensate plumbing has previously clogged with biomass, requiring condensate plumbing to now be regularly replaced. In the US Segment, the release of biofilm from the Water Processor waste tank has clogged a solenoid valve downstream of the tank, resulting in the costly replacement of the inlet separator and process pump. Subsequent management of the biofilm in the waste tank involves restrictions on tank cycles to limit the release of biomass and an additional filter to protect downstream components. Engineering personnel are now evaluating concepts to better manage the biomass, including the use of microbial inhibitors and UV LEDs. Though current ISS operations could likely be sustained for the duration of ISS, a more effective method must be developed for managing the growth and release of biomass in future exploration vehicles. Biofilm management for future missions is complicated by the requirement to accommodate extended periods of dormancy during which time the water system will be stagnant. The current approach under consideration is to flush the waste water with product water to reduce the organic content followed by use of microbial inhibitors or UV. However, other concepts may also be developed based on ongoing research.
Addo, Henry O; Dun-Dery, Elvis J; Afoakwa, Eugenia; Elizabeth, Addai; Ellen, Amposah; Rebecca, Mwinfaug
2017-07-03
Domestic waste generation has contributed significantly to hampering national waste management efforts. It poses serious threat to national development and requires proper treatment and management within and outside households. The problem of improper waste management has always been a challenge in Ghana, compelling several national surveys to report on the practice of waste management. However, little is known about how much waste is generated and managed within households and there is a serious dearth of information for national policy and planning. This paper seeks to document the handling and practice of waste management, including collection, storage, transportation and disposal along with the types and amount of waste generated by Households and their related health outcome. The study was a descriptive cross-sectional study and used a multi-stage sampling technique to sample 700 households. The study was planned and implemented from January to May 2015. It involved the use of structured questionnaires in the data collection over the period. Factors such as demographic characteristics, amount of waste generated, types of waste bins used within households, waste recycling, cost of disposing waste, and distance to dumpsite were all assessed. The paper shows that each surveyed household generated 0.002 t of waste per day, of which 29% are both organic and inorganic. Though more than half of the respondents (53.6%) had positive attitude towards waste management, only 29.1% practiced waste management. The study reveals that there is no proper management of domestic waste except in few households that segregate waste. The study identified several elements as determinants of waste management practice. Female respondents were less likely to practice waste management (AOR 0.45; 95% Cl 0.29, 0.79), household size also determined respondents practice (AOR 0.26; Cl 0.09, 0.77). Practice of recycling (AOR 0.03; Cl 0.02, 0.08), distance to dumpsite (AOR 0.45; Cl 0.20, 0.99), were all significant predictors of waste management practice. Cholera which is a hygiene related disease was three times more likely to determine households' waste management practice (AOR 3.22; Cl 1.33, 7.84). Considering the low waste management practice among households, there is the need for improved policy and enhanced education on proper waste management practice among households.
An Example of an INPRO Assessment of an INS in the Area of Waste Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan, C.; Busurin, Y.; Depisch, F.
2006-07-01
Following a resolution of the General Conference of the IAEA in the year 2000 the International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated. INPRO has defined requirements organized in a hierarchy of Basic Principles, User Requirements and Criteria (consisting of an indicator and an acceptance limit) to be met by innovative nuclear reactor systems (INS) in six areas, namely: economics, safety, waste management, environment, proliferation resistance, and infrastructure. If an INS meets all requirements in all areas it represents a sustainable system for the supply of energy, capable of making a significant contributionmore » to meeting the energy needs of the 21. century. Draft manuals have been developed, for each INPRO area, to provide guidance for performing an assessment of whether an INS meets the INPRO requirements in a given area. The manuals set out the information that needs to be assembled to perform an assessment and provide guidance on selecting the acceptance limits and, for a given INS, for determining the value of the indicators for comparison with the associated acceptance limits. Each manual also includes an example of a specific assessment to illustrate the guidance. This paper discusses the example presented in the manual for performing an INPRO assessment in the area of waste management. The example, chosen solely for the purpose of illustrating the INPRO methodology, describes an assessment of an INS based on the DUPIC fuel cycle. It is assumed that uranium is mined, milled, converted, enriched, and fabricated into LWR fuel in Canada. The LWR fuel is assumed to be leased to a utility in the USA. The spent LWR fuel is assumed to be returned to Canada where it is processed into CANDU DUPIC fuel, which is then burned in CANDU reactors. The assessment steps and the results are presented in detail in the paper. The example illustrates an assessment performed for an INS at an early stage of development. (authors)« less
Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam
2017-12-06
A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Une, H.
In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reductionmore » of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.« less
Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H
2012-05-01
Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Environmental and economic analyses of waste disposal options for traditional markets in Indonesia.
Aye, Lu; Widjaya, E R
2006-01-01
Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.
Waste-to-energy: What are the issues?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, J.A.
1995-09-01
It is very difficult to have been associated with the Waste-to-Energy ({open_quotes}WTE{close_quotes}) Industry during the past twelve months without feeling a profound sense of being under attack and more than a little shell shocked. That is not to say that scrutiny and regulation haven`t been an important factor for WTE from its inception, only that it seems that certain difficult issues have been thrust to the fore through the recent actions of the courts and regulatory agencies. While ash management and flow control hit center stage with a flourish in a one-two punch last Spring with the Supreme Court inmore » the City of Chicago and Carbone decisions, significant compliance issues still remain with respect to implementing the Clean Air Act Amendments of 1990 ({open_quotes}CAAA{close_quotes}). In my state, the long term plans for waste management have WTE facilities responsible for turning 50% of the total waste stream into electricity, with other recycling accounting for all but 4% of the rest. With similar reliance upon WTE facilities elsewhere, it is critical that cost effective ways of managing these issues be found. Beyond these primarily regulatory and legal issues, there are also numerous challenges in the marketplace with increased reliance on recycling and the normal ebb and flow of the business cycle. Finally, there are always issues, including those already mentioned, which are best addressed in the political arena. Working together as an industry and regulated community will be essential if we are to make progress in addressing many of our challenges.« less
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
40 CFR 273.52 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...
Ribić, Bojan; Voća, Neven; Ilakovac, Branka
2017-02-01
Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.
Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.
Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia
Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri
2011-01-01
The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559
Alternative approaches for better municipal solid waste management in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, Sarika
2006-07-01
Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
Escamilla-Alvarado, Carlos; Poggi-Varaldo, Héctor M; Ponce-Noyola, M Teresa
2017-11-01
A life cycle assessment (LCA) of a four-stage biorefinery concept, coined H-M-Z-S, that converts 1 t of organic fraction of municipal solid waste (OFMSW) into bioenergy and bioproducts was performed in order to determine whether it could be an alternative to common disposal of OFMSW in landfills in the Mexican reality. The OFMSW is first fermented for hydrogen production, then the fermentates are distributed 40 % to the methane production, 40 % to enzyme production, and 20 % to the saccharification stage. From hydrogen and methane, up to 267 MJ and 204 kWh of gross heat and electricity were produced. The biorefinery proved to be self-sustainable in terms of power (95 kWh net power), but it presented a deficit of energy for heating services (-155 MJ), which was partially alleviated by digesting the wastes from the bioproducts stages (-84 MJ). Compared to landfill, biorefinery showed lower environmental impacts in global warming (down to -128 kg CO 2 -eq), ozone layer depletion (2.96 × 10 -6 kg CFC 11 -eq), and photochemical oxidation potentials (0.011 kg C 2 H 4 -eq). The landfarming of the digestates increased significantly the eutrophication impacts, up to 20 % below the eutrophication from landfilling (1.425 kg PO 4 -eq). These results suggest that H-M-Z-S biorefinery could be an attractive alternative compared to conventional landfilling for the management of municipal solid wastes, although new alternatives and uses of co-products and wastes should be explored and tested. Moreover, the biorefinery system would benefit from the integration into the market chain of the bioproducts, i.e., enzymes and hydrolysates among others.
E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.
Resmi, N G; Fasila, K A
2017-10-01
This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress and challenges to the global waste management system.
Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn
2014-09-01
Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asase, Mizpah; Yanful, Ernest K.; Mensah, Moses
2009-10-15
Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system's development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city ismore » handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces. The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.« less
From chemical risk assessment to environmental resources management: the challenge for mining.
Voulvoulis, Nikolaos; Skolout, John W F; Oates, Christopher J; Plant, Jane A
2013-11-01
On top of significant improvements and progress made through science and engineering in the last century to increase efficiency and reduce impacts of mining to the environment, risk assessment has an important role to play in further reducing such impacts and preventing and mitigating risks. This paper reflects on how risk assessment can improve planning, monitoring and management in mining and mineral processing operations focusing on the importance of better understanding source-pathway-receptor linkages for all stages of mining. However, in light of the ever-growing consumption and demand for raw materials from mining, the need to manage environmental resources more sustainably is becoming increasingly important. The paper therefore assesses how mining can form an integral part of wider sustainable resources management, with the need for re-assessing the potential of mining in the context of sustainable management of natural capital, and with a renewed focus on its the role from a systems perspective. The need for understanding demand and pressure on resources, followed by appropriate pricing that is inclusive of all environmental costs, with new opportunities for mining in the wastes we generate, is also discussed. Findings demonstrate the need for a life cycle perspective in closing the loop between mining, production, consumption and waste generation as the way forward.
NASA Astrophysics Data System (ADS)
Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi
2017-06-01
Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy
EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
40 CFR 62.14430 - Must I prepare a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...
Disaster waste management: a review article.
Brown, Charlotte; Milke, Mark; Seville, Erica
2011-06-01
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Disaster waste management: A review article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz
2011-06-15
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less
Hupponen, M; Grönman, K; Horttanainen, M
2015-08-01
The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs' perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to know the combusted share of mixed MSW after preparing solid recovered fuel (SRF) and the treatment of rejects. The environmental criteria for the waste incineration plant procurements should be made in order to obtain clear instructions for the procurement units. The results can also be utilized more widely. The substituted fuels in the area and the effect of the plant location on the utilization of the produced energy can already be identified when planning an appropriate site for the waste incineration plant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Nicholas; Adams, Lynne; Wong, Pierre
2013-07-01
Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less
Health-care waste management in India.
Patil, A D; Shekdar, A V
2001-10-01
Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.
Rowling, Brett; Kinsela, Andrew S; Comarmond, M Josick; Hughes, Catherine E; Harrison, Jennifer J; Johansen, Mathew P; Payne, Timothy E
2017-11-01
At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, W.R.
1991-08-01
If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less
Additional Equipment for Soil Biodegradation
NASA Astrophysics Data System (ADS)
Vondráčková, Terezie; Kraus, Michal; Šál, Jiří
2017-12-01
Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for on-sit biodegradation.
Is Municipal Solid Waste Recycling Economically Efficient?
NASA Astrophysics Data System (ADS)
Lavee, Doron
2007-12-01
It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.
Cellura, Maurizio; Ardente, Fulvio; Longo, Sonia
2012-01-01
In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.
Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun
2017-03-01
With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.
Longe, Ezechiel O
2012-06-01
A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.
Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith
2016-11-15
Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. Copyright © 2016 Elsevier B.V. All rights reserved.
A historical perspective of Global Warming Potential from Municipal Solid Waste Management.
Habib, Komal; Schmidt, Jannick H; Christensen, Per
2013-09-01
The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
40 CFR 60.2620 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...
40 CFR 60.3010 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...
Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin
2011-01-01
The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO(2) reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest. Copyright © 2011 Elsevier Ltd. All rights reserved.
Current status of waste management in Botswana: A mini-review.
Mmereki, Daniel
2018-05-01
Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.
Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie
2014-10-01
In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan
2007-01-01
Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and subsequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic and chromium concentrations in the ash leachate may increase leachate management costs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...
Hazardous and toxic waste management in Botswana: practices and challenges.
Mmereki, Daniel; Li, Baizhan; Meng, Liu
2014-12-01
Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.
Annual report on the AECB research and support program, 1997--1998. Report number INFO-0698
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The AECB-funded extramural Research and Support Program provides access to independent advice, expertise, and information via contracts placed in the private sector and with other agencies and organizations in Canada and elsewhere. This report presents information on the scope of activities in the Program during the year and describes how the Program was managed, organized, and carried out. Information on individual sub-programs is presented in such fields as nuclear reactors, fuel cycle facilities, uranium mines and mills, waste management, dosimetry, health physics, and regulatory process development. A list of individual projects and their expenditures is appended.
Waste management outlook for mountain regions: Sources and solutions.
Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia
2017-09-01
Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...
40 CFR 60.2900 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...
40 CFR 62.14585 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
40 CFR 60.3011 - When must I submit my waste management plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...
40 CFR 62.14580 - What is a waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...
Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.
Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952
National information network and database system of hazardous waste management in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Hongchang
1996-12-31
Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less
Status of waste tyres and management practice in Botswana.
Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse
2017-02-22
Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting the management of waste tyres. The information provided by this study is very critical for reviewing and updating the methods and tools to update waste tyres data and trends to improve waste tyres management efficiency, suggesting innovative methods of recovering and recycling this waste stream in Botswana.
Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki
2012-08-15
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. King
2011-06-27
Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record. 'Fun' part of PK data gathering. Often got not-so-useful information such as, 'The operations manager was a jerk and we all hated him.' PK data are used to indicate the presence or absence of contaminants. Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes. The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.« less
Quality improvement in basic histotechnology: the lean approach.
Clark, David
2016-01-01
Lean is a comprehensive system of management based on the Toyota production system (TPS), encompassing all the activities of an organization. It focuses management activity on creating value for the end-user by continuously improving operational effectiveness and removing waste. Lean management creates a culture of continuous quality improvement with a strong emphasis on developing the problem-solving capability of staff using the scientific method (Deming's Plan, Do, Check, Act cycle). Lean management systems have been adopted by a number of histopathology departments throughout the world to simultaneously improve quality (reducing errors and shortening turnround times) and lower costs (by increasing efficiency). This article describes the key concepts that make up a lean management system, and how these concepts have been adapted from manufacturing industry and applied to histopathology using a case study of lean implementation and evidence from the literature. It discusses the benefits, limitations, and pitfalls encountered when implementing lean management systems.
Hazardous Waste: Learn the Basics of Hazardous Waste
... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...
Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.
Styles, David; Dominguez, Eduardo Mesa; Chadwick, Dave
2016-08-01
Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive emissions, biomethane use, energy conversion efficiency and digestate management. We combined statistics on current and planned AD deployment with operational data from a survey of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the years 2014 and 2017. Consequential LCA was applied to account for all major environmental credits and burdens incurred, including: (i) substitution of composting, incineration, sewer disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) incurred by the cultivation of crops used for biogas production and to compensate for bakery and brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse gas (GHG) emissions by 551-755Gg CO2e excluding ILUC, or 238-755Gg CO2e including ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8PJe, but eutrophication and acidification burdens were increased by 1.8-3.4Gg PO4e and 8.1-14.6Gg SO2e, respectively. Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil energy credit, primarily through substitution of natural gas power generation. Biogas expansion is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to encourage digestion of food waste and manures could maximize GHG abatement, avoiding the risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. Covering digestate stores could largely mitigate net eutrophication and acidification burdens. Copyright © 2016 Elsevier B.V. All rights reserved.
Life cycle assessment of construction and demolition waste management.
Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F
2015-10-01
Life cycle assessment (LCA) modelling of construction and demolition waste (C&DW) management was carried out. The functional unit was management of 1 Mg mineral, source separated C&DW, which is either utilised in road construction as a substitute for natural aggregates, or landfilled. The assessed environmental impacts included both non-toxic and toxic impact categories. The scenarios comprised all stages of the end-of-life management of C&DW, until final disposal of all residues. Leaching of inorganic contaminants was included, as was the production of natural aggregates, which was avoided because of the use of C&DW. Typical uncertainties related to contaminant leaching were addressed. For most impact categories, utilisation of C&DW in road construction was preferable to landfilling; however, for most categories, utilisation resulted in net environmental burdens. Transportation represented the most important contribution for most nontoxic impacts, accounting for 60-95 per cent of these impacts. Capital goods contributed with negligible impacts. Leaching played a critical role for the toxic categories, where landfilling had lower impacts than utilisation because of the lower levels of leachate per ton of C&DW reaching the groundwater over a 100-year perspective. Leaching of oxyanions (As, V and Sb) was critical with respect to leaching. Typical experimental uncertainties in leaching data did not have a pivotal influence on the results; however, accounting for Cr immobilisation in soils as part of the impact assessment was critical for modelling the leaching impacts. Compared with the overall life cycle of building and construction materials, leaching emissions were shown to be potentially significant for toxicity impacts, compared with contributions from production of the same materials, showing that end-of-life impacts and leaching should not be disregarded when assessing environmental impacts from construction products and materials. CO2 uptake in the C&DW corresponding to 15 per cent carbonation could out-balance global warming impacts from transportation; however, carbonation would also likely result in increased toxicity impacts due to higher leaching of oxyanions. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 60.35e - Waste management guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...
40 CFR 62.14590 - What should I include in my waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the... waste management measures already in place, the costs of additional measures, the emissions reductions...
E-waste management in India: A mini-review.
Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui
2018-05-01
Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.
Clinical laboratory waste management in Shiraz, Iran.
Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John
2012-06-01
Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...
40 CFR 62.14432 - When must my waste management plan be completed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...
Network modeling for reverse flows of end-of-life vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ene, Seval; Öztürk, Nursel
2015-04-15
Highlights: • We developed a network model for reverse flows of end-of-life vehicles. • The model considers all recovery operations for end-of-life vehicles. • A scenario-based model is used for uncertainty to improve real case applications. • The model is adequate to real case applications for end-of-life vehicles recovery. • Considerable insights are gained from the model by sensitivity analyses. - Abstract: Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is amore » need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles’ recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment.« less
Tribal Waste Management Program
The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.
Management of construction and demolition wastes as secondary building resources
NASA Astrophysics Data System (ADS)
Manukhina, Lyubov; Ivanova, Irina
2017-10-01
The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.
Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A
2009-07-01
Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2013 CFR
2013-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2012 CFR
2012-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.13 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2014 CFR
2014-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2011 CFR
2011-07-01
... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...
The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process.
NASA Astrophysics Data System (ADS)
Oelerich, Jens; Bijleveld, Marijn; Bouwhuis, Gerrit H.; Brinks, Ger J.
2017-10-01
Recycling of cotton waste into high value products is a longstanding goal in textile research. The SaXcellTM process provides a chemical recycling route towards virgin fibres. In this study a Life cycle assessment (LCA) is conducted to measure the impact of the chemical recycling of cotton waste on the environment. Pure cotton waste and cotton containing 10 % of polyester are elaborated. The results show that chemical recycling via the SaXcellTM process can have a lower impact on climate change and other impact category than comparable pulping technologies.
Optimised management of orphan wastes in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen
2013-07-01
Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less