Science.gov

Sample records for cycle-specific ung2 phosphorylations

  1. Rev1 is essential in generating G to C transversions downstream of the Ung2 pathway but not the Msh2+Ung2 hybrid pathway.

    PubMed

    Krijger, Peter Hugo Lodewijk; Tsaalbi-Shtylik, Anastasia; Wit, Niek; van den Berk, Paul Cornelius Maria; de Wind, Niels; Jacobs, Heinz

    2013-10-01

    Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes are initiated by the enzymatic deamination of cytosine (C) to uracil (U). Uracil-DNA-glycosylase (Ung2) converts uracils into apyrimidinic (AP) sites, which is essential for the generation of transversions (TVs) at G/C basepairs during SHM and for efficient DNA break formation during CSR. Besides Ung2, the mismatch repair protein Msh2 and the translesion synthesis (TLS) DNA polymerase (Pol) Rev1 are implicated in SHM and CSR. To further unravel the role of Rev1, we studied WT, Rev1-deficient, Msh2-deficient, and Rev1, Msh2 double-deficient B cells. Loss of Rev1 only slightly reduced CSR. During SHM G/C to C/G TVs are generated in both Ung2- and Ung+Msh2-dependent fashions. We found that Rev1 is essential for the Msh2-independent generation of these TVs downstream of Ung2-induced AP sites. In the Ung+Msh2 hybrid pathway, Rev1 is not essential and can be substituted by an alternative TLS Pol, especially when Rev1 is lacking.

  2. The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction

    PubMed Central

    Wu, Ying; Zhou, Xiaohong; Barnes, Christopher O.; DeLucia, Maria; Cohen, Aina E.; Gronenborn, Angela M.; Ahn, Jinwoo; Calero, Guillermo

    2017-01-01

    The HIV-1 accessory protein Vpr is required for efficient viral infection of macrophages and promotion of viral replication in T cells. Vpr’s biological activities are closely linked to the interaction with human DCAF1, a cellular substrate receptor of the Cullin4–RING E3 ubiquitin ligase (CRL4) of the host ubiquitin–proteasome-mediated protein degradation pathway. The molecular details of how Vpr usurps the protein degradation pathway have not been delineated. Here we present the crystal structure of the DDB1–DCAF1–HIV-1–Vpr–uracil-DNA glycosylase (UNG2) complex. The structure reveals how Vpr engages with DCAF1, creating a binding interface for UNG2 recruitment, in a manner distinct from the recruitment of SAMHD1 by Vpx protein for degradation by Vpx proteins. Vpr and Vpx use similar N-terminal and helical regions to bind the substrate receptor, whereas different regions target the specific cellular substrates. Furthermore, Vpr uses molecular mimicry of DNA by a variable loop for specific recruitment of the UNG2 substrate. PMID:27571178

  3. HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins

    PubMed Central

    Hrecka, Kasia; Hao, Caili; Shun, Ming-Chieh; Kaur, Sarabpreet; Swanson, Selene K.; Florens, Laurence; Washburn, Michael P.; Skowronski, Jacek

    2016-01-01

    HIV replication in nondividing host cells occurs in the presence of high concentrations of noncanonical dUTP, apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) cytidine deaminases, and SAMHD1 (a cell cycle-regulated dNTP triphosphohydrolase) dNTPase, which maintains low concentrations of canonical dNTPs in these cells. These conditions favor the introduction of marks of DNA damage into viral cDNA, and thereby prime it for processing by DNA repair enzymes. Accessory protein Vpr, found in all primate lentiviruses, and its HIV-2/simian immunodeficiency virus (SIV) SIVsm paralogue Vpx, hijack the CRL4DCAF1 E3 ubiquitin ligase to alleviate some of these conditions, but the extent of their interactions with DNA repair proteins has not been thoroughly characterized. Here, we identify HLTF, a postreplication DNA repair helicase, as a common target of HIV-1/SIVcpz Vpr proteins. We show that HIV-1 Vpr reprograms CRL4DCAF1 E3 to direct HLTF for proteasome-dependent degradation independent from previously reported Vpr interactions with base excision repair enzyme uracil DNA glycosylase (UNG2) and crossover junction endonuclease MUS81, which Vpr also directs for degradation via CRL4DCAF1 E3. Thus, separate functions of HIV-1 Vpr usurp CRL4DCAF1 E3 to remove key enzymes in three DNA repair pathways. In contrast, we find that HIV-2 Vpr is unable to efficiently program HLTF or UNG2 for degradation. Our findings reveal complex interactions between HIV-1 and the DNA repair machinery, suggesting that DNA repair plays important roles in the HIV-1 life cycle. The divergent interactions of HIV-1 and HIV-2 with DNA repair enzymes and SAMHD1 imply that these viruses use different strategies to guard their genomes and facilitate their replication in the host. PMID:27335459

  4. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2.

    PubMed

    Thientosapol, Eddy Sanchai; Sharbeen, George; Lau, K K Edwin; Bosnjak, Daniel; Durack, Timothy; Stevanovski, Igor; Weninger, Wolfgang; Jolly, Christopher J

    2016-12-29

    AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.

  5. Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2

    PubMed Central

    Hardeland, Ulrike; Kunz, Christophe; Focke, Frauke; Szadkowski, Marta; Schär, Primo

    2007-01-01

    Human Thymine-DNA Glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily. It excises uracil, thymine and a number of chemical base lesions when mispaired with guanine in double-stranded DNA. These activities are not unique to TDG; at least three additional proteins with similar enzymatic properties are present in mammalian cells. The successful co-evolution of these enzymes implies the existence of non-redundant biological functions that must be coordinated. Here, we report cell cycle regulation as a mechanism for the functional separation of apparently redundant DNA glycosylases. We show that cells entering S-phase eliminate TDG through the ubiquitin–proteasome system and then maintain a TDG-free condition until G2. Incomplete degradation of ectopically expressed TDG impedes S-phase progression and cell proliferation. The mode of cell cycle regulation of TDG is strictly inverse to that of UNG2, which peaks in and throughout S-phase and then declines to undetectable levels until it appears again just before the next S-phase. Thus, TDG- and UNG2-dependent base excision repair alternates throughout the cell cycle, and the ubiquitin–proteasome pathway constitutes the underlying regulatory system. PMID:17526518

  6. The Saccharomyces cerevisiae Fin1 protein forms cell cycle-specific filaments between spindle pole bodies.

    PubMed

    van Hemert, Martijn J; Lamers, Gerda E M; Klein, Dionne C G; Oosterkamp, Tjerk H; Steensma, H Yde; van Heusden, G Paul H

    2002-04-16

    The FIN1 gene from the yeast Saccharomyces cerevisiae encodes a basic protein with putative coiled-coil regions. Here we show that in large-budded cells a green fluorescent protein-Fin1 fusion protein is visible as a filament between the two spindle pole bodies. In resting cells the protein is undetectable, and in small-budded cells it is localized in the nucleus. During late mitosis it localizes on the spindle pole bodies. Filaments of cyano fluorescent protein-tagged Fin1 colocalize with filaments of green fluorescent protein-tagged Tub1 only in large-budded cells. By electron and atomic force microscopy we showed that purified recombinant Fin1p self-assembles into filaments with a diameter of approximately 10 nm. Our results indicate that the Fin1 protein forms a cell cycle-specific filament, additional to the microtubules, between the spindle pole bodies of dividing yeast cells.

  7. The Saccharomyces cerevisiae Fin1 protein forms cell cycle-specific filaments between spindle pole bodies

    PubMed Central

    van Hemert, Martijn J.; Lamers, Gerda E. M.; Klein, Dionne C. G.; Oosterkamp, Tjerk H.; Steensma, H. Yde; van Heusden, G. Paul H.

    2002-01-01

    The FIN1 gene from the yeast Saccharomyces cerevisiae encodes a basic protein with putative coiled-coil regions. Here we show that in large-budded cells a green fluorescent protein-Fin1 fusion protein is visible as a filament between the two spindle pole bodies. In resting cells the protein is undetectable, and in small-budded cells it is localized in the nucleus. During late mitosis it localizes on the spindle pole bodies. Filaments of cyano fluorescent protein-tagged Fin1 colocalize with filaments of green fluorescent protein-tagged Tub1 only in large-budded cells. By electron and atomic force microscopy we showed that purified recombinant Fin1p self-assembles into filaments with a diameter of ≈10 nm. Our results indicate that the Fin1 protein forms a cell cycle-specific filament, additional to the microtubules, between the spindle pole bodies of dividing yeast cells. PMID:11929974

  8. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis.

    PubMed

    Qiao, Man; Luo, Dan; Kuang, Yi; Feng, Haiyan; Luo, Guangping; Liang, Peng

    2015-01-01

    p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.

  9. [Phosphorylation of tau protein].

    PubMed

    Uchida, T; Ishiguro, K

    1990-05-01

    In aged human brain and particularly in Alzheimer's disease brain, paired helical filaments (PHFs) accumulate in the neuronal cell. Recently, it has been found that the highly phosphorylated tau protein, one of the microtubule-associated proteins (MAPs), is a component of PHF. The authors attempted to clarify the mechanism underlying the accumulation of PHF from the following two aspects; 1) What is the mechanism of phosphorylation of tau protein? 2) Is the highly phosphorylated tau protein capable of forming PHFs? From rat or bovine microtubule proteins we partially purified and characterized a novel protein kinase that specifically phosphorylated tau and MAP2 among many proteins in the brain extract, and which formed a PHF epitope on the phosphorylated human tau. This enzyme was one of the protein serine/threonine kinases and was independent of known second messengers. The phosphorylation of tau by this enzyme was stimulated by tubulin under the condition of microtubule formation, suggesting that the phosphorylation of tau could occur concomitantly with microtubule formation in the brain. Since this kinase was usually bound to tau but not directly to tubulin, the enzyme was associated with microtubules through tau. From these properties related to tau, this kinase is designated as tau protein kinase. The tau that been phosphorylated with this kinase using [gamma-32P]ATP as a phosphate donor, was digested by endoprotinase Lys-C to produce three labeled fragments, K1, K2 and K3. These three fragments were sequenced and the phosphorylation sites on tau by this kinase were identified. The K2 fragment overlapped with the tau-1 site known to be one of the phosphorylation site in PHF. This result strengthens the possibility that tau protein phosphorylated by tau protein kinase is incorporated into PHF. Tubulin binding sites on tau were located between K1 and K3 fragments, while K2 fragment was located in the neighboring to N-terminus of K1. No phosphorylated sites were

  10. H3S10 phosphorylation-mediated transcriptional regulation by Aurora kinase A.

    PubMed

    Kim, Se-Ryeon; Kim, Kee-Beom; Chae, Yun-Cheol; Park, Jin Woo; Seo, Sang-Beom

    2016-01-01

    Histone H3S10 phosphorylation has been known as a cell cycle-specific marker and has a role in transcriptional activation. Various kinases phosphorylate H3S10 in different species, however, the role of the mitotic serine/threonine protein kinase Aurora A (AURKA) is largely unknown. Here we present evidence that AURKA phosphorylates H3S10 and activates target gene transcription. We show that down-regulation of AURKA level during leukemia cell differentiation results in decreased H3S10 phosphorylation level. We further show that AURKA is recruited to target gene promoters and activates transcription via H3S10 phosphorylation. Furthermore, this recruitment can be disrupted by the AURKA inhibitor Alisertib and results in H3K9-me2 recruitment by G9a.

  11. Phosphorylation: Implications in Cancer.

    PubMed

    Singh, Vishakha; Ram, Mahendra; Kumar, Rajesh; Prasad, Raju; Roy, Birendra Kumar; Singh, Kaushal Kumar

    2017-02-01

    Post translational modifications (PTMs) are involved in variety of cellular activities and phosphorylation is one of the most extensively studied PTM, which regulates a number of cellular functions like cell growth, differentiation, apoptosis and cell signaling in healthy condition. However, alterations in phosphorylation pathways result in serious outcomes in the form of diseases, especially cancer. Many signalling pathways including Tyrosine kinase, MAP kinase, Cadherin-catenin complex, Cyclin-dependent kinase etc. are major players of the cell cycle and deregulation in their phosphorylation-dephosphorylation cascade has been shown to be manifested in the form of various types of cancers. Tyrosine kinase family encompasses the greatest number of oncoproteins. MAPK cascade has an importance role in cancer growth and progression. Bcl-2 family proteins serve either proapoptotic or antiapoptotic function. Cadherin-catenin complex regulates cell adhesion properties and cyclins are the key regulators of cell cycle. Altered phosphorylations in any of the above pathways are strongly associated with cancer, at the same time they serve as the potential tergets for drug development against cancer. Drugs targeting tyrosine kinase are potent anticancer drugs. Inhibitors of MEK, PI3K and ERK signalling pathways are undergoing clinical trials. Thus, drugs targeting phosphorylation pathways represent a promising area for cancer therapy.

  12. Phosphorylation regulates mycobacterial proteasome.

    PubMed

    Anandan, Tripti; Han, Jaeil; Baun, Heather; Nyayapathy, Seeta; Brown, Jacob T; Dial, Rebekah L; Moltalvo, Juan A; Kim, Min-Seon; Yang, Seung Hwan; Ronning, Donald R; Husson, Robert N; Suh, Joowon; Kang, Choong-Min

    2014-09-01

    Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

  13. Struvite and prebiotic phosphorylation.

    NASA Technical Reports Server (NTRS)

    Handschuh, G. J.; Orgel, L. E.

    1973-01-01

    Struvite rather than apatite or amorphous calcium phosphate is precipitated when phosphate is added to seawater containing more than 0.01M NH4+ ions. Struvite may have precipitated from evaporating seawater on the primitive earth, and may have been important for prebiotic phosphorylation.

  14. Protein phosphorylation and photorespiration.

    PubMed

    Hodges, M; Jossier, M; Boex-Fontvieille, E; Tcherkez, G

    2013-07-01

    Photorespiration allows the recycling of carbon atoms of 2-phosphoglycolate produced by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenase activity, as well as the removal of potentially toxic metabolites. The photorespiratory pathway takes place in the light, encompasses four cellular compartments and interacts with several other metabolic pathways and functions. Therefore, the regulation of this cycle is probably of paramount importance to plant metabolism, however, our current knowledge is poor. To rapidly respond to changing conditions, proteins undergo a number of different post-translational modifications that include acetylation, methylation and ubiquitylation, but protein phosphorylation is probably the most common. The reversible covalent addition of a phosphate group to a specific amino acid residue allows the modulation of protein function, such as activity, subcellular localisation, capacity to interact with other proteins and stability. Recent data indicate that many photorespiratory enzymes can be phosphorylated, and thus it seems that the photorespiratory cycle is, in part, regulated by protein phosphorylation. In this review, the known phosphorylation sites of each Arabidopsis thaliana photorespiratory enzyme and several photorespiratory-associated proteins are described and discussed. A brief account of phosphoproteomic protocols is also given since the published data compiled in this review are the fruit of this approach.

  15. Regulatory substances produced by lymphocytes. VI. Cell cycle specificity of inhibitor of DNA synthesis action in L cells.

    PubMed

    Wagshal, A B; Jegasothy, B V; Waksman, B H

    1978-01-01

    IDS inhibits DNA synthesis and mitosis of L cells only when present during the late G1 phase of the cell cycle, as shown with L cells synchronized by a variety of methods. This corresponds well with earlier findings that IDS inhibits DNA synthesis in mitogen-stimulated lymphocytes when present between 16 and 24 h after adding mitogen. In both cell types, the inhibition produced by IDS appears to be totally the result of elevation of cAMP level. Thus, inhibitors of cAMP phosphodiesterase work synergistically with IDS, and activators of cAMP phosphodiesterase overcome the inhibition by IDS. This paper shows that IDS raises cAMP levels in L cells only within a narrow interval of the cell cycle, around 6-8 h after mitosis. This cell cycle specificity, which may be related to appearance of receptors for IDS only at discrete times, may be important in limiting IDS action to suppression, as elevated cAMP levels have a variety of other effects during other phases of the cell cycle.

  16. Differential cell cycle-specificity for chromosomal damage induced by merbarone and etoposide in V79 cells.

    PubMed

    Wang, Ling; Roy, Shambhu K; Eastmond, David A

    2007-03-01

    Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.

  17. Determination of GPCR Phosphorylation Status: Establishing a Phosphorylation Barcode.

    PubMed

    Prihandoko, Rudi; Bradley, Sophie J; Tobin, Andrew B; Butcher, Adrian J

    2015-06-01

    G protein-coupled receptors (GPCRs) are rapidly phosphorylated following agonist occupation in a process that mediates receptor uncoupling from its cognate G protein, a process referred to as desensitization. In addition, this process provides a mechanism by which receptors can engage with arrestin adaptor molecules and couple to downstream signaling pathways. The importance of this regulatory process has been highlighted recently by the understanding that ligands can direct receptor signaling along one pathway in preference to another, the phenomenon of signaling bias that is partly mediated by the phosphorylation status or phosphorylation barcode of the receptor. Methods to determine the phosphorylation status of a GPCR in vitro and in vivo are necessary to understand not only the physiological mechanisms involved in GPCR signaling, but also to fully examine the signaling properties of GPCR ligands. This unit describes detailed methods for determining the overall phosphorylation pattern on a receptor (the phosphorylation barcode), as well as mass spectrometry approaches that can define the precise sites that become phosphorylated. These techniques, coupled with the generation and characterization of receptor phosphorylation-specific antibodies, provide a full palate of techniques necessary to determine the phosphorylation status of any given GPCR subtype.

  18. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  19. Phosphorylation site prediction in plants.

    PubMed

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.

  20. Protein tyrosine phosphorylation in streptomycetes.

    PubMed

    Waters, B; Vujaklija, D; Gold, M R; Davies, J

    1994-07-01

    Using phosphotyrosine-specific antibodies, we demonstrate that in several Streptomyces spp. a variety of proteins are phosphorylated on tyrosine residues. Tyrosine phosphorylation was found in a number of Streptomyces species including Streptomyces lividans, Streptomyces hygroscopicus and Streptomyces lavendulae. Each species exhibited a unique pattern of protein tyrosine phosphorylation. Moreover, the patterns of tyrosine phosphorylation varied during the growth phase and were also influenced by culture conditions. We suggest that metabolic shifts during the complex growth cycle of these filamentous bacteria, and possibly secondary metabolic pathways, may be controlled by the action of protein tyrosine kinases and phosphatases, as has been demonstrated in signal transduction pathways in eukaryotic organisms.

  1. N-->S phosphoryl migration in phosphoryl glutathion.

    PubMed

    Yang, H J; Liu, J; Zhao, Y F

    1993-07-01

    It was found that in the case of N-(diisopropylphosphoryl) glutathion (reduced form), 2, N-->S phosphoryl migration took place, but not for N,N-bis(diisopropylphosphoryl) glutathion (oxidized form) or N-diisopropylphosphoryl cysteine. These results were deduced by 31P-NMR tracing experiments. It was shown that phosphoryl migration was catalyzed by an intramolecular carboxyl group, and a mechanism involving a mixed carboxyl-phosphoric anhydride was proposed. A competitive reaction between the amino and thiol group toward diisopropyl phosphite indicated that the phospho-thiol derived from N-(diisopropylphosphoryl) glutathion (reduced form), 2, did not result from direct phosphorylation of the thiol group. N,S-Bis(diisopropylphosphoryl) glutathion provides an authentic sample to confirm the migrated phosphoryl thiol product.

  2. Oxidative and Photosynthetic Phosphorylation Mechanisms

    ERIC Educational Resources Information Center

    Wang, Jui H.

    1970-01-01

    Proposes a molecular mechanism for the coupling of phosphorylation to electron transport in both mitochondria and chloroplasts. Justifies the proposed reaction schemes in terms of thermodynamics and biochemical data. Suggests how areobic respiration could have evolved. (EB)

  3. Phosphorylation regulates human OCT4.

    PubMed

    Brumbaugh, Justin; Hou, Zhonggang; Russell, Jason D; Howden, Sara E; Yu, Pengzhi; Ledvina, Aaron R; Coon, Joshua J; Thomson, James A

    2012-05-08

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography-MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency.

  4. Phosphorylation regulates human OCT4

    PubMed Central

    Brumbaugh, Justin; Russell, Jason D.; Howden, Sara E.; Yu, Pengzhi; Ledvina, Aaron R.; Coon, Joshua J.; Thomson, James A.

    2012-01-01

    The transcription factor OCT4 is fundamental to maintaining pluripotency and self-renewal. To better understand protein-level regulation of OCT4, we applied liquid chromatography–MS to identify 14 localized sites of phosphorylation, 11 of which were previously unknown. Functional analysis of two sites, T234 and S235, suggested that phosphorylation within the homeobox region of OCT4 negatively regulates its activity by interrupting sequence-specific DNA binding. Mutating T234 and S235 to mimic constitutive phosphorylation at these sites reduces transcriptional activation from an OCT4-responsive reporter and decreases reprogramming efficiency. We also cataloged 144 unique phosphopeptides on known OCT4 interacting partners, including SOX2 and SALL4, that copurified during immunoprecipitation. These proteins were enriched for phosphorylation at motifs associated with ERK signaling. Likewise, OCT4 harbored several putative ERK phosphorylation sites. Kinase assays confirmed that ERK2 phosphorylated these sites in vitro, providing a direct link between ERK signaling and the transcriptional machinery that governs pluripotency. PMID:22474382

  5. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    SciTech Connect

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  6. Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype.

    PubMed

    Pierce, Adam D; Anglin, Ian E; Vitolo, Michele I; Mochin, Maria T; Underwood, Karen F; Goldblum, Simeon E; Kommineni, Sravya; Passaniti, Antonino

    2012-01-01

    The runt-related protein-2 (RUNX2) is a DNA-binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post-translational phosphorylation that are cell cycle-specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S-phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co-incided with RUNX2 occupancy of the cyclin-dependent kinase (cdk) inhibitor p21(Cip1) promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C-terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose-stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose-activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis.

  7. Phosphorylation and dephosphorylation of spectrin.

    PubMed

    Fairbanks, G; Avruch, J; Dino, J E; Patel, V P

    1978-01-01

    The phosphorylation of spectrin polypeptide 2 is thought to be involved in the metabolically dependent regulation of red cell shape and deformability. Spectrin phosphorylation is not affected by cAMP. The reaction in isolated membranes resembles the cAMP-independent, salt-stimulated phosphorylation of an exogenous substrate, casein, by enzyme(s) present both in isolated membranes and cytoplasmic extracts. Spectrin kinase is selectively eluted from membranes by 0.5 M NaCl and co-fractionates with eluted casein kinase. Phosphorylation of band 3 in the membrane is inhibited by salt, but the band 3 kinase is otherwise indistinguishable operationally from spectrin kinase. The membrane-bound casein (spectrin) kinase is not eluted efficiently with spectrin at low ionic strength; about 80% of the activity is apparently bound at sites (perhaps on or near band 3) other than spectrin. Partitioning of casein kinase between cytoplasm and membrane is metabolically dependent; the proportion of casein kinase on the membrane can range from 25% to 75%, but for fresh cells is normally about 40%. Dephosphorylation of phosphorylated spectrin has not been studied intensively. Slow release of 32Pi from [32P] spectrin on the membrane can be demonstrated, but phosphatase activity measured against solubilized [32P] spectrin is concentrated in the cytoplasm. The crude cytoplasmic phosphospectrin phosphatase is inhibited by various anions--notably, ATP and 2,3-DPG at physiological concentrations. Regulation of spectrin phosphorylation in intact cells has not been studied. We speculate that spectrin phosphorylation state may be regulated 1) by metabolic intermediates and other internal chemical signals that modulate kinase and phosphatase activities per se or determine their intracellular localization and 2) by membrane deformation that alters enzyme-spectrin interaction locally. Progress in the isolation and characterization of spectrin kinase and phosphospectrin phosphatase should lead to

  8. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  9. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1998-07-01

    6219 TITLE: Function of Estrogen Receptor Tryosine Phosphorylation PRINCIPAL INVESTIGATOR: Matthew R. Yudt CONTRACTING ORGANIZATION: University of...Estrogen Receptor Tryosine Phosphorylation ~DAMD17-96-1-6219 6. AUTHOR(S) Matthew R. Yudt 7. PERFORMING ORGANIZATION NAME11S) AND AODRESS(ES...this model, tyrosine 537 (Y537) phosphorylation of one monomer interacts with another tyrosine phosphorylated monomer to constitute an hER dimer

  10. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  11. Identification of Potential Plk1 Targets in a Cell-Cycle Specific Proteome through Structural Dynamics of Kinase and Polo Box-Mediated Interactions

    PubMed Central

    Bibi, Nousheen; Parveen, Zahida; Rashid, Sajid

    2013-01-01

    Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets. PMID:23967120

  12. Phosphorylation of tau is regulated by PKN.

    PubMed

    Taniguchi, T; Kawamata, T; Mukai, H; Hasegawa, H; Isagawa, T; Yasuda, M; Hashimoto, T; Terashima, A; Nakai, M; Mori, H; Ono, Y; Tanaka, C

    2001-03-30

    For the phosphorylation state of microtubule-associated protein, tau plays a pivotal role in regulating microtubule networks in neurons. Tau promotes the assembly and stabilization of microtubules. The potential for tau to bind to microtubules is down-regulated after local phosphorylation. When we investigated the effects of PKN activation on tau phosphorylation, we found that PKN triggers disruption of the microtubule array both in vitro and in vivo and predominantly phosphorylates tau in microtubule binding domains (MBDs). PKN has a catalytic domain highly homologous to protein kinase C (PKC), a kinase that phosphorylates Ser-313 (= Ser-324, the number used in this study) in MBDs. Thus, we identified the phosphorylation sites of PKN and PKC subtypes (PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -zeta, and -lambda) in MBDs. PKN phosphorylates Ser-258, Ser-320, and Ser-352, although all PKC subtypes phosphorylate Ser-258, Ser-293, Ser-324, and Ser-352. There is a PKN-specific phosphorylation site, Ser-320, in MBDs. HIA3, a novel phosphorylation-dependent antibody recognizing phosphorylated tau at Ser-320, showed immunoreactivity in Chinese hamster ovary cells expressing tau and the active form of PKN, but not in Chinese hamster ovary cells expressing tau and the inactive form of PKN. The immunoreactivity for phosphorylated tau at Ser-320 increased in the presence of a phosphatase inhibitor, FK506 treatment, which means that calcineurin (protein phosphatase 2B) may be involved in dephosphorylating tau at Ser-320 site. We also noted that PKN reduces the phosphorylation recognized by the phosphorylation-dependent antibodies AT8, AT180, and AT270 in vivo. Thus PKN serves as a regulator of microtubules by specific phosphorylation of tau, which leads to disruption of tubulin assembly.

  13. Starch phosphorylation: insights and perspectives.

    PubMed

    Mahlow, Sebastian; Orzechowski, Sławomir; Fettke, Joerg

    2016-07-01

    During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.

  14. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei.

    PubMed

    Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A M

    2013-01-01

    Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.

  15. FT-IR analysis of phosphorylated protein

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Yoshihashi, Sachiko S.; Chihara, Kunihiro; Awazu, Kunio

    2004-09-01

    Phosphorylation and dephosphorylation, which are the most remarkable posttranslational modifications, are considered to be important chemical reactions that control the activation of proteins. We examine the phosphorylation analysis method by measuring the infrared absorption peak of phosphate group that observed at about 1070cm-1 (9.4μm) with Fourier Transform Infrared Spectrometer (FT-IR). This study indicates that it is possible to identify a phosphorylation by measuring the infrared absorption peak of phosphate group observed at about 1070 cm-1 with FT-IR method. As long as target peptides have the same amino acid sequence, it is possible to identify the phosphorylated sites (threonine, serine and tyrosine).

  16. The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development.

    PubMed

    Goedert, M; Jakes, R; Crowther, R A; Six, J; Lübke, U; Vandermeeren, M; Cras, P; Trojanowski, J Q; Lee, V M

    1993-06-01

    Tau is a neuronal phosphoprotein whose expression is developmentally regulated. A single tau isoform is expressed in fetal human brain but six isoforms are expressed in adult brain, with the fetal isoform corresponding to the shortest of the adult isoforms. Phosphorylation of tau is also developmentally regulated, as fetal tau is phosphorylated at more sites than adult tau. In Alzheimer disease, the six adult tau isoforms become abnormally phosphorylated and form the paired helical filament, the major fibrous component of the characteristic neurofibrillary lesions. We show here that Ser-202 (in the numbering of the longest human brain tau isoform) is a phosphorylation site that distinguishes fetal from adult tau and we identify it as one of the abnormal phosphorylation sites in Alzheimer disease. The abnormal phosphorylation of tau at Ser-202 in Alzheimer disease thus recapitulates normal phosphorylation during development.

  17. Insulin stimulates the tyrosine phosphorylation of caveolin

    PubMed Central

    1995-01-01

    The specialized plasma membrane structures termed caveolae and the caveolar-coat protein caveolin are highly expressed in insulin- sensitive cells such as adipocytes and muscle. Stimulation of 3T3-L1 adipocytes with insulin significantly increased the tyrosine phosphorylation of caveolin and a 29-kD caveolin-associated protein in caveolin-enriched Triton-insoluble complexes. Maximal phosphorylation occurred within 5 min, and the levels of phosphorylation remained elevated for at least 30 min. The insulin-dose responses for the tyrosine phosphorylation of caveolin and the 29-kD caveolin-associated protein paralleled those for the phosphorylation of the insulin receptor. The stimulation of caveolin tyrosine phosphorylation was specific for insulin and was not observed with PDGF or EGF, although PDGF stimulated the tyrosine phosphorylation of the 29-kD caveolin- associated protein. Increased tyrosine phosphorylation of caveolin, its associated 29-kD protein, and a 60-kD protein was observed in an in vitro kinase assay after incubation of the caveolin-enriched Triton- insoluble complexes with Mg-ATP, suggesting the presence of an intrinsic tyrosine kinase in these complexes. These fractions contain only trace amounts of the activated insulin receptor. In addition, these complexes contain a 60-kD kinase detected in an in situ gel kinase assay and an approximately 60 kD protein that cross-reacts with an antibody against the Src-family kinase p59Fyn. Thus, the insulin- dependent tyrosine phosphorylation of caveolin represents a novel, insulin-specific signal transduction pathway that may involve activation of a tyrosine kinase downstream of the insulin receptor. PMID:7540611

  18. Examining site-specific GPCR phosphorylation.

    PubMed

    Butcher, Adrian J; Tobin, Andrew B; Kong, Kok Choi

    2011-01-01

    Phosphorylation of G protein-coupled receptors (GPCRs) is one of the most prominent post-translation modifications mediated by agonist stimulation. This process has been shown to result not only in receptor desensitisation but also, via the recruitment of arrestin adaptor proteins, to promote receptor coupling to numerous signalling pathways. Furthermore, there is now a growing body of evidence suggesting that GPCRs may employ phosphorylation as a mechanism to regulate their cell-type-specific signalling, hence generating tissue-specific functions. These advances have resulted partly from improved methods used in the determination of phospho-acceptor sites on GPCRs and improved analysis of the consequences of phosphorylation. This chapter aims to describe the methods used in our laboratory for the investigation of site-specific phosphorylation of the M₃-muscarinic receptor. These methods could easily be applied in the study of other receptors.

  19. Protein phosphorylation in neurodegeneration: friend or foe?

    PubMed Central

    Tenreiro, Sandra; Eckermann, Katrin; Outeiro, Tiago F.

    2014-01-01

    Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system. PMID:24860424

  20. Long-term dynamics of multisite phosphorylation

    PubMed Central

    Rubinstein, Boris Y.; Mattingly, Henry H.; Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2016-01-01

    Multisite phosphorylation cycles are ubiquitous in cell regulation systems and are studied at multiple levels of complexity, from molecules to organisms, with the ultimate goal of establishing predictive understanding of the effects of genetic and pharmacological perturbations of protein phosphorylation in vivo. Achieving this goal is essentially impossible without mathematical models, which provide a systematic framework for exploring dynamic interactions of multiple network components. Most of the models studied to date do not discriminate between the distinct partially phosphorylated forms and focus on two limiting reaction regimes, distributive and processive, which differ in the number of enzyme–substrate binding events needed for complete phosphorylation or dephosphorylation. Here we use a minimal model of extracellular signal-related kinase regulation to explore the dynamics of a reaction network that includes all essential phosphorylation forms and arbitrary levels of reaction processivity. In addition to bistability, which has been studied extensively in distributive mechanisms, this network can generate periodic oscillations. Both bistability and oscillations can be realized at high levels of reaction processivity. Our work provides a general framework for systematic analysis of dynamics in multisite phosphorylation systems. PMID:27226482

  1. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    PubMed

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  2. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  3. Protein phosphorylation: Localization in regenerating optic axons

    SciTech Connect

    Larrivee, D. )

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  4. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    SciTech Connect

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  5. Phosphorylation of Recombinant Tristetraprolin in Vitro

    PubMed Central

    Cao, Heping; Lin, Rui

    2009-01-01

    Tristetraprolin/zinc finger protein 36 (TTP/ZFP36) binds and destabilizes some proinflammatory cytokine mRNAs. TTP-deficient mice develop a profound inflammatory syndrome due to excessive production of proinflammatory cytokines. TTP gene expression is induced by various factors including insulin, cinnamon, and green tea extracts. Previous studies have shown that TTP is highly phosphorylated in vivo and multiple phosphorylation sites are identified in human TTP. This study evaluated the potential protein kinases that could phosphorylate recombinant TTP in vitro. Motif scanning suggested that TTP was a potential substrate for various kinases. SDS-PAGE showed that in vitro phosphorylation of TTP with p42 and p38 MAP kinases resulted in visible electrophoretic mobility shift of TTP to higher molecular masses. Autoradiography showed that TTP was phosphorylated in vitro by GSK3b, PKA, PKB, PKC, but not Cdc2, in addition to p42, p38, and JNK. These results demonstrate that TTP is a substrate for a number of protein kinases in vitro. PMID:18071886

  6. Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation

    PubMed Central

    Rigatti, Marc; Le, Andrew V.; Gerber, Claire; Moraru, Ion I.; Dodge-Kafka, Kimberly L.

    2016-01-01

    Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca2+ cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca2+ re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100–200nM) to regulate the phosphorylation of large quantities of PLB (50µM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100–200 fold lower concentrations. PMID:26027516

  7. Phosphorylation of RACK1 in plants

    SciTech Connect

    Chen, Jay -Gui

    2015-08-31

    Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.

  8. Phosphorylation mechanisms in dopamine transporter regulation.

    PubMed

    Foster, James D; Vaughan, Roxanne A

    2016-11-09

    The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake.

  9. Phosphorylation of RACK1 in plants

    DOE PAGES

    Chen, Jay -Gui

    2015-08-31

    Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory systemmore » in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.« less

  10. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation

    PubMed Central

    Wang, Yifan; Zhang, Yanchong; Hu, Wen; Xie, Shutao; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2015-01-01

    Protein phosphorylation is an important post-translational modification of proteins. Postmortem tissues are widely being utilized in the biomedical studies, but the effects of postmortem on protein phosphorylation have not been received enough attention. In the present study, we found here that most proteins in mouse brain, heart, liver, and kidney were rapidly dephosphorylated to various degrees during 20 sec to 10 min postmortem. Phosphorylation of tau at Thr212 and glycogen synthase kinase 3β (GSK-3β) at Ser9 was reduced by 50% in the brain with 40 sec postmortem, a regular time for tissue processing. During postmortem, phosphorylation of cAMP-dependent protein kinase (PKA) and AMP activated kinase (AMPK) was increased in the brain, but not in other organs. Perfusion of the brain with cold or room temperature phosphate-buffered saline (PBS) also caused significant alteration of protein phosphorylation. Cooling down and maintaining mouse brains in the ice-cold buffer prevented the alteration effectively. This study suggests that phosphorylation of proteins is rapidly changed during postmortem. Thus, immediate processing of tissues followed by cooling down in ice-cold buffer is vitally important and perfusion has to be avoided when protein phosphorylation is to be studied. PMID:26511732

  11. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  12. Nucleoside phosphorylation by the mineral schreibersite

    NASA Astrophysics Data System (ADS)

    Gull, Maheen; Mojica, Mike A.; Fernández, Facundo M.; Gaul, David A.; Orlando, Thomas M.; Liotta, Charles L.; Pasek, Matthew A.

    2015-11-01

    Phosphorylation of the nucleosides adenosine and uridine by the simple mixing and mild heating of aqueous solutions of the organic compounds with synthetic analogs of the meteoritic mineral schreibersite, (Fe,Ni)3P under slightly basic conditions (pH ~9) is reported. These results suggest a potential role for meteoritic phosphorus in the origin and development of early life.

  13. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana

    PubMed Central

    Lohscheider, Jens N.; Friso, Giulia; van Wijk, Klaas J.

    2016-01-01

    Plastoglobules (PGs) are plastid lipid–protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  14. Phosphorylation of native porcine olfactory binding proteins.

    PubMed

    Nagnan-Le Meillour, Patricia; Le Danvic, Chrystelle; Brimau, Fanny; Chemineau, Philippe; Michalski, Jean-Claude

    2009-07-01

    The identification of various isoforms of olfactory binding proteins is of major importance to elucidate their involvement in detection of pheromones and other odors. Here, we report the characterization of the phosphorylation of OBP (odorant binding protein) and Von Ebner's gland protein (VEG) from the pig, Sus scrofa. After labeling with specific antibodies raised against the three types of phosphorylation (Ser, Thr, Tyr), the phosphate-modified residues were mapped by using the beta-elimination followed by Michael addition of dithiothreitol (BEMAD) method. Eleven phosphorylation sites were localized in the pOBP sequence and nine sites in the VEG sequence. OBPs are secreted by Bowman's gland cells in the extracellular mucus lining the nasal cavity. After tracking the secretion pathway in the rough endoplasmic reticulum of these cells, we hypothesize that these proteins may be phosphorylated by ectokinases that remain to be characterized. The existence of such a regulatory mechanism theoretically increases the number of OBP variants, and it suggests a more specific role for OBPs in odorant coding than the one of odorant solubilizer and transporter.

  15. Function of Estrogen Receptor Tryosine Phosphorylation

    DTIC Science & Technology

    1997-07-01

    localization of the receptors, ligand binding, DNA binding, transcriptional activation, and receptor turnover ( LeGoff et al. 1994; Lahooti et al. 1994...1040-1049 (1995). LeGoff P., M.M. Montano, D.J. Schodin, and B. Katzenellenbogen. Phosphorylation of the Human Estrogen Receptor. J. Biol. Chem

  16. Phosphoryl Transfer Reaction Snapshots in Crystals

    PubMed Central

    Gerlits, Oksana; Tian, Jianhui; Das, Amit; Langan, Paul; Heller, William T.; Kovalevsky, Andrey

    2015-01-01

    To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca2+ ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca2+ cations with Mg2+ ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date. PMID:25925954

  17. Pathogenic PS1 phosphorylation at Ser367

    PubMed Central

    Maesako, Masato; Horlacher, Jana; Zoltowska, Katarzyna M; Kastanenka, Ksenia V; Kara, Eleanna; Svirsky, Sarah; Keller, Laura J; Li, Xuejing; Hyman, Bradley T; Bacskai, Brian J; Berezovska, Oksana

    2017-01-01

    The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI: http://dx.doi.org/10.7554/eLife.19720.001 PMID:28132667

  18. Regulation of protein phosphorylation in oat mitochondria

    SciTech Connect

    Pike, C.; Kopeck, K.; Sceppa, E. )

    1989-04-01

    We sought to identify phosphorylated proteins in isolated oat mitocchondria and to characterize the enzymatic and regulatory properties of the protein kinase(s). Mitochondria from oats (Avena sativa L. cv. Garry) were purified on Percoll gradients. Mitochondria were incubated with {sup 32}P-{gamma}-ATP; proteins were separated by SDS-PAGE. A small number of bands was detected on autoradiograms, most prominently at 70 kD and 42 kD; the latter band has been tentatively identified as a subunit of the pyruvate dehydrogenase complex, a well-known phosphoprotein. The protein kinase(s) could also phosphorylate casein, but not histone. Spermine enhanced the phosphorylation of casein and inhibited the phosphorylation of the 42 kD band. These studies were carried out on both intact and burst mitochondria. Control by calcium and other ions was investigated. The question of the action of regulators on protein kinase or protein phosphatase was studied by the use of {sup 35}S-adenosine thiotriphosphate.

  19. Controlling cytokinesis through promiscuous phosphorylation outside BARs.

    PubMed

    Glotzer, Michael

    2010-07-09

    In this issue of Molecular Cell, Roberts-Galbraith and colleagues report that a key cytokinetic regulator in fission yeast, Cdc15, is phosphorylated on numerous sites that collectively, but not individually, control its oligomerization state and its associations with the plasma membrane and interacting proteins.

  20. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  1. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    SciTech Connect

    Smiley, R.M. Columbia Univ College of Physicians and Surgeons, New York, NY ); Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J. )

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with {sup 32}PO{sub 4} in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the {beta}-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M{sub r} 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the {alpha}-2 agonist clonidine. Epinephrine, a combined {alpha} and {beta} agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the {alpha}-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes.

  2. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes.

  3. MAP kinases phosphorylate rice WRKY45.

    PubMed

    Ueno, Yoshihisa; Yoshida, Riichiro; Kishi-Kaboshi, Mitsuko; Matsushita, Akane; Jiang, Chang-Jie; Goto, Shingo; Takahashi, Akira; Hirochika, Hirohiko; Takatsuji, Hiroshi

    2013-06-01

    WRKY45 transcription factor is a central regulator of disease resistance mediated by the salicylic acid (SA) signaling pathway in rice. SA-activated WRKY45 protein induces the accumulation of its own mRNA. However, the mechanism underlying this regulation is still unknown. Here, we report three lines of evidence showing that a mitogen-activated protein kinase (MAPK) cascade is involved in this regulation. An inhibitor of MAPK kinase (MAPKK) suppressed the increase in WRKY45 transcript level in response to SA. Two MAPKs, OsMPK4 and OsMPK6, phosphorylated WRKY45 protein in vitro. The activity of OsMPK6 was rapidly upregulated by SA treatment in rice cells. These results suggest that WRKY45 is regulated by MAPK-dependent phosphorylation in the SA pathway.

  4. Phosphorylation of Kraft fibers with phosphate esters.

    PubMed

    Shi, Ying; Belosinschi, Dan; Brouillette, François; Belfkira, Ahmed; Chabot, Bruno

    2014-06-15

    Phosphate esters, derived from two different long-chain aliphatic alcohols, were used as phosphorylating reagents for Kraft pulp fibers. High phosphorus contents and almost non-degraded fibers were obtained by following this pathway. The phosphorylation efficiency was influenced by the alkyl chain length of PEs since the phosphorus content in modified fibers was higher for the shorter chain reagent. Due to the heterogeneous reaction environment, the amount of grafted phosphorus was found to be almost three times higher at the surface than in the bulk of the fibers. Analyses also indicated that the phosphorus was bonded to fibers as a phosphate-like structure. Furthermore, the situation seemed to be different for the fiber surface where significant amounts of phosphorus were present in more complex structures like pyrophosphate or even oligo-phosphate.

  5. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  6. Mixed mechanisms of multi-site phosphorylation

    PubMed Central

    Suwanmajo, Thapanar; Krishnan, J.

    2015-01-01

    Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose–response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. PMID:25972433

  7. Mixed mechanisms of multi-site phosphorylation.

    PubMed

    Suwanmajo, Thapanar; Krishnan, J

    2015-06-06

    Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose-response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction.

  8. Function of platelet 47K protein phosphorylation

    SciTech Connect

    Imaoka, T.

    1987-05-01

    To provide insight into the biochemical pathway of platelet activation, they purified both unphosphorylated and phosphorylated P47 to homogeneity from human platelets. This study represents the first demonstration of a change of physiological action of P47 in response to phosphorylation in platelet activation. SVI labelled unphosphorylated P47 had an ability to bind with platelet membrane fraction in the presence of phosphatidylserine. Effect of diacylglycerol was inhibitory in this PS dependent P47 binding with membrane. Unphosphorylated P47 had an inhibitory activity in platelet actin polymerization. Molar ratio to inhibit actin polymerization was 1:8 (P47:actin). These activities were Ca independent. Purified TSP-labelled P47 lost the binding ability with membrane, also the inhibitory activity in actin polymerization. Therefore, they propose the hypothesis that unphosphorylated P47 may loosely bind with the inside of plasma membrane of platelet and inhibit actin polymerization as a modulator, when stimulated, protein Kinase C rapidly phosphorylate P47 and induce the activation of cytoskeletal network and subsequently release reaction.

  9. Phosphorylation of erythrocyte membrane liberates calcium

    SciTech Connect

    Chauhan, V.P.S.; Brockerhoff, H.

    1986-05-01

    Phosphorylation of permeabilized erythrocyte ghost membranes with ATP results in an increase free calcium level as measured with the help of Ca/sup 2 +/ electrode and /sup 45/Ca. This effect could not be observed in the presence of p/sup -/ chloromercuric benzoate, an inhibitor of kinases. The rise in the free calcium due to phosphorylation of the membrane was accompanied by a decrease in the level of phosphatidylinositol (PI) and an increase in phosphatidylinositolmonophosphate (PIP) and phosphatidylinositolbisphosphate (PIP/sub 2/). These results support the proposal that an inositol shuttle, PI in equilibrium PIP in equilibrium PIP/sub 2/, operates to maintain the intracellular calcium concentration. The cation is believed to be sequestered in a cage formed by the head groups of two acidic phospholipid molecules, e.g., phosphatidylserine and phosphatidylinositol, with the participation of both PO and fatty acid ester CO groups. When the inositol group of such a cage is phosphorylated, inter-headgroup hydrogen bonding between the lipids is broken. As a result the cage opens and calcium is released.

  10. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP

    PubMed Central

    O’Keefe, Rachel A.; Blice-Baum, Anna; Gong, Xuan; Karaca, Esra

    2016-01-01

    Abstract The fragile X mental retardation protein (FMRP) is an mRNA-binding regulator of protein translation that associates with 4-6% of brain transcripts and is central to neurodevelopment. Autism risk genes’ transcripts are overrepresented among FMRP-binding mRNAs, and FMRP loss-of-function mutations are responsible for fragile X syndrome, the most common cause of monogenetic autism. It is thought that FMRP-dependent translational repression is governed by the phosphorylation of serine residue 499 (S499). However, recent evidence suggests that S499 phosphorylation is not modulated by metabotropic glutamate receptor class I (mGluR-I) or protein phosphatase 2A (PP2A), two molecules shown to regulate FMRP translational repression. Moreover, the mammalian FMRP S499 kinase remains unknown. We found that casein kinase II (CK2) phosphorylates murine FMRP S499. Further, we show that phosphorylation of FMRP S499 permits phosphorylation of additional, nearby residues. Evidence suggests that these nearby residues are modulated by mGluR-I and PP2A pathways. These data support an alternative phosphodynamic model of FMRP that is harmonious with prior studies and serves as a framework for further investigation. PMID:27957526

  11. Phosphorylated tyrosine in the flagellum filament protein of Pseudomonas aeruginosa

    SciTech Connect

    Kelly-Wintenberg, K.; Anderson, T.; Montie, T.C. )

    1990-09-01

    Purified flagella from two strains of {sup 32}P-labeled Pseudomonas aeruginosa were shown to be phosphorylated. This was confirmed by autoradiography of flagellin protein in polyacrylamide gels. Thin-layer electrophoresis and autoradiography of flagellin partial hydrolysates indicated that phosphotyrosine was the major phosphorylated amino acid. High-pressure liquid chromatographic analysis confirmed the presence of phosphotyrosine in flagellum filament protein. Preliminary data indicated that less than one tyrosine per subunit was phosphorylated. No evidence was found for phosphorylation of serine or threonine. A function related to tyrosine phosphorylation has not been determined.

  12. A strategy to quantitate global phosphorylation of bone matrix proteins.

    PubMed

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  13. Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation.

    PubMed

    Mehlitz, Adrian; Banhart, Sebastian; Hess, Simone; Selbach, Matthias; Meyer, Thomas F

    2008-12-01

    Chlamydia trachomatis translocates the effector protein Tarp (translocated actin-recruiting phosphoprotein) into the host cell cytoplasm where it is quickly tyrosine phosphorylated. Abl and Src kinases have been implicated in Tarp phosphorylation; however, we observed that the situation is more complex. Chemical inhibition of Src family kinases confirmed a role for these kinases in Tarp phosphorylation. Infection of Src, Yes, Fyn (SYF)-deficient cells showed a dampened, but incompletely blocked, Tarp phosphorylation. Inhibition of Abl in an SYF background still did not completely block Tarp phosphorylation. Consequently, we tested additional kinases and found that Syk, but not Btk or Jak2, is a potent kinase of Tarp in vitro. Inhibition of Syk in an SYF background further blocked Tarp phosphorylation. Under these conditions, inclusion formation still proceeded normally. These data reveal a highly promiscuous substrate property of Tarp and set the stage for further functional characterization of Tarp phosphorylation during host cell infection.

  14. Multistep phosphorylation systems: tunable components of biological signaling circuits

    PubMed Central

    Valk, Evin; Venta, Rainis; Örd, Mihkel; Faustova, Ilona; Kõivomägi, Mardo; Loog, Mart

    2014-01-01

    Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase–dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications. PMID:25368420

  15. Tyrosine phosphorylation of Rab7 by Src kinase.

    PubMed

    Lin, Xiaosi; Zhang, Jiaming; Chen, Lingqiu; Chen, Yongjun; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2017-03-20

    The small molecular weight GTPase Rab7 is a key regulator for late endosomal/lysosomal membrane trafficking, it was known that Rab7 is phosphorylated, but the corresponding kinase and the functional regulation of Rab7 phosphorylation remain unclear. We provide evidence here that Rab7 is a substrate of Src kinase, and is tyrosine-phosphorylated by Src, withY183 residue of Rab7 being the optimal phosphorylation site for Src. Further investigations demonstrated that the tyrosine phosphorylation of Rab7 depends on the guanine nucleotide binding activity of Rab7 and the activity of Src kinase. The tyrosine phosphorylation of Rab7 is physiologically induced by EGF, and impairs the interaction of Rab7 with RILP, consequently inhibiting EGFR degradation and sustaining Akt signaling. These results suggest that the tyrosine phosphorylation of Rab7 may be involved in coordinating membrane trafficking and cell signaling.

  16. Puzzling over protein cysteine phosphorylation--assessment of proteomic tools for S-phosphorylation profiling.

    PubMed

    Buchowiecka, A K

    2014-09-07

    Cysteine phosphorylation has recently been discovered in both prokaryotic and eukaryotic systems, and is thought to play crucial roles in signaling and regulation of cellular responses. This article explores the topics of chemical stability of this type of structural modification and the resulting issues regarding affinity enrichment of S-phosphopeptides and their mass spectrometry-based detection in the course of general proteomics studies. Together, this work suggests that the current advances in phosphoproteomic methodologies provide adequate tools for investigating protein cysteine phosphorylation and appear to be immediately available for practical implementation. The article provides useful information necessary for designing experiments in the emerging cysteine phosphoproteomics. The examples of methodological proposals for S-linked phosphorylation detection are included herein in order to stimulate development of new approaches by the phosphoproteomic community.

  17. Phosphorylated testis-specific serine/threonine kinase 4 may phosphorylate Crem at Ser-117.

    PubMed

    Fu, Guolong; Wei, Youheng; Wang, Xiaoli; Yu, Long

    2016-06-01

    We aimed to investigate the internal existence status of testis-specific serine/threonine kinase 4 (Tssk4) and the interaction of Tssk4 and Cre-responsive element modulator (Crem). The internal existence status of Tssk4 in testis of mice was detected using western blotting and dephosphorylation method. The interaction of Tssk4 and Crem was analyzed by western blotting, immunohistochemistry, immunofluorescence, in vitro co-immunoprecipitation assays, and in vitro kinase assay. The results revealed that Tssk4 existed in testis both in phosphorylation and unphosphorylation status by a temporal manner with the development of testis. Immunofluorescence results showed that Tssk4 had identical distribution pattern with Crem in testis, which was utterly different to the localization of Cre-responsive element binding (Creb). In conclusion, our study demonstrated that phosphorylated Tssk4 might participate in testis genes expressions by phosphorylating Crem at Ser-117.

  18. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  19. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

    PubMed

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K

    2015-08-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin

  20. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  1. Genetic Manipulation of Neurofilament Protein Phosphorylation.

    PubMed

    Jones, Maria R; Villalón, Eric; Garcia, Michael L

    2016-01-01

    Neurofilament biology is important to understanding structural properties of axons, such as establishment of axonal diameter by radial growth. In order to study the function of neurofilaments, a series of genetically modified mice have been generated. Here, we describe a brief history of genetic modifications used to study neurofilaments, as well as an overview of the steps required to generate a gene-targeted mouse. In addition, we describe steps utilized to analyze neurofilament phosphorylation status using immunoblotting. Taken together, these provide comprehensive analysis of neurofilament function in vivo, which can be applied to many systems.

  2. Regulation of cardiac C-protein phosphorylation

    SciTech Connect

    Titus, F.L.

    1985-01-01

    Molecular mechanisms of cardiac sympathetic and parasympathetic responses were addressed by studying subcellular changes in protein phosphorylation, cAMP-dependent protein kinase activity and protein phosphatase activity in frog hearts. B-adrenergic agonists increased and muscarinic cholinergic agonists decreased (/sup 32/P)phosphate incorporation into C-protein, a thick filament component. Regulation of protein phosphatase activity by Iso and methacholine (MCh) was assayed using extracts of drug treated frog hearts and (/sup 32/P)phospho-C-protein as substrate. Total phosphatase activity decreased 21% in extracts from hearts perfused with 0.1 ..mu..M Iso and 17% in hearts exposed to Iso plus 1 ..mu..M methacholine. This decrease reflected decreased phosphatase-2A activity. No changes in total phosphatase activity were measurable in broken cells treated with Iso or MCh. The results suggest adrenergic stimulation changes contractile activity in frog hearts by activating cAMP-dependent protein kinase associated with particulate cellular elements and inactivating soluble protein phosphatase-2A. This is the first demonstration of coordinated regulation of these enzymes by B-adrenergic agonists favoring phosphorylation of effector proteins. Coordinated regulation by methacholine in the presence of Iso was not observed.

  3. Modelling the Krebs cycle and oxidative phosphorylation.

    PubMed

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  4. Control of Collagen Triple Helix Stability by Phosphorylation.

    PubMed

    Acevedo-Jake, Amanda M; Ngo, Daniel H; Hartgerink, Jeffrey D

    2017-03-10

    The phosphorylation of the collagen triple helix plays an important role in collagen synthesis, assembly, signaling, and immune response, although no reports detailing the effect this modification has on the structure and stability of the triple helix exist. Here we investigate the changes in stability and structure resulting from the phosphorylation of collagen. Additionally, the formation of pairwise interactions between phosphorylated residues and lysine is examined. In all tested cases, phosphorylation increases helix stability. When charged-pair interactions are possible, stabilization via phosphorylation can play a very large role, resulting inasmuch as a 13.0 °C increase in triple helix stability. Two-dimensional NMR and molecular modeling are used to study the local structure of the triple helix. Our results suggest a mechanism of action for phosphorylation in the regulation of collagen and also expand upon our understanding of pairwise amino acid stabilization of the collagen triple helix.

  5. Phosphorylation modifies the molecular stability of β-amyloid deposits

    PubMed Central

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-01-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain. PMID:27072999

  6. Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases.

    PubMed

    Jewett, Travis J; Dooley, Cheryl A; Mead, David J; Hackstadt, Ted

    2008-06-27

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.

  7. Phosphorylation modifies the molecular stability of β-amyloid deposits

    NASA Astrophysics Data System (ADS)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  8. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    PubMed

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  9. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    NASA Astrophysics Data System (ADS)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  10. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking.

  11. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  12. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  13. Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling

    PubMed Central

    Su, Ying; Ospina, Jason K.; Zhang, Junzheng; Michelson, Andrew P.; Schoen, Adam M.; Zhu, Alan Jian

    2012-01-01

    The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling. PMID:21730325

  14. Mapping of phosphorylation sites in polyomavirus large T antigen

    SciTech Connect

    Hassauer, M.; Scheidtmann, K.H.; Walter, G.

    1986-06-01

    The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, /sup 32/P/sub i/-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.

  15. Two Pdk1 phosphorylation sites on the plant cell death suppressor Adi3 contribute to substrate phosphorylation

    PubMed Central

    Gray, Joel W.; Nelson Dittrich, Anna C.; Chen, Sixue; Avila, Julian; Giavalisco, Patrick; Devarenne, Timothy P.

    2015-01-01

    The tomato AGC kinase Adi3 is phosphorylated by Pdk1 for activation of its cell death suppression activity. The Pdk1 phosphorylation site for activation of Adi3 is at Ser539. However, there is at least one additional Pdk1 phosphorylation site on Adi3 that has an unknown function. Here we identify an Arabidopsis thaliana sequence homologue of Adi3 termed AGC1-3. Two Pdk1 phosphorylation sites were identified on AGC1-3, activation site Ser596 and Ser269, and by homology Ser212 on Adi3 was identified as a second Pdk1 phosphorylation site. While Ser212 is not required for Adi3 autophosphorylation, Ser212 was shown to be required for full phosphorylation of the Adi3 substrate Gal83. PMID:23507047

  16. A coulombic hypothesis of mitochondrial oxidative phosphorylation.

    PubMed

    Malpress, F H

    1984-08-21

    A coulombic hypothesis of mitochondrial oxidative phosphorylation is presented, founded upon the evidence for negative fixed charge formation during electron transport chain activity. The intermediary force is electrostatic (psi H) and not electrochemical (delta mu H). The electrochemical potential of the chemiosmotic hypothesis is identified as a "phantom" parameter which owes its delusive existence to the procedures by which it is measured. The connection between psi H and the conditional delta mu H values is examined; it entails the use of a variable conversion factor, f, where delta mu H (mV) = f psi H, and the concept of the "protonic status" of the diffuse double layer. A number of problems which beset the chemiosmotic view are reappraised in the light of the new interpretation, and find authentic solutions.

  17. The regulation of STIM1 by phosphorylation

    PubMed Central

    Pozo-Guisado, Eulalia; Martin-Romero, Francisco Javier

    2013-01-01

    Calcium ion (Ca2+) concentration plays a key role in cell signaling in eukaryotic cells. At the cellular level, Ca2+ directly participates in such diverse cellular events as adhesion and migration, differentiation, contraction, secretion, synaptic transmission, fertilization, and cell death. As a consequence of these diverse actions, the cytosolic concentration of free Ca2+ is tightly regulated by the coordinated activity of Ca2+ channels, Ca2+ pumps, and Ca2+-binding proteins. Although many of these regulators have been studied in depth, other proteins have been described recently, and naturally far less is known about their contribution to cell physiology. Within this last group of proteins, STIM1 has emerged as a major contributor to Ca2+ signaling by means of its activity as Ca2+ channel regulator. STIM1 is a protein resident mainly, but not exclusively, in the endoplasmic reticulum (ER), and activates a set of plasma membrane Ca2+ channels termed store-operated calcium channels (SOCs) when the concentration of free Ca2+ within the ER drops transiently as a result of Ca2+ release from this compartment. Knowledge regarding the molecular architecture of STIM1 has grown considerably during the last years, and several structural domains within STIM1 have been reported to be required for the specific molecular interactions with other important players in Ca2+ signaling, such as Ca2+ channels and microtubules. Within the modulators of STIM1, phosphorylation has been shown to both activate and inactivate STIM1-dependent Ca2+ entry depending on the cell type, cell cycle phase, and the specific residue that becomes modified. Here we shall review current knowledge regarding the modulation of STIM1 by phosphorylation. PMID:24505502

  18. Mitogen-independent phosphorylation of S6K1 and decreased ribosomal S6 phosphorylation in senescent human fibroblasts.

    PubMed

    Zhang, H; Hoff, H; Marinucci, T; Cristofalo, V J; Sell, C

    2000-08-25

    The p70 ribosomal S6 kinase (S6K1) is rapidly activated following growth factor stimulation of quiescent fibroblasts and inhibition of this enzyme results in a G(1) arrest. Phosphorylation of the ribosomal S6 protein by S6K1 regulates the translation of both ribosomal proteins and initiation factors, leading to an increase in protein synthesis. We have examined the activation of S6K1 in human fibroblasts following mitogen stimulation. In early passage fibroblasts S6K1 is activated following serum stimulation as evidenced by increased kinase activity and site-specific phosphorylation. In contrast, site-specific phosphorylation of S6K1 at Thr421/Ser424 is diminished in senescent fibroblast cultures. A second phosphorylation site within S6K1 (Ser411) is phosphorylated even in the absence of serum stimulation and the enzyme shows increased phosphorylation as judged by decreased electrophoretic mobility. Inhibitor studies indicate that this phosphorylation is dependent upon the mammalian target of rapamycin, PI 3-kinase, and the MAPK pathway. In order to understand the consequences of the altered phosphorylation of the S6K1, we examined the phosphorylation state of the ribosomal S6 protein. In early passage fibroblasts the ribosomal S6 protein is phosphorylated upon serum stimulation while the phosphorylation of the ribosomal S6 protein is drastically reduced in senescent fibroblasts. These results suggest that the intracellular regulators of S6K1 are altered during replicative senescence leading to a deregulation of the enzyme and a loss of ribosomal S6 phosphorylation.

  19. PKCβ–dependent phosphorylation of the glycine transporter 1

    PubMed Central

    Vargas-Medrano, Javier; Castrejon-Tellez, Vicente; Fernando, Plenge; Ramirez, Ivan; Miranda, Manuel

    2011-01-01

    The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40% -inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that phosphorylation that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation. PMID:21864610

  20. A grammar inference approach for predicting kinase specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  1. The role of the VQIVYK peptide in tau protein phosphorylation.

    PubMed

    Perez, Mar; Santa-María, Ismael; Tortosa, Elena; Cuadros, Raquel; Del Valle, Mercedes; Hernández, Felix; Moreno, Francisco J; Avila, Jesús

    2007-11-01

    Although it remains unclear whether they are related to one another, tau aggregation and phosphorylation are the main pathological hallmarks of the neuronal disorders known as tauopathies. The capacity to aggregate is impaired in a variant of the tau 3R isoform that lacks residues 306-311 (nomenclature for the largest CNS tau isoform) and hence, we have taken advantage of this feature to study how phosphorylation and aggregation may be related as well as the role of this six amino acid peptide (VQIVYK). Through these analyses, we found that the phosphorylation of the tau variant was higher than that of the complete tau protein and that not only the deletion of these residues, but also the interaction of these residues, in tau 3R, with thioflavin-S augmented tau phosphorylation by glycogen synthase kinase 3. In addition, the binding of the peptide containing the residues 306-311 to the whole tau protein provoked an increase in tau phosphorylation. This observation could be physiologically relevant as may suggest that tau-tau interactions, through those residues, facilitate tau phosphorylation. In summary, our data indicate that deletion of residues VQIVYK, in tau protein produces an increase in tau phosphorylation, without tau aggregation, because the VQIVYK peptide, that favors aggregation, is missing. On the other hand, when the whole tau protein interacts with thioflavin-S or the peptide VQIVYK, an increase in both aggregation and phosphorylation occurs.

  2. Anillin Phosphorylation Controls Timely Membrane Association and Successful Cytokinesis

    PubMed Central

    Kim, Hyunjung; Johnson, James M.; Brahma, Sarang; Burkard, Mark E.

    2017-01-01

    During cytokinesis, a contractile ring generates the constricting force to divide a cell into two daughters. This ring is composed of filamentous actin and the motor protein myosin, along with additional structural and regulatory proteins, including anillin. Anillin is a required scaffold protein that links the actomyosin ring to membrane and its organizer, RhoA. However, the molecular basis for timely action of anillin at cytokinesis remains obscure. Here, we find that phosphorylation regulates efficient recruitment of human anillin to the equatorial membrane. Anillin is highly phosphorylated in mitosis, and is a substrate for mitotic kinases. We surveyed function of 46 residues on anillin previously found to be phosphorylated in human cells to identify those required for cytokinesis. Among these sites, we identified S635 as a key site mediating cytokinesis. Preventing S635 phosphorylation adjacent to the AH domain disrupts anillin concentration at the equatorial cortex at anaphase, whereas a phosphomimetic mutant, S635D, partially restores this localization. Time-lapse videomicroscopy reveals impaired recruitment of S635A anillin to equatorial membrane and a transient unstable furrow followed by ultimate failure in cytokinesis. A phosphospecific antibody confirms phosphorylation at S635 in late cytokinesis, although it does not detect phosphorylation in early cytokinesis, possibly due to adjacent Y634 phosphorylation. Together, these findings reveal that anillin recruitment to the equatorial cortex at anaphase onset is enhanced by phosphorylation and promotes successful cytokinesis. PMID:28081137

  3. Importance of tyrosine phosphorylation in receptor kinase complexes.

    PubMed

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants.

  4. Altered protein phosphorylation as a resource for potential AD biomarkers

    PubMed Central

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz e Silva, Cristóvão B.; da Cruz e Silva, Odete A. B.

    2016-01-01

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer’s disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued. PMID:27466139

  5. Altered protein phosphorylation as a resource for potential AD biomarkers.

    PubMed

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz E Silva, Cristóvão B; da Cruz E Silva, Odete A B

    2016-07-28

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer's disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued.

  6. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease.

  7. Modulation of soluble guanylate cyclase activity by phosphorylation.

    PubMed

    Murthy, Karnam S

    2004-11-01

    The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.

  8. Phosphoryl functionalized mesoporous silica for uranium adsorption

    NASA Astrophysics Data System (ADS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  9. Comprehensive Analysis of Phosphorylated Proteins of E. coli Ribosomes

    PubMed Central

    Soung, George Y.; Miller, Jennifer L.; Koc, Hasan; Koc, Emine C.

    2009-01-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in twenty-four E. coli ribosomal proteins by tandem mass spectrometry. Specific detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining and antibodies for phospho-Ser, Thr, and Tyr, or by mass spectrometry equipped with a capability to detect addition and the loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given site of the phosphorylation in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  10. Signal processing by protein tyrosine phosphorylation in plants

    PubMed Central

    2011-01-01

    Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology. PMID:21628997

  11. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    SciTech Connect

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  12. Phosphorylation at serine 331 is required for Aurora B activation

    PubMed Central

    Petsalaki, Eleni; Akoumianaki, Tonia; Black, Elizabeth J.; Gillespie, David A.F.

    2011-01-01

    Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora BS331A, in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation. PMID:22024163

  13. Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis

    PubMed Central

    Liu, Juan; Zhou, Xiang; Li, Qing; Zhou, Shu-Min; Hu, Bin; Hu, Guo-Wen; Niu, Xin; Guo, Shang-Chun

    2017-01-01

    Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke. PMID:28127553

  14. A phosphorylation map of the bovine papillomavirus E1 helicase

    PubMed Central

    Lentz, Michael R; Stevens, Stanley M; Raynes, Joshua; Elkhoury, Nancy

    2006-01-01

    Background Papillomaviruses undergo a complex life cycle requiring regulated DNA replication. The papillomavirus E1 helicase is essential for viral DNA replication and plays a key role in controlling viral genome copy number. The E1 helicase is regulated at least in part by protein phosphorylation, however no systematic approach to phosphate site mapping has been attempted. We have utilized mass spectrometry of purified bovine papillomavirus E1 protein to identify and characterize new sites of phosphorylation. Results Mass spectrometry and in silico sequence analysis were used to identify phosphate sites on the BPV E1 protein and kinases that may recognize these sites. Five new and two previously known phosphorylation sites were identified. A phosphate site map was created and used to develop a general model for the role of phosphorylation in E1 function. Conclusion Mass spectrometric analysis identified seven phosphorylated amino acids on the BPV E1 protein. Taken with three previously identified sites, there are at least ten phosphoamino acids on BPV E1. A number of kinases were identified by sequence analysis that could potentially phosphorylate E1 at the identified positions. Several of these kinases have known roles in regulating cell cycle progression. A BPV E1 phosphate map and a discussion of the possible role of phosphorylation in E1 function are presented. PMID:16524476

  15. Structural Impact of Tau Phosphorylation at Threonine 231.

    PubMed

    Schwalbe, Martin; Kadavath, Harindranath; Biernat, Jacek; Ozenne, Valery; Blackledge, Martin; Mandelkow, Eckhard; Zweckstetter, Markus

    2015-08-04

    Phosphorylation of the microtubule-associated protein Tau influences the assembly and stabilization of microtubules and is deregulated in several neurodegenerative diseases. The high flexibility of Tau, however, has prevented an atomic-level description of its phosphorylation-induced structural changes. Employing an extensive set of distance and orientational restraints together with a novel ensemble calculation approach, we determined conformational ensembles of Tau fragments in the non-phosphorylated state and, when phosphorylated at T231/S235 or T231/S235/S237/S238, four important sites of phosphorylation in Alzheimer disease. Comparison of the molecular ensembles showed that phosphorylation of the regulatory T231 does not perturb the backbone conformation of the proximal microtubule-binding (225)KVAVVR(230) motif. Instead, phosphorylated T231 selectively engages in a salt bridge with R230 that can compete with the formation of intermolecular salt bridges to tubulin. Our study provides an ensemble description which will be useful for the analysis of conformational transitions in Tau and other intrinsically disordered proteins.

  16. MSK1 activity is controlled by multiple phosphorylation sites

    PubMed Central

    McCOY, Claire E.; Campbell, David G.; Deak, Maria; Bloomberg, Graham B.; Arthur, J. Simon C.

    2004-01-01

    MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the ‘hydrophobic motif’ Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro. Ser-381 is also phosphorylated by the C-terminal kinase domain, and mutation of Ser-381 decreases MSK1 activity, probably through the inhibition of Ser-376 phosphorylation. Ser-750, Ser-752 and Ser-758 are phosphorylated by the N-terminal kinase domain; however, their function is not known. The activation of MSK1 in cells therefore requires the activation of the ERK1/2 or p38 MAPK cascades and does not appear to require additional signalling inputs. This is in contrast with the closely related RSK (p90 ribosomal S6 kinase) proteins, whose activity requires phosphorylation by PDK1 (3-phosphoinositide-dependent protein kinase 1) in addition to phosphorylation by ERK1/2. PMID:15568999

  17. Cyanogen induced phosphorylation of D-fructose. [prebiotic modeling

    NASA Technical Reports Server (NTRS)

    Degani, CH.; Kawatsuji, M.; Halmann, M.

    1975-01-01

    It has been demonstrated that a phosphorylated sugar, identified as alpha-D-fructopyranose, can be formed as the result of cyanogen-induced phosphorylation of D-fructose at pH 8.8. The product was isolated from barium and cyclohexylammonium salts and identified on the basis of its chromatographic and electrophoretic properties, its lability to hydrolysis by alkaline phosphatase, the rate of its acid-catalyzed hydrolysis, and the results of periodate oxidation and optical rotatory measurements. These results support the suggestion that the cyanogen-induced phosphorylation of free sugars could be a possible process for formation of sugar phosphates under prebiotic conditions (Halman et al., 1969).

  18. Rosamines Targeting the Cancer Oxidative Phosphorylation Pathway

    PubMed Central

    Lim, Siang Hui; Wu, Liangxing; Kiew, Lik Voon; Chung, Lip Yong; Burgess, Kevin; Lee, Hong Boon

    2014-01-01

    Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM), inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = −7 (GI50 = 0.1 µM) and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6) exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome. PMID:24622277

  19. Role of energy in oxidative phosphorylation.

    PubMed

    Matsuno-Yagi, A; Hatefi, Y

    1988-08-01

    This article reviews the current status of information regarding the role of energy in the process of oxidative phosphorylation by mitochondria. The available data suggest that in submitochondrial particles (SMP) energy is utilized for the binding of ADP and Pi and for the release of ATP bound at the catalytic sites of F1-ATPase. The process of ATP synthesis on the surface of F1 from F1-bound ADP and Pi appears to be associated with negligible free energy change. The rate of energy production by the respiratory chain modulates the kinetics of ATP synthesis between a low Km (for ADP and Pi)-low Vmax mode and a high Km-high Vmax mode. The Km extremes for ADP are 2-3 microM and 120-150 microM, and Vmax for ATP synthesis at high rates of energy production by bovine-heart SMP is about 440 S-1 (mole F1)-1 at 30 degrees C, which corresponds to 11 mumol ATP (min.mg of protein)-1. The interaction of dicyclohexylcarbodiimide (DCCD) or oligomycin at the proteolipid (subunit c) of the membrane sector (F0) of the ATP synthase complex alters the mode of ATP binding at the catalytic sites of F1, probably to one of lower affinity. It has been suggested that protonic energy might be conveyed to the catalytic sites of F1 in an analogous manner, i.e., via conformation changes in the ATP synthase complex initiated by proton-induced alterations in the structure of the DCCD-binding proteolipid. Finally, the relationship between the steady-state membrane potential (delta psi) and the rates of electron transfer and ATP synthesis has been discussed. It has been shown, in agreement with the delocalized chemiosmotic mechanism, that under appropriate conditions delta psi is exquisitely sensitive to changes in the rates of energy production and consumption.

  20. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns

    PubMed Central

    Uzasci, Lerna; Auh, Sungyoung; Cotter, Robert J.; Nath, Avindra

    2016-01-01

    Purpose To map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain using high-resolution mass spectrometry. Experimental Design Parietal cortex from brain of individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high-resolution. Results Our phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2′–3′-cyclic nucleotide-3′ phosphodiesterase have relatively higher phosphorylation levels during HIV infection. Clinical Relevance This study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders (HAND). PMID:26033855

  1. Calcineurin regulates phosphorylation status of transcription factor osterix.

    PubMed

    Okamura, Hirohiko; Amorim, Bruna Rabelo; Wang, Jie; Yoshida, Kaya; Haneji, Tatsuji

    2009-02-06

    Osterix is an osteoblast-specific transcriptional factor that is essential for osteoblast differentiation and bone formation. Calcineurin regulates bone formation through modulating osteoblast differentiation. However, post-translational modification of osterix such as phosphorylation and interactions between osterix and calcineurin remains unclear. In the present study, we demonstrated that calcineurin interacted with osterix determined by immunoprecipitation assay and Western analysis. Immunocytochemical study also revealed that osterix and calcineurin were co-localized in nucleus. Deletion of calcineurin binding motif on osterix molecule disrupted osterix-calcineurin interaction. Phosphorylation status of osterix was augmented by treatment with phosphatase inhibitors, FK506 and calyculin A. In contrast, treatment of recombinant calcineurin reduced phosphorylation status of osterix. Our present study suggests that calcineurin has an important role in the function of osterix through its modification of phosphorylation.

  2. Methods for generating phosphorylation site-specific immunological reagents

    DOEpatents

    Anderson, Carl W.; Appella, Ettore; Sakaguchi, Kazuyasu

    2001-01-01

    The present invention provides methods for generating phosphorylation site-specific immunological reagents. More specifically, a phosphopeptide mimetic is incorporated into a polypeptide in place of a phosphorylated amino acid. The polypeptide is used as antigen by standard methods to generate either monoclonal or polyclonal antibodies which cross-react with the naturally phosphorylated polypeptide. The phosphopeptide mimetic preferably contains a non-hydrolyzable linkage from the appropriate carbon atom of the amino acid residue to a phosphate group. A preferred linkage is a CF.sub.2 group. Such a linkage is used to generate the phosphoserine mimetic F.sub.2 Pab, which is incorporated into a polypeptide sequence derived from p53 to produce antibodies which recognize a specific phosphorylation state of p53. A CF.sub.2 group linkage is also used to produce the phosphothreonine mimetic F.sub.2 Pmb, and to produce the phosphotyrosine mimetic, F.sub.2 Pmp.

  3. On Stationary States in the Double Phosphorylation-dephosphorylation Cycle

    NASA Astrophysics Data System (ADS)

    Bersani, Alberto Maria; Dell'Acqua, Guido; Tomassetti, Giovanna

    2011-09-01

    In this paper we study the double phosphorylation-dephosphorylation cycle, which is a special case of multiple futile cycle. We study the stationary states, finding some classes of explicit solutions.

  4. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  5. Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria.

    PubMed

    Solinas, Paola; Fujioka, Hisashi; Radivoyevitch, Tomas; Tandler, Bernard; Hoppel, Charles L

    2014-06-01

    Does aging in itself lead to alteration in adrenocortical mitochondrial oxidative phosphorylation? Mitochondria from Fischer 344 (F344) rats (6 and 24 months old), Brown Norway rats (6 and 32 months old) and F344-Brown Norway hybrid rats (6 and 30 months old) were compared. Mitochondria were isolated from extirpated adrenal cortex. The yields of mitochondria were quantitatively similar in all rat strains irrespective of age. In order to assess the activity of each mitochondrial complex, several different substrates were tested and the rate of oxidative phosphorylation measured. Aging does not affect mitochondrial activity except in the F344 rat adrenal cortex where the maximal ADP-stimulated oxidative phosphorylation decreased with age. We hypothesize that impaired synthesis of steroid hormones by the adrenal cortex with age in F344 rats might be due to decreased adrenocortical mitochondrial oxidative phosphorylation. We conclude that aging results in adrenocortical mitochondria effects that are non-uniform across different rat strains.

  6. Phosphorylation of Mad controls competition between wingless and BMP signaling.

    PubMed

    Eivers, Edward; Demagny, Hadrien; Choi, Renee H; De Robertis, Edward M

    2011-10-11

    Bone morphogenetic proteins (BMPs) and Wnts are growth factors that provide essential patterning signals for cell proliferation and differentiation. Here, we describe a molecular mechanism by which the phosphorylation state of the Drosophila transcription factor Mad determines its ability to transduce either BMP or Wingless (Wg) signals. Previously, Mad was thought to function in gene transcription only when phosphorylated by BMP receptors. We found that the unphosphorylated form of Mad was required for canonical Wg signaling by interacting with the Pangolin-Armadillo transcriptional complex. Phosphorylation of the carboxyl terminus of Mad by BMP receptor directed Mad toward BMP signaling, thereby preventing Mad from functioning in the Wg pathway. The results show that Mad has distinct signal transduction roles in the BMP and Wnt pathways depending on its phosphorylation state.

  7. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

    PubMed

    Lassila, Jonathan K; Zalatan, Jesse G; Herschlag, Daniel

    2011-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.

  8. Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis

    PubMed Central

    Lassila, Jonathan K.; Zalatan, Jesse G.; Herschlag, Daniel

    2012-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. PMID:21513457

  9. Enrichment of phosphorylated peptides and proteins by selective precipitation methods.

    PubMed

    Rainer, Matthias; Bonn, Günther K

    2015-01-01

    Protein phosphorylation is one of the most prominent post-translational modifications involved in the regulation of cellular processes. Fundamental understanding of biological processes requires appropriate bioanalytical methods for selectively enriching phosphorylated peptides and proteins. Most of the commonly applied enrichment approaches include chromatographic materials including Fe(3+)-immobilized metal-ion affinity chromatography or metal oxides. In the last years, the introduction of several non-chromatographic isolation technologies has increasingly attracted the interest of many scientists. Such approaches are based on the selective precipitation of phosphorylated peptides and proteins by applying various metal cations. The excellent performance of precipitation-based enrichment methods can be explained by the absence of any stationary phase, resin or sorbent, which usually leads to unspecific binding. This review provides an overview of recently published methods for the selective precipitation of phosphorylated peptides and proteins.

  10. Doubling down on phosphorylation as a variable peptide modification.

    PubMed

    Cooper, Bret

    2016-09-01

    Some mass spectrometrists believe that searching for variable PTMs like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false-positive matching. The basis for this is the premise that the algorithm compares a spectrum to both a nonphosphorylated peptide candidate and a phosphorylated candidate, which is double the number of candidates compared to a search with no possible phosphorylation. Hence, if the search space doubles, false-positive matching could increase accordingly as the algorithm considers more candidates to which false matches could be made. In this study, it is shown that the search for variable phosphoserine and phosphothreonine modifications does not always double the search space or unduly impinge upon the FDR. A breakdown of how one popular database-search algorithm deals with variable phosphorylation is presented.

  11. Phosphorylation sites in human erythrocyte band 3 protein.

    PubMed

    Yannoukakos, D; Vasseur, C; Piau, J P; Wajcman, H; Bursaux, E

    1991-01-30

    The human red cell anion-exchanger, band 3 protein, is one of the main phosphorylated proteins of the erythrocyte membrane. Previous studies from this laboratory have shown that ATP-depletion of the red blood cell decreased the anion-exchange rate, suggesting that band 3 protein phosphorylation could be involved in the regulation of anion transport function (Bursaux et al. (1984) Biochim. Biophys. Acta 777, 253-260). Phosphorylation occurs mainly on the cytoplasmic domain of the protein and the major site of phosphorylation was assigned to tyrosine-8 (Dekowski et al. (1983) J. Biol. Chem. 258, 2750-2753). This site being very far from the integral, anion-exchanger domain, the aim of the present study was to determine whether phosphorylation sites exist in the integral domain. The phosphorylation reaction was carried out on isolated membranes in the presence of [gamma-32P]ATP and phosphorylated band 3 protein was then isolated. Both the cytoplasmic and the membrane spanning domains were purified. The predominant phosphorylation sites were found on the cytoplasmic domain. RP-HPLC analyses of the tryptic peptides of whole band 3 protein, and of the isolated cytoplasmic and membrane-spanning domains allowed for the precise localization of the phosphorylated residues. 80% of the label was found in the N-terminal tryptic peptide (T-1), (residues 1-56). In this region, all the residues susceptible to phosphorylation were labeled but in varying proportion. Under our conditions, the most active membrane kinase was a tyrosine kinase, activated preferentially by Mn2+ but also by Mg2+. Tyrosine-8 was the main phosphate acceptor residue (50-70%) of the protein, tyrosine-21 and tyrosine-46 residues were also phosphorylated but to a much lesser extent. The main targets of membrane casein kinase, preferentially activated by Mg2+, were serine-29, serine-50, and threonine(s)-39, -42, -44, -48, -49, -54 residue(s) located in the T-1 peptide. A tyrosine phosphatase activity was

  12. Tau Phosphorylation by GSK3 in Different Conditions

    PubMed Central

    Avila, Jesús; León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; DeFelipe, Javier

    2012-01-01

    Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau. PMID:22675648

  13. Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels.

    PubMed

    Tian, Lijun; Jeffries, Owen; McClafferty, Heather; Molyvdas, Adam; Rowe, Iain C M; Saleem, Fozia; Chen, Lie; Greaves, Jennifer; Chamberlain, Luke H; Knaus, Hans-Guenther; Ruth, Peter; Shipston, Michael J

    2008-12-30

    Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphorylation of the alpha-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single alpha-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.

  14. Phosphorylation of proteins during human myometrial contractions: A phosphoproteomic approach.

    PubMed

    Hudson, Claire A; López Bernal, Andrés

    2017-01-22

    Phasic myometrial contractility is a key component of human parturition and the contractions are driven by reversible phosphorylation of myosin light chains catalyzed by the calcium (Ca(2+))-dependent enzyme myosin light chain kinase (MYLK). Other yet unknown phosphorylation or de-phosphorylation events may contribute to myometrial contraction and relaxation. In this study we have performed a global phosphoproteomic analysis of human myometrial tissue using tandem mass tagging to detect changes in the phosphorylation status of individual myometrial proteins during spontaneous and oxytocin-driven phasic contractions. We were able to detect 22 individual phosphopeptides whose relative ratio changed (fold > 2 or < 0.5) in response to spontaneous or oxytocin-stimulated contraction. The most significant changes in phosphorylation were to MYLK on serine 1760, a site associated with reductions in calmodulin binding and subsequent kinase activity. Phosphorylated MYLK (ser1760) increased significantly during spontaneous (9.83 ± 3.27 fold, P < 0.05) and oxytocin -induced (18.56 ± 8.18 fold, P < 0.01) contractions and we were able to validate these data using immunoblotting. Pathway analysis suggested additional proteins involved in calcium signalling, cGMP-PRKG signalling, adrenergic signalling and oxytocin signalling were also phosphorylated during contractions. This study demonstrates that a global phosphoproteomic analysis of myometrial tissue is a sensitive approach to detect changes in the phosphorylation of proteins during myometrial contractions, and provides a platform for further validation of these changes and for identification of their functional significance.

  15. Phosphorylation of mammalian initiation factor eIF-4B

    SciTech Connect

    Duncan, R.F.; Milburn, S.C.; Cooper, R.; Gould, K.; Hunter, T.; Hershey, J.W.B.

    1987-05-01

    The phosphorylation of initiation factors appears to be an important mechanism for regulating the rate of translation in mammalian cells. eIF-4B (80 kDa) purified from HeLa cells exhibits a complex array of 8 to 12 spots when analyzed by 2-dimensional isoelectric focusing - SDS polyacrylamide gel electrophoresis. A similar array of eIF-4B spots is seen when total lysate proteins are analyzed by immunoblotting with anti-eIF-4B antiserum or with antibodies affinity-purified from the most basic eIF-4B spot. The multiple forms of eIF-4B are due to phosphorylation, since all but the most basic spot are labeled with (/sup 32/P)phosphate in vivo and the action of alkaline phosphatase in vitro reduces the array to only two spots. Tryptic peptide maps of phosphopeptides from each of the various isoelectric variants of eIF-4B show a similar complexity, suggesting that a number of different sites are phosphorylated in a random order. When serum-deprived HeLa cells are treated with phorbol ester, both the protein synthesis rate and the extent of eIF-4B phosphorylation increase, suggesting that C kinase may be a regulator of translation. Purified C kinase phosphorylates a number of pure initiation factors in vitro, but eIF-4B is the strongest target protein. When pure eIF-4B is treated, the entire mass of eIF-4B is shifted to the most acidic spots, indicating very strong phosphorylation. Attempts are being made to detect differences in the in vitro activities of the non-phosphorylated and highly phosphorylated forms.

  16. Protein kinase C alpha-dependent phosphorylation of Golgi proteins.

    PubMed

    Radau, B; Otto, A; Müller, E C; Westermann, P

    2000-07-01

    Golgi-enriched membranes were phosphorylated in order to understand the mechanism for protein kinase C (PKC) regulation of exocytic vesicle formation at the trans-Golgi network. Two of the main PKC substrates were identified as MARCKS and Mac-MARCKS by two-dimensional electrophoresis (2-DE) and mass spectrometric sequencing. Annexin IV and profilin I, two other Golgi-associated proteins--although known as in vitro PKC substrates--were not phosphorylated in the Golgi-bound state.

  17. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.

    PubMed Central

    Nekhai, Sergei; Zhou, Meisheng; Fernandez, Anne; Lane, William S; Lamb, Ned J C; Brady, John; Kumar, Ajit

    2002-01-01

    HIV-1 gene expression is regulated by a viral transactivator protein (Tat) which induces transcriptional elongation of HIV-1 long tandem repeat (LTR). This induction requires hyperphosphorylation of the C-terminal domain (CTD) repeats of RNA polymerase II (Pol II). To achieve CTD hyperphosphorylation, Tat stimulates CTD kinases associated with general transcription factors of the promoter complex, specifically TFIIH-associated CDK7 and positive transcription factor b-associated CDK9 (cyclin-dependent kinase 9). Other studies indicate that Tat may bind an additional CTD kinase that regulates the target-specific phosphorylation of RNA Pol II CTD. We previously reported that Tat-associated T-cell-derived kinase (TTK), purified from human primary T-cells, stimulates Tat-dependent transcription of HIV-1 LTR in vivo [Nekhai, Shukla, Fernandez, Kumar and Lamb (2000) Virology 266, 246-256]. In the work presented here, we characterized the components of TTK by biochemical fractionation and the function of TTK in transcription assays in vitro. TTK uniquely co-purified with CDK2 and not with either CDK9 or CDK7. Tat induced the TTK-associated CDK2 kinase to phosphorylate CTD, specifically at Ser-2 residues. The TTK fraction restored Tat-mediated transcription activation of HIV-1 LTR in a HeLa nuclear extract immunodepleted of CDK9, but not in the HeLa nuclear extract double-depleted of CDK9 and CDK7. Direct microinjection of the TTK fraction augmented Tat transactivation of HIV-1 LTR in human primary HS68 fibroblasts. The results argue that TTK-associated CDK2 may function to maintain target-specific phosphorylation of RNA Pol II that is essential for Tat transactivation of HIV-1 promoter. They are also consistent with the observed cell-cycle-specific induction of viral gene transactivation. PMID:12049628

  18. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  19. Plasma membrane ATPase of red beet forms a phosphorylated intermediate.

    PubMed

    Briskin, D P; Poole, R J

    1983-03-01

    When a plasma membrane-enriched fraction isolated from red beet (Beta vulgaris L.) was incubated in the presence of 40 micromolar [gamma-(32)P] ATP, 40 micromolar MgSO(4) at pH 6.5, a rapidly turning over phosphorylated protein was formed. Phosphorylation of the protein was substrate-specific for ATP, sensitive to diethylstilbestrol and vanadate, but insensitive to azide. When the dephosphorylation reaction was specifically studied, KCl was found to increase the turnover of the phosphorylated protein consistent with its stimulatory effect upon plasma membrane ATPase. The protein-bound phosphate was found to be most stable at a pH between 2 and 3 and under cold temperature, suggesting that the protein phosphate bond was an acyl-phosphate. When the phosphorylated protein was analyzed with lithium dodecyl sulfate gel electrophoresis, a labeled polypeptide with a molecular weight of about 100,000 daltons was observed. Phosphorylation of this polypeptide was rapidly turning over and Mg-dependent. It is concluded that the phosphorylation observed represents a reaction intermediate of the red beet plasma membrane ATPase.

  20. Formation and Dissociation of Phosphorylated Peptide Radical Cations

    NASA Astrophysics Data System (ADS)

    Kong, Ricky P. W.; Quan, Quan; Hao, Qiang; Lai, Cheuk-Kuen; Siu, Chi-Kit; Chu, Ivan K.

    2012-12-01

    In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N, N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the p M·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model— N-acetylphosphorylserine methylamide—revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.

  1. Identification of Phosphorylation Sites on Extracellular Corneal Epithelial Cell Maspin

    PubMed Central

    Narayan, Malathi; Mirza, Shama P.; Twining, Sally S.

    2011-01-01

    Maspin, a 42-kDa non classical serine protease inhibitor (serpin) is expressed by epithelial cells of various tissues including the cornea. The protein localizes to the nucleus and cytosol, and is present in the extracellular space. While extracellular maspin regulates corneal stromal fibroblast adhesion and inhibits angiogenesis during wound healing in the cornea, the molecular mechanism of its extracellular functions is unclear. We hypothesized that identifying post-translational modifications of maspin, such as phosphorylation, may help decipher its mode of action. The focus of this study was on the identification of phosphorylation sites on extracellular maspin, since the extracellular form of the molecule is implicated in several functions. Multi-stage fragmentation mass spectrometry was used to identify sites of phosphorylation on extracellular corneal epithelial cell maspin. A total of eight serine and threonine phosphorylation sites (Thr50, Ser97, Thr118, Thr157, Ser240, Ser298, Thr310, Ser316) were identified on the extracellular forms of the molecule. Phosphorylation of tyrosine residues on extracellular maspin was not detected on extracellular maspin from corneal epithelial cell, in contrast to breast epithelial cells. This study provides the basis for further investigation into the functional role of phosphorylation of corneal epithelial maspin. PMID:21365746

  2. Control of serotonin transporter phosphorylation by conformational state

    PubMed Central

    Zhang, Yuan-Wei; Turk, Benjamin E.

    2016-01-01

    Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylation occurs at Thr276, predicted to lie near the cytoplasmic end of transmembrane helix 5 (TM5). Using membranes from HeLa cells expressing SERT and intact rat basophilic leukemia cells, we show that agents such as Na+ and cocaine that stabilize outward-open conformations of SERT decreased phosphorylation and agents that stabilize inward-open conformations (e.g., 5-HT, ibogaine) increased phosphorylation. The opposing effects of the inhibitors cocaine and ibogaine were each reversed by an excess of the other inhibitor. Inhibition of phosphorylation by Na+ and stimulation by ibogaine occurred at concentrations that induced outward opening and inward opening, respectively, as measured by the accessibility of cysteine residues in the extracellular and cytoplasmic permeation pathways, respectively. The results are consistent with a mechanism of SERT regulation that is activated by the transport of 5-HT, which increases the level of inward-open SERT and may lead to unwinding of the TM5 helix to allow phosphorylation. PMID:27140629

  3. Phosphorescent sensor for phosphorylated peptides based on an iridium complex.

    PubMed

    Kang, Jung Hyun; Kim, Hee Jin; Kwon, Tae-Hyuk; Hong, Jong-In

    2014-07-03

    A bis[(4,6-difluorophenyl)pyridinato-N,C(2')]iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn(2+)-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3(2-), NO3(-), SO4(2-), phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn(2+) ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.

  4. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  5. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    PubMed Central

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  6. The regulation of AMP-activated protein kinase by phosphorylation.

    PubMed Central

    Stein, S C; Woods, A; Jones, N A; Davison, M D; Carling, D

    2000-01-01

    The AMP-activated protein kinase (AMPK) cascade is activated by an increase in the AMP/ATP ratio within the cell. AMPK is regulated allosterically by AMP and by reversible phosphorylation. Threonine-172 within the catalytic subunit (alpha) of AMPK (Thr(172)) was identified as the major site phosphorylated by the AMP-activated protein kinase kinase (AMPKK) in vitro. We have used site-directed mutagenesis to study the role of phosphorylation of Thr(172) on AMPK activity. Mutation of Thr(172) to an aspartic acid residue (T172D) in either alpha1 or alpha2 resulted in a kinase complex with approx. 50% the activity of the corresponding wild-type complex. The activity of wild-type AMPK decreased by greater than 90% following treatment with protein phosphatases, whereas the activity of the T172D mutant complex fell by only 10-15%. Mutation of Thr(172) to an alanine residue (T172A) almost completely abolished kinase activity. These results indicate that phosphorylation of Thr(172) accounts for most of the activation by AMPKK, but that other sites are involved. In support of this we have shown that AMPKK phosphorylates at least two other sites on the alpha subunit and one site on the beta subunit. Furthermore, we provide evidence that phosphorylation of Thr(172) may be involved in the sensitivity of the AMPK complex to AMP. PMID:10642499

  7. Structural basis for Mep2 ammonium transceptor activation by phosphorylation

    PubMed Central

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C.

    2016-01-01

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation. PMID:27088325

  8. Synthetic phosphorylation of p38α recapitulates protein kinase activity.

    PubMed

    Chooi, K Phin; Galan, Sébastien R G; Raj, Ritu; McCullagh, James; Mohammed, Shabaz; Jones, Lyn H; Davis, Benjamin G

    2014-02-05

    Through a "tag-and-modify" protein chemical modification strategy, we site-selectively phosphorylated the activation loop of protein kinase p38α. Phosphorylation at natural (180) and unnatural (172) sites created two pure phospho-forms. p38α bearing only a single phosphocysteine (pCys) as a mimic of pThr at 180 was sufficient to switch the kinase to an active state, capable of processing natural protein substrate ATF2; 172 site phosphorylation did not. In this way, we chemically recapitulated triggering of a relevant segment of the MAPK-signaling pathway in vitro. This allowed detailed kinetic analysis of global and stoichiometric phosphorylation events catalyzed by p38α and revealed that site 180 is a sufficient activator alone and engenders dominant mono-phosphorylation activity. Moreover, a survey of kinase inhibition using inhibitors with different (Type I/II) modes (including therapeutically relevant) revealed unambiguously that Type II inhibitors inhibit phosphorylated p38α and allowed discovery of a predictive kinetic analysis based on cooperativity to distinguish Type I vs II.

  9. Multisite phosphorylation of spinach leaf sucrose-phosphate synthase

    SciTech Connect

    Huber, J.L.; Huber, S.C. )

    1990-05-01

    Spinach leaf sucrose-phosphate synthase is phosphorylated both in vivo and in vitro on serine residues. Phosphorylation of SPS in vivo yields twelve major phosphopeptides after a tryptic digest and two dimensional mapping. The in vivo labeling of three of these SPS P-peptides is reduced in illuminated leaves where the extracted enzyme is activated relative to that of dark leaves. Two of these inhibitory sites are phosphorylated as well when SPS is inactivated in vitro using ({sup 32}P)ATP. In vivo phosphorylation of two other sites is enhanced during mannose feeding of the leaves (in light or dark) which produces the highest activation state of SPS. Overall, the results confirm that light-dark regulation of SPS activity occurs as a result of regulatory seryl-phosphorylation and involves a balance between phosphorylation of sites which inhibit or stimulate activity. Regulation of the SPS protein kinase that inhibits activity is relatively unaffected by phosphate but inhibited by G1c 6-P (IC{sub 50}{approx}5 mM), which may explain the control of SPS activation state by light-dark signals.

  10. Processive phosphorylation of ERK MAP kinase in mammalian cells

    PubMed Central

    Aoki, Kazuhiro; Yamada, Masashi; Kunida, Katsuyuki; Yasuda, Shuhei; Matsuda, Michiyuki

    2011-01-01

    The mitogen-activated protein (MAP) kinase pathway is comprised of a three-tiered kinase cascade. The distributive kinetic mechanism of two-site MAP kinase phosphorylation inherently generates a nonlinear switch-like response. However, a linear graded response of MAP kinase has also been observed in mammalian cells, and its molecular mechanism remains unclear. To dissect these input-output behaviors, we quantitatively measured the kinetic parameters involved in the MEK (MAPK/ERK kinase)-ERK MAP kinase signaling module in HeLa cells. Using a numerical analysis based on experimentally determined parameters, we predicted in silico and validated in vivo that ERK is processively phosphorylated in HeLa cells. Finally, we identified molecular crowding as a critical factor that converts distributive phosphorylation into processive phosphorylation. We proposed the term quasi-processive phosphorylation to describe this mode of ERK phosphorylation that is operated under the physiological condition of molecular crowding. The generality of this phenomenon may provide a new paradigm for a diverse set of biochemical reactions including multiple posttranslational modifications. PMID:21768338

  11. Phosphorylation of Cytokinin by Adenosine Kinase from Wheat Germ 1

    PubMed Central

    Chen, Chong-Maw; Eckert, Richard L.

    1977-01-01

    Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine. The phosphorylation of the cytokinin and adenosine required ATP and Mg2+. The pH optimum was from 6.8 to 7.2 for both the cytokinin and adenosine. At pH 7 and 37 C the Km and Vmax for the cytokinin were 31 μm and 8.3 nmoles per mg protein per minute, and the values for adenosine were 8.7 μm and 46 nmoles per mg protein per minute. Crude enzyme preparations from tobacco callus tissue and wheat germ phosphorylated N6-(δ2-isopentenyl)adenosine. These preparations also phosphorylated N6-(δ2-isopentenyl)adenine when 5-phosphorylribose-1-pyrophosphate was present. PMID:16659870

  12. Cyclin B targets p34cdc2 for tyrosine phosphorylation.

    PubMed

    Meijer, L; Azzi, L; Wang, J Y

    1991-06-01

    A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.

  13. Squid neurofilaments. Phosphorylation and Ca2+-dependent proteolysis in situ.

    PubMed

    Brown, A; Eagles, P A

    1986-10-01

    Three major polypeptides co-purify with neurofilaments from squid (Loligo forbesi) axoplasm: P60 (apparent Mr 60,000), P200 (apparent Mr 200,000) and Band 1 (apparent Mr 400,000). Anti-IFA, a monoclonal antibody that recognizes an epitope common to all classes of intermediate filaments, binds to P200 and P60. When axoplasm is incubated with [32P]Pi, the major phosphorylated polypeptides are P200 and Band 1. We have investigated Ca2+-dependent proteolysis of [32P]phosphorylated axoplasm in order to localize the major sites of phosphorylation and to probe the arrangement of the polypeptides in the filament. The proteinase preferentially cleaves P200 and Band 1, liberating the phosphorylated domains. Analysis of proteolysed filaments by electron microscopy and gel electrophoresis shows that most of P200 and Band 1 can be cleaved while still maintaining intact filaments. We suggest that P200 is initially cleaved within a single highly sensitive region, generating two major fragments called P100p (apparent Mr 100,000) and P110s (apparent Mr 110,000). P100p contains the Anti-IFA epitope and co-sediments with filaments, whereas P110s is highly phosphorylated and does not sediment with filaments. Band 1 is cleaved to produce a soluble high-Mr fragment that is phosphorylated and that represents a major portion of the undigested component, whereas P60 is relatively resistant to limited proteolysis. Thus proteolysis appears to define two major filament domains: a conserved core that forms the backbone of the filament, and a highly phosphorylated peripheral region that is not essential for filament integrity.

  14. Phosphorylation of NLRC4 is critical for inflammasome activation.

    PubMed

    Qu, Yan; Misaghi, Shahram; Izrael-Tomasevic, Anita; Newton, Kim; Gilmour, Laurie L; Lamkanfi, Mohamed; Louie, Salina; Kayagaki, Nobuhiko; Liu, Jinfeng; Kömüves, László; Cupp, James E; Arnott, David; Monack, Denise; Dixit, Vishva M

    2012-10-25

    NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3×Flag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4(-/-) macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd(-/-) macrophages exhibited greatly attenuated caspase-1 activation and IL-1β secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.

  15. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy.

    PubMed

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2015-03-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knock-in mice expressing nonphosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knock-in mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knock-in mice compared with their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild-type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knock-in mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knock-in and wild-type mice, indicating that mTORC1 was still activated in the knock-in mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild-type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knock-in mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth.

  16. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    PubMed

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca(2+) and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.

  17. Regulation of divalent metal transporter-1 by serine phosphorylation

    PubMed Central

    Seo, Young Ah; Kumara, Ruvin; Wetli, Herbert; Wessling-Resnick, Marianne

    2016-01-01

    Divalent metal transporter-1 (DMT1) mediates dietary iron uptake across the intestinal mucosa and facilitates peripheral delivery of iron released by transferrin in the endosome. Here, we report that classical cannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC), nonclassical cannabinoids (CP 55,940), aminoalkylindoles (WIN 55,212-2) and endocannabinoids (anandamide) reduce 55Fe and 54Mn uptake by HEK293T(DMT1) cells stably expressing the transporter. siRNA knockdown of cannabinoid receptor type 2 (CB2) abrogated inhibition. CB2 is a G-protein (GTP-binding protein)-coupled receptor that negatively regulates signal transduction cascades involving serine/threonine kinases. Immunoprecipitation experiments showed that DMT1 is serine-phosphorylated under basal conditions, but that treatment with Δ9-THC reduced phosphorylation. Site-directed mutation of predicted DMT1 phosphosites further showed that substitution of serine with alanine at N-terminal position 43 (S43A) abolished basal phosphorylation. Concordantly, both the rate and extent of 55Fe uptake in cells expressing DMT1(S43A) was reduced compared with those expressing wild-type DMT1. Among kinase inhibitors that affected DMT1-mediated iron uptake, staurosporine also reduced DMT1 phosphorylation confirming a role for serine phosphorylation in iron transport regulation. These combined data indicate that phosphorylation at serine 43 of DMT1 promotes transport activity, whereas dephosphorylation is associated with loss of iron uptake. Since anti-inflammatory actions mediated through CB2 would be associated with reduced DMT1 phosphorylation, we postulate that this pathway provides a means to reduce oxidative stress by limiting iron uptake. PMID:27681840

  18. Abundant protein phosphorylation potentially regulates Arabidopsis anther development

    PubMed Central

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-01-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana. However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4–7 and 8–12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  19. Increased phosphorylation of the NR1 subunit of the NMDA receptor following cerebral ischemia.

    PubMed

    Cheung, H H; Teves, L; Wallace, M C; Gurd, J W

    2001-09-01

    The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.

  20. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-12-15

    Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell proliferation, survival, and growth. Because Pdcd4 has two putative Akt phosphorylation sites at Ser(67) and Ser(457), we investigated whether Akt phosphorylates and regulates Pdcd4. Our results show that Akt specifically phosphorylates Ser(67) and Ser(457) residues of Pdcd4 in vitro and in vivo. We further show that phosphorylation of Pdcd4 by Akt causes nuclear translocation of Pdcd4. Using luciferase assay, we show that phosphorylation of Pdcd4 by Akt also causes a significant decrease of the ability of Pdcd4 to interfere with the transactivation of AP-1-responsive promoter by c-Jun.

  1. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  2. Histamine-stimulated phosphorylation of gastric parietal cell proteins

    SciTech Connect

    Chew, C.S.; Brown, M.R.

    1987-05-01

    Parietal cells from rabbit gastric mucosa respond to histamine with increased HCl secretion. Histamine also increases cAMP and activates cAMP-dependent protein kinase(s) in these cells. cAMP analogues and forskolin appear to mimic these effects. More recently histamine and forskolin but not cAMP-stimulated increases in (Ca/sup 2 +/)/sub i/ have been detected in parietal cells enriched to 98 +/- 2% (n=10) purity using a combined Nycodenz density gradient/centrifugal elutriation technique. In the present experiments parietal cells were loaded with /sup 32/P to label ATP pools then stimulated with histamine or chlorophenylthio-cAMP plus the H/sub 2/ receptor antagonist, cimetidine. Total cell extracts were separated via 2D-gel electrophoresis and analyzed with a Masscomp computer and PDQuest software. Results indicate that histamine stimulates phosphorylation of at least two proteins with molecular weights 49 and 33 kDa and respective pI's of 6.4 and 6.0. Changes in phosphorylation are detected within 1 min of stimulation and remain elevated for at least 15 min. No change in specific activity of samples was detected during this time. A third protein also showed increased phosphorylation but the response appeared more transient. They conclude that histamine increases phosphorylation of several parietal cell proteins via a cAMP-dependent mechanism. The relationship between changes in phosphorylation and onset of HCl secretion remains to be determined.

  3. Tau phosphorylation affects its axonal transport and degradation

    PubMed Central

    Rodríguez-Martín, Teresa; Cuchillo-Ibáñez, Inmaculada; Noble, Wendy; Nyenya, Fanon; Anderton, Brian H.; Hanger, Diane P.

    2013-01-01

    Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases. PMID:23601672

  4. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    PubMed Central

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg- ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin. PMID:2958483

  5. Queuine mediated inhibition in phosphorylation of tyrosine phosphoproteins in cancer.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2008-09-01

    Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.

  6. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy.

    PubMed

    Qian, Xu; Li, Xinjian; Cai, Qingsong; Zhang, Chuanbao; Yu, Qiujing; Jiang, Yuhui; Lee, Jong-Ho; Hawke, David; Wang, Yugang; Xia, Yan; Zheng, Yanhua; Jiang, Bing-Hua; Liu, David X; Jiang, Tao; Lu, Zhimin

    2017-03-02

    Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.

  7. Paxillin-kinase-linker tyrosine phosphorylation regulates directional cell migration.

    PubMed

    Yu, Jianxin A; Deakin, Nicholas O; Turner, Christopher E

    2009-11-01

    Directed cell migration requires the coordination of growth factor and cell adhesion signaling and is of fundamental importance during embryonic development, wound repair, and pathological conditions such as tumor metastasis. Herein, we demonstrate that the ArfGAP, paxillin-kinase-linker (PKL/GIT2), is tyrosine phosphorylated in response to platelet-derived growth factor (PDGF) stimulation, in an adhesion dependent manner and is necessary for directed cell migration. Using a combination of pharmacological inhibitors, knockout cells and kinase mutants, FAK, and Src family kinases were shown to mediate PDGF-dependent PKL tyrosine phosphorylation. In fibroblasts, expression of a PKL mutant lacking the principal tyrosine phosphorylation sites resulted in loss of wound-induced cell polarization as well as directional migration. PKL phosphorylation was necessary for PDGF-stimulated PKL binding to the focal adhesion protein paxillin and expression of paxillin or PKL mutants defective in their respective binding motifs recapitulated the polarization defects. RNA interference or expression of phosphorylation mutants of PKL resulted in disregulation of PDGF-stimulated Rac1 and PAK activities, reduction of Cdc42 and Erk signaling, as well as mislocalization of betaPIX. Together these studies position PKL as an integral component of growth factor and cell adhesion cross-talk signaling, controlling the development of front-rear cell polarity and directional cell migration.

  8. Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics*

    PubMed Central

    Moritz, Amy E.; Rastedt, Danielle E.; Stanislowski, Daniel J.; Shetty, Madhur; Smith, Margaret A.; Vaughan, Roxanne A.; Foster, James D.

    2015-01-01

    The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders. PMID:26424792

  9. Inhibition of peptide aggregation by means of enzymatic phosphorylation

    PubMed Central

    Folmert, Kristin; Broncel, Malgorzata; v. Berlepsch, Hans; Ullrich, Christopher Hans; Siegert, Mary-Ann

    2016-01-01

    As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and β-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to β-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from β-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated. PMID:28144314

  10. Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII.

    PubMed

    Sands, M S; Vogler, C A; Ohlemiller, K K; Roberts, M S; Grubb, J H; Levy, B; Sly, W S

    2001-11-16

    Enzyme replacement therapy (ERT) has been shown to be effective at reducing the accumulation of undegraded substrates in lysosomal storage diseases. Most ERT studies have been performed with recombinant proteins that are mixtures of phosphorylated and non-phosphorylated enzyme. Because different cell types use different receptors to take up phosphorylated or non-phosphorylated enzyme, it is difficult to determine which form of enzyme contributed to the clinical response. Here we compare the uptake, distribution, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase (GUSB) in the MPS VII mouse. Highly phosphorylated murine GUSB was efficiently taken up by a wide range of tissues. In contrast, non-phosphorylated murine GUSB was taken up primarily by tissues of the reticuloendothelial (RE) system. Although the tissue distribution was different, the half-lives of both enzymes in any particular tissue were similar. Both preparations of enzyme were capable of preventing the accumulation of lysosomal storage in cell types they targeted. An important difference in clinical efficacy emerged in that phosphorylated GUSB was more efficient than non-phosphorylated enzyme at preventing the hearing loss associated with this disease. These data suggest that both forms of enzyme contribute to the clinical responses of ERT in MPS VII mice but that enzyme preparations containing phosphorylated GUSB are more broadly effective than non-phosphorylated enzyme.

  11. Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase

    PubMed Central

    Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.

    2013-01-01

    Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012

  12. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  13. Protein kinase C coordinates histone H3 phosphorylation and acetylation

    PubMed Central

    Darieva, Zoulfia; Webber, Aaron; Warwood, Stacey; Sharrocks, Andrew D

    2015-01-01

    The re-assembly of chromatin following DNA replication is a critical event in the maintenance of genome integrity. Histone H3 acetylation at K56 and phosphorylation at T45 are two important chromatin modifications that accompany chromatin assembly. Here we have identified the protein kinase Pkc1 as a key regulator that coordinates the deposition of these modifications in S. cerevisiae under conditions of replicative stress. Pkc1 phosphorylates the histone acetyl transferase Rtt109 and promotes its ability to acetylate H3K56. Our data also reveal novel cross-talk between two different histone modifications as Pkc1 also enhances H3T45 phosphorylation and this modification is required for H3K56 acetylation. Our data therefore uncover an important role for Pkc1 in coordinating the deposition of two different histone modifications that are important for chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.09886.001 PMID:26468616

  14. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity

    PubMed Central

    Cobbold, Stephen Paul; Adams, Elizabeth; Necula, Andra Stefania; Zhang, Wei; Huang, Honglei; Thomas, Benjamin; Hester, Svenja S.; Betz, Alexander G.

    2017-01-01

    Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation–fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is “hardwired” by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy–based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs’ increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid β-oxidation also results in selective protection of Foxp3+ cells from fatty acid–induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically. PMID:28194435

  15. Modification of EWS/WT1 functional properties by phosphorylation

    PubMed Central

    Kim, Jungho; Lee, Joseph M.; Branton, Philip E.; Pelletier, Jerry

    1999-01-01

    In many human cancers, tumor-specific chromosomal rearrangements are known to create chimeric products with the ability to transform cells. The EWS/WT1 protein is such a fusion product, resulting from a t(11;22) chromosomal translocation in desmoplastic small round cell tumors, where 265 aa from the EWS amino terminus are fused to the DNA binding domain of the WT1 tumor suppressor gene. Herein, we find that EWS/WT1 is phosphorylated in vivo on serine and tyrosine residues and that this affects DNA binding and homodimerization. We also show that EWS/WT1 can interact with, and is a substrate for, modification on tyrosine residues by c-Abl. Tyrosine phosphorylation of EWS/WT1 by c-Abl negatively regulates its DNA binding properties. These results indicate that the biological activity of EWS/WT1 is closely linked to its phosphorylation status. PMID:10588700

  16. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    SciTech Connect

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.

    2011-12-31

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  17. Phosphorylation of lamins determine their structural properties and signaling functions

    PubMed Central

    Torvaldson, Elin; Kochin, Vitaly; Eriksson, John E

    2015-01-01

    Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease. PMID:25793944

  18. Partial high-resolution structure of phosphorylated and non-phosphorylated leucine-rich amelogenin protein adsorbed to hydroxyapatite

    SciTech Connect

    Masica, David L.; Gray, Jeffrey J.; Shaw, Wendy J.

    2011-07-21

    The formation of biogenic materials requires the interaction of organic molecules with the mineral phase. In forming enamel, the amelogenin proteins contribute to the mineralization of hydroxyapatite (HAp). Leucine-rich amelogenin protein (LRAP) is a naturally occurring splice variant of amelogenin that comprises amelogenin’s predicted HAp binding domains. We determined the partial structure of phosphorylated and non-phosphorylated LRAP variants bound to HAp using combined solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. The ssNMR measurements indicate a largely extended structure for both variants, though some measurements are consistent with a partially helical N-terminal segment. Structure prediction was biased using 21 ssNMR measurements at five HAp crystal faces. The predicted fold of LRAP is similar at all HAp faces studied, regardless of phosphorylation. LRAP’s predicted structure is relatively extended with a helix-turn-helix motif in the N-terminal domain and some helix in the C-terminal domain. The N-terminal domain of the phosphorylated variant binds HAp more tightly than the N-terminal domain of the non-phosphorylated variant. Both variants are predicted to preferentially bind the {010} HAp crystal face providing further evidence that amelogenins block crystal growth on the a and b faces to allow elongated crystals in the c-axis. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  20. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  1. Regulation of Rho proteins by phosphorylation in the cardiovascular system.

    PubMed

    Loirand, Gervaise; Guilluy, Christophe; Pacaud, Pierre

    2006-08-01

    The small G protein Rho signaling pathways are recognized as major regulators of cardiovascular functions, and activation of Rho proteins appears to be a common component for the pathogenesis of hypertension and vascular proliferative disorders. Rho proteins are tightly regulated, and recent evidence suggests that modulation of Rho protein signaling by phosphorylation of Rho proteins provides an additional simple mechanism for coordinating Rho protein functions. This regulation by phosphorylation is particularly important in the arterial wall, where RhoA protein expressed in vascular smooth muscle cells is controlled by the endothelium through the nitric oxide/cGMP-dependent kinase pathway.

  2. Human Cytomegalovirus UL97 Phosphorylates the Viral Nuclear Egress Complex

    PubMed Central

    Sharma, Mayuri; Bender, Brian J.; Kamil, Jeremy P.; Lye, Ming F.; Pesola, Jean M.; Reim, Natalia I.; Hogle, James M.

    2014-01-01

    ABSTRACT Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry, we detected UL97-dependent phosphorylation of UL50 residue S216 (UL50-S216) and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions in both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells and also decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of the nuclear lamina and phosphorylation of the NEC. IMPORTANCE Human cytomegalovirus (HCMV) causes birth defects and it can cause life-threatening diseases in immunocompromised patients. HCMV assembles in the nucleus and then translocates to the cytoplasm in an unusual process termed nuclear egress, an attractive target for antiviral therapy. A viral enzyme, UL97, is important for nuclear egress. It has been proposed that this is due to its role in disruption of the

  3. Phosphorylation and recruitment of Syk by immunoreceptor tyrosine-based activation motif-based phosphorylation of tamalin.

    PubMed

    Hirose, Masayuki; Kitano, Jun; Nakajima, Yoshiaki; Moriyoshi, Koki; Yanagi, Shigeru; Yamamura, Hirohei; Muto, Takanori; Jingami, Hisato; Nakanishi, Shigetada

    2004-07-30

    Tamalin is a scaffold protein that forms a multiple protein assembly including metabotropic glutamate receptors (mGluRs) and several postsynaptic and protein-trafficking scaffold proteins in distinct mode of protein-protein association. In the present investigation, we report that tamalin possesses a typical immunoreceptor tyrosine-based activation motif (ITAM), which enables Syk kinase to be recruited and phosphorylated by the Src family kinases. Coimmunoprecipitation analysis of rat brain membrane fractions showed that tamalin is present in a multimolecular protein assembly comprising not only mGluR1 but also c-Src, Fyn, and a protein phosphatase, SHP-2. The protein association of both tamalin and c-Src, as determined by truncation analysis of mGluR1 in COS-7 cells, occurred at the carboxyl-terminal tail of mGluR1. Mutation analysis of tyrosine with phenylalanine in COS-7 cells revealed that paired tyrosines at the ITAM sequence of tamalin are phosphorylated preferentially by c-Src and Fyn, and this phosphorylation can recruit Syk kinase and enables it to be phosphorylated by the Src family kinases. The phosphorylated tyrosines at the ITAM sequence of tamalin were highly susceptible to dephosphorylation by protein-tyrosine phosphatases in COS-7 cells. Importantly, tamalin was endogenously phosphorylated and associated with Syk in retinoic acid-treated P19 embryonal carcinoma cells that undergo neuron-like differentiation. The present investigation demonstrates that tamalin is a novel signaling molecule that possesses a PDZ domain and a PDZ binding motif and mediates Syk signaling in an ITAM-based fashion.

  4. Syndecan-4 phosphorylation is a control point for integrin recycling.

    PubMed

    Morgan, Mark R; Hamidi, Hellyeh; Bass, Mark D; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J

    2013-03-11

    Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.

  5. Phosphorylation of K+ channels at single residues regulates memory formation

    PubMed Central

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi

    2016-01-01

    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K+ channel function. Phosphorylation of K+ channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies of vertebrates and invertebrates, the contribution to memory of single phosphorylation sites on K+ channels has never been reported. We have used gene targeting in mice to inactivate protein kinase A substrate residues in the fast-inactivating subunit Kv4.2 (T38A mutants), and in the small-conductance Ca2+-activated subunit SK1 (S105A mutants). Both manipulations perturbed a specific form of memory, leaving others intact. T38A mutants had enhanced spatial memory for at least 4 wk after training, whereas performance in three tests of fear memory was unaffected. S105A mutants were impaired in passive avoidance memory, sparing fear, and spatial memory. Together with recent findings that excitability governs the participation of neurons in a memory circuit, this result suggests that the memory type supported by neurons may depend critically on the phosphorylation of specific K+ channels at single residues. PMID:26980786

  6. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration

    PubMed Central

    Liachko, Nicole F.; McMillan, Pamela J.; Guthrie, Chris R.; Bird, Thomas D.; Leverenz, James B.; Kraemer, Brian C.

    2013-01-01

    Objective Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 drives neurotoxicity in disease models; therefore, TDP-43 specific kinases are candidate targets for intervention. Methods To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic C. elegans. Results We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In FTLD-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43 dependent neurodegeneration in TDP-43 transgenic animals. Interpretation Taken together these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies including FTLD-TDP and ALS. PMID:23424178

  7. Chk2 Activation and Phosphorylation-Dependent Oligomerization

    PubMed Central

    Xu, Xingzhi; Tsvetkov, Lyuben M.; Stern, David F.

    2002-01-01

    The tumor suppressor gene CHK2 encodes a versatile effector serine/threonine kinase involved in responses to DNA damage. Chk2 has an amino-terminal SQ/TQ cluster domain (SCD), followed by a forkhead-associated (FHA) domain and a carboxyl-terminal kinase catalytic domain. Mutations in the SCD or FHA domain impair Chk2 checkpoint function. We show here that autophosphorylation of Chk2 produced in a cell-free system requires trans phosphorylation by a wortmannin-sensitive kinase, probably ATM or ATR. Both SQ/TQ sites and non-SQ/TQ sites within the Chk2 SCD can be phosphorylated by active Chk2. Amino acid substitutions in the SCD and the FHA domain impair auto- and trans-kinase activities of Chk2. Chk2 forms oligomers that minimally require the FHA domain of one Chk2 molecule and the SCD within another Chk2 molecule. Chk2 oligomerization in vivo increases after DNA damage, and when damage is induced by gamma irradiation, this increase requires ATM. Chk2 oligomerization is phosphorylation dependent and can occur in the absence of other eukaryotic proteins. Chk2 can cross-phosphorylate another Chk2 molecule in an oligomeric complex. Induced oligomerization of a Chk2 chimera in vivo concomitant with limited DNA damage augments Chk2 kinase activity. These results suggest that Chk2 oligomerization regulates Chk2 activation, signal amplification, and transduction in DNA damage checkpoint pathways. PMID:12024051

  8. MenaINV dysregulates cortactin phosphorylation to promote invadopodium maturation

    PubMed Central

    Weidmann, Maxwell D.; Surve, Chinmay R.; Eddy, Robert J.; Chen, Xiaoming; Gertler, Frank B.; Sharma, Ved P.; Condeelis, John S.

    2016-01-01

    Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B. PMID:27824079

  9. Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pterostilbene, a natural analog of resveratrol, has diverse health-beneficial properties. However, the neurological activities of this compound are largely unexplored. Here we report that pterostilbene shows anxiolytic action by downregulating phosphorylated levels of ERKs in the hippocampus of mice...

  10. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin.

    PubMed

    Tachibana, Kouichi; Haghparast, Seyed Mohammad Ali; Miyake, Jun

    2015-01-01

    Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases. Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate. These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.

  11. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    PubMed Central

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  12. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers.

    PubMed

    Sumioka, Akio; Yan, Dan; Tomita, Susumu

    2010-06-10

    Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like membrane-associated guanylate kinases. Among the three classes of ionotropic glutamate receptors (AMPA, NMDA, and kainate type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively charged lipid bilayers in a phosphorylation-dependent manner and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction.

  13. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  14. Phosphorylation of proteins in Dictyostelium discoideum during development

    SciTech Connect

    Coffman, D.S.

    1982-01-01

    The phosphoproteins in D. discoideum were studied with respect to their formation, metabolic stability, cellular and subcellular distribution. Special emphasis was on the role of cAMP on the pattern of phosphorylation. Amoebae were metabolically labeled with /sup 32/P/sub i/; subsequently proteins of the total lysate, nuclei and membranes were resolved by SDS-polyacrylamide gel electrophoresis and subjected to autoradiography. Numerous changes in the profile of phosphoproteins were observed during development. Functions were assigned to four membranal phosphoproteins; only one protein, the heavy chain of myosin, was susceptible to phosphorylation in vitro when purified membranes and /sup 32/P-ATP were used. A comparison between the time of protein synthesis and phosphorylation, as examined in vivo using /sup 35/S-methionine and /sup 32/P/sub i/ labeling of amoebae and two-dimensional gel electrophoresis, indicated that phosphorylation is concurrent with synthesis. It appears then that there are two classes of membranal phosphoproteins in D. discoideum which differ with respect to the stability of the phosphate moiety. It is evident that the turnover of the phosphate moiety in myosin heavy chain plays a crucial role in the function of myosin; a role for the metabolically inert phosphate of other membranal proteins remains to be established. The G protein which couples occupancy of hormone receptor to stimulation of adenylate cyclase in higher multicellular eukaryotes was detected in D. discoideum. The G protein is present in approximately equal amounts in vegetative and in developing amoebae.

  15. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation

    NASA Astrophysics Data System (ADS)

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.

    2016-05-01

    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4–fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.

  16. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers

    PubMed Central

    Sumioka, Akio; Yan, Dan; Tomita, Susumu

    2010-01-01

    Summary Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like MAGUKs. Among the three classes of ionotropic glutamate receptors (AMPA-, NMDA, kainate-type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively-charged lipid bilayers in its phosphorylation dependent manner, and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction. PMID:20547132

  17. Doubling down on peptide phosphorylation as a variable mass modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some mass spectrometrists believe that searching for variable post-translational modifications like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false positive rates. The basis for this is the premise that the al...

  18. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing.

    PubMed

    Golden, Ryan J; Chen, Beibei; Li, Tuo; Braun, Juliane; Manjunath, Hema; Chen, Xiang; Wu, Jiaxi; Schmid, Vanessa; Chang, Tsung-Cheng; Kopp, Florian; Ramirez-Martinez, Andres; Tagliabracci, Vincent S; Chen, Zhijian J; Xie, Yang; Mendell, Joshua T

    2017-02-09

    MicroRNAs (miRNAs) perform critical functions in normal physiology and disease by associating with Argonaute proteins and downregulating partially complementary messenger RNAs (mRNAs). Here we use clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) genome-wide loss-of-function screening coupled with a fluorescent reporter of miRNA activity in human cells to identify new regulators of the miRNA pathway. By using iterative rounds of screening, we reveal a novel mechanism whereby target engagement by Argonaute 2 (AGO2) triggers its hierarchical, multi-site phosphorylation by CSNK1A1 on a set of highly conserved residues (S824-S834), followed by rapid dephosphorylation by the ANKRD52-PPP6C phosphatase complex. Although genetic and biochemical studies demonstrate that AGO2 phosphorylation on these residues inhibits target mRNA binding, inactivation of this phosphorylation cycle globally impairs miRNA-mediated silencing. Analysis of the transcriptome-wide binding profile of non-phosphorylatable AGO2 reveals a pronounced expansion of the target repertoire bound at steady-state, effectively reducing the active pool of AGO2 on a per-target basis. These findings support a model in which an AGO2 phosphorylation cycle stimulated by target engagement regulates miRNA:target interactions to maintain the global efficiency of miRNA-mediated silencing.

  19. Stem rust spores elicit rapid RPG1 phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutant...

  20. Phytophthora infestans specific phosphorylation patterns and new putative control targets.

    PubMed

    Frades, Itziar; Andreasson, Erik

    2016-04-01

    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.

  1. Phosphorylation of intact erythrocytes in human muscular dystrophy

    SciTech Connect

    Johnson, R.M.; Nigro, M.

    1986-04-01

    The uptake of exogenous /sup 32/Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-(/sup 32/P)ATP, and suggests a possible reinterpretation of those experiments.

  2. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  3. Activation of purified calcium channels by stoichiometric protein phosphorylation

    SciTech Connect

    Nunoki, K.; Florio, V.; Catterall, W.A. )

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  4. Bioinformatics study of cancer-related mutations within p53 phosphorylation site motifs.

    PubMed

    Ji, Xiaona; Huang, Qiang; Yu, Long; Nussinov, Ruth; Ma, Buyong

    2014-07-29

    p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.

  5. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation

    PubMed Central

    2014-01-01

    Background This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18–21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. Results The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the

  6. The phosphorylation of coated membrane proteins in intact neurons

    PubMed Central

    1986-01-01

    To complement studies that have demonstrated the prominent phosphorylation of a 50-kD coated vesicle polypeptide in vitro, we have evaluated the phosphorylation of coated membrane proteins in intact cells. A co-assembly assay has been devised in which extracts of cultured rat sympathetic neurons labeled with [32P]-Pi were combined with unlabeled carrier bovine brain coat proteins and reassembled coat structures were isolated by gradient centrifugation. Two groups of phosphorylated polypeptides, of 100-110 kD (pp100-110) and 155 kD (pp155) apparent molecular mass, were incorporated into reassembled coats. The neuronal pp100-110 are structurally and functionally related to the 100-110-kD component of the bovine brain assembly protein (AP), a protein complex that also contains 50-kD and 16.5-kD components and is characterized by its ability to promote the reassembly of clathrin coat structures under physiological conditions of pH and ionic strength (Zaremba, S. and J. H. Keen, 1983, J. Cell Biol., 97:1337-1348). The neuronal pp155 detected in reassembled coat structures was readily observable in total extracts of [32P]-Pi-labeled neurons dissolved in SDS-containing buffer. A bovine brain counterpart to the neuronal pp155 was also observed when brain coated vesicles were subjected to two- dimensional gel electrophoresis. Phosphoserine was the predominant phosphoaminoacid found in both the pp100 and pp155. A structural and functional counterpart to the 50-kD brain assembly polypeptide (AP50) was also identified in these neurons. Although the brain AP50 is prominently phosphorylated by an endogenous protein kinase in isolated coated vesicle preparations, the neuronal AP50 was not detectably phosphorylated in intact cells as assessed by two-dimensional non- equilibrium pH gradient gel electrophoresis of labeled cells dissolved directly in SDS-containing buffers. These results demonstrate that the bovine brain assembly polypeptides of 50 kD and 100-110 kD that we have

  7. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa.

    PubMed

    Lewis, B; Aitken, R J

    2001-01-01

    Rat spermatozoa from both the caput and cauda epididymidis were shown to generate superoxide anion (O2-.) both spontaneously and following stimulation with NAD(P)H. Caput spermatozoa gave a significantly greater O2- response to NADPH stimulation than caudal cells, whereas in both cell types the responses to exogenous NADPH and NADH were approximately equivalent. Analysis of H2O2 production revealed that this oxidant was generated only by caudal epididymal cells and only in these cells did the stimulation of reactive oxygen species (ROS) production with NADPH lead to an increase in tyrosine phosphorylation. Stimulation of ROS production with NADPH increased intracellular cyclic adenosine monophosphate (cAMP) levels in both caput and caudal epididymal cells, but only in caudal cells did cAMP stimulate tyrosine phosphorylation, in keeping with the NADPH results. On the basis of these findings we propose that tyrosine phosphorylation in rat spermatozoa is driven by ROS acting via 2 different but complementary mechanisms; O2-. stimulates tyrosine kinase activity indirectly through the elevation of intracellular cAMP while H2O2 acts directly on the kinase/phosphatase system, stimulating the former and inhibiting the latter. Zinc was examined as a potential regulator of this signal transduction cascade and was shown to suppress tyrosine phosphorylation in caput cells but to promote this activity in caudal spermatozoa, possibly through an inhibitory effect on tyrosine phosphatase activity. These results reveal the maturation of a redox-regulated, cAMP-mediated, signal transduction cascade during epididymal transit in the rat that is sensitive to zinc and plays a key role in the control of tyrosine phosphorylation events associated with capacitation.

  8. Evaluation of Phosphorylated Psyllium Seed Polysaccharide as a Release Retardant

    PubMed Central

    Rao, Monica R. P.; Warrier, Deepa U.; Rao, Shivani H.

    2015-01-01

    The aim of the present study was to modify psyllium seed polysaccharide and evaluate the modified polysaccharide as release retardant in tablets employing ciprofloxacin hydrochloride as model drug. Studies on polysaccharide from psyllium husk has been reported but no work has been reported on characterization and modification of the polysaccharide present in the psyllium (Plantago ovata) seed and the use of the modified polysaccharide as a release retardant in tablets. In this study, the seed gum was modified using sodium trimetaphosphate as crosslinking agent. Sustained release matrix tablets of ciprofloxacin hydrochloride were prepared by wet granulation using various drug-polymer ratios. The polymers investigated were psyllium polysaccharide, phosphorylated psyllium polysaccharide and widely used release retardant hydroxypropyl methylcellulose K100M. The tablets were evaluated for hardness, friability, drug content, swelling profile and in vitro dissolution studies. The matrix tablets containing 1:3 proportion of drug-phosphorylated psyllium polysaccharide was found to have higher hardness as compared to tablets containing 1:1 and 1:2 proportions. The results of swelling behavior in water showed that the tablets containing 1:3 drug:phosphorylated psyllium polysaccharide ratio had swelling comparable to that of tablets containing 1:3 drug:hydroxypropyl methylcellulose ratio. The in vitro dissolution studies shows that the dissolution rate was retarded from 98.41 to 37.6% in 6 h with increase in concentration of phosphorylated psyllium polysaccharide from 100 to 300 mg. Formulations containing psyllium polysaccharide showed complete drug release in 8 h whereas those formulated with phosphorylated psyllium polysaccharide exhibited extended drug release over the 12 h period. Drug release kinetic studies revealed that drug release followed Korsmeyer-Peppas model. PMID:26798177

  9. Calcium-phospholipid enhanced protein phosphorylation in human placenta

    SciTech Connect

    Moore, J.J.; Moore, R.; Cardaman, R.C.

    1986-07-01

    Calcium-activated, phospholipid-dependent protein phosphorylation has not been studied in placenta. Human placental cytosol was subjected to an endogenous protein phosphorylation assay using (..gamma..-/sup 32/P)ATP in the presence of calcium and phosphatidylserine. Protein phosphorylation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. When compared to basal levels, calcium (10/sup -6/ M) in combination with phosphatidylserine (50 ..mu..g/ml) significantly enhanced (P < 100) /sup 32/P incorporation into phosphoproteins having mol wt 47,000, 43,000, and 37,000. Half-maximal /sup 22/P incorporation was observed with 3.5 x 10/sup -7/ M Ca/sup 2 +/ in the presence of phosphatidylserine (50 ..mu..g/ml). The effect of phosphatidylserine was biphasic. In the presence of Ca 10/sup -6/ M, /sup 32/P incorporation increased to a maximum at 70 /sup +/g/ml of phosphatidylserine. The increase was suppressed at 150 ..mu..g/ml. Tetracaine caused a dose-dependent inhibition of calcium-activated, phospholipid-dependent enhancement of the three phosphoproteins. Calcium in the absence of phospholipid enhanced the phosphorylation of a protein of 98,000 mol wt. Phosphatidylserine suppressed this enhancement. Calmodulin (10/sup -6/ M) had no detectable effect upon phosphorylation beyond that of calcium alone, but the calmodulin inhibitor R-24571 specifically inhibited the calcium-stimulated 98,000 mol wt phosphoprotein. Calcium-activated, phospholipid-dependent phospholipid-dependent phosphoproteins are present in human placental cytosol; whether calcium-activated, calmodulin-dependent phosphoproteins also are present remains a question.

  10. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants

    PubMed Central

    Kimura, Taeko; Hosokawa, Tomohisa; Taoka, Masato; Tsutsumi, Koji; Ando, Kanae; Ishiguro, Koichi; Hosokawa, Masato; Hasegawa, Masato; Hisanaga, Shin-ichi

    2016-01-01

    Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer’s disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau. PMID:27641626

  11. Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation.

    PubMed

    Polzien, Lisa; Baljuls, Angela; Rennefahrt, Ulrike E E; Fischer, Andreas; Schmitz, Werner; Zahedi, Rene P; Sickmann, Albert; Metz, Renate; Albert, Stefan; Benz, Roland; Hekman, Mirko; Rapp, Ulf R

    2009-10-09

    BAD is a proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Although much attention has been devoted to the identification of phosphorylation sites in murine BAD, little data are available with respect to phosphorylation of human BAD protein. Using mass spectrometry, we identified here besides the established phosphorylation sites at serines 75, 99, and 118 several novel in vivo phosphorylation sites within human BAD (serines 25, 32/34, 97, and 124). Furthermore, we investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine residues 75, 99, and 118. Our results indicate that RAF kinases represent, besides protein kinase A, PAK, and Akt/protein kinase B, in vivo BAD-phosphorylating kinases. RAF-induced phosphorylation of BAD was reduced to control levels using the RAF inhibitor BAY 43-9006. This phosphorylation was not prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be prevented by RAF. In addition, using the surface plasmon resonance technique, we analyzed the direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and Bcl-2/Bcl-X(L) proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein association, in which the phosphoserine 99 represented the major binding site. Finally, we show here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our findings provide new insights into the regulation of BAD function by phosphorylation.

  12. Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites.

    PubMed

    Knotts, T A; Orkiszewski, R S; Cook, R G; Edwards, D P; Weigel, N L

    2001-03-16

    We have previously reported the identification of seven in vivo phosphorylation sites in the amino-terminal region of the human progesterone receptor (PR). From our previous in vivo studies, it was evident that several phosphopeptides remained unidentified. In particular, we wished to determine whether human PR contains a phosphorylation site in the hinge region, as do other steroid receptors including chicken PR, human androgen receptor, and mouse estrogen receptor. Previously, problematic trypsin cleavage sites hampered our ability to detect phosphorylation sites in large incomplete tryptic peptides. Using a combination of mass spectrometry and in vitro phosphorylation, we have identified six previously unidentified phosphorylation sites in human PR. Using nanoelectrospray ionization mass spectrometry, we have identified two new in vivo phosphorylation sites, Ser(20) and Ser(676), in baculovirus-expressed human PR. Ser(676) is analogous to the hinge site identified in other steroid receptors. Additionally, precursor ion scans identified another phosphopeptide that contains Ser(130)-Pro(131), a likely candidate for phosphorylation. In vitro phosphorylation of PR with Cdk2 has revealed five additional in vitro Cdk2 phosphorylation sites: Ser(25), Ser(213), Thr(430), Ser(554), and Ser(676). At least two of these, Ser(213) and Ser(676), are authentic in vivo sites. We confirmed the presence of the Cdk2-phosphorylated peptide containing Ser(213) in PR from in vivo labeled T47D cells, indicating that this is an in vivo site. Our combined studies indicate that most, if not all, of the Ser-Pro motifs in human PR are sites for phosphorylation. Taken together, these data indicate that the phosphorylation of PR is highly complex, with at least 14 phosphorylation sites.

  13. Phosphorylation of the transit sequence of chloroplast precursor proteins.

    PubMed

    Waegemann, K; Soll, J

    1996-03-15

    A protein kinase was located in the cytosol of pea mesophyll cells. The protein kinase phosphorylates, in an ATP-dependent manner, chloroplast-destined precursor proteins but not precursor proteins, which are located to plant mitochondria or plant peroxisomes. The phosphorylation occurs on either serine or threonine residues, depending on the precursor protein used. We demonstrate the specific phosphorylation of the precursor forms of the chloroplast stroma proteins ferredoxin (preFd), small subunit of ribulose-bisphosphate-carboxylase (preSSU), the thylakoid localized light-harvesting chlorophyll a/b-binding protein (preLHCP), and the thylakoid lumen-localized proteins of the oxygen-evolving complex of 23 kDa (preOE23) and 33 kDa (preOE33). In the case of thylakoid lumen proteins which possess bipartite transit sequences, the phosphorylation occurs within the stroma-targeting domain. By using single amino acid substitution within the presequences of preSSU, preOE23, and preOE33, we were able to tentatively identify a consensus motif for the precursor protein protein kinase. This motif is (P/G)X(n)(R/K)X(n)(S/T)X(n) (S*/T*), were n = 0-3 amino acids spacer and S*/T* represents the phosphate acceptor. The precursor protein protein kinase is present only in plant extracts, e.g. wheat germ and pea, but not in a reticulocyte lysate. Protein import experiments into chloroplasts revealed that phosphorylated preSSU binds to the organelles, but dephosphorylation seems required to complete the translocation process and to obtain complete import. These results suggest that a precursor protein protein phosphatase is involved in chloroplast import and represents a so far unidentified component of the import machinery. In contrast to sucrose synthase, a cytosolic marker protein, the precursor protein protein kinase seems to adhere partially to the chloroplast surface. A phosphorylation-dephosphorylation cycle of chloroplast-destined precursor proteins might represent one step

  14. Characterization of the reversible phosphorylation and activation of ERK8

    PubMed Central

    Klevernic, Iva V.; Stafford, Margaret J.; Morrice, Nicholas; Peggie, Mark; Morton, Simon; Cohen, Philip

    2005-01-01

    ERK8 (extracellular-signal-regulated protein kinase 8) expressed in Escherichia coli or insect cells was catalytically active and phosphorylated at both residues of the Thr-Glu-Tyr motif. Dephosphorylation of the threonine residue by PP2A (protein serine/threonine phosphatase 2A) decreased ERK8 activity by over 95% in vitro, whereas complete dephosphorylation of the tyrosine residue by PTP1B (protein tyrosine phosphatase 1B) decreased activity by only 15–20%. Wild-type ERK8 expressed in HEK-293 cells was over 100-fold less active than the enzyme expressed in bacteria or insect cells, but activity could be increased by exposure to hydrogen peroxide, by incubation with the protein serine/threonine phosphatase inhibitor okadaic acid, or more weakly by osmotic shock. In unstimulated cells, ERK8 was monophosphorylated at Tyr-177, and exposure to hydrogen peroxide induced the appearance of ERK8 that was dually phosphorylated at both Thr-175 and Tyr-177. IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor), PMA or anisomycin had little effect on activity. In HEK-293 cells, phosphorylation of the Thr-Glu-Tyr motif of ERK8 was prevented by Ro 318220, a potent inhibitor of ERK8 in vitro. The catalytically inactive mutants ERK8[D154A] and ERK8[K42A] were not phosphorylated in HEK-293 cells or E. coli, whether or not the cells had been incubated with protein phosphatase inhibitors or exposed to hydrogen peroxide. Our results suggest that the activity of ERK8 in transfected HEK-293 cells depends on the relative rates of ERK8 autophosphorylation and dephosphorylation by one or more members of the PPP family of protein serine/threonine phosphatases. The major residue in myelin basic protein phosphorylated by ERK8 (Ser-126) was distinct from that phosphorylated by ERK2 (Thr-97), demonstrating that, although ERK8 is a proline-directed protein kinase, its specificity is distinct from ERK1/ERK2. PMID:16336213

  15. Alterations of ciliate phosducin phosphorylation in Blepharisma japonicum cells.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2005-05-13

    We have previously reported that motile photophobic response in ciliate Blepharisma japonicum correlates with dephosphorylation of a cytosolic 28 kDa phosphoprotein (PP28) exhibiting properties similar to those of phosducin. Here we demonstrate in in vivo phosphorylation assay that the light-elicited dephosphorylation of the PP28 is significantly modified by cell incubation with substances known to modulate protein phosphatase and kinase activities. Immunoblot analyses showed that incubation of ciliates with okadaic acid and calyculin A, potent inhibitors of type 1 or 2A protein phosphatases, distinctly increased phosphorylation of PP28 in dark-adapted cells and markedly weakened dephosphorylation of the ciliate phosducin following cell illumination. An enhancement of PP28 phosphorylation was also observed in dark-adapted ciliates exposed to 8-Br-cAMP and 8-Br-cGMP, slowly hydrolysable cyclic nucleotide analogs and 3-isobutyryl-1-methylxanthine (IBMX), a non-specific cyclic nucleotide phosphodiesterase (PDEs) inhibitor. Only slight changes in light-evoked dephosphorylation levels of PP28 were observed in cells treated with the cyclic nucleotide analogs and IBMX. Incubation of ciliates with H 89 or KT 5823, highly selective inhibitor of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG), respectively, decreased PP28 phosphorylation levels in dark-adapted cells, whereas the extent of light-evoked dephosphorylation of the phosphoprotein was only slightly influenced. Cell treatment with higher Ca2+ concentration together with ionophore A23187 in culture medium resulted in marked increase in PP28 phosphorylation levels, while quite an opposite effect was observed in cells exposed to Ca2+ chelators, EGTA or BAPTA/AM as well as calmodulin antagonists, such as trifluoperazine (TFP), W-7 or calmidazolium. Light-dependent dephosphorylation was not considerably affected by these treatments. The experimental findings presented here suggest that an

  16. FSCB phosphorylation regulates mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L

    PubMed Central

    Zhang, Xinqi; Chen, Mingrui; Yu, Renyi; Liu, Benli; Tian, Zhiqiang; Liu, Shunli

    2016-01-01

    Fibrous sheath CABYR binding protein (FSCB) is regulated by protein kinase A (PKA)-mediated tyrosine phosphorylation in the spermatozoa capacitation. Recently, we showed that FSCB phosphorylation activated spermatozoa motility. Nevertheless, the underlying mechanisms have not been completely elucidated. Here, we showed that FSCB phosphorylation inhibited SUMOylation of two crucial proteins ROPN1/ROPN1L that are associated with PKA/A kinase activity and spermatozoa motility. Suppression of SUMOylation of ROPN1/ROPN1L mimicked the effects of FSCB phosphorylation on spermatozoa motility. Immunoprecipitation assay showed that phosphorylated FSCB had a significantly higher affinity to ROPN1/ROPN1L than non-phosphorylated FSCB. Together, our data suggest that FSCB phosphorylation may regulate mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L, which sheds new light on creating a therapeutic strategy targeting FSCB phosphorylation in the study of infertility. PMID:27398160

  17. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  18. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  19. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.

    PubMed

    Kawano, Y; Fukata, Y; Oshiro, N; Amano, M; Nakamura, T; Ito, M; Matsumura, F; Inagaki, M; Kaibuchi, K

    1999-11-29

    Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the

  20. Mapping and analysis of phosphorylation sites: a quick guide for cell biologists.

    PubMed

    Dephoure, Noah; Gould, Kathleen L; Gygi, Steven P; Kellogg, Douglas R

    2013-03-01

    A mechanistic understanding of signaling networks requires identification and analysis of phosphorylation sites. Mass spectrometry offers a rapid and highly sensitive approach to mapping phosphorylation sites. However, mass spectrometry has significant limitations that must be considered when planning to carry out phosphorylation-site mapping. Here we provide an overview of key information that should be taken into consideration before beginning phosphorylation-site analysis, as well as a step-by-step guide for carrying out successful experiments.

  1. Thermophysical and flammability characterization of phosphorylated epoxy adhesives

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Giants, T. W.; Bilow, N.; Hsu, M.-T.

    1980-01-01

    Some of the thermophysical and flammability properties of a phosphorylated epoxy adhesive, which has potential applications in aircraft interior panels, are described. The adhesive consists of stoichiometric ratios of bis(3-glycidyloxphenyl)methylphosphine oxide and bis(3-aminophenyl)methylphosphine oxide containing approximately 7.5% phosphorus. Preliminary data are presented from adhesive bonding studies conducted utilizing this adhesive with polyvinyl fluoride (PVF) film and phenolic-glass laminates. Limiting oxygen index and smoke density data are presented and compared with those of the tetraglycidyl methylene dianiline epoxy resin-adhesive system currently used in aircraft interiors. Initial results indicate that the phosphorylated epoxy compound has excellent adhesive properties when used with PVF film and that desirable fire-resistant properties are maintained.

  2. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    PubMed

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1).

  3. Phosphorylation and dephosphorylation regulate APC/CCdh1 substrate degradation

    PubMed Central

    Simpson-Lavy, Kobi J; Zenvirth, Drora; Brandeis, Michael

    2015-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase activated by its G1 specific adaptor protein Cdh1 is a major regulator of the cell cycle. The APC/CCdh1 mediates degradation of dozens of proteins, however, the kinetics and requirements for their degradation are largely unknown. We demonstrate that overexpression of the constitutive active CDH1m11 mutant that is not inhibited by phosphorylation results in mitotic exit in the absence of the FEAR and MEN pathways, and DNA re-replication in the absence of Cdc7 activity. This mode of mitotic exit also reveals additional requirements for APC/CCdh1 substrate degradation, which for some substrates such as Pds1 or Clb5 is dephosphorylation, but for others such as Cdc5 is phosphorylation. PMID:26252546

  4. Regulation of casein kinase 2 by phosphorylation/dephosphorylation.

    PubMed Central

    Agostinis, P; Goris, J; Pinna, L A; Merlevede, W

    1987-01-01

    The effects of various polycation-stimulated (PCS) phosphatases and of the active catalytic subunit of the ATPMg-dependent (AMDc) protein phosphatase on the activity of casein kinase 2 (CK-2) were investigated by using the synthetic peptide substrate Ser-Glu-Glu-Glu-Glu-Glu, whose phosphorylated derivative is entirely insensitive to these protein phosphatases. Previous dephosphorylation of native CK-2 enhances its specific activity 2-3-fold. Such an effect, accounted for by an increase in Vmax, is more readily promoted by the PCS phosphatases than by the AMDc phosphatase. The phosphate incorporated by autophosphorylation could not be removed by the protein phosphatases, suggesting the involvement of phosphorylation site(s) other than the one(s) affected by intramolecular autophosphorylation. The activation of CK-2 by the phosphatase pretreatment is neutralized during the kinase assay; the mechanism of this phenomenon, which is highly dependent on the kinase concentration, is discussed. Images Fig. 4. PMID:2829841

  5. Regulation of casein kinase 2 by phosphorylation/dephosphorylation.

    PubMed

    Agostinis, P; Goris, J; Pinna, L A; Merlevede, W

    1987-12-15

    The effects of various polycation-stimulated (PCS) phosphatases and of the active catalytic subunit of the ATPMg-dependent (AMDc) protein phosphatase on the activity of casein kinase 2 (CK-2) were investigated by using the synthetic peptide substrate Ser-Glu-Glu-Glu-Glu-Glu, whose phosphorylated derivative is entirely insensitive to these protein phosphatases. Previous dephosphorylation of native CK-2 enhances its specific activity 2-3-fold. Such an effect, accounted for by an increase in Vmax, is more readily promoted by the PCS phosphatases than by the AMDc phosphatase. The phosphate incorporated by autophosphorylation could not be removed by the protein phosphatases, suggesting the involvement of phosphorylation site(s) other than the one(s) affected by intramolecular autophosphorylation. The activation of CK-2 by the phosphatase pretreatment is neutralized during the kinase assay; the mechanism of this phenomenon, which is highly dependent on the kinase concentration, is discussed.

  6. Phosphorylation events during viral infections provide potential therapeutic targets

    PubMed Central

    Keating, Julie A.; Striker, Rob

    2012-01-01

    SUMMARY For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA-approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed. PMID:22113983

  7. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    PubMed

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  8. Regulatory roles of phosphorylation in model and pathogenic fungi

    PubMed Central

    Albataineh, Mohammad T.; Kadosh, David

    2015-01-01

    Over the past 20 years, considerable advances have been made toward our understanding of how post-translational modifications affect a wide variety of biological processes, including morphology and virulence, in medically important fungi. Phosphorylation stands out as a key molecular switch and regulatory modification that plays a critical role in controlling these processes. In this article, we first provide a comprehensive and up-to-date overview of the regulatory roles that both Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi. Next, we discuss the impact of current global approaches that are being used to define the complete set of phosphorylation targets (phosphoproteome) in medically important fungi. Finally, we provide new insights and perspectives into the potential use of key regulatory kinases and phosphatases as targets for the development of novel and more effective antifungal strategies. PMID:26705834

  9. Ser/Thr phosphorylation as a regulatory mechanism in bacteria.

    PubMed

    Dworkin, Jonathan

    2015-04-01

    This review will discuss some recent work describing the role of Ser/Thr phosphorylation as a post-translational mechanism of regulation in bacteria. I will discuss the interaction between bacterial eukaryotic-like Ser/Thr kinases (eSTKs) and two-component systems as well as hints as to physiological function of eSTKs and their cognate eukaryotic-like phosphatases (eSTPs). In particular, I will highlight the role of eSTKs and eSTPs in the regulation of peptidoglycan metabolism and protein synthesis. In addition, I will discuss how data from phosphoproteomic surveys suggest that Ser/Thr phosphorylation plays a much more significant physiological role than would be predicted simply based on in vivo and in vitro analyses of individual kinases.

  10. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan

    PubMed Central

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P.; Kunz, Stefan

    2013-01-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a hemorrhagic fever with high mortality in man. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process. PMID:23279385

  11. OXIDATIVE PHOSPHORYLATION IN MITOCHONDRIA FROM LIVERS SHOWING CLOUDY SWELLING

    PubMed Central

    Fonnesu, Alberto; Severi, Clara

    1956-01-01

    Using succinate and α-ketoglutarate as substrates, oxidative phosphorylation has been measured in mitochondria isolated from livers showing cloudy swelling. This cellular change was obtained by injecting rats with S. typhi murium toxin and guinea pigs with diphtheria toxin. It has been found that phosphorylation associated with the oxidation of either of these substrates was partially inhibited in mitochondria from livers showing cloudy swelling, while the oxygen consumption was unchanged. Thus, the P:O ratios for both succinate and α-ketoglutarate were lower in mitochondria from treated animals than they were in normal mitochondria. Dephosphorylation of ATP was not significantly modified in mitochondria from livers showing cloudy swelling as compared with normal controls. No dephosphorylation of AMP and G-6-P was observed either in normal mitochondria or in mitochondria from treated animals. PMID:13331961

  12. The Impact of Protein Phosphorylation on Chlamydial Physiology

    PubMed Central

    Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.

    2016-01-01

    Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729

  13. Evaluation of myosin light chain phosphorylation in isolated pancreatic acini

    SciTech Connect

    Burnham, D.B.; Soeling, H.D.; Williams, J.A. Universitaet Goettingen )

    1988-01-01

    The role of contractile proteins in secretory granule exocytosis was evaluated by determining whether myosin light chain phosphorylation was altered during stimulation of secretion in mouse pancreatic acini. Acinar myosin was purified by extraction into isosmotic sucrose solution containing 40 mM pyrophosphate followed by ammonium sulfate precipitation and Sepharose 4B-CL chromatography. Myosin was eluted as a single peak of K{sup +}-EDTA ATPase activity and was purified over 2,000-fold to a final ATPase specific activity of 0.96 {mu}mol{center dot}min{sup {minus}1}{center dot}mg protein {sup {minus}1}. Three major myosin subunits of apparent M{sub r} of 200,000, 20,000, and 17,000 were present in the purified myosin preparation. A fourth protein of M{sub r} 21,000 was also present. Purification of myosin from {sup 32}P-labeled acini revealed that M{sub r} 200,000, 21,000, and 20,000 proteins to be heavily labeled. The effect of cholecystokinin octapeptide (CCK-8) on myosin phosphorylation was studied after isolation of myosin from {sup 32}P-labeled acinar lysates by immunoprecipitation. Treatment of acini for 1-10 min with a concentration of CCK-8 that gives a maximal secretory response caused a 25-40% increase in light chain labeling. Treatment with a supramaximal CCK-8 concentration produced a 50-80% increase in light chain labeling. Phosphorylation of myosin heavy chain was not significantly affected by secretagogue treatment. These results indicate that stimulation of pancreatic acinar secretion is accompanied by an increase in myosin light chain phosphorylation.

  14. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate

    NASA Astrophysics Data System (ADS)

    Kolb, Vera; Orgel, Leslie E.

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  15. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  16. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    SciTech Connect

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.; Garrison, J.C.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent protein kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.

  17. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains

    ERIC Educational Resources Information Center

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-01-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  18. In vivo phosphorylation of phosphoenolpyruvate carboxylase in Egeria densa, a submersed aquatic species.

    PubMed

    Lara, M V; Casati, P; Andreo, C S

    2001-04-01

    In vivo phosphorylation of PEPC in Egeria densa was studied using plants at high temperature and in light, and plants kept at low temperature and in light. The isoform induced by high temperature and light was more phosphorylated in the light. Changes in kinetic and regulatory properties correlated with changes in the phosphorylation state of PEPC.

  19. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.

  20. Nuclear localization and phosphorylation of three 25-kilodalton rat stress proteins.

    PubMed Central

    Kim, Y J; Shuman, J; Sette, M; Przybyla, A

    1984-01-01

    The nuclear localization and phosphorylation of three 25-kilodalton rat myoblast stress proteins were examined. Data obtained in these analyses led to the following conclusions: (i) all three proteins become localized in the nucleus of stressed cells, (ii) two of the proteins are modified by phosphorylation, and (iii) phosphorylation occurs exclusively on serine residues. Images PMID:6717429

  1. Mitotic arrest-induced phosphorylation of Mcl-1 revisited using two-dimensional gel electrophoresis and phosphoproteomics: nine phosphorylation sites identified

    PubMed Central

    Hart, Katherine; Kothari, Anisha; Mackintosh, Samuel G.; Kovak, Matthew R.; Chambers, Timothy C.

    2016-01-01

    Microtubule targeting agents (MTAs) characteristically promote phosphorylation and degradation of Mcl-1, and this represents a critical pro-apoptotic signal in mitotic death. While several phosphorylation sites and kinases have been implicated in mitotic arrest-induced Mcl-1 phosphorylation, a comprehensive biochemical analysis has been lacking. Contrary to previous reports suggesting that T92 phosphorylation by Cdk1 regulates Mcl-1 degradation, a T92A Mcl-1 mutant expressed in HeLa cells was phosphorylated and degraded with the same kinetics as wild-type Mcl-1 following vinblastine treatment. Similarly, when Mcl-1 with alanine replacements of all five putative Cdk sites (S64, T92, S121, S159, T163) was expressed, it was also phosphorylated and degraded in response to vinblastine. To analyze Mcl-1 phosphorylation in more detail, two-dimensional gel electrophoresis (2D-PAGE) was performed. While untreated cells expressed mainly unphosphorylated Mcl-1 with two minor phosphorylated species, Mcl-1 from vinblastine treated cells migrated during 2D-PAGE as a train of acidic spots representing nine or more phosphorylated species. Immunopurification and mass spectrometry of phosphorylated Mcl-1 derived from mitotically arrested HeLa cells revealed nine distinct sites, including several previously unreported. Mcl-1 bearing substitutions of all nine sites had a longer half-life than wild-type Mcl-1 under basal conditions, but still underwent phosphorylation and degradation in response to vinblastine treatment, and, like wild-type Mcl-1, was unable to protect cells from MTA treatment. These results reveal an unexpected complexity in Mcl-1 phosphorylation in response to MTAs and indicate that previous work has severely underestimated the number of sites, and thus encourage major revisions to the current model. PMID:27738316

  2. Catalytic constants enable the emergence of bistability in dual phosphorylation.

    PubMed

    Conradi, Carsten; Mincheva, Maya

    2014-06-06

    Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.

  3. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation.

    PubMed

    Pang, Zhengyu; Antonetti, David A; Tarbell, John M

    2005-11-01

    Human umbilical vein endothelial cells (HUVECs) display hydraulic conductivity (L(P)) responses to shear stress that differ markedly from the responses of bovine aortic endothelial cells (BAECs). In HUVECs, 5, 10, and 20 dyn cm(-2) steady shear stress transiently increased L(P) with a return to preshear baseline after a 2-h exposure to shear stress. Pure oscillatory shear stress of 0 +/- 20 dyn cm(-2) (mean+/-amplitude) had no effect on L(P), whereas superposition of oscillatory shear stress on steady shear stress suppressed the effect induced by steady shear stress alone. Shear reversal (amplitude greater than mean) was not necessary for the inhibitory influence of oscillatory shear stress. The transient increase of L(P) by steady shear stress was not affected by incubation with BAPTA-AM (10 microM), suggesting calcium independence of the shear response. Decreasing nitric oxide (NO) concentration with L-NMMA (100 microM), a nitric oxide synthase (NOS) inhibitor, did not inhibit the HUVEC L(P) response to shear stress. At the protein level, 10 dyn cm(-2) shear stress did not affect the total content of occludin, but it did elevate the phosphorylation level transiently. The positive correlation between occludin phosphorylation and hydraulic conductivity parallels observations in BAECs and suggests that occludin phosphorylation may be a general mediator of shear-L(P) responses in diverse endothelial cell types.

  4. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation

    PubMed Central

    Davis, Saralin; Wang, Juan; Zhu, Ming; Stahmer, Kyle; Lakshminarayan, Ramya; Ghassemian, Majid; Jiang, Yu; Miller, Elizabeth A; Ferro-Novick, Susan

    2016-01-01

    Endoplasmic Reticulum (ER)-derived COPII coated vesicles constitutively transport secretory cargo to the Golgi. However, during starvation-induced stress, COPII vesicles have been implicated as a membrane source for autophagosomes, distinct organelles that engulf cellular components for degradation by macroautophagy (hereafter called autophagy). How cells regulate core trafficking machinery to fulfill dramatically different cellular roles in response to environmental cues is unknown. Here we show that phosphorylation of conserved amino acids on the membrane-distal surface of the Saccharomyces cerevisiae COPII cargo adaptor, Sec24, reprograms COPII vesicles for autophagy. We also show casein kinase 1 (Hrr25) is a key kinase that phosphorylates this regulatory surface. During autophagy, Sec24 phosphorylation regulates autophagosome number and its interaction with the C-terminus of Atg9, a component of the autophagy machinery required for autophagosome initiation. We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance. DOI: http://dx.doi.org/10.7554/eLife.21167.001 PMID:27855785

  5. Acetylcholine-induced phosphorylation in isolated outer hair cells.

    PubMed

    Szõnyi, M; Csermely, P; Sziklai, I

    1999-03-01

    Two groups of isolated, surviving outer hair cells (OHCs) of guinea pig cochleas (n = 20, for each group) were treated with 10 microM acetylcholine or acetylcholine plus strichnine (an alpha9 nAChR antagonist), respectively, under short-term tissue culture conditions. The protein content of the cell homogenates was separated by SDS-polyacrylamide gel electrophoresis, Western blotted and labelled with an antibody against phosphoserine residues. Signals were detected using the ECL system. Acetylcholine challenge of the OHCs resulted in a difference in the pattern of phosphorylated proteins from those of strichnine pretreated cells. A 220 kDa and a 120 kDa protein expressed a more intense phosphorylated state in the ACh group compared with the ACh plus strichnine group. The 220 kDa phosphoprotein is in the range of the cytoskeletal protein beta-fodrin, whereas the 120 kDa fraction is similar to alpha-fodrin or an ankyrin isoform. Phosphorylation of proteins due to activation of the AChR by agonist can play a role in the signalling mechanism between receptor activation and increase in the electromotile capability of isolated OHCs.

  6. Strengths of hydrogen bonds involving phosphorylated amino acid side chains.

    PubMed

    Mandell, Daniel J; Chorny, Ilya; Groban, Eli S; Wong, Sergio E; Levine, Elisheva; Rapp, Chaya S; Jacobson, Matthew P

    2007-01-31

    Post-translational phosphorylation plays a key role in regulating protein function. Here, we provide a quantitative assessment of the relative strengths of hydrogen bonds involving phosphorylated amino acid side chains (pSer, pAsp) with several common donors (Arg, Lys, and backbone amide groups). We utilize multiple levels of theory, consisting of explicit solvent molecular dynamics, implicit solvent molecular mechanics, and quantum mechanics with a self-consistent reaction field treatment of solvent. Because the approximately 6 pKa of phosphate suggests that -1 and -2 charged species may coexist at physiological pH, hydrogen bonds involving both protonated and deprotonated phosphates for all donor-acceptor pairs are considered. Multiple bonding geometries for the charged-charged interactions are also considered. Arg is shown to be capable of substantially stronger salt bridges with phosphorylated side chains than Lys. A pSer hydrogen-bond acceptor tends to form more stable interactions than a pAsp acceptor. The effect of phosphate protonation state on the strengths of the hydrogen bonds is remarkably subtle, with a more pronounced effect on pAsp than on pSer.

  7. The Regulation of NF-κB Subunits by Phosphorylation

    PubMed Central

    Christian, Frank; Smith, Emma L.; Carmody, Ruaidhrí J.

    2016-01-01

    The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function. PMID:26999213

  8. Rat1p maintains RNA polymerase II CTD phosphorylation balance

    PubMed Central

    Jimeno-González, Silvia; Schmid, Manfred; Malagon, Francisco; Haaning, Line Lindegaard; Jensen, Torben Heick

    2014-01-01

    In S. cerevisiae, the 5′-3′ exonuclease Rat1p partakes in transcription termination. Although Rat1p-mediated RNA degradation has been suggested to play a role for this activity, the exact mechanisms by which Rat1p helps release RNA polymerase II (RNAPII) from the DNA template are poorly understood. Here we describe a function of Rat1p in regulating phosphorylation levels of the C-terminal domain (CTD) of the largest RNAPII subunit, Rpb1p, during transcription elongation. The rat1-1 mutant exhibits highly elevated levels of CTD phosphorylation as well as RNAPII distribution and transcription termination defects. These phenotypes are all rescued by overexpression of the CTD phosphatase Fcp1p, suggesting a functional relationship between the absence of Rat1p activity, elevated CTD phosphorylation, and transcription defects. We also demonstrate that rat1-1 cells display increased RNAPII transcription kinetics, a feature that may contribute to the cellular phenotypes of the mutant. Consistently, the rat1-1 allele is synthetic lethal with the rpb1-E1103G mutation, causing increased RNAPII speed, and is suppressed by the rpb2-10 mutation, causing slowed transcription. Thus, Rat1p plays more complex roles in controlling transcription than previously thought. PMID:24501251

  9. Protein phosphorylation and regulation of adaptive responses in bacteria.

    PubMed Central

    Stock, J B; Ninfa, A J; Stock, A M

    1989-01-01

    Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry. PMID:2556636

  10. The GAGA protein of Drosophila is phosphorylated by CK2.

    PubMed

    Bonet, Carles; Fernández, Irene; Aran, Xavier; Bernués, Jordi; Giralt, Ernest; Azorín, Fernando

    2005-08-19

    The GAGA factor of Drosophila is a sequence-specific DNA-binding protein that contributes to multiple processes from the regulation of gene expression to the structural organisation of heterochromatin and chromatin remodelling. GAGA is known to interact with various other proteins (tramtrack, pipsqueak, batman and dSAP18) and protein complexes (PRC1, NURF and FACT). GAGA functions are likely regulated at the level of post-translational modifications. Little is known, however, about its actual pattern of modification. It was proposed that GAGA can be O-glycosylated. Here, we report that GAGA519 isoform is a phosphoprotein that is phosphorylated by CK2 at the region of the DNA-binding domain. Our results indicate that phosphorylation occurs at S388 and, to a lesser extent, at S378. These two residues are located in a region of the DNA-binding domain that makes no direct contact with DNA, being dispensable for sequence-specific recognition. Phosphorylation at these sites does not abolish DNA binding but reduces the affinity of the interaction. These results are discussed in the context of the various functions and interactions that GAGA supports.

  11. Phosphorylation and proteolysis of HMGCoA reductase

    SciTech Connect

    Parker, R.A.; Lanier, T.L.; Miller, S.J.; Gibson, D.M.

    1987-05-01

    The phosphorylation of rat liver microsomal 97 kDa HMGCoA reductase (HMGR) was examined by immunoprecipitation and SDS-PAGE using antibodies to 53 kDa HMGR. MgATP preincubation decreased expressed HMGR activity from 10.1 +/- 2.4 to 0.81 +/- 0.2 U/mg. Concomitant incorporation of TSP from el-TSP-ATP into 97 kDa HMGR protein was observed. Competitive antibody binding by affinity-purified 53 kDa HMGR showed that the 97 kDa TSP band was authentic HMGR. HMGR was reactivated and the TSP label was removed by protein phosphatase in a concentration-dependent manner: the increase in expressed/total activity ratio (E/T) correlated linearly with a decrease in 97 kDa TSP. Therefore, the E/T ratio provides a valid index of the phosphorylation state of microsomal 97 kDa HMGR. Protease cleavage patterns of HMGR mass and TSP were compared using calpain: a 52-56 kDa doublet of HMGR mass was observed in immunoblots under conditions in which only the 56 kDa band contained TSP. Further proteolysis decreased the TSP label as the 52 kDa mass product increased. The data suggest that the major phosphorylation site in 97 kDa HMGR lies between two main calpain cleavage sites in the linker region joining the cytoplasmic domain to the membrane-spanning domain of the native enzyme.

  12. CDK1 phosphorylates WRN at collapsed replication forks

    PubMed Central

    Palermo, Valentina; Rinalducci, Sara; Sanchez, Massimo; Grillini, Francesca; Sommers, Joshua A.; Brosh, Robert M.; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2016-01-01

    Regulation of end-processing is critical for accurate repair and to switch between homologous recombination (HR) and non-homologous end joining (NHEJ). End resection is a two-stage process but very little is known about regulation of the long-range resection, especially in humans. WRN participates in one of the two alternative long-range resection pathways mediated by DNA2 or EXO1. Here we demonstrate that phosphorylation of WRN by CDK1 is essential to perform DNA2-dependent end resection at replication-related DSBs, promoting HR, replication recovery and chromosome stability. Mechanistically, S1133 phosphorylation of WRN is dispensable for relocalization in foci but is involved in the interaction with the MRE11 complex. Loss of WRN phosphorylation negatively affects MRE11 foci formation and acts in a dominant negative manner to prevent long-range resection altogether, thereby licensing NHEJ at collapsed forks. Collectively, we unveil a CDK1-dependent regulation of the WRN-DNA2-mediated resection and identify an undescribed function of WRN as a DSB repair pathway switch. PMID:27634057

  13. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes

    SciTech Connect

    Peaucellier, G.; Andersen, A.C.; Kinsey, W.H. )

    1990-04-01

    We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.

  14. CaMKII Phosphorylation of Na(V)1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure.

    PubMed

    Herren, Anthony W; Weber, Darren M; Rigor, Robert R; Margulies, Kenneth B; Phinney, Brett S; Bers, Donald M

    2015-05-01

    The cardiac voltage-gated sodium channel, Na(V)1.5, drives the upstroke of the cardiac action potential and is a critical determinant of myocyte excitability. Recently, calcium (Ca(2+))/calmodulin(CaM)-dependent protein kinase II (CaMKII) has emerged as a critical regulator of Na(V)1.5 function through phosphorylation of multiple residues including S516, T594, and S571, and these phosphorylation events may be important for the genesis of acquired arrhythmias, which occur in heart failure. However, phosphorylation of full-length human Na(V)1.5 has not been systematically analyzed and Na(V)1.5 phosphorylation in human heart failure is incompletely understood. In the present study, we used label-free mass spectrometry to assess phosphorylation of human Na(V)1.5 purified from HEK293 cells with full coverage of phosphorylatable sites and identified 23 sites that were phosphorylated by CaMKII in vitro. We confirmed phosphorylation of S516 and S571 by LC-MS/MS and found a decrease in S516 phosphorylation in human heart failure, using a novel phospho-specific antibody. This work furthers our understanding of the phosphorylation of Na(V)1.5 by CaMKII under normal and disease conditions, provides novel CaMKII target sites for functional validation, and provides the first phospho-proteomic map of full-length human Na(V)1.5.

  15. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    SciTech Connect

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  16. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation.

    PubMed

    Beavis, A D; Lehninger, A L

    1986-07-15

    Determination of the intrinsic or mechanistic P/O ratio of oxidative phosphorylation is difficult because of the unknown magnitude of leak fluxes. Applying a new approach developed to overcome this problem (see our preceding paper in this journal), the relationships between the rate of O2 uptake [( Jo)3], the net rate of phosphorylation (Jp), the P/O ratio, and the respiratory control ratio (RCR) have been determined in rat liver mitochondria when the rate of phosphorylation was systematically varied by three specific means. (a) When phosphorylation is titrated with carboxyatractyloside, linear relationships are observed between Jp and (Jo)3. These data indicate that the upper limit of the mechanistic P/O ratio is 1.80 for succinate and 2.90 for 3-hydroxybutyrate oxidation. (b) Titration with malonate or antimycin yields linear relationships between Jp and (Jo)3. These data give the lower limit of the mechanistic P/O ratio of 1.63 for succinate and 2.66 for 3-hydroxybutyrate oxidation. (c) Titration with a protonophore yields linear relationships between Jp, (Jo)3, and (Jo)4 and between P/O and 1/RCR. Extrapolation of the P/O ratio to 1/RCR = 0 yields P/O ratios of 1.75 for succinate and 2.73 for 3-hydroxybutyrate oxidation which must be equal to or greater than the mechanistic stoichiometry. When published values for the H+/O and H+/ATP ejection ratios are taken into consideration, these measurements suggest that the mechanistic P/O ratio is 1.75 for succinate oxidation and 2.75 for NADH oxidation.

  17. Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sites

    PubMed Central

    Ottosen, Søren; Herrera, Francisco J.; Doroghazi, James R.; Hull, Angela; Mittal, Sheenu; Lane, William S.; Triezenberg, Steven J.

    2006-01-01

    VP16 is a virion phosphoprotein of herpes simplex virus and a transcriptional activator of the viral immediate-early (IE) genes. We identified four novel VP16 phosphorylation sites (Ser18, Ser353, Ser411, and Ser452) at late times in infection, but found no evidence of phosphorylation of Ser375, a residue reportedly phosphorylated when VP16 is expressed from a transfected plasmid. A virus carrying a S375A mutation of VP16 was viable in cell culture but with a slow growth rate. The association of the mutant VP16 protein with IE gene promoters and subsequent IE gene expression was markedly reduced during infection, consistent with prior transfection and in vitro results. Surprisingly, the association of Oct-1 with IE promoters was also diminished during infection by the mutant strain. We propose that Ser375 is important for the interaction of VP16 with Oct-1, and that the interaction is required to enable both proteins to bind to IE promoters. PMID:16297954

  18. Cdk5/p35 phosphorylates lemur tyrosine kinase-2 to regulate protein phosphatase-1C phosphorylation and activity.

    PubMed

    Manser, Catherine; Vagnoni, Alessio; Guillot, Florence; Davies, Jennifer; Miller, Christopher C J

    2012-05-01

    Cyclin-dependent kinase-5 (cdk5)/p35 and protein phosphatase-1 (PP1) are two major enzymes that control a variety of physiological processes within the nervous system including neuronal differentiation, synaptic plasticity and axonal transport. Defective cdk5/p35 and PP1 function are also implicated in several major human neurodegenerative diseases. Cdk5/p35 and the catalytic subunit of PP1 (PP1C) both bind to the brain-enriched, serine-threonine kinase lemur tyrosine kinase-2 (LMTK2). Moreover, LMTK2 phosphorylates PP1C on threonine-320 (PP1Cthr³²⁰) to inhibit its activity. Here, we demonstrate that LMTK2 is phosphorylated on serine-1418 (LMTK2ser¹⁴¹⁸) by cdk5/p35 and present evidence that this regulates its ability to phosphorylate PP1Cthr³²⁰. We thus describe a new signalling pathway within the nervous system that links cdk5/p35 with PP1C and which has implications for a number of neuronal functions and neuronal dysfunction.

  19. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells.

    PubMed

    Manni, Sabrina; Mauban, Joseph H; Ward, Christopher W; Bond, Meredith

    2008-08-29

    Subcellular compartmentalization of the cAMP-dependent protein kinase (PKA) by protein kinase A-anchoring proteins (AKAPs) facilitates local protein phosphorylation. However, little is known about how PKA targeting to AKAPs is regulated in the intact cell. PKA binds to an amphipathic helical region of AKAPs via an N-terminal domain of the regulatory subunit. In vitro studies showed that autophosphorylation of type II regulatory subunit (RII) can alter its affinity for AKAPs and the catalytic subunit (PKA(cat)). We now investigate whether phosphorylation of serine 96 on RII regulates PKA targeting to AKAPs, downstream substrate phosphorylation and calcium cycling in primary cultured cardiomyocytes. We demonstrated that, whereas there is basal phosphorylation of RII subunits, persistent maximal activation of PKA results in a phosphatase-dependent loss of RII phosphorylation. To investigate the functional effects of RII phosphorylation, we constructed adenoviral vectors incorporating mutants which mimic phosphorylated (RIIS96D), nonphosphorylated (RIIS96A) RII, or wild-type (WT) RII and performed adenoviral infection of neonatal rat cardiomyocytes. Coimmunoprecipitation showed that more AKAP15/18 was pulled down by the phosphomimic, RIIS96D, than RIIS96A. Phosphorylation of phospholamban and ryanodine receptor was significantly increased in cells expressing RIIS96D versus RIIS96A. Expression of recombinant RII constructs showed significant effects on cytosolic calcium transients. We propose a model illustrating a central role of RII phosphorylation in the regulation of local PKA activity. We conclude that RII phosphorylation regulates PKA-dependent substrate phosphorylation and may have significant implications for modulation of cardiac function.

  20. Multi-site Phosphorylation of Voltage-Gated Sodium Channel α Subunits from Rat Brain

    PubMed Central

    Berendt, Frank J.; Park, Kang-Sik; Trimmer, James S.

    2010-01-01

    Reversible phosphorylation of ion channels underlies cellular plasticity in mammalian neurons. Voltage-gated sodium or Nav channels underlie action potential initiation and propagation, dendritic excitability, and many other aspects of neuronal excitability. Various protein kinases have been suggested to phosphorylate the primary α subunit of Nav channels, affecting diverse aspects of channel function. Previous studies of Nav α subunit phosphorylation have led to the identification of a small set of phosphorylation sites important in meditating aspects of Nav channel function. Here we use nanoflow liquid chromatography tandem mass spectrometry (nano-LC MS/MS) on Nav α subunits affinity-purified from rat brain with two distinct monoclonal antibodies to identify 15 phosphorylation sites on Nav1.2, 12 of which have not been previously reported. We also found 3 novel phosphorylation sites on Nav1.1. In general, commonly used phosphorylation site prediction algorithms did not accurately predict these novel in vivo phosphorylation sites. Our results demonstrate that specific Nav α subunits isolated from rat brain are highly phosphorylated, and suggest extensive modulation of Nav channel activity in mammalian brain. Identification of phosphorylation sites using monoclonal antibody-based immunopurification and mass spectrometry is an effective approach to define the phosphorylation status of Nav channels and important membrane proteins in mammalian brain. PMID:20131913

  1. Mumps Virus Nucleoprotein Enhances Phosphorylation of the Phosphoprotein by Polo-Like Kinase 1

    PubMed Central

    Pickar, Adrian; Zengel, James; Xu, Pei; Li, Zhuo

    2015-01-01

    ABSTRACT The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P. PMID:26608325

  2. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation.

  3. dbPPT: a comprehensive database of protein phosphorylation in plants

    PubMed Central

    Cheng, Han; Deng, Wankun; Wang, Yongbo; Ren, Jian; Liu, Zexian; Xue, Yu

    2014-01-01

    As one of the most important protein post-translational modifications, the reversible phosphorylation is critical for plants in regulating a variety of biological processes such as cellular metabolism, signal transduction and responses to environmental stress. Numerous efforts especially large-scale phosphoproteome profiling studies have been contributed to dissect the phosphorylation signaling in various plants, while a large number of phosphorylation events were identified. To provide an integrated data resource for further investigations, here we present a comprehensive database of dbPPT (database of Phosphorylation site in PlanTs, at http://dbppt.biocuckoo.org), which contains experimentally identified phosphorylation sites in proteins from plants. The phosphorylation sites in dbPPT were manually curated from the literatures, whereas datasets in other public databases were also integrated. In total, there were 82 175 phosphorylation sites in 31 012 proteins from 20 plant organisms in dbPPT, presenting a larger quantity of phosphorylation sites and a higher coverage of plant species in comparison with other databases. The proportions of residue types including serine, threonine and tyrosine were 77.99, 17.81 and 4.20%, respectively. All the phosphoproteins and phosphorylation sites in the database were critically annotated. Since the phosphorylation signaling in plants attracted great attention recently, such a comprehensive resource of plant protein phosphorylation can be useful for the research community. Database URL: http://dbppt.biocuckoo.org PMID:25534750

  4. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts.

    PubMed Central

    Garvey, J L; Kranias, E G; Solaro, R J

    1988-01-01

    Phosphorylation of myofibrillar and sacroplasmic-reticulum (SR) proteins was studied in Langendorff-perfused rabbit hearts subjected to various inotropic interventions. Stimulation of hearts with isoprenaline resulted in the phosphorylation of both troponin I (TnI) and C-protein in myofibrils and phospholamban in SR. Phosphorylation of phospholamban could be reversed by a 15 min perfusion with drug-free buffer, after a 1 minute pulse perfusion with isoprenaline, at which time the mechanical effects of isoprenaline stimulation had also been reversed. However, both TnI and C-protein remained phosphorylated at this time. Moreover, the inhibition of Ca2+ activation of the Mg2+-dependent ATPase (Mg-ATPase) activity associated with myofibrillar phosphorylation persisted in myofibrils prepared from hearts frozen after 15 min of washout of isoprenaline. To assess the contribution of C-protein phosphorylation in the decrease of Ca2+ activation of the myofibrillar Mg-ATPase activity, we reconstituted a regulated actomyosin system in which only C-protein was phosphorylated. In this system, C-protein phosphorylation did not contribute to the decrease in Ca2+ activation of Mg-ATPase activity, indicating that TnI phosphorylation is responsible for the diminished sensitivity of the myofibrils to Ca2+. These observations support the hypothesis that phospholamban phosphorylation plays a more dominant role than TnI or C-protein phosphorylation in the mechanical response of the mammalian heart to beta-adrenergic stimulation. Images Fig. 1. Fig. 3. PMID:2895634

  5. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    PubMed Central

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells. PMID:26666690

  6. Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis

    PubMed Central

    Miller, Jennifer L.; Cimen, Huseyin; Koc, Hasan; Koc, Emine C.

    2009-01-01

    Mitochondria, the powerhouse of eukaryotic cells, have their own translation machinery that is solely responsible for synthesis of 13 mitochondrially-encoded protein subunits of oxidative phosphorylation complexes. Phosphorylation is a well-known post-translational modification in regulation of many processes in mammalian mitochondria including oxidative phosphorylation. However, there is still very limited knowledge on phosphorylation of mitochondrial ribosomal proteins and their role(s) in ribosome function. In this study, we have identified the mitochondrial ribosomal proteins that are phosphorylated at serine, threonine or tyrosine residues. Twenty-four phosphorylated proteins were visualized by phosphorylation-specific techniques including in vitro radiolabeling, residue specific antibodies for phosphorylated residues, or ProQ phospho dye and identified by tandem mass spectrometry. Translation assays with isolated ribosomes that were phosphorylated in vitro by kinases PKA, PKCδ, or Abl Tyr showed up to 30% inhibition due to phosphorylation. Findings from this study should serve as the framework for future studies addressing the regulation mechanisms of mitochondrial translation machinery by phosphorylation and other post-translational modifications. PMID:19702336

  7. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.

  8. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  9. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  10. A DNA break– and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination

    PubMed Central

    Vuong, Bao Q; Ucher, Anna J; Donghia, Nina M; Gu, Xiwen; Nicolas, Laura; Nowak, Urszula; Rahman, Numa; Strout, Matthew P; Mills, Kevin D; Stavnezer, Janet; Chaudhuri, Jayanta

    2014-01-01

    The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1. PMID:24097111

  11. Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels

    PubMed Central

    Cerda, Oscar; Trimmer, James S.

    2012-01-01

    Phosphorylation is the most common and abundant posttranslational modification to eukaryotic proteins, regulating a plethora of dynamic cellular processes. Here, we review and discuss recent advances in our knowledge of the breadth and importance of reversible phosphorylation in regulating the expression, localization and function of mammalian neuronal voltage-gated potassium (Kv) channels, key regulators of neuronal function. We highlight the role of modern mass spectrometric techniques and phosphospecific antibodies that reveal the extent and nature of phosphorylation at specific sites in Kv channels. We also emphasize the role of reversible phosphorylation in dynamically regulating diverse aspects of Kv channel biology. Finally, we discuss as important future directions the determination of the mechanistic basis for how altering phosphorylation state affects Kv channel expression, localization and function, the nature of macromolecular signaling complexes containing Kv channels and enzymes regulating their phosphorylation state, and the specific role of Kv channel phosphorylation in regulating neuronal function during physiological and pathophysiological events. PMID:20600597

  12. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide.

    PubMed

    Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong

    2015-11-01

    Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system.

  13. Incorporating hidden Markov models for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Wu, Li-Cheng; Horng, Jorng-Tzong; Tsou, Ann-Ping; Huang, Kuan-Tsae

    2005-07-30

    Protein phosphorylation, which is an important mechanism in posttranslational modification, affects essential cellular processes such as metabolism, cell signaling, differentiation, and membrane transportation. Proteins are phosphorylated by a variety of protein kinases. In this investigation, we develop a novel tool to computationally predict catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the concepts of profile Hidden Markov Models (HMM), computational models are trained from the kinase-specific groups of phosphorylation sites. After evaluating the trained models, we select the model with highest accuracy in each kinase-specific group and provide a Web-based prediction tool for identifying protein phosphorylation sites. The main contribution here is that we have developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity.

  14. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.

    PubMed

    Stieler, Jens T; Bullmann, Torsten; Kohl, Franziska; Tøien, Øivind; Brückner, Martina K; Härtig, Wolfgang; Barnes, Brian M; Arendt, Thomas

    2011-01-18

    Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational

  15. Intracellular pharmacokinetic study of zidovudine and its phosphorylated metabolites.

    PubMed

    Mu, Lingli; Zhou, Rui; Tang, Fang; Liu, Xingling; Li, Sanwang; Xie, Feifan; Xie, Xiang; Peng, Jie; Yu, Peng

    2016-03-01

    Zidovudine (AZT), the first drug approved by the US Food and Drug Administration for the treatment of human immunodeficiency virus (HIV) infection, is metabolized in the host cells to 5'-AZT triphosphate (AZT-TP) which inhibits HIV reverse transcriptase. As the pharmacokinetics of AZT and its phosphorylated metabolites in human peripheral blood mononuclear cells (hPBMCs) is limited, the aim of this study was to determine the pharmacokinetic parameters of AZT and its phosphorylated metabolites in hPBMCs from 12 healthy Chinese male subjects after a single oral dose of 600 mg of AZT. Blood samples were collected prior to drug administration, then at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8 and 10 h after drug administration. Mononuclear cells collected by Ficoll-Hypaque density gradient centrifugation were used for determination of AZT and metabolites [AZT monophosphate (AZT-MP), AZT diphosphate (AZT-DP) and AZT-TP] and the plasma was used to evaluate the pharmacokinetics of AZT. Plasma concentration of AZT peaked within 0.583 h and intracellular concentrations of AZT, AZT-MP, AZT-DP and AZT-TP peaked within 1.083, 1.500, 1.417 and 1.583 h, respectively. AZT in plasma was eliminated rapidly with t 1/2 of 2.022 h, and AZT-MP, AZT-DP and AZT-TP were eliminated with t 1/2 of 13.428, 8.285 and 4.240 h, respectively. The plasma concentration of the phosphorylated metabolites was not quantifiable.

  16. Intracellular pharmacokinetic study of zidovudine and its phosphorylated metabolites

    PubMed Central

    Mu, Lingli; Zhou, Rui; Tang, Fang; Liu, Xingling; Li, Sanwang; Xie, Feifan; Xie, Xiang; Peng, Jie; Yu, Peng

    2015-01-01

    Zidovudine (AZT), the first drug approved by the US Food and Drug Administration for the treatment of human immunodeficiency virus (HIV) infection, is metabolized in the host cells to 5′-AZT triphosphate (AZT-TP) which inhibits HIV reverse transcriptase. As the pharmacokinetics of AZT and its phosphorylated metabolites in human peripheral blood mononuclear cells (hPBMCs) is limited, the aim of this study was to determine the pharmacokinetic parameters of AZT and its phosphorylated metabolites in hPBMCs from 12 healthy Chinese male subjects after a single oral dose of 600 mg of AZT. Blood samples were collected prior to drug administration, then at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8 and 10 h after drug administration. Mononuclear cells collected by Ficoll-Hypaque density gradient centrifugation were used for determination of AZT and metabolites [AZT monophosphate (AZT-MP), AZT diphosphate (AZT-DP) and AZT-TP] and the plasma was used to evaluate the pharmacokinetics of AZT. Plasma concentration of AZT peaked within 0.583 h and intracellular concentrations of AZT, AZT-MP, AZT-DP and AZT-TP peaked within 1.083, 1.500, 1.417 and 1.583 h, respectively. AZT in plasma was eliminated rapidly with t1/2 of 2.022 h, and AZT-MP, AZT-DP and AZT-TP were eliminated with t1/2 of 13.428, 8.285 and 4.240 h, respectively. The plasma concentration of the phosphorylated metabolites was not quantifiable. PMID:27006900

  17. Phosphorylation releases constraints to domain motion in ERK2.

    PubMed

    Xiao, Yao; Lee, Thomas; Latham, Michael Parker; Warner, Lisa Rose; Tanimoto, Akiko; Pardi, Arthur; Ahn, Natalie G

    2014-02-18

    Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the microsecond-to-millisecond time regime between the different activity states of ERK2. In inactive, unphosphorylated ERK2, localized conformational exchange was observed among methyl side chains, with little evidence for coupling between residues. Upon dual phosphorylation by MAP kinase kinase 1, the dynamics of assigned methyls in ERK2 were altered throughout the conserved kinase core, including many residues in the catalytic pocket. The majority of residues in active ERK2 fit to a single conformational exchange process, with kex ≈ 300 s(-1) (kAB ≈ 240 s(-1)/kBA ≈ 60 s(-1)) and pA/pB ≈ 20%/80%, suggesting global domain motions involving interconversion between two states. A mutant of ERK2, engineered to enhance conformational mobility at the hinge region linking the N- and C-terminal domains, also induced two-state conformational exchange throughout the kinase core, with exchange properties of kex ≈ 500 s(-1) (kAB ≈ 15 s(-1)/kBA ≈ 485 s(-1)) and pA/pB ≈ 97%/3%. Thus, phosphorylation and activation of ERK2 lead to a dramatic shift in conformational exchange dynamics, likely through release of constraints at the hinge.

  18. Spectrin phosphorylation and shape change of human erythrocyte ghosts

    PubMed Central

    1981-01-01

    Human erthrocyte membranes in isotonic medium change shape from crenated spheres to biconcave disks and cup-forms when incubated at 37 degrees C in the presence of MgATP (M. P. Sheetz and S. J. Singer, 1977, J. Cell Biol. 73:638-646). The postulated relationship between spectrin phosphorylation and shape change (W. Birchmeier and S. J. Singer, 1977, J. Cell Biol. 73:647-659) is examined in this report. Salt extraction of white ghosts reduced spectrin phosphorylation during shape changes by 85-95%. Salt extraction did not alter crenation, rate of MgATP-dependent shape change, or the fraction (greater than 80%) ultimately converted to disks and cup-forms after 1 h. Spectrin was partially dephosphorylated in intact cells by subjection to metabolic depletion in vitro. Membranes from depleted cells exhibited normal shape-change behavior. Shape-change behavior was influenced by the hemolysis buffer and temperature and by the time required for membrane preparation. Tris and phosphate ghosts lost the capacity to change shape after standing for 1-2 h at 0 degrees C. Hemolysis in HEPES or N- tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid yielded ghosts that were converted rapidly to disks in the absence of ATP and did not undergo further conversion to cup-forms. These effects could not be attributed to differential dephsphorylation of spectrin, because dephosphorylation during ghost preparation and incubation was negligible. These results suggest that spectrin phosphorylation is not required for MgATP-dependent shape change. It is proposed that other biochemical events induce membrane curvature changes and that the role of spectrin is passive. PMID:7204501

  19. Further studies on phosphorylated pituitary somatotropin (growth hormone)

    SciTech Connect

    Kornberg, L.J.; Liberti, J.P.

    1987-05-01

    This laboratory made the original observation that naturally-occurring ovine growth hormone (GH) is phosphorylated and that slices of pituitary glands from male rats synthesize and secrete /sup 32/P-GH. This observation has been extended to explore the generality of this process. After incubation in PO/sub 4/-free Ham's F-10 medium (PFH) or in saline/Hepes (SH) containing 300..mu..Ci /sup 32/Pi/mL, tissue and medium were separated and a cell extract was prepared. GH in the medium and extract was recovered by immunoprecipitation using rat GH antiserum. The samples were electrophoresed under denaturating conditions and processed for autoradiography. /sup 32/P-GH was characterized by the presence of a protein-staining band and radioactive area which migrated the same as authentic GH and /sup 125/I-GH. Slices of glands from male rats incubated for 2h in PFH secreted /sup 32/P-GH. Similar results were found upon incubation of slices from female rats in the presence of SH. Short-term incubations of acutely dispersed pituitary cells obtained from young and old male rats also synthesized and secreted /sup 32/P-GH. Thus, the production of /sup 32/P-GH occurs (a) in simple and complex incubaton media, (b) in slices and cells from glands from older and younger rats and (c) in female as well as male rats. Therefore, phosphorylation of GH appears to be a general phenomenon. The physiological action(s) of phosphorylated GH in growth and development is under study.

  20. GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis.

    PubMed

    Zibrova, Darya; Vandermoere, Franck; Göransson, Olga; Peggie, Mark; Mariño, Karina V; Knierim, Anne; Spengler, Katrin; Weigert, Cora; Viollet, Benoit; Morrice, Nicholas A; Sakamoto, Kei; Heller, Regine

    2017-03-07

    Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.

  1. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    PubMed

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering.

  2. Enhancement of glycine receptor function by ethanol: role of phosphorylation

    PubMed Central

    Paola Mascia, Maria; Wick, Marilee J; Martinez, Larry D; Harris, R Adron

    1998-01-01

    The effects of several kinase inhibitors (staurosporine, GF 109203X, H89, KN62, genistein) and of the phosphatase inhibitor calyculin A were studied on the ethanol potentiation and on the function of homomeric α1 glycine receptor expressed in Xenopus oocytes using a two electrode voltage clamp recording technique.The function of the homomeric α1 glycine receptor was not modified in Xenopus oocytes pretreated with kinase inhibitors or with the phosphatase inhibitor calyculin A.The potentiation of the glycine receptor function induced by ethanol (10–200 mM) was significantly reduced in Xenopus oocytes pretreated with the PKC inhibitors staurosporine or GF 109203X.No differences in propofol (2.5 μM) or halothane (250 μM) actions were found after exposure of Xenopus oocytes to staurosporine.No differences in ethanol sensitivity were found after exposure of Xenopus oocytes expressing glycine α1 receptors to H89, KN62, genistein or to the phosphatase inhibitor calyculin A.The mutant α1 (S391A), in which the PKC phosphorylation site at serine 391 was mutated to alanine, was less sensitive to the effects of ethanol than was the α1 wild type receptor. Moreover, the ethanol potentiation of the glycine receptor function was not affected by treatment with staurosporine in oocytes expressing α1 (S391A).The splice variant of the α1 glycine receptor subunit, α1ins, containing eight additional amino acids and a potential phosphorylation site for PKA, did not differ from wild type for sensitivity to ethanol.These results indicate that phosphorylation by PKC of the homomeric α1 glycine receptor subunit modulates ethanol potentiation, but not the function of the glycine receptor. PMID:9786497

  3. Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity*

    PubMed Central

    Woolfrey, Kevin M.; Dell'Acqua, Mark L.

    2015-01-01

    A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular level at excitatory synapses, where protein function is controlled through phosphorylation and dephosphorylation by kinases and phosphatases. However, these opposing enzymatic activities are only part of the equation as scaffolding interactions and assembly of multi-protein complexes are further required for efficient, localized synaptic signaling. This review will focus on coordination of postsynaptic serine/threonine kinase and phosphatase signaling by scaffold proteins during synaptic plasticity. PMID:26453308

  4. Prostate Cell Specific Regulation of Androgen Receptor Phosphorylation in Vivo

    DTIC Science & Technology

    2009-11-01

    Gene Anal Tech 1988; 5: 22. 7. Schott S, Coustham V, Simonet T, Bedet C and Palladino F: Unique and redundant functions of C . elegans HP1 proteins in... C ., Hittelman, A., Rogatsky, I., Logan, S.K., and Garabedian, M.J. Glucocorticoid receptor phosphorylation differentially affects target gene ...Endocr Relat Cancer 2002;9:61–73. 5. Abate-Shen C , Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000;14:2410–34. 6. Shang Y, Myers M

  5. Protein Ser/Thr/Tyr phosphorylation in the Archaea.

    PubMed

    Kennelly, Peter J

    2014-04-04

    The third domain of life, the Archaea (formerly Archaebacteria), is populated by a physiologically diverse set of microorganisms, many of which reside at the ecological extremes of our global environment. Although ostensibly prokaryotic in morphology, the Archaea share much closer evolutionary ties with the Eukarya than with the superficially more similar Bacteria. Initial genomic, proteomic, and biochemical analyses have revealed the presence of "eukaryotic" protein kinases and phosphatases and an intriguing set of serine-, threonine-, and tyrosine-phosphorylated proteins in the Archaea that may offer new insights into this important regulatory mechanism.

  6. Synthesis and characterization of histidine-phosphorylated peptides.

    PubMed Central

    Medzihradszky, K. F.; Phillipps, N. J.; Senderowicz, L.; Wang, P.; Turck, C. W.

    1997-01-01

    Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine, and tyrosine have been studied extensively, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins was discovered originally in prokaryotic organisms, but also has been found recently in eukaryotic cells. We describe methods for the synthesis and analysis of phosphohistidine-containing peptides, a prerequisite for the investigation of the role of this posttranslational modification in cellular processes. PMID:9232641

  7. FUNGALOXPHOS: an integrated database for oxidative phosphorylation in fungi.

    PubMed

    Lavín, José L; Marcet-Houben, Marina; Gutiérrez-Vázquez, Raquel L; Ramírez, Lucía; Pisabarro, Antonio G; Gabaldón, Toni; Oguiza, José A

    2013-07-01

    The oxidative phosphorylation (OXPHOS) system is the main energy-producing pathway in aerobic organisms. Here we present FUNGALOXPHOS, a web based platform that stores OXPHOS proteins encoded in fungal nuclear genomes and that incorporates tools for the extraction, classification and bioinformatic screening of all the putative nuclear encoded fungal OXPHOS proteins. FUNGALOXPHOS includes local, parsing and remote tools that allow exploring the properties of OXPHOS proteins in fungal genomes. FUNGALOXPHOS is freely available on the web at http://bioinformatics.unavarra.es:1000/FUNGALOXPHOS_CSS/main.html.

  8. Increased phosphorylation of ribosomal protein S6 during meiotic maturation of Xenopus oocytes.

    PubMed Central

    Nielsen, P J; Thomas, G; Maller, J L

    1982-01-01

    A single ribosomal protein (Mr, 32,000) becomes phosphorylated during progesterone-induced in vitro maturation of Xenopus laevis oocytes. The protein is identified as 40S ribosomal protein S6. Phosphorylation of S6 is monitored by incorporation of 32Pi and by two-dimensional polyacrylamide gel electrophoresis. S6 is minimally phosphorylated in unstimulated oocytes. After progesterone treatment, phosphorylation of S6 precedes germinal vesicle breakdown (GVBD) and is maximal at the time when 50% of the oocytes have undergone GVBD. S6, when maximally phosphorylated, exists in derivatives that correspond to the most highly phosphorylated forms observed in other systems, and the increase in S6 phosphorylation occurs at approximately the same time as the increase in the overall protein synthesis rate reported to occur during oocyte maturation. S6 is also maximally phosphorylated in unfertilized eggs following maturation in vivo. Injection of a partially purified preparation of maturation-promoting factor into immature oocytes induces immediate phosphorylation of S6 and rapidly increases the rate of protein synthesis. Moreover, incubation of ribosomes with this factor and radiolabeled ATP results in labeling of S6. These findings suggest that S6 phosphorylation may be important in the control of protein synthesis during maturation and may also play a role in the mechanism of action of maturation-promoting factor. Images PMID:7045876

  9. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  10. Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat.

    PubMed

    Khan, Mateen A; Goss, Dixie J

    2004-07-20

    Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.

  11. Mercury Alters B-Cell Protein Phosphorylation Profiles

    PubMed Central

    Carruthers, Nicholas J.; Stemmer, Paul M.; Shin, Namhee; Dombkowski, Alan; Caruso, Joseph A.; Gill, Randal; Rosenspire, Allen

    2014-01-01

    Environmental exposure to mercury is suggested to contribute to human immune dysfunction. To shed light on the mechanism we identified changes in the phosphoproteomic profile of the WEHI-231 B cell line after intoxication with Hg2+. These changes were compared to changes in the phosphoproteome that were induced by pervanadate or okadaic acid exposure. Both 250 μM HgCl2 and pervanadate, a known phosphotyrosine phosphatase inhibitor, caused an increase in the number of proteins identified after TiO2 affinity selection and LC-MS/MS analysis. Pervanadate treatment had a larger effect than Hg2+ on the number of Scansite motifs which were tyrosine-phosphorylated, 17, and Ingenuity canonical signaling pathways activated, 4 with score > 5.0. However, Hg2+ had a more focused effect, primarily causing tyrosine-phosphorylation in SH2 domains in proteins that are in the B cell receptor signaling pathway. The finding that many of the changes induced by Hg2+ overlap with those of pervanadate, indicates that at high concentrations Hg2+ inhibits protein tyrosine phosphatases. PMID:24224561

  12. Channel modulation by tyrosine phosphorylation in an identified leech neuron.

    PubMed Central

    Aniksztejn, L; Catarsi, S; Drapeau, P

    1997-01-01

    1. We have examined the effects of tyrosine phosphorylation on a spontaneously active cation channel that also participates in the modulation of pressure-sensitive (P) neurons in the leech. Cation channel activity in cell-attached or isolated, inside-out membrane patches from P cells in culture was monitored before and after treatments that altered the level of tyrosine phosphorylation. 2. In cell-attached recordings from intact P cells, bath application of genistein, an inhibitor of tyrosine kinases, resulted in a 6.6 +/- 2.6-fold increase in channel activity with no change in the mean open time or amplitude. Daidzein, an inactive form of genistein, was without effect. Addition of pervanadate, a membrane-permeant inhibitor of tyrosine phosphatases, had no effect on its own and blocked the effect of subsequent addition of genistein. 3. In inside-out P cell membrane patch recordings, exposure to a catalytically active fragment of a tyrosine phosphatase resulted in a 10.3 +/- 3.6-fold increase in channel activity with no change in the mean open time or amplitude. Orthovanadate had no effect on channel activity and, when added with the phosphatase, prevented the increase in activity. 4. Our results demonstrate that the basal activity of cation channels is increased by tyrosine dephosphorylation, suggesting a constitutive modulation of channel activity under resting conditions. PMID:9023773

  13. Occludin S471 Phosphorylation Contributes to Epithelial Monolayer Maturation

    PubMed Central

    Bolinger, Mark T.; Waldschmidt, Helen V.; Larsen, Scott D.; Bewley, Maria C.; Flanagan, John M.

    2016-01-01

    Multiple organ systems require epithelial barriers for normal function, and barrier loss is a hallmark of diseases ranging from inflammation to epithelial cancers. However, the molecular processes regulating epithelial barrier maturation are not fully elucidated. After contact, epithelial cells undergo size-reductive proliferation and differentiate, creating a dense, highly ordered monolayer with high resistance barriers. We provide evidence that the tight junction protein occludin contributes to the regulation of epithelial cell maturation upon phosphorylation of S471 in its coiled-coil domain. Overexpression of a phosphoinhibitory occludin S471A mutant prevents size-reductive proliferation and subsequent tight junction maturation in a dominant manner. Inhibition of cell proliferation in cell-contacted but immature monolayers recapitulated this phenotype. A kinase screen identified G-protein-coupled receptor kinases (GRKs) targeting S471, and GRK inhibitors delayed epithelial packing and junction maturation. We conclude that occludin contributes to the regulation of size-reductive proliferation and epithelial cell maturation in a phosphorylation-dependent manner. PMID:27185880

  14. Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation.

    PubMed

    Flores, Carmen E; Nikonenko, Irina; Mendez, Pablo; Fritschy, Jean-Marc; Tyagarajan, Shiva K; Muller, Dominique

    2015-01-06

    Maintaining a proper balance between excitation and inhibition is essential for the functioning of neuronal networks. However, little is known about the mechanisms through which excitatory activity can affect inhibitory synapse plasticity. Here we used tagged gephyrin, one of the main scaffolding proteins of the postsynaptic density at GABAergic synapses, to monitor the activity-dependent adaptation of perisomatic inhibitory synapses over prolonged periods of time in hippocampal slice cultures. We find that learning-related activity patterns known to induce N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation and transient optogenetic activation of single neurons induce within hours a robust increase in the formation and size of gephyrin-tagged clusters at inhibitory synapses identified by correlated confocal electron microscopy. This inhibitory morphological plasticity was associated with an increase in spontaneous inhibitory activity but did not require activation of GABAA receptors. Importantly, this activity-dependent inhibitory plasticity was prevented by pharmacological blockade of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), it was associated with an increased phosphorylation of gephyrin on a site targeted by CaMKII, and could be prevented or mimicked by gephyrin phospho-mutants for this site. These results reveal a homeostatic mechanism through which activity regulates the dynamics and function of perisomatic inhibitory synapses, and they identify a CaMKII-dependent phosphorylation site on gephyrin as critically important for this process.

  15. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation.

    PubMed

    Lim, Sangbin; Smith, Kelly R; Lim, Ssang-Taek Steve; Tian, Rong; Lu, Jianrong; Tan, Ming

    2016-01-01

    The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell's energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.

  16. Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer's disease.

    PubMed

    Chalmers, Katy A; Wilcock, Gordon K; Vinters, Harry V; Perry, Elaine K; Perry, Robert; Ballard, Clive G; Love, Seth

    2009-05-01

    Cholinesterase inhibitors (ChEIs) are widely used for the symptomatic treatment of Alzheimer's disease (AD). In vitro and in animal studies, ChEIs have been shown to influence the processing of Abeta and the phosphorylation of tau, proteins that are the principal constituents of the plaques and neurofibrillary tangles, respectively, in AD brain. However, little is known about the effects of these drugs on Abeta and tau pathology in AD. Using avidin-biotin immunohistochemistry and computer-assisted image analysis, we compared Abeta and tau loads in the frontal and temporal cortices of 72 brains from matched cohorts of AD patients who had or had not received ChEIs. Patients treated with ChEIs had accumulated significantly more phospho-tau in their cerebral cortex than had untreated patients (P = 0.004). Abeta accumulation was reduced but not significantly. These data raise the possibility that increased tau phosphorylation may influence long-term clinical responsiveness to ChEIs.

  17. Charge changing phosphorylated polymers: Proof of in situ mucoadhesive properties.

    PubMed

    Bonengel, Sonja; Jelkmann, Max; Oh, Sejin; Mahmood, Arshad; Ijaz, Muhammad; Bernkop-Schnürch, Andreas

    2016-08-01

    The objective of this study was to design a novel polyethylene glycol (PEG) derivative exhibiting mucus permeating and mucoadhesive properties. Therefore, the enzymatically degradable phosphate ester, phosphotyrosine (Ptyr) was covalently attached to PEG-diamine. The synthesized PEG-Ptyr was studied in terms of enzymatic degradability on Caco 2 cells and by isolated intestinal alkaline phosphatase (IAP). Furthermore, the influence of enzymatic degradation on charge distribution of the polymer as well as on mucus diffusion and mucoadhesion was investigated. Within this study, the phosphate ester in PEG-Ptyr could be cleaved on the cell monolayer and by the isolated IAP, whereby the degradation rate was 10-fold higher utilizing the isolated enzyme. Implementation of negative charges on PEG due to modification with Ptyr led to an increased electrophoretic mobility, which was reduced after enzymatic degradation of the phosphate ester, most likely due to the alterations in charge distribution on the polymeric backbone. Interactions with mucus components were determined within mucus diffusion studies and rheological investigations. Herein, PEG-Ptyr showed a 3-fold lower mucus diffusion, after incubation with IAP. Within rheological investigations, dynamic viscosities increased by the factor of 3, after the phosphate ester in PEG-Ptyr was degraded by IAP. Results obtained within these experiments provided evidence for the in situ mucoadhesive properties of charge changing phosphorylated polymers. The combination of mucus permeating and mucoadhesive features of phosphorylated PEGs could be a highly interesting tool for future applications, such as for coating nanoparticles.

  18. Phosphorylation of filamin A regulates chemokine receptor CCR2 recycling.

    PubMed

    Pons, Mònica; Izquierdo, Ismael; Andreu-Carbó, Mireia; Garrido, Georgina; Planagumà, Jesús; Muriel, Olivia; Del Pozo, Miguel A; Geli, M Isabel; Aragay, Anna M

    2017-01-15

    Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway. In FLNa-knockdown cells, activated CCR2B accumulated in enlarged EEA-1-positive endosomes, which exhibited slow movement and fast fluorescence recovery, suggesting an imbalance between receptor entry and exit rates. Utilizing super-resolution microscopy, we observed that FLNa-GFP, CCR2B and β2-adrenergic receptor (β2AR) were present in actin-enriched endosomal microdomains. Depletion of FLNa decreased CCR2B association with these microdomains and concomitantly delayed CCR2B endosomal traffic, without apparently affecting the number of microdomains. Interestingly, CCR2B and β2AR signaling induced phosphorylation of FLNa at residue S2152, and this phosphorylation event was contributes to sustain receptor recycling. Thus, our data strongly suggest that CCR2B and β2AR signals to FLNa to stimulate its endocytosis and recycling to the plasma membrane.

  19. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  20. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation.

    PubMed

    Mulligan, E; Lahiri, S; Storey, B T

    1981-08-01

    The effect on carotid chemoreceptor afferents of oligomycin, an inhibitor of mitochondrial oxidative phosphorylation that does not affect energy conservation, was studied in 20 cats that were anesthetized, paralyzed, and artificially ventilated. Responses of single or a few chemoreceptor afferents to changes in arterial O2 tension (PaO2) at constant arterial CO2 tension were recorded. In addition, responses to nicotine, cyanide, and antimycin A or carbonyl cyanide p-tri-fluoromethoxyphenylhydrazone (FCCP) were tested in normoxia. Oligomycin (50-500 microgram) was administered by close intra-arterial injection, and the same tests were repeated at timed intervals. Initially, oligomycin caused vigorous stimulation of carotid chemoreceptor activity. Subsequently, although the afferent fibers were still active and could be vigorously stimulated by nicotine, they no longer responded to changes in PaO2 or to doses of cyanide, antimycin A, or FCCP. These results separate stimulation of chemoreceptor afferents by hypoxia and metabolic inhibitors and uncouplers from that by nicotine and suggest that intact oxidative phosphorylation, required for maintenance of the intracellular high-energy phosphate levels, forms the basis of O2 chemoreception in the carotid body.

  1. Cigarette sidestream smoke induces phosphorylated histone H2AX.

    PubMed

    Toyooka, Tatsushi; Ibuki, Yuko

    2009-05-31

    Cigarette sidestream smoke (CSS) is a widespread environmental pollutant having highly genotoxic potency. In spite of the overwhelming evidence that CSS induces a wide range of DNA damage such as oxidative base damage and DNA adducts, evidence that CSS can result in DNA double strand breaks (DSBs) is little. In this study, we showed that CSS generated phosphorylated histone H2AX (gamma-H2AX), recently considered as a sensitive marker of the generation of DSBs, in a human pulmonary epithelial cell model, A549. Treatment with CSS drastically induced discrete foci of gamma-H2AX within the nucleus in a dose-dependent manner. CSS increased intracellular oxidation, and N-acetylcysteine (NAC), an antioxidant, significantly attenuated the formation of gamma-H2AX, suggesting that reactive oxygen species produced from CSS partially contributed to the phosphorylation. The generation of gamma-H2AX is considered to be accompanied the induction of DSBs. CSS in fact induced DSBs, which was also inhibited by NAC. DSBs are the worst type of DNA damage, related to genomic instability and carcinogenesis. Our results would increase the evidence of the strong genotoxicity of passive smoking.

  2. CK2 involvement in ESCRT-III complex phosphorylation.

    PubMed

    Salvi, Mauro; Raiborg, Camilla; Hanson, Phyllis I; Campsteijn, Coen; Stenmark, Harald; Pinna, Lorenzo A

    2014-03-01

    The multivesicular body (MVB) sorting pathway is a mechanism for delivering transmembrane proteins into the lumen of the lysosome for degradation. ESCRT-III is the final complex in the pathway that assembles on endosomes and executes membrane scission of intraluminal vesicles. In addition, proteins of this complex are involved in other topologically similar processes such as cytokinesis, virus egress and autophagy. Here we show that protein kinase CK2α is involved in the phosphorylation of the ESCRT-III subunits CHMP3 and CHMP2B, as well as of VPS4B/SKD1, an ATPase that mediates ESCRT-III disassembly. This phosphorylation is observed both in vitro and in cells. While we do not observe recruitment of CK2α to endosomes, we demonstrate the localization of CK2α to midbodies during cytokinesis. Phosphomimetic and non-phosphorylatable mutants of ESCRT-III proteins can still bind endosomes and localize to midbodies, indicating that CK2α does not regulate ESCRT-III localization. Finally, we analyzed two cellular functions where CHMP3, CHMP2B and VPS4 are known to be involved, epidermal growth factor degradation and cytokinetic abscission. We demonstrate that the former is impaired by CK2α downregulation whereas the latter is not affected. Taken together, our results indicate that CK2α regulates the function of ESCRT-III proteins in MVB sorting.

  3. Phosphorylation induces distinct alpha-synuclein strain formation

    PubMed Central

    Ma, Meng-Rong; Hu, Zhi-Wen; Zhao, Yu-Fen; Chen, Yong-Xiang; Li, Yan-Mei

    2016-01-01

    Synucleinopathies are a group of neurodegenerative diseases associated with alpha-synuclein (α-Syn) aggregation. Recently, increasing evidence has demonstrated the existence of different structural characteristics or ‘strains’ of α-Syn, supporting the concept that synucleinopathies share several common features with prion diseases and possibly explaining how a single protein results in different clinical phenotypes within synucleinopathies. In earlier studies, the different strains were generated through the regulation of solution conditions, temperature, or repetitive seeded fibrillization in vitro. Here, we synthesize homogeneous α-Syn phosphorylated at serine 129 (pS129 α-Syn), which is highly associated with the pathological changes, and demonstrate that phosphorylation at Ser129 induces α-Syn to form a distinct strain with different structures, propagation properties, and higher cytotoxicity compared with the wild-type α-Syn. The results are the first demonstration that post-translational modification of α-Syn can induce different strain formation, offering a new mechanism for strain formation. PMID:27853185

  4. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation.

    PubMed

    Fiesel, Fabienne C; Ando, Maya; Hudec, Roman; Hill, Anneliese R; Castanedes-Casey, Monica; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Stankowski, Jeannette N; Bauer, Peter O; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Siuda, Joanna; Chen, Li; Dawson, Valina L; Dawson, Ted M; Wszolek, Zbigniew K; Ross, Owen A; Dickson, Dennis W; Springer, Wolfdieter

    2015-09-01

    Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson's disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development.

  5. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation

    PubMed Central

    Fiesel, Fabienne C; Ando, Maya; Hudec, Roman; Hill, Anneliese R; Castanedes-Casey, Monica; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Stankowski, Jeannette N; Bauer, Peter O; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Siuda, Joanna; Chen, Li; Dawson, Valina L; Dawson, Ted M; Wszolek, Zbigniew K; Ross, Owen A; Dickson, Dennis W; Springer, Wolfdieter

    2015-01-01

    Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson’s disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development. PMID:26162776

  6. Uncovering Phosphorylation-Based Specificities through Functional Interaction Networks*

    PubMed Central

    Wagih, Omar; Sugiyama, Naoyuki; Ishihama, Yasushi; Beltrao, Pedro

    2016-01-01

    Protein kinases are an important class of enzymes involved in the phosphorylation of their targets, which regulate key cellular processes and are typically mediated by a specificity for certain residues around the target phospho-acceptor residue. While efforts have been made to identify such specificities, only ∼30% of human kinases have a significant number of known binding sites. We describe a computational method that utilizes functional interaction data and phosphorylation data to predict specificities of kinases. We applied this method to human kinases to predict substrate preferences for 57% of all known kinases and show that we are able to reconstruct well-known specificities. We used an in vitro mass spectrometry approach to validate four understudied kinases and show that predicted models closely resemble true specificities. We show that this method can be applied to different organisms and can be extended to other phospho-recognition domains. Applying this approach to different types of posttranslational modifications (PTMs) and binding domains could uncover specificities of understudied PTM recognition domains and provide significant insight into the mechanisms of signaling networks. PMID:26572964

  7. Influence of diffusion on the kinetics of multisite phosphorylation.

    PubMed

    Gopich, Irina V; Szabo, Attila

    2016-01-01

    When an enzyme modifies multiple sites on a substrate, the influence of the relative diffusive motion of the reactants cannot be described by simply altering the rate constants in the rate equations of chemical kinetics. We have recently shown that, even as a first approximation, new transitions between the appropriate species must also be introduced. The physical reason for this is that a kinase, after phosphorylating one site, can rebind and modify another site instead of diffusing away. The corresponding new rate constants depend on the capture or rebinding probabilities that an enzyme-substrate pair, which is formed after dissociation from one site, reacts at the other site rather than diffusing apart. Here we generalize our previous work to describe both random and sequential phosphorylation by considering inequivalent modification sites. In addition, anisotropic reactive sites (instead of uniformly reactive spheres) are explicitly treated by using localized sink and source terms in the reaction-diffusion equations for the enzyme-substrate pair distribution function. Finally, we show that our results can be rederived using a phenomenological approach based on introducing transient encounter complexes into the standard kinetic scheme and then eliminating them using the steady-state approximation.

  8. Auto-phosphorylation Represses Protein Kinase R Activity

    PubMed Central

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  9. Identification and quantification of the phosphorylated ovalbumin by high resolution mass spectrometry under dry-heating treatment.

    PubMed

    Wang, Hui; Tu, Zong-Cai; Liu, Guang-Xian; Zhang, Lu; Chen, Yuan

    2016-11-01

    The specific phosphorylation sites and degree of phosphorylation (DP) at each site are directly related to protein's structure and functional properties. Thus, characterizing the introduced phosphate groups is of great importance. This study was to monitor the phosphorylation sites, DP and the number of phosphorylation sites in P-Oval achieved by dry heating in the presence of pyrophosphate for 1, 2 and 5days by using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Two phosphorylation sites were found in natural ovalbumin, but the number of phosphorylation sites increased to 8, 8 and 10 after dry-heating phosphorylation for 1, 2 and 5days, respectively. In addition, dual-phosphorylated peptides were detected for samples without extensive heating. The phosphorylation sites were found to be mainly on Ser residues, which could be the preferred phosphorylation site for dry heating in the presence of pyrophosphate.

  10. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    SciTech Connect

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  11. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    PubMed Central

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  12. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  13. Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation.

    PubMed

    Mylona, Anastasia; Theillet, Francois-Xavier; Foster, Charles; Cheng, Tammy M; Miralles, Francesc; Bates, Paul A; Selenko, Philipp; Treisman, Richard

    2016-10-14

    Multisite phosphorylation regulates many transcription factors, including the serum response factor partner Elk-1. Phosphorylation of the transcriptional activation domain (TAD) of Elk-1 by the protein kinase ERK at multiple sites potentiates recruitment of the Mediator transcriptional coactivator complex and transcriptional activation, but the roles of individual phosphorylation events had remained unclear. Using time-resolved nuclear magnetic resonance spectroscopy, we found that ERK2 phosphorylation proceeds at markedly different rates at eight TAD sites in vitro, which we classified as fast, intermediate, and slow. Mutagenesis experiments showed that phosphorylation of fast and intermediate sites promoted Mediator interaction and transcriptional activation, whereas modification of slow sites counteracted both functions, thereby limiting Elk-1 output. Progressive Elk-1 phosphorylation thus ensures a self-limiting response to ERK activation, which occurs independently of antagonizing phosphatase activity.

  14. Structural insights into the recruitment of SMRT by the corepressor SHARP under phosphorylative regulation.

    PubMed

    Mikami, Suzuka; Kanaba, Teppei; Takizawa, Naoki; Kobayashi, Ayaho; Maesaki, Ryoko; Fujiwara, Toshinobu; Ito, Yutaka; Mishima, Masaki

    2014-01-07

    The transcriptional corepressors SMRT/NCoR, components of histone deacetylase complexes, interact with nuclear receptors and many other transcription factors. SMRT is a target for the ubiquitously expressed protein kinase CK2, which is known to phosphorylate a wide variety of substrates. Increasing evidence suggests that CK2 plays a regulatory role in many cellular events, particularly, in transcription. However, little is known about the precise mode of action involved. Here, we report the three-dimensional structure of a SMRT/HDAC1-associated repressor protein (SHARP) in complex with phosphorylated SMRT, as determined by solution NMR. Phosphorylation of the CK2 site on SMRT significantly increased affinity for SHARP. We also confirmed the significance of CK2 phosphorylation by reporter assay and propose a mechanism involving the process of phosphorylation acting as a molecular switch. Finally, we propose that the SPOC domain functions as a phosphorylation binding module.

  15. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  16. Auxin-regulated changes in protein phosphorylation in pea epicotyl segments

    SciTech Connect

    Reddy, A.S.N.; Chengappa, S.; Raghothama, K.G.; Poovaiah, B.W.

    1987-04-01

    Auxin-regulated changes in protein phosphorylation were studied by labeling pea epicotyl segments with (/sup 32/P) PO/sub 4//sup 3 -/ and analyzing the phosphoproteins by two dimensional (2-D) gel electrophoresis. Analysis of phosphoproteins revealed auxin-regulated changes in the phosphorylation of specific polypeptides. In the presence of auxin, phosphorylation of 23,000, 82,000, 105,000 and 110,000 molecular weight polypeptides was markedly decreased whereas phosphorylation of 19,000, 24,000, 28,000 molecular weight polypeptides was increased. Some of these changes are very rapid and could be observed within minutes. Furthermore, their studies with calmodulin antagonists indicate the possible involvement of calmodulin-dependent protein kinases and/or phosphatases in auxin-regulated changes in protein phosphorylation. In view of these results, they suggest that auxin-regulated protein phosphorylation could be the one of the earliest events in regulating diverse physiological processes by this hormone.

  17. Tau phosphorylation in human, primate, and rat brain: evidence that a pool of tau is highly phosphorylated in vivo and is rapidly dephosphorylated in vitro.

    PubMed

    Garver, T D; Harris, K A; Lehman, R A; Lee, V M; Trojanowski, J Q; Billingsley, M L

    1994-12-01

    The extent of tau phosphorylation is thought to regulate the binding of tau to microtubules: Highly phosphorylated tau does not bind to tubules, whereas dephosphorylated tau can bind to microtubules. It is interesting that the extent of tau phosphorylation in vivo has not been accurately determined. Tau was rapidly isolated from human temporal neocortex and hippocampus, rhesus monkey temporal neocortex, and rat temporal neocortex and hippocampus under conditions that minimized dephosphorylation. In brain slices, we observed that tau isolated under such conditions largely existed in several phosphorylated states, including a pool that was highly phosphorylated; this was determined using epitope-specific monoclonal and polyclonal antibodies. This highly phosphorylated tau was dephosphorylated during a 120-min time course in vitro, presumably as a result of neuronal phosphatase activity. The slow-mobility forms of tau were shifted to faster-mobility forms following in vitro incubation with alkaline phosphatase. Laser densitometry was used to estimate the percent of tau in slow-mobility, highly phosphorylated forms. Approximately 25% of immunoreactive tau was present as slow-mobility (66- and 68-kDa) forms of tau. The percentage of immunoreactive tau in faster-mobility pools (42-54 kDa) increased in proportion to the decrease in content of 66-68-kDa tau as a function of neuronal phosphatases or alkaline phosphatase treatment. These data suggest that the turnover of phosphorylated sites on tau is rapid and depends on neuronal phosphatases. Furthermore, tau is highly phosphorylated in normal-appearing human, primate, and rodent brain.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  19. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition

    PubMed Central

    Chang, Ching Ching; Few, Ling Ling; Konrad, Manfred; See Too, Wei Cun

    2016-01-01

    Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis. PMID:27149373

  20. Regulation of VASP serine 157 phosphorylation in human neutrophils after stimulation by a chemoattractant.

    PubMed

    Eckert, Rachael E; Jones, Samuel L

    2007-11-01

    Vasodilator-stimulated phosphoprotein (VASP) is a cAMP-dependent protein kinase A (PKA) substrate, which links cellular signaling to cytoskeletal organization and cellular movement. VASP is phosphorylated by PKA on serine 157 (Ser 157), which is required for VASP function in platelet adhesion and fibroblast motility. Our hypothesis is that PKA regulates neutrophil migration through VASP Ser 157 phosphorylation. The objective of this study was to characterize VASP Ser 157 phosphorylation in chemoattractant-stimulated neutrophils. fMLF, IL-8, leukotriene B(4), or platelet-activating factor stimulation resulted in an initial increase in VASP Ser 157 phosphorylation, which was maximal by 30 s and was followed by a return to baseline Ser 157 phosphorylation by 10 min. In contrast, stimulation with the nonchemoattractant, proinflammatory cytokine TNF-alpha did not affect Ser 157 phosphorylation. The kinetics of fMLF-induced VASP Ser 157 phosphorylation levels closely matched the kinetics of the fold-change in F-actin levels in fMLF-stimulated neutrophils. fMLF-induced Ser 157 phosphorylation was abolished by pretreatment with the PKA inhibitor H89 and the adenylyl cyclase inhibitor SQ22536. In contrast, fMLF-induced Ser 157 phosphorylation was unaffected by the PKC inhibitors calphostin and staurosporine, the PKG inhibitors Rp-8-pCPT-cGMP and KT5823, and the calmodulin-dependent protein kinase II inhibitor KN-62. Inhibition of adhesion with EDTA or the anti-beta2-integrin antibody IB4 did not alter fMLF-induced VASP phosphorylation or dephosphorylation. These data show that chemoattractant stimulation of human neutrophils induces a rapid and transient PKA-dependent VASP Ser 157 phosphorylation. Adhesion does not appear to be an important regulator of the state of VASP Ser 157 phosphorylation in chemoattractant-stimulated neutrophils.

  1. Musite, a Tool for Global Prediction of General and Kinase-specific Phosphorylation Sites*

    PubMed Central

    Gao, Jianjiong; Thelen, Jay J.; Dunker, A. Keith; Xu, Dong

    2010-01-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  2. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  3. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods

    PubMed Central

    Berry, Justin; Frederiksen, Rikard; Yao, Yun; Nymark, Soile

    2016-01-01

    Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane

  4. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa.

  5. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  6. Identification of kinases phosphorylating 13 sites in the nuclear, DNA-binding protein NUCKS.

    PubMed

    Grundt, Kirsten; Thiede, Bernd; Østvold, Anne Carine

    2017-03-01

    NUCKS is a vertebrate specific, nuclear and DNA-binding phospho protein. The protein is highly expressed in rapidly dividing cells, and is overexpressed in a number of cancer tissues. The phosphorylation of NUCKS is cell cycle and DNA-damage regulated, but little is known about the responsible kinases. By utilizing in vitro and in vivo phosphorylation assays using isolated NUCKS as well as synthetic NUCKS-derived peptides in combination with mass spectrometry, phosphopeptide mapping, phosphphoamino acid analyses, phosphospecific antibodies and the use of specific kinase inhibitors, we found that NUCKS is phosphorylated on 11 sites by CK2. At least 7 of the CK2 sites are phosphorylated in vivo. We also found that NUCKS is phosphorylated on two sites by ATM kinase and DNA-PK in vitro, and is phosphorylated in vivo by ATM kinase in γ-irradiated cells. All together, we identified three kinases phosphorylating 13 out of 39 in vivo phosphorylated sites in mammalian NUCKS. The identification of CK2 and PIKK kinases as kinases phosphorylating NUCKS in vivo provide further evidence for the involvement of NUCKS in cell cycle control and DNA repair.

  7. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    PubMed Central

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-01-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease. PMID:27841355

  8. Prolactin decreases epidermal growth factor receptor kinase activity via a phosphorylation-dependent mechanism.

    PubMed

    Quijano, V J; Sheffield, L G

    1998-01-09

    Previously, we have shown that prolactin inhibits epidermal growth factor (EGF)-induced mitogenesis in mouse mammary epithelial cells without altering the response to other growth promoting agents. This effect has been associated with reduced EGF-induced EGF receptor (EGFR) tyrosine phosphorylation, Grb-2 association, and Ras activation. Our current hypothesis is that prolactin induces an alteration in EGFR kinase activity via a phosphorylation-dependent mechanism. To test this hypothesis, we treated normal murine mammary gland cells with or without 100 ng/ml prolactin. EGFR isolated by wheat germ agglutinin affinity chromatography from nontreated cells exhibited substantial ligand-induced phosphorylation, and EGFR isolated from prolactin-treated cells displayed minimal EGF-induced EGFR phosphorylation, as well as decreased kinase activity toward exogenous substrates. The observed decrease in ligand-induced EGFR phosphorylation could not be attributed to either differential amounts of EGFR, decreased EGF binding affinity, or the presence of a phosphotyrosine phosphatase or ATPase. EGFR isolated from prolactin-treated cells exhibited increased phosphorylation on threonine. Removal of this phosphorylation with alkaline phosphatase restored EGFR kinase activity to levels observed in nontreated cells. Therefore, these results suggest that prolactin antagonizes EGF signaling by increasing EGFR threonine phosphorylation and decreasing EGF-induced EGFR tyrosine phosphorylation.

  9. Phosphorylation and dephosphorylation of calsequestrin on CK2-sensitive sites in heart.

    PubMed

    Ram, Michal L; Kiarash, Arash; Marsh, James D; Cala, Steven E

    2004-11-01

    Calsequestrin (CSQ) concentrates in junctional sarcoplasmic reticulum (SR) where it functions in regulation of Ca2+ release. When purified from heart tissue, cardiac CSQ contains phosphate on a cluster of C-terminal serine residues, but little is known about the cellular site of kinase action, and the identity of the kinase remains uncertain. To determine basic features of the phosphorylation, we examined the reaction in canine heart preparations. CSQ phosphorylation was observed in [32P]metabolically-labeled heart cells after adenoviral overexpression, and its constitutive phosphorylation was limited to a CK2-sensitive C-terminal serine cluster. The CSQ kinase was oriented intralumenally, as was CSQ, inside membrane vesicles, such that exposure to each required detergent permeabilization. Yet even after detergent permeabilization, CSQ was phosphorylated much less efficiently by protein kinase CK2 in cardiac microsomes than was purified CSQ. Reduced phosphorylation was strongly dependent upon protein concentration, and phosphorylation time courses revealed a phosphatase activity that occurred constitutively as phosphorylated substrate accumulates. Evidence of selective dephosphorylation of CSQ glycoforms in heart homogenates was also seen by mass spectrometry analysis. Molecules with greater mannose content, a feature of early secretory pathway compartments, were more highly phosphorylated, while greater dephosphorylation was apparent in more distal compartments. Taken together, the analyses of CSQ phosphorylation in heart suggest that a constitutive process of phosphate turnover occurs for cardiac CSQ perhaps associated with its intracellular transport.

  10. PKCdelta-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function.

    PubMed

    Greene, Michael W; Ruhoff, Mary S; Roth, Richard A; Kim, Jeong-A; Quon, Michael J; Krause, Jean A

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  11. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1.

    PubMed

    Hennige, Anita M; Stefan, Norbert; Kapp, Katja; Lehmann, Rainer; Weigert, Cora; Beck, Alexander; Moeschel, Klaus; Mushack, Joanne; Schleicher, Erwin; Häring, Hans-Ulrich

    2006-06-01

    Insulin resistance in skeletal muscle is found in obesity and type 2 diabetes. A mechanism for impaired insulin signaling in peripheral tissues is the inhibition of insulin action through serine phosphorylation of insulin receptor substrate (Irs) proteins that abolish the coupling of Irs proteins to the activated insulin receptor. Recently, we described serine-318 as a protein kinase C (PKC)-dependent phosphorylation site in Irs1 (Ser-318) activated by hyperinsulinemia. Here we show in various cell models that the adipose hormone leptin, a putative mediator in obesity-related insulin resistance, promotes phosphorylation of Ser-318 in Irs1 by a janus kinase 2, Irs2, and PKC-dependent pathway. Mutation of Ser-318 to alanine abrogates the inhibitory effect of leptin on insulin-induced Irs1 tyrosine phosphorylation and glucose uptake in L6 myoblasts. In C57Bl/6 mice, Ser-318 phosphorylation levels in muscle tissue were enhanced by leptin and insulin administration in lean animals while in diet-induced obesity Ser-318 phosphorylation levels were already up-regulated in the basal state, and further stimulation was diminished. In analogy, in lymphocytes of obese hyperleptinemic human subjects basal Ser-318 phosphorylation levels were increased compared to lean individuals. During a hyperinsulinemic euglycemic clamp, the increment in Ser-318 phosphorylation observed in lean individuals was absent in obese. In summary, these data suggest that phosphorylation of Ser-318 in Irs1 mediates the inhibitory signal of leptin on the insulin-signaling cascade in obese subjects.

  12. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    NASA Astrophysics Data System (ADS)

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-11-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

  13. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa.

    PubMed

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger

    2013-12-06

    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  14. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation.

    PubMed

    Boex-Fontvieille, Edouard; Daventure, Marlène; Jossier, Mathieu; Zivy, Michel; Hodges, Michael; Tcherkez, Guillaume

    2013-01-01

    Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.

  15. PKC{delta}-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    SciTech Connect

    Greene, Michael W. . E-mail: michael.greene@bassett.org; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-10-27

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKC{delta} on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKC{delta}-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKC{delta} catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.

  16. Tyr-301 Phosphorylation Inhibits Pyruvate Dehydrogenase by Blocking Substrate Binding and Promotes the Warburg Effect*

    PubMed Central

    Fan, Jun; Kang, Hee-Bum; Shan, Changliang; Elf, Shannon; Lin, Ruiting; Xie, Jianxin; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Chung, Tae-Wook; Arellano, Martha; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Boggon, Titus J.; Kang, Sumin; Chen, Jing

    2014-01-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect. PMID:25104357

  17. Tyr-301 phosphorylation inhibits pyruvate dehydrogenase by blocking substrate binding and promotes the Warburg effect.

    PubMed

    Fan, Jun; Kang, Hee-Bum; Shan, Changliang; Elf, Shannon; Lin, Ruiting; Xie, Jianxin; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Chung, Tae-Wook; Arellano, Martha; Khoury, Hanna J; Shin, Dong M; Khuri, Fadlo R; Boggon, Titus J; Kang, Sumin; Chen, Jing

    2014-09-19

    The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.

  18. Cell Cycle Regulated Phosphorylation of the Telomere-Associated Protein TIN2

    PubMed Central

    Yang, Shuqun; Counter, Christopher M.

    2013-01-01

    The protein TIN2 is a member of telomere-binding protein complex that serves to cap and protect mammalian chromosome ends. As a number of proteins in this complex are phosphorylated in a cell cycle-dependent manner, we investigated whether TIN2 is modified by phosphorylation as well. We performed phospho-proteomic analysis of human TIN2, and identified two phosphorylated residues, serines 295 and 330. We demonstrated that both these sites were phosphorylated during mitosis in human cells, as detected by Phos-tag reagent and phosphorylation-specific antibodies. Phosphorylation of serines 295 and 330 appeared to be mediated, at least in part, by the mitotic kinase RSK2. Specifically, phosphorylation of TIN2 at both these residues was increased upon expression of RSK2 and reduced by an inhibitor of the RSK family of kinases. Moreover, RSK2 phosphorylated TIN2 in vitro. The identification of these specifically timed post-translational events during the cell cycle suggests a potential mitotic regulation of TIN2 by phosphorylation. PMID:23977114

  19. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    SciTech Connect

    Miles, K.; Anthony, D.T.; Rubin, L.L.; Greengard, P.; Huganir, R.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.

  20. Crosstalk between signaling pathways provided by single and multiple protein phosphorylation sites

    PubMed Central

    Nishi, Hafumi; Demir, Emek; Panchenko, Anna R.

    2014-01-01

    Cellular fate depends on the spatio-temporal separation and integration of signaling processes which can be provided by phosphorylation events. In this study we identify the crucial points in signaling crosstalk which can be triggered by discrete phosphorylation events on a single target protein. We integrated the data on individual human phosphosites with the evidence on their corresponding kinases, the functional consequences on phosphorylation on activity of the target protein and corresponding pathways. Our results show that there is a substantial fraction of phosphosites that can play critical roles in crosstalk between alternative or redundant pathways and regulatory outcome of phosphorylation can be linked to a type of phosphorylated residue. These regulatory phosphosites can serve as hubs in the signal flow and their functional roles are directly connected to their specific properties. Namely, phosphosites with similar regulatory functions are phosphorylated by the same kinases and participate in regulation of similar biochemical pathways. Such sites are more likely to cluster in sequence and space unlike sites with antagonistic outcomes of their phosphorylation on a target protein. In addition we found that in silico phosphorylation of sites with similar functional consequences have comparable outcomes on a target protein stability. An important role of phosphorylation sites in biological crosstalk is evident from the analysis of their evolutionary conservation. PMID:25451034

  1. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  2. Phosphorylated 5-ethynyl-2'-deoxyuridine for advanced DNA labeling.

    PubMed

    Seo, Siyoong; Onizuka, Kazumitsu; Nishioka, Chieko; Takahashi, Eiki; Tsuneda, Satoshi; Abe, Hiroshi; Ito, Yoshihiro

    2015-04-21

    The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.

  3. Reactions of N-phosphorylated thioamides with chloroacetic derivatives

    SciTech Connect

    Zabirov, N.G.; Cherkasov, R.A.; Pudovik, A.N.

    1986-11-20

    N-Phosphorylated thioamides of carboxylic acids in reactions with chloroacetic derivatives form only products of S-alkylation on the sulfur of the C=S group. The S-alkylation products do not suffer isomerization into products of N-alkylation or of X-alkylation on the sulfur or oxygen atom of the P=X group. By a study of the reactions of iminobis(diphenyl-phosphine sulfide) with chloroacetic derivatives it was shown that the replacement of the C=S group by P=S leads to the formation of products of S-alkylation on the sulfur atom of the P=S group. A mechanism is proposed for the reactions studied, based on results from a complete IR and NMR spectral analysis.

  4. Functional organization of the S. cerevisiae phosphorylation network.

    PubMed

    Fiedler, Dorothea; Braberg, Hannes; Mehta, Monika; Chechik, Gal; Cagney, Gerard; Mukherjee, Paromita; Silva, Andrea C; Shales, Michael; Collins, Sean R; van Wageningen, Sake; Kemmeren, Patrick; Holstege, Frank C P; Weissman, Jonathan S; Keogh, Michael-Christopher; Koller, Daphne; Shokat, Kevan M; Krogan, Nevan J

    2009-03-06

    Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working in compensatory pathways (negative genetic interactions) or those operating in linear pathways (positive genetic interactions). We found an enrichment of positive genetic interactions between kinases, phosphatases, and their substrates. In addition, we assembled a higher-order map from sets of three genes that display strong interactions with one another: triplets enriched for functional connectivity. The resulting network view provides insights into signaling pathway regulation and reveals a link between the cell-cycle kinase, Cak1, the Fus3 MAP kinase, and a pathway that regulates chromatin integrity during transcription by RNA polymerase II.

  5. Protein phosphorylation signaling mechanisms in carotid body chemoreception.

    PubMed

    Wang, Z Z; He, L; Chen, J; Dinger, B; Stensaas, L; Fidone, S

    1999-01-01

    Chemotransduction in the carotid body occurs in specialized type I cells and likely involves a complex series of regulated events which culminates in the release of neurotransmitter agents and the excitation of afferent nerve fibers. Previous studies have shown that multiple factors, including the levels of calcium and cyclic nucleotide second messengers, are important regulators of the chemoreceptor transduction cascade in type I cells. In addition, increases in electrical excitability induced in type I cells by chronic exposure to hypoxia are mimicked by agents which elevate intracellular cyclic AMP levels [Stea et al., J Neurosci 1995;15:2192-2202]. These and other findings suggest that protein kinases, and the phosphorylation of specific protein targets are important components of the hypoxic transduction machinery. Moreover, protein kinase-mediated cascades may participate in the well-known physiological adjustments which occur in the carotid body during prolonged stimulation. In the current study, our data demonstrate (1) the presence of specific protein kinases and target phosphoproteins in the carotid body, and also in the morphologically similar small intensely fluorescent cells of the superior cervical sympathetic ganglia. (2) Nitric oxide production and efferent inhibition in the chemosensory tissue is reduced in the presence of the specific tyrosine kinase inhibitor, lavendustin A. (3) Hypoxia-induced catecholamine release from type I cells is inhibited by the protein kinase A antagonist, Rp-cAMPs. And finally (4), exposure to chronic hypoxia up-regulates the expression of the tyrosine kinase, fyn, and an important growth regulatory phosphoprotein, growth associated protein-43 (GAP-43). These findings suggest that second messenger-mediated phosphorylation and dephosphorylation of specific protein targets is a mechanism capable of regulating diverse cellular functions in the carotid body during acute and chronic stimulation.

  6. A Simple Hydraulic Analog Model of Oxidative Phosphorylation.

    PubMed

    Willis, Wayne T; Jackman, Matthew R; Messer, Jeffrey I; Kuzmiak-Glancy, Sarah; Glancy, Brian

    2016-06-01

    Mitochondrial oxidative phosphorylation is the primary source of cellular energy transduction in mammals. This energy conversion involves dozens of enzymatic reactions, energetic intermediates, and the dynamic interactions among them. With the goal of providing greater insight into the complex thermodynamics and kinetics ("thermokinetics") of mitochondrial energy transduction, a simple hydraulic analog model of oxidative phosphorylation is presented. In the hydraulic model, water tanks represent the forward and back "pressures" exerted by thermodynamic driving forces: the matrix redox potential (ΔGredox), the electrochemical potential for protons across the mitochondrial inner membrane (ΔGH), and the free energy of adenosine 5'-triphosphate (ATP) (ΔGATP). Net water flow proceeds from tanks with higher water pressure to tanks with lower pressure through "enzyme pipes" whose diameters represent the conductances (effective activities) of the proteins that catalyze the energy transfer. These enzyme pipes include the reactions of dehydrogenase enzymes, the electron transport chain (ETC), and the combined action of ATP synthase plus the ATP-adenosine 5'-diphosphate exchanger that spans the inner membrane. In addition, reactive oxygen species production is included in the model as a leak that is driven out of the ETC pipe by high pressure (high ΔGredox) and a proton leak dependent on the ΔGH for both its driving force and the conductance of the leak pathway. Model water pressures and flows are shown to simulate thermodynamic forces and metabolic fluxes that have been experimentally observed in mammalian skeletal muscle in response to acute exercise, chronic endurance training, and reduced substrate availability, as well as account for the thermokinetic behavior of mitochondria from fast- and slow-twitch skeletal muscle and the metabolic capacitance of the creatine kinase reaction.

  7. HDAC10 promotes lung cancer proliferation via AKT phosphorylation

    PubMed Central

    Wang, Zhantong; Wang, Hsin-tzu; Duan, Baoyu; Ye, Dan; Wang, Chenxin; Jing, Ruiqi; Leng, Ye; Xi, Jiajie; Chen, Wen; Wang, Guiying; Jia, Wenwen; Zhu, Songcheng; Kang, Jiuhong

    2016-01-01

    Histone deacetylase 10 (HDAC10) is a member of the class II HDACs, and its role in cancer is emerging. In this study, we found that HDAC10 is highly expressed in lung cancer tissues. It resides mainly in the cytoplasm of lung cancer cells but resides in the nucleus of adjacent normal cells. Further examinations revealed that HDAC10 resides in the cytoplasm in multiple lung cancer cell lines, including the A549, H358 and H460 cell lines, but mainly resides in the nucleus of normal lung epithelial 16HBE cells. A leucine-rich motif, R505L506L507C508V509A510L511, was identified as its nuclear localization signal (NLS), and a mutant (Mut-505-511) featuring mutations to A at each of its original R and L positions was found to be nuclear-localization defective. Functional analysis revealed that HDAC10 promoted lung cancer cell growth and that its knockdown induced cell cycle arrest and apoptosis. Mechanistic studies showed that HDAC10 knockdown significantly decreased the phosphorylation of AKT at Ser473 and that AKT expression significantly rescued the cell cycle arrest and apoptosis elicited by HDAC10 knockdown. A co-immunoprecipitation assay suggested that HDAC10 interacts with AKT and that inhibition of HDAC10 activity decreases its interaction with and phosphorylation of AKT. Finally, we confirmed that HDAC10 promoted lung cancer proliferation in a mouse model. Our study demonstrated that HDAC10 localizes and functions in the cytoplasm of lung cancer cells, thereby underscoring its potential role in the diagnosis and treatment of lung cancer. PMID:27449083

  8. Phosphorylation of Ribose-Borate Complexes at Convergent Margins?

    NASA Astrophysics Data System (ADS)

    Holm, N. G.

    2008-12-01

    The potential of pyrophosphate formation upon heating of hydrogenated orthophosphates like whitlockite ((Ca18Mg2H2(PO4)14) to a few hundred °C in geological environments with low water to rock ratio has probably been underestimated. Once pyrophosphate is available, phosphorylation of pentoses, ribose in particular, may occur. Experiments involving heating of sodium dihydrogen phosphate have even shown high yields of trimetaphosphate. This compound is an even better phosphorylating agent than pyrophosphate and has been identified in volcanic fumaroles. Ribose may be formed from formaldehyde and glycolaldehyde, because the ribose molecule is stabilized by borate that binds to the 2' and 3' positions. Mechanistically, aldehydes can be formed directly from elemental carbon present in mafic rocks in contact with water. The initial reaction of elemental carbon with water gives hydroxymethylene, which can rearrange to formaldehyde. A new hydroxymethylene molecule can then add onto the formaldehyde (and larger aldehyde molecules) and form glycolaldehyde. In this way, the known lag in the formation of glycolaldehyde from formaldehyde is avoided. This lag has previously been a drawback and a reason that the formose reaction was for a while outdated as a possible mechanism for abiotic synthesis of carbohydrates. The reason why pentoses are stabilized by borate is that borate forms trigonal and tetrahedral complexes with oxygen groups and, therefore, has a strong affinity for organic material. Boric acid and borate readily form complexes with a wide variety of sugars, particularly the furanose form of pentoses, and other compounds containing cis-hydroxyl groups like humic substances. Borate is continuously scavenged from seawater by secondary layer minerals of oceanic lithosphere and is released again at moderate heating of the subducting plate at convergent margins. The Mariana back-arc is a good example of this process. The fact that ribose is stabilized by borate may

  9. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria

    PubMed Central

    Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-01-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  10. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    PubMed

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  11. Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response

    PubMed Central

    1985-01-01

    An in vitro system was devised for studying phosphorylation of Chlamydomonas reinhardtii axonemal proteins. Many of the polypeptides phosphorylated in this system could be identified as previously described axonemal components that are phosphorylated in vivo. The in vitro system apparently preserved the activities of diverse axonemal kinases without greatly altering the substrate specificity of the enzymes. The in vitro system was used to study the effect of calcium concentration on axonemal protein phosphorylation. Calcium has previously been demonstrated to initiate the axonemal reversal reaction of the photophobic response; the in vitro system made it possible to investigate the possibility that this calcium effect is mediated by protein phosphorylation. Calcium specifically altered the phosphorylation of only two axonemal proteins; the phosphorylation of an otherwise unidentified 85,000 Mr protein was repressed by calcium concentrations greater than or equal to 10(-6) M, while the phosphorylation of the previously identified 95,000 Mr protein b4 was stimulated by calcium at concentrations greater than 10(-6) M. Protein b4 is one of six polypeptides that are deficient in the mbo mutants, strains that do not exhibit a photophobic reversal reaction. Therefore, this calcium-stimulated phosphorylation may be involved in initiating the photophobic response. Neither calmodulin nor the C-kinase could be implicated in b4 phosphorylation. The calcium-dependent activation of the b4 kinase was not affected by several drugs that bind to and inhibit calmodulin, or by the addition of exogenous calmodulin. Activators and inhibitors of the calcium-phospholipid-dependent C kinase also had no effect on b4 phosphorylation. PMID:4055893

  12. Protein kinase B/Akt phosphorylates and inhibits the cardiac Na+/H+ exchanger NHE1.

    PubMed

    Snabaitis, Andrew K; Cuello, Friederike; Avkiran, Metin

    2008-10-10

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity is mediated by NHE isoform 1 (NHE1), which is subject to regulation by protein kinases. Our objectives were to determine whether NHE1 is phosphorylated by protein kinase B (PKB), identify any pertinent phosphorylation site(s), and delineate the functional consequences of such phosphorylation. Active PKBalpha phosphorylated in vitro a glutathione S-transferase (GST)-NHE1 fusion protein comprising amino acids 516 to 815 of the NHE1 carboxyl-terminal regulatory domain. PKBalpha-mediated phosphorylation of GST-NHE1 fusion proteins containing overlapping segments of this region localized the targeted residues to the carboxyl-terminal 190 amino acids (625 to 815) of NHE1. Mass spectrometry and phosphorylation analysis of mutated (Ser-->Ala) GST-NHE1 fusion proteins revealed that PKBalpha-mediated phosphorylation of NHE1 occurred principally at Ser648. Far-Western assays demonstrated that PKBalpha-mediated Ser648 phosphorylation abrogated calcium-activated calmodulin (CaM) binding to the regulatory domain of NHE1. In adult rat ventricular myocytes, adenovirus-mediated expression of myristoylated PKBalpha (myr-PKBalpha) increased cellular PKB activity, as confirmed by increased glycogen synthase kinase 3beta phosphorylation. Heterologously expressed myr-PKBalpha was present in the sarcolemma, colocalized with NHE1 at the intercalated disc regions, increased NHE1 phosphorylation, and reduced NHE1 activity following intracellular acidosis. Conversely, pharmacological inhibition of endogenous PKB increased NHE1 activity following intracellular acidosis. Our data suggest that NHE1 is a novel PKB substrate and that its PKB-mediated phosphorylation at Ser648 inhibits sarcolemmal NHE activity during intracellular acidosis, most likely by interfering with CaM binding and reducing affinity for intracellular H(+).

  13. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    PubMed

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G1, S, and G2), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes.

  14. Protein Phosphorylation in Amyloplasts Regulates Starch Branching Enzyme Activity and Protein–Protein Interactions

    PubMed Central

    Tetlow, Ian J.; Wait, Robin; Lu, Zhenxiao; Akkasaeng, Rut; Bowsher, Caroline G.; Esposito, Sergio; Kosar-Hashemi, Behjat; Morell, Matthew K.; Emes, Michael J.

    2004-01-01

    Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with γ-32P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated 32P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule–associated phosphoproteins after incubation of intact amyloplasts with γ-32P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein

  15. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.

    PubMed

    Yao, Qiuming; Xu, Dong

    2017-01-01

    Protein phosphorylation is one of the most pervasive protein post-translational modification events in plant cells. It is involved in many plant biological processes, such as plant growth, organ development, and plant immunology, by regulating or switching signaling and metabolic pathways. High-throughput experimental methods like mass spectrometry can easily characterize hundreds to thousands of phosphorylation events in a single experiment. With the increasing volume of the data sets, Plant Protein Phosphorylation DataBase (P3DB, http://p3db.org ) provides a comprehensive, systematic, and interactive online platform to deposit, query, analyze, and visualize these phosphorylation events in many plant species. It stores the protein phosphorylation sites in the context of identified mass spectra, phosphopeptides, and phosphoproteins contributed from various plant proteome studies. In addition, P3DB associates these plant phosphorylation sites to protein physicochemical information in the protein charts and tertiary structures, while various protein annotations from hierarchical kinase phosphatase families, protein domains, and gene ontology are also added into the database. P3DB not only provides rich information, but also interconnects and provides visualization of the data in networks, in systems biology context. Currently, P3DB includes the KiC (Kinase Client) assay network, the protein-protein interaction network, the kinase-substrate network, the phosphatase-substrate network, and the protein domain co-occurrence network. All of these are available to query for and visualize existing phosphorylation events. Although P3DB only hosts experimentally identified phosphorylation data, it provides a plant phosphorylation prediction model for any unknown queries on the fly. P3DB is an entry point to the plant phosphorylation community to deposit and visualize any customized data sets within this systems biology framework. Nowadays, P3DB has become one of the major

  16. Phosphorylation of the human Fhit tumor suppressor on tyrosine 114 in Escherichia coli and unexpected steady state kinetics of the phosphorylated forms.

    PubMed

    Garrison, Preston N; Robinson, Angela K; Pekarsky, Yuri; Croce, Carlo M; Barnes, Larry D

    2005-04-26

    The human tumor suppressor Fhit is a homodimeric histidine triad (HIT) protein of 147 amino acids which has Ap(3)A hydrolase activity. We have recently discovered that Fhit is phosphorylated in vivo and is phosphorylated in vitro by Src kinase [Pekarsky, Y., Garrison, P. N., Palamarchuk, A., Zanesi, N., Aqeilan, R. I., Huebner, K., Barnes, L. D., and Croce, C. M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 3775-3779]. Now we have coexpressed Fhit with the elk tyrosine kinase in Escherichia coli to generate phosphorylated forms of Fhit. Unphosphorylated Fhit, Fhit phosphorylated on one subunit, and Fhit phosphorylated on both subunits were purified to apparent homogeneity by column chromatography on anion-exchange and gel filtration resins. MALDI-TOF and HPLC-ESI tandem mass spectrometry of intact Fhit and proteolytic peptides of Fhit demonstrated that Fhit is phosphorylated on Y(114) on either one or both subunits. Monophosphorylated Fhit exhibited monophasic kinetics with K(m) and k(cat) values approximately 2- and approximately 7-fold lower, respectively, than the corresponding values for unphosphorylated Fhit. Diphosphorylated Fhit exhibited biphasic kinetics. One site had K(m) and k(cat) values approximately 2- and approximately 140-fold lower, respectively, than the corresponding values for unphosphorylated Fhit. The second site had a K(m) approximately 60-fold higher and a k(cat) approximately 6-fold lower than the corresponding values for unphosphorylated Fhit. The unexpected kinetic patterns for the phosphorylated forms suggest the system may be enzymologically novel. The decreases in the values of K(m) and k(cat) for the phosphorylated forms in comparison to those of unphosphorylated Fhit favor the formation and lifetime of the Fhit-Ap(3)A complex, which may enhance the tumor suppressor activity of Fhit.

  17. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker.

    PubMed

    Zhou, Qin; Cadrin, Monique; Herrmann, Harald; Chen, Che-Hong; Chalkley, Robert J; Burlingame, Alma L; Omary, M Bishr

    2006-06-16

    Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.

  18. Phosphorylation of K[superscript +] Channels at Single Residues Regulates Memory Formation

    ERIC Educational Resources Information Center

    Vernon, Jeffrey; Irvine, Elaine E.; Peters, Marco; Jeyabalan, Jeshmi; Giese, K. Peter

    2016-01-01

    Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K[superscript +] channel function. Phosphorylation of K[superscript +] channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies…

  19. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  20. Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity

    PubMed Central

    Panayiotou, Richard; Miralles, Francesc; Pawlowski, Rafal; Diring, Jessica; Flynn, Helen R; Skehel, Mark; Treisman, Richard

    2016-01-01

    The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A. DOI: http://dx.doi.org/10.7554/eLife.15460.001 PMID:27304076

  1. Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides.

    PubMed

    Kowalewska, Karolina; Stefanowicz, Piotr; Ruman, Tomasz; Fraczyk, Tomasz; Rode, Wojciech; Szewczuk, Zbigniew

    2010-12-01

    Phosphorylation of proteins is an essential signalling mechanism in eukaryotic and prokaryotic cells. Although N-phosphorylation of basic amino acid is known for its importance in biological systems, it is still poorly explored in terms of products and mechanisms. In the present study, two MS fragmentation methods, ECD (electron-capture dissociation) and CID (collision-induced dissociation), were tested as tools for analysis of N-phosphorylation of three model peptides, RKRSRAE, RKRARKE and PLSRTLSVAAKK. The peptides were phosphorylated by reaction with monopotassium phosphoramidate. The results were confirmed by 1H NMR and 31P NMR studies. The ECD method was found useful for the localization of phosphorylation sites in unstable lysine-phosphorylated peptides. Its main advantage is a significant reduction of the neutral losses related to the phosphoramidate moiety. Moreover, the results indicate that the ECD-MS may be useful for analysis of regioselectivity of the N-phosphorylation reaction. Stabilities of the obtained lysine-phosphorylated peptides under various conditions were also tested.

  2. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  3. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation.

    PubMed

    Manno, S; Takakuwa, Y; Nagao, K; Mohandas, N

    1995-03-10

    The mechanical properties of human erythrocyte membrane are largely regulated by submembranous protein skeleton whose principal components are alpha- and beta-spectrin, actin, protein 4.1, adducin, and dematin. All of these proteins, except for actin, are phosphorylated by various kinases present in the erythrocyte. In vitro studies with purified skeletal proteins and various kinases has shown that while phosphorylation of these proteins can modify some of the binary and ternary protein interactions, it has no effect on certain other interactions between these proteins. Most importantly, at present there is no direct evidence that phosphorylation of skeletal protein(s) alters the function of the intact membrane. To explore this critical issue, we have developed experimental strategies to determine the functional consequences of phosphorylation of beta-spectrin on mechanical properties of intact erythrocyte membrane. We have been able to document that membrane mechanical stability is exquisitely regulated by phosphorylation of beta-spectrin by membrane-bound casein kinase I. Increased phosphorylation of beta-spectrin decreases membrane mechanical stability while decreased phosphorylation increases membrane mechanical stability. Our data for the first time demonstrate that phosphorylation of a skeletal protein in situ can modulate physiological function of native erythrocyte membrane.

  4. A compartmentalized phosphorylation/dephosphorylation system that regulates U snRNA export from the nucleus.

    PubMed

    Kitao, Saori; Segref, Alexandra; Kast, Juergen; Wilm, Matthias; Mattaj, Iain W; Ohno, Mutsuhito

    2008-01-01

    PHAX (phosphorylated adaptor for RNA export) is the key regulator of U snRNA nuclear export in metazoa. Our previous work revealed that PHAX is phosphorylated in the nucleus and is exported as a component of the U snRNA export complex to the cytoplasm, where it is dephosphorylated (M. Ohno, A. Segref, A. Bachi, M. Wilm, and I. W. Mattaj, Cell 101:187-198, 2000). PHAX phosphorylation is essential for export complex assembly, whereas its dephosphorylation causes export complex disassembly. Thus, PHAX is subject to a compartmentalized phosphorylation/dephosphorylation cycle that contributes to transport directionality. However, neither essential PHAX phosphorylation sites nor the modifying enzymes that contribute to the compartmentalized system have been identified. Here, we identify PHAX phosphorylation sites that are necessary and sufficient for U snRNA export. Mutation of the phosphorylation sites inhibited U snRNA export in a dominant-negative way. We also show, by both biochemical and RNA interference knockdown experiments, that the nuclear kinase and the cytoplasmic phosphatase for PHAX are CK2 kinase and protein phosphatase 2A, respectively. Our results reveal the composition of the compartmentalized phosphorylation/dephosphorylation system that regulates U snRNA export. This finding was surprising in that such a specific system for U snRNA export regulation is composed of two such universal regulators, suggesting that this compartmentalized system is used more broadly for gene expression regulation.

  5. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    ERIC Educational Resources Information Center

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  6. Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase

    PubMed Central

    Bruck, Irina; Kaplan, Daniel L.

    2015-01-01

    Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase. PMID:26305950

  7. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    PubMed

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  8. Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms1[OPEN

    PubMed Central

    Hochheuser, Caroline; Fufezan, Christian; Heinze, Laura

    2016-01-01

    GENOMES UNCOUPLED 4 (GUN4) is a positive regulator of light-dependent chlorophyll biosynthesis. GUN4 activates Mg chelatase (MgCh) that catalyzes the insertion of an Mg2+ ion into protoporphyrin IX. We show that Arabidopsis (Arabidopsis thaliana) GUN4 is phosphorylated at Ser 264 (S264), the penultimate amino acid residue at the C terminus. While GUN4 is preferentially phosphorylated in darkness, phosphorylation is reduced upon accumulation of Mg porphyrins. Expression of a phosphomimicking GUN4(S264D) results in an incomplete complementation of the white gun4-2 null mutant and a chlorotic phenotype comparable to gun4 knockdown mutants. Phosphorylated GUN4 has a reduced stimulatory effect on MgCh in vitro and in vivo but retains its protein stability and tetrapyrrole binding capacity. Analysis of GUN4 found in oxygenic photosynthetic organisms reveals the evolution of a C-terminal extension, which harbors the phosphorylation site of GUN4 expressed in angiosperms. Homologs of GUN4 from Synechocystis and Chlamydomonas lack the conserved phosphorylation site found in a C-terminal extension of angiosperm GUN4. Biochemical studies proved the importance of the C-terminal extension for MgCh stimulation and inactivation of GUN4 by phosphorylation in angiosperms. An additional mechanism regulating MgCh activity is proposed. In conjunction with the dark repression of 5-aminolevulinic acid synthesis, GUN4 phosphorylation minimizes the flow of intermediates into the Mg branch of the tetrapyrrole metabolic pathway for chlorophyll biosynthesis. PMID:27688621

  9. Nuclear import of the Drosophila Rel protein Dorsal is regulated by phosphorylation.

    PubMed

    Drier, E A; Huang, L H; Steward, R

    1999-03-01

    In Drosophila, dorsal-ventral polarity is determined by a maternally encoded signal transduction pathway that culminates in the graded nuclear localization of the Rel protein, Dorsal. Dorsal is retained in the cytoplasm by the IkappaB protein, Cactus. Signal-dependent phosphorylation of Cactus results in the degradation of Cactus and the nuclear targeting of Dorsal. We present an in-depth study of the functional importance of Dorsal phosphorylation. We find that Dorsal is phosphorylated by the ventral signal while associated with Cactus, and that Dorsal phosphorylation is essential for its nuclear import. In vivo phospholabeling of Dorsal is limited to serine residues in both ovaries and early embryos. A protein bearing mutations in six conserved serines abolishes Dorsal activity, is constitutively cytoplasmic, and appears to eliminate Dorsal phosphorylation, but still interacts with Cactus. Two individual serine-to-alanine mutations produce unexpected results. In a wild-type signaling background, a mutation in the highly conserved PKA site (S312) produces only a weak loss-of-function; however, it completely destabilizes the protein in a cactus mutant background. Significantly, the phosphorylation of another completely conserved serine (S317) regulates the high level of nuclear import found in ventral cells. We conclude that the formation of a wild-type Dorsal nuclear gradient requires the phosphorylation of both Cactus and Dorsal. The strong conservation of the serines suggests that phosphorylation of other Rel proteins is essential for their proper nuclear targeting.

  10. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation.

    PubMed

    Narasimha, Anil M; Kaulich, Manuel; Shapiro, Gary S; Choi, Yoon J; Sicinski, Piotr; Dowdy, Steven F

    2014-06-04

    The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase.

  11. ATM is the predominant kinase involved in the phosphorylation of histone H2AX after heating.

    PubMed

    Takahashi, Akihisa; Mori, Eiichiro; Su, Xiaoming; Nakagawa, Yosuke; Okamoto, Noritomo; Uemura, Hirokazu; Kondo, Natsuko; Noda, Taichi; Toki, Atsushi; Ejima, Yosuke; Chen, David J; Ohnishi, Ken; Ohnishi, Takeo

    2010-01-01

    Heating induces histone H2AX phosphorylation at serine 139 (gammaH2AX). Phosphorylated H2AX subsequently forms foci in numerous mammalian cell lines. The aim of this study was to clarify details in the mechanisms involved in the phosphorylation of H2AX after heating. The cell lines used were DNA-PKcs knockout cells, ATM knockout cells, and their parental cell lines. To elucidate mechanisms of induction of phosphorylation of H2AX after heating, ATM/ATR inhibitor (CGK733) and DNA-PK inhibitor (NU7026) were used. The intensity of gammaH2AX signals was assayed with flow cytometry. The thermal dose-response curve for the fluorescence intensity of gammaH2AX appearance in DNA-PKcs-/- cells during the heating period was similar to that observed in DNA-PKcs+/+ cells. On the other hand, the slope of thermal dose-response curve for them in ATM-/- cells was lower than that in ATM+/+ cells. Phosphorylation of H2AX after heating was suppressed by a combination of CGK733 and NU7026 in the culture medium in DNA-PKcs-/- cells, ATM-/- cells and in their parental cells. Although the phosphorylation of H2AX after heating was not suppressed by NU7026 in their parental cells, such phosphorylation was suppressed by CGK733 in their parental cells. These results indicate that ATM is the predominant protein which is active in the phosphorylation of histone H2AX after heating.

  12. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation.

    PubMed

    Röhrig, Horst; Schmidt, Jürgen; Colby, Thomas; Bräutigam, Anne; Hufnagel, Peter; Bartels, Dorothea

    2006-08-01

    Reversible phosphorylation of proteins is an important mechanism by which organisms regulate their reactions to external stimuli. To investigate the involvement of phosphorylation during acquisition of desiccation tolerance, we have analysed dehydration-induced protein phosphorylation in the desiccation tolerant resurrection plant Craterostigma plantagineum. Several dehydration-induced proteins were shown to be transiently phosphorylated during a dehydration and rehydration (RH) cycle. Two abundantly expressed phosphoproteins are the dehydration- and abscisic acid (ABA)-responsive protein CDeT11-24 and the group 2 late embryogenesis abundant (LEA) protein CDeT6-19. Although both proteins accumulate in leaves and roots with similar kinetics in response to dehydration, their phosphorylation patterns differ. Several phosphorylation sites were identified on the CDeT11-24 protein using liquid chromatography-tandem mass spectrometry (LCMS/MS). The coincidence of phosphorylation sites with predicted coiled-coil regions leads to the hypothesis that CDeT11-24 phosphorylations influence the stability of coiled-coil interactions with itself and possibly other proteins.

  13. An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells

    PubMed Central

    Heibeck, Tyler H.; Ding, Shi-Jian; Opresko, Lee K.; Zhao, Rui; Schepmoes, Athena A.; Yang, Feng; Tolmachev, Aleksey V.; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Wiley, H. Steven; Qian, Wei-Jun

    2010-01-01

    Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell line by applying anti-phosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that the majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems. PMID:19534553

  14. Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression.

    PubMed

    Borgal, Lori; Rinschen, Markus M; Dafinger, Claudia; Liebrecht, Valérie I; Abken, Hinrich; Benzing, Thomas; Schermer, Bernhard

    2016-01-01

    The PHD zinc finger protein Jade-1S is a component of the HBO1 histone acetyltransferase complex and binds chromatin in a cell cycle-dependent manner. Jade-1S also acts as an E3 ubiquitin ligase for the canonical Wnt effector protein β-catenin and is influenced by CK1α-mediated phosphorylation. To further elucidate the functional impact of this phosphorylation, we used a stable, low-level expression system to express either wild-type or mutant Jade-1S lacking the N-terminal CK1α phosphorylation motif. Interactome analyses revealed that the Jade-1S mutant unable to be phosphorylated by CK1α has an increased binding affinity to proteins involved in chromatin remodelling, histone deacetylation, transcriptional repression, and ribosome biogenesis. Interestingly, cells expressing the mutant displayed an elongated cell shape and a delay in cell cycle progression. Finally, phosphoproteomic analyses allowed identification of a Jade-1S site phosphorylated in the presence of CK1α but closely resembling a PLK1 phosphorylation motif. Our data suggest that Jade-1S phosphorylation at an N-terminal CK1α motif creates a PLK1 phospho-binding domain. We propose CK1α phosphorylation of Jade 1S to serve as a molecular switch, turning off chromatin remodelling functions of Jade-1S and allowing timely cell cycle progression. As Jade-1S protein expression in the kidney is altered upon renal injury, this could contribute to understanding mechanisms underlying epithelial injury repair.

  15. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit

    PubMed Central

    Huang, Haomin; Hittle, James; Zappacosta, Francesca; Annan, Roland S.; Hershko, Avram; Yen, Timothy J.

    2008-01-01

    BubR1 kinase is essential for the mitotic checkpoint and also for kinetochores to establish microtubule attachments. In this study, we report that BubR1 is phosphorylated in mitosis on four residues that differ from sites recently reported to be phosphorylated by Plk1 (Elowe, S., S. Hummer, A. Uldschmid, X. Li, and E.A. Nigg. 2007. Genes Dev. 21:2205–2219; Matsumura, S., F. Toyoshima, and E. Nishida. 2007. J. Biol. Chem. 282:15217–15227). S670, the most conserved residue, is phosphorylated at kinetochores at the onset of mitosis and dephosphorylated before anaphase onset. Unlike the Plk1-dependent S676 phosphorylation, S670 phosphorylation is sensitive to microtubule attachments but not to kinetochore tension. Functionally, phosphorylation of S670 is essential for error correction and for kinetochores with end-on attachments to establish tension. Furthermore, in vitro data suggest that the phosphorylation status of BubR1 is important for checkpoint inhibition of the anaphase-promoting complex/cyclosome. Finally, RNA interference experiments show that Mps1 is a major but not the exclusive kinase that specifies BubR1 phosphorylation in vivo. The combined data suggest that BubR1 may be an effector of multiple kinases that are involved in discrete aspects of kinetochore attachments and checkpoint regulation. PMID:19015317

  16. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de La Chapelle, Marc; Le Roy, Christine

    2017-01-01

    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.

  17. Bcl10 is phosphorylated on Ser138 by Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Ishiguro, Kazuhiro; Ando, Takafumi; Goto, Hidemi; Xavier, Ramnik

    2007-03-01

    Ordered assembly of scaffold proteins Carma1-Bcl10-Malt1 determines NF-kappaB activation following T cell receptor (TCR) engagement. Carma1-Bcl10 interaction and the signaling pathway are controlled by Carma1 phosphorylation, which are induced by PKCtheta and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In addition to Carma1 phosphorylation, previous studies have demonstrated that Bcl10 is phosphorylated in the C-terminal Ser/Thr rich region following TCR engagement. However the kinases that phosphorylate Bcl10 are incompletely understood. Here we show that CaMKII phosphorylates Bcl10 on Ser138. Furthermore, a CaMKII inhibitor, KN93, and CaMKII siRNA substantially reduce Bcl10 phosphorylation induced by phorbol myristate acetate/ionomycin. S138A mutation prolongs Bcl10-induced NF-kappaB activation, suggesting that Bcl10 phosphorylation is involved in attenuation of NF-kappaB activation. These findings suggest that CaMKII modulates NF-kappaB activation via phosphorylating Bcl10 as well as Carma1.

  18. Understanding the influence of phosphorylation and polysialylation of gelatin on mineralization and osteogenic differentiation.

    PubMed

    Arora, Aditya; Katti, Dhirendra S

    2016-08-01

    Post-translational modifications such as phosphorylation and sialylation impart crucial functions such as mineral deposition and osteogenic differentiation to non-collagenous bone matrix proteins. In this work, the influence of phosphorylation and polysialylation of gelatin on mineralization in simulated body fluid (SBF) and on osteogenic differentiation of mesenchymal stem cells (MSC) was studied. It was observed that increase in phosphorylation could be directly correlated with the mineralization ability of phosphorylated gelatin in SBF. The total calcium and phosphate deposited increased with increase in degree of phosphorylation and was >3 fold higher on the highest degree of phosphorylation. Whereas, polysialylation did not have any significant influence on mineral deposition in SBF. On the other hand, when MSCs were cultured on polysialylated surfaces they showed relatively higher cell elongation with 1.5 fold higher cell aspect ratio, higher alkaline phosphatase activity and 3 fold higher mineral deposition when compared to control and phosphorylated gelatin surfaces. In conclusion, phosphorylation and polysialylation of gelatin show a significant influence on mineralization and osteogenic differentiation respectively which can be advantageously used for bone tissue engineering.

  19. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    SciTech Connect

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  20. Prostate Cell-Specific Regulation of Androgen Receptor Phosphorylation In Vivo

    DTIC Science & Technology

    2007-11-01

    phosphorylation of S650 is enhanced by treatment with forskolin (FSK), Epidermal Growth Factor (EGF) and phorbol-12-myristate-13-acetate (PMA)[Gioeli, D., J. Biol...phosphorylation. - 7 - Figure 2: A PMA but not R1881 or Forskolin induces S650 phosporylation. LNCaP cells were steroid starved and

  1. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  2. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de la Chapelle, Marc; Le Roy, Christine

    2017-01-01

    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells. PMID:28054556

  3. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

    PubMed

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E

    2015-08-11

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  4. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  5. Auxin effects on in vitro and in vivo protein phosphorylation in pea. [Pisum sativum

    SciTech Connect

    Gallagher, S.R.; Ray, P.M.

    1987-04-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, the level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with /sup 32/P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit.

  6. Multiple functions of capsid protein phosphorylation in duck hepatitis B virus replication.

    PubMed Central

    Yu, M; Summers, J

    1994-01-01

    We have investigated the role of phosphorylation of the capsid protein of the avian hepadnavirus duck hepatitis B virus in viral replication. We found previously that three serines and one threonine in the C-terminal 24 amino acids of the capsid protein serve as phosphorylation sites and that the pattern of phosphorylation at these sites in intracellular viral capsids is complex. In this study, we present evidence that the phosphorylation state of three of these residues affects distinct steps in viral replication. By substituting these residues with alanine in order to mimic serine, or with aspartic acid in order to mimic phosphoserine, and assaying the effects of these substitutions on various steps in virus replication, we were able to make the following inferences. (i) The presence of phosphoserines at residues 245 and 259 stimulates DNA synthesis within viral nucleocapsids. (ii) The absence of phosphoserine at residue 257 and at residues 257 and 259 stimulates covalently closed circular DNA synthesis and virus production, respectively. (iii) The presence of phosphoserine at position 259 is required for initiation of infection. The results implied that both phosphorylated and nonphosphorylated capsid proteins were necessary for a nucleocapsid particle to carry out all its functions in virus replication, explaining why differential phosphorylation of the capsid protein occurs in hepadnaviruses. Whether these differentially phosphorylated proteins coexist on the same nucleocapsid, or whether the nucleocapsid acquires sequential functions through selective phosphorylation and dephosphorylation, is discussed. Images PMID:8207809

  7. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    SciTech Connect

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.; Luo, Quanzhou; Kelly, Ryan T.; Clauss, Therese RW; Brinkley, William R.; Smith, Richard D.; Stenoien, David L.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins including SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.

  8. Connexin 35/36 is phosphorylated at regulatory sites in the retina

    PubMed Central

    Kothmann, W. Wade; Li, Xiaofan; Burr, Gary S.; O’Brien, John

    2007-01-01

    Connexin 35/36 is the most widespread neuronal gap junction protein in the retina and central nervous system. Electrical and/or tracer coupling in a number of neuronal circuits that express this connexin are regulated by light adaptation. In many cases the regulation of coupling depends on signaling pathways that activate protein kinases such as PKA, and Cx35 has been shown to be regulated by PKA phosphorylation in cell culture systems. To examine whether phosphorylation might regulate Cx35/36 in the retina we developed phospho-specific polyclonal antibodies against the two regulatory phosphorylation sites of Cx35 and examined the phosphorylation state of this connexin in the retina. Western blot analysis with hybrid bass retinal membrane preparations showed Cx35 to be phosphorylated at both the Ser110 and Ser276 sites, and this labeling was eliminated by alkaline phosphatase digestion. The homologous sites of mouse and rabbit Cx36 were also phosphorylated in retinal membrane preparations. Quantitative confocal immunofluorescence analysis showed gap junctions identified with a monoclonal anti-Cx35 antibody to have variable levels of phosphorylation at both the Ser110 and Ser276 sites. Unusual gap junctions that could be identified by their large size (up to 32 μm2) and location in the IPL showed a prominent shift in phosphorylation state from heavily phosphorylated in nighttime, dark-adapted retina to weakly phosphorylated in daytime, light-adapted retina. Both Ser110 and Ser276 sites showed significant changes in this manner. Under both lighting conditions other gap junctions varied from non-phosphorylated to heavily phosphorylated. We predict that changes in the phosphorylation states of these sites correlate with changes in the degree of coupling through Cx35/36 gap junctions. This leads to the conclusion that connexin phosphorylation mediates changes in coupling in some retinal networks. However, these changes are not global and likely occur in a cell type

  9. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription

    PubMed Central

    Ammosova, Tatyana; Berro, Reem; Jerebtsova, Marina; Jackson, Angela; Charles, Sharroya; Klase, Zachary; Southerland, William; Gordeuk, Victor R; Kashanchi, Fatah; Nekhai, Sergei

    2006-01-01

    Background Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. Results We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. Conclusion Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription. PMID:17083724

  10. Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle.

    PubMed

    McCaig, Catherine; Potter, Louisa; Abramczyk, Olga; Murray, James T

    2011-07-29

    The tumour metastasis suppressor, N-myc Downstream Regulated Gene (NDRG) 1, is a by the protein kinases SGK1 and GSK3β, but the relevance of its phosphorylation remains unclear. Analysis of HCT116 cells, either proficient or deficient for p53 revealed NDRG1 protein expression and phosphorylation by SGK1 was increased basally in p53-deficient cells. Treatment with the cell cycle inhibitors, aphidicolin or nocodazole also revealed increased NDRG1 phosphorylation in p53-deficient cells. Finally, phosphorylated NDRG1 was found to co-localise with γ-tubulin on centromeres and also to the cleavage furrow during cytokinesis. Taken together, this work demonstrates that NDRG1 phosphorylation, by the protein kinase SGK1, is temporally and spatially controlled during the cell cycle, suggesting a role for NDRG1 in successful mitosis.

  11. Changes in protein phosphorylation during the cell cycle of Chinese hamster ovary cells

    SciTech Connect

    Westwood, J.T.; Church, R.B.; Wagenaar, E.B.

    1985-08-25

    The phosphorylation patterns of proteins were examined during the cell cycle of Chinese hamster ovary cells. This was accomplished by labeling synchronized cells at various times with (TSP)orthophosphate and separating the proteins by both isoelectric focusing and nonequilibrium pH gradient two-dimensional gel electrophoresis. The most dramatic changes occurred during late G2/M when approximately eight proteins (including vimentin, lamin B, and histones 1 and 3) showed increased phosphorylation. Ten other proteins appeared to be uniquely phosphorylated during late G2/M. Of these 10 proteins, seven were no longer phosphorylated shortly after mitosis. There is also at least one protein which showed a relative decrease in phosphorylation during late G2/M.

  12. A two-dimensional energy surface of the phosphoryl transfer reaction catalyzed by phosphoserine phosphatase

    NASA Astrophysics Data System (ADS)

    Re, Suyong; Jung, Jaewoon; Ten-no, Seiichiro; Sugita, Yuji

    2009-10-01

    The phosphoryl transfer reaction from phospho- L-serine (pSer), catalyzed by phosphoserine phosphatase, is investigated using the hybrid quantum mechanics/molecular mechanics calculations. The two-dimensional energy surface along the phosphoryl and proton transfer distances reveals early protonation of the leaving group oxygen of pSer, prior to the transition state (TS), which triggers subsequent phosphoryl transfer reaction. Calculated electronic properties of the phosphoryl group at the active site suggest significant metaphosphate-like character of TS, which is consistent with kinetic experiments on related phosphatases. The features are not obtained with a one-dimensional search along the phosphoryl transfer coordinate, due to inadequate description of proton movement.

  13. Heparin stimulates epidermal growth factor receptor-mediated phosphorylation of tyrosine and threonine residues.

    PubMed

    Revis-Gupta, S; Abdel-Ghany, M; Koland, J; Racker, E

    1991-07-15

    We have described previously that in extracts of A431 cells epidermal growth factor (EGF) stimulates the phosphorylation of tyrosine as well as of threonine residues in the EGF receptor and in lipocortin 1. We now report that heparin at low concentrations also stimulates the autophosphorylation of the EGF receptor and of the recombinant 56-kDa domain of the EGF receptor that lacks the EGF binding site. To study the stimulations of phosphorylation of threonine residues, a fusion protein was prepared with glutathione S-transferase (GST) and an EGF receptor fragment, TK8 (residues 647-688), that contains the threonine phosphorylation site but no tyrosine. We show that the phosphorylation of threonine residues in GST-TK8 by extracts of A431 cells is stimulated by heparin but not by EGF. These and other results suggest that heparin acts as a chaperone, a substrate modulator, that enhances the susceptibility of the substrate to phosphorylation by protein kinases.

  14. Tyrosine phosphorylation of maspin in normal mammary epithelia and breast cancer cells.

    PubMed

    Odero-Marah, Valerie A; Khalkhali-Ellis, Zhila; Schneider, Galen B; Seftor, Elisabeth A; Seftor, Richard E B; Koland, John G; Hendrix, Mary J C

    2002-07-26

    Maspin is a 42kDa tumor suppressor protein that belongs to the serine protease inhibitor (serpin) family. It inhibits cell motility and invasion in vitro, and tumor growth and metastasis in nude mice; however, maspin's molecular mechanism of action has remained elusive. Maspin contains several tyrosine residues and we hypothesized that phosphorylation of maspin could play a role in its biological function. Our study reveals that maspin is phosphorylated on tyrosine moiety(ies) in normal mammary epithelial cells endogenously expressing maspin. In addition, transfection of the maspin gene, using either a stable or inducible system into maspin-deficient breast cancer cell lines, yields a protein product that is phosphorylated on tyrosine residue(s). Furthermore, recombinant maspin protein can be tyrosine-phosphorylated by the kinase domain from the epidermal growth factor receptor in vitro. These novel observations suggest that maspin, which deviates from the classical serpin, may be an important signal transduction molecule in its phosphorylated form.

  15. Computational Study of Pseudo-phosphorylation of the Microtubule associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This computational study focuses on the effect of pseudo-phosphorylation on the aggregation of the microtubule associated protein tau. In the axon of the neuron, tau regulates the assembly of microtubules in the cytoskeleton. This is important for both stabilization of and transport across the microtubules. One of the hallmarks of the Alzheimer's disease is that tau is hyper-phosphorylated and aggregates into neurofibrillary tangles that lay waste to the neurons. It is not known if hyper-phosphorylation directly causes the aggregation of tau into tangles. Experimentally, pseudo-phosphorylation mimics the effects of phosphorylation by mutating certain residues of the protein chain into charged residues. In this study, we will consider the fragment called PHF43 that belongs to the microtubule binding region and has been shown to readily aggregate.

  16. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKε promotes cell transformation

    PubMed Central

    Hutti, Jessica E.; Shen, Rhine R.; Abbott, Derek W.; Zhou, Alicia Y.; Sprott, Kam M.; Asara, John M.; Hahn, William C.; Cantley, Lewis C.

    2009-01-01

    Summary The non-canonical IKK family member IKKε is essential for regulating anti-viral signaling pathways and is a recently-discovered breast cancer oncoprotein. Although several IKKε targets have been described, direct IKKε substrates necessary for regulating cell transformation have not been identified. Here, we performed a screen for putative IKKε substrates using an unbiased proteomic and bioinformatic approach. Using a positional scanning peptide library assay we determined the optimal phosphorylation motif for IKKε and used bioinformatic approaches to predict IKKε substrates. Of these potential substrates, serine 418 of the tumor suppressor CYLD was identified as a likely site of IKKε phosphorylation. We confirmed that CYLD is directly phosphorylated by IKKε, and that IKKε phosphorylates serine 418 in vivo. Phosphorylation of CYLD at serine 418 decreases its deubiquitinase activity and is necessary for IKKε-driven transformation. Together, these observations define IKKε and CYLD as an oncogene-tumor suppressor network that participates in tumorigenesis. PMID:19481526

  17. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation

    PubMed Central

    Acin-Perez, Rebeca; Gatti, Domenico L.; Bai, Yidong; Manfredi, Giovanni

    2011-01-01

    Summary Rapid regulation of oxidative phosphorylation is crucial for mitochondrial adaptation to swift changes in fuels availability and energy demands. An intra-mitochondrial signaling pathway regulates cytochrome oxidase (COX), the terminal enzyme of the respiratory chain, through reversible phosphorylation. We find that PKA-mediated phosphorylation of a COX subunit dictates mammalian mitochondrial energy fluxes, and identify the specific residue (S58) of COX subunit IV-1 (COXIV-1) that is involved in this mechanism of metabolic regulation. Using protein mutagenesis, molecular dynamics simulations, and induced fit docking, we show that mitochondrial energy metabolism regulation by phosphorylation of COXIV-1 is coupled with prevention of COX allosteric inhibition by ATP. This regulatory mechanism is essential for efficient oxidative metabolism and cell survival. We propose that S58 COXIV-1 phosphorylation has evolved as a metabolic switch that allows mammalian mitochondria to rapidly toggle between energy utilization and energy storage. PMID:21641552

  18. Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation.

    PubMed

    Gómez-Ramos, Alberto; Domínguez, Jorge; Zafra, Delia; Corominola, Helena; Gomis, Ramon; Guinovart, Joan J; Avila, Jesús

    2006-02-01

    Tungstate treatment increases the phosphorylation of glycogen synthase kinase-3beta (GSK3beta) at serine 9, which triggers its inactivation both in cultured neural cells and in vivo. GSK3 phosphorylation is dependent on the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) induced by tungstate. As a consequence of GSK3 inactivation, the phosphorylation of several GSK3-dependent sites of the microtubule-associated protein tau decreases. Tungstate reduces tau phosphorylation only in primed sequences, namely, those prephosphorylated by other kinases before GSK3beta modification, which are serines 198, 199, or 202 and threonine 231. The phosphorylation at these sites is involved in reduction of the interaction of tau with microtubules that occurs in Alzheimer's disease.

  19. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines.

    PubMed

    Stewart, Russell J; Wang, Ching Shuen

    2010-04-12

    Aquatic caddisflies diverged from a silk-spinning ancestor shared with terrestrial moths and butterflies. Caddisfly larva spin adhesive silk underwater to construct protective shelters with adventitiously gathered materials. A repeating (SX)(n) motif conserved in the H-fibroin of several caddisfly species is densely phosphorylated. In total, more than half of the serines in caddisfly silk may be phosphorylated. Major molecular adaptations allowing underwater spinning of an ancestral dry silk appear to have been phosphorylation of serines and the accumulation of basic residues in the silk proteins. The amphoteric nature of the silk proteins could contribute to silk fiber assembly through electrostatic association of phosphorylated blocks with arginine-rich blocks. The presence of Ca(2+) in the caddisfly larval silk proteins suggest phosphorylated serines could contribute to silk fiber periodic substructure through Ca(2+) crossbridging.

  20. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Horng, Jorng-Tzong

    2005-07-01

    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

  1. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    SciTech Connect

    Eto, Ko; Sonoda, Yoshiyuki; Jin, Yuji; Abe, Shin-ichi

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  2. Phosphorylation of the human-transforming-growth-factor-beta-binding protein endoglin.

    PubMed Central

    Lastres, P; Martín-Perez, J; Langa, C; Bernabéu, C

    1994-01-01

    Endoglin is an homodimeric membrane antigen with capacity to bind transforming growth factor-beta (TGF-beta). Phosphorylation of human endoglin was demonstrated in endothelial cells as well as in mouse fibroblast transfectants expressing two isoforms, L-endoglin or S-endoglin, with distinct cytoplasmic domains. The extent of L-endoglin phosphorylation was found to be 8-fold higher than that of S-endoglin, and phosphopeptide analyses revealed at least three different phosphorylation sites for L-endoglin, whereas S-endoglin produces only one phosphopeptide. The immunoprecipitated L-endoglin was found to be phosphorylated mainly on serine, and, to a minor extent, on threonine, residues. Treatment of the cells with TGF-beta 1 or the protein kinase C inhibitor H-7 resulted in a reduction of the levels of endoglin phosphorylation. Images Figure 1 Figure 2 PMID:8053900

  3. Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

    PubMed Central

    Sanguinetti, Amy R; Cao, Haiming; Corley Mastick, Cynthia

    2003-01-01

    Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex. PMID:12921535

  4. Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration.

    PubMed

    Yu, Hong; Lee, Icksoo; Salomon, Arthur R; Yu, Kebing; Hüttemann, Maik

    2008-01-01

    Cytochrome c (Cyt c) is part of the mitochondrial electron transport chain (ETC), accepting electrons from bc(1) complex and transferring them to cytochrome c oxidase (CcO). The ETC generates the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. In addition, the release of Cyt c from the mitochondria often commits a cell to undergo apoptosis. Considering its central role in life (respiration) and death (apoptosis) decisions one would expect tight regulation of Cyt c function. Reversible phosphorylation is a main cellular regulatory mechanism, but the effect of cell signaling targeting the mitochondrial oxidative phosphorylation system is not well understood, and only a small number of proteins that can be phosphorylated have been identified to date. We have recently shown that Cyt c isolated from cow heart tissue is phosphorylated on tyrosine 97 in vivo, which leads to inhibition of respiration in the reaction with CcO. In this study we isolated Cyt c from a different organ, cow liver, under conditions preserving the physiological phosphorylation state. Western analysis with a phosphotyrosine specific antibody suggested that liver Cyt c is phosphorylated. Surprisingly, the phosphorylation site was unambiguously assigned to Tyr-48 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/nano-LC/ESI-MS), and not to the previously identified phospho-Tyr-97 in cow heart. As is true of Tyr-97, Tyr-48 is conserved in eukaryotes. As one possible consequence of Tyr-48 phosphorylation we analyzed the in vitro reaction kinetics with isolated cow liver CcO revealing striking differences. Maximal turnover of Tyr-48 phosphorylated Cyt c was 3.7 s(-1) whereas dephosphorylation resulted in a 2.2 fold increase in activity to 8.2 s(-1). Effects of Tyr-48 phosphorylation based on the Cyt c crystal structure are discussed.

  5. Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin.

    PubMed

    Soubeyrand, Sébastien; Pope, Louise; De Chasseval, Régina; Gosselin, Dominique; Dong, Fumin; de Villartay, Jean-Pierre; Haché, Robert J G

    2006-05-19

    Artemis is a nuclear phosphoprotein required for genomic integrity whose phosphorylation is increased subsequent to DNA damage. Artemis phosphorylation by the DNA-dependent protein kinase (DNA-PK) and the association of Artemis with DNA-PK catalytic subunit (DNA-PKcs) have been proposed to be crucial for the variable, diversity, joining (V(D)J) reaction, genomic stability and cell survival in response to double-stranded DNA breaks. The exact nature of the effectors of Artemis phosphorylation is presently being debated. Here, we have delimited the interface on Artemis required for its association with DNA-PKcs and present the characterization of six DNA-PK phosphorylation sites on Artemis whose phosphorylation shows dependence on its association with DNA-PKcs and is induced by double-stranded DNA damage. Surprisingly, DNA-PKcs Artemis association appeared to be dispensable in a V(D)J recombination assay with stably integrated DNA substrates. Phosphorylation at two of the sites on Artemis, S516 and S645, was verified in vivo using phosphospecific antibodies. Basal Artemis S516 and S645 phosphorylation in vivo showed a significant dependence on DNA-PKcs association. However, regardless of its association with DNA-PKcs, phosphorylation of Artemis at both S516 and S645 was stimulated in response to the double-stranded DNA-damaging agent bleomycin, albeit to a lesser extent. This suggests that additional factors contribute to promote DNA damage-induced Artemis phosphorylation. Intriguingly, pS516/pS645 Artemis was concentrated in chromatin-associated nuclear foci in naïve cells. These foci were maintained upon DNA damage but failed to overlap with the damage-induced gammaH2AX. These results provide the expectation of a specific role for DNA-PK-phosphorylated Artemis in both naïve and damaged cells.

  6. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation.

    PubMed

    Yin, Xinye; Liu, Jialu; Jiang, Jean X

    2008-05-01

    Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.

  7. Phosphorylation of the Retinoblastoma protein (Rb) on serine-807 is required for association with Bax.

    PubMed

    Antonucci, Lisa A; Egger, Jacklynn V; Krucher, Nancy A

    2014-01-01

    The recent finding that the Retinoblastoma protein (Rb) is able to regulate apoptosis in a non-transcriptional manner directly at the mitochondria by interaction with the pro-apoptotic protein Bax prompted this investigation of the complex formed between Rb and Bax. Because the function of Rb in the cellular processes of proliferation, apoptosis, senescence and differentiation is regulated by phosphorylation we endeavored to elucidate the phosphorylation status of Rb with respect to its association with Bax and its role in apoptosis. In this study we found that Rb phosphorylated on at least 4 C-terminal phosphorylation sites (S608, S795, S807/S811, and T821) is present at the mitochondria under non-stressed cellular conditions. An in vitro binding assay showed that Bax binds to Rb phosphorylated at S807/S811 in 3 cancer cell types. Physiologically relevant association between Bax and Rb phosphorylated on S807/S811 was demonstrated by reciprocal co-immunoprecipitation experiments using antibodies specific for Rb phosphorylated on S807/S811 and Bax. Mutant Rb proteins expressed in Rb-null C33A cells showed that phosphorylation of S807 of Rb promotes association with Bax and that mimicking phosphorylation at S807 of Rb can block the induction of apoptosis due to PNUTS downregulation. Finally using siRNA to activate phosphatase activity in MCF7 cells, Rb is dephosphorylated at several sites including S807/S811, dissociates from Bax and apoptosis is triggered. These studies show that phosphorylation of Rb regulates its association with Bax and its role in apoptosis.

  8. Multisite phosphorylation of P-Rex1 by protein kinase C

    PubMed Central

    Montero, Juan Carlos; Seoane, Samuel; García-Alonso, Sara; Pandiella, Atanasio

    2016-01-01

    P-Rex proteins are guanine nucleotide exchange factors (GEFs) that act on the Rho/Rac family of GTP binding proteins. The activity of P-Rex proteins is regulated by several extracellular stimuli. In fact, activation of growth factor receptors has been reported to activate a phosphorylation/dephosphorylation cycle of P-Rex1. Such cycle includes dephosphorylation of serines 313 and 319 which negatively regulate the GEF activity of P-Rex1, together with phosphorylation of serines 605 and 1169 which favour P-Rex1 GEF activity. However, the kinases that regulate phosphorylation at these different regulatory sites are largely unknown. Here we have investigated the potential regulatory action of several kinases on the phosphorylation of P-Rex1 at S313, S319, S605 and S1169. We show that activation of protein kinase C (PKC) caused phosphorylation of S313, S319 and S1169. Activation of growth factor receptors induced phosphorylation of S1169 through a mechanism that was independent of PKC, indicating that distinct kinases and mechanisms control the phosphorylation of P-Rex1 at different regulatory serines. Genetic and biochemical studies confirmed that the PKC isoform PKCδ was able to directly phosphorylate P-Rex1 at S313. Functional studies using cells with very low endogenous P-Rex1 expression, transfected with wild type P-Rex1 or a mutant form in which S313 was substituted by alanine, indicated that phosphorylation at that residue negatively regulated P-Rex1 exchange activity. We suggest that control of P-Rex1 activity depends on a highly dynamic interplay among distinct signalling routes and its multisite phosphorylation is controlled by the action of different kinases. PMID:27788493

  9. Tyr-94 Phosphorylation Inhibits Pyruvate Dehydrogenase Phosphatase 1 and Promotes Tumor Growth*

    PubMed Central

    Shan, Changliang; Kang, Hee-Bum; Elf, Shannon; Xie, Jianxin; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Hitosugi, Taro; Chung, Tae-Wook; Arellano, Martha; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Boggon, Titus J.; Fan, Jun

    2014-01-01

    Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect. PMID:24962578

  10. Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans

    PubMed Central

    Portegijs, Vincent; van Mourik, Tim; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2016-01-01

    During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα–LGN–NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C. elegans embryos. Here, we investigate whether additional LIN-5 phosphorylations regulate cortical pulling forces, making use of targeted alteration of in vivo phosphorylated residues by CRISPR/Cas9-mediated genetic engineering. Four distinct in vivo phosphorylated LIN-5 residues were found to have critical functions in spindle positioning. Two of these residues form part of a 30 amino acid binding site for GPR-1, which we identified by reverse two-hybrid screening. We provide evidence for a dual-kinase mechanism, involving GSK3 phosphorylation of S659 followed by phosphorylation of S662 by casein kinase 1. These LIN-5 phosphorylations promote LIN-5–GPR-1/2 interaction and contribute to cortical pulling forces. The other two critical residues, T168 and T181, form part of a cyclin-dependent kinase consensus site and are phosphorylated by CDK1-cyclin B in vitro. We applied a novel strategy to characterize early embryonic defects in lethal T168,T181 knockin substitution mutants, and provide evidence for sequential LIN-5 N-terminal phosphorylation and dephosphorylation in dynein recruitment. Our data support that phosphorylation of multiple LIN-5 domains by different kinases contributes to a mechanism for spatiotemporal control of spindle positioning and chromosome segregation. PMID:27711157

  11. Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation.

    PubMed

    Cohen, Michael V; Yang, Xi-Ming; White, James; Yellon, Derek M; Bell, Robert M; Downey, James M

    2016-04-01

    In animal models platelet P2Y12 receptor antagonists put the heart into a protected state, not as a result of suppressed thrombosis but rather through protective signaling, similar to that for ischemic postconditioning. While both ischemic postconditioning and the P2Y12 blocker cangrelor protect blood-perfused hearts, only the former protects buffer-perfused hearts indicating that the blocker requires a blood-borne constituent or factor to protect. We used an anti-platelet antibody to make thrombocytopenic rats to test if that factor resides within the platelet. Infarct size was measured in open-chest rats subjected to 30-min ischemia/2-h reperfusion. Infarct size was not different in thrombocytopenic rats showing that preventing aggregation alone is not protective. While ischemic preconditioning could reduce infarct size in thrombocytopenic rats, the P2Y12 inhibitor cangrelor could not, indicating that it protects by interacting with some factor in the platelet. Ischemic preconditioning is known to require phosphorylation of sphingosine. In rats treated with dimethylsphingosine to block sphingosine kinase, cangrelor was no longer protective. Thus cangrelor's protective mechanism appears to also involve sphingosine kinase revealing yet another similarity to conditioning's mechanism.

  12. Study of phosphorylation events for cancer diagnoses and treatment.

    PubMed

    López Villar, Elena; Madero, Luis; A López-Pascual, Juan; C Cho, William

    2015-12-01

    The activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation and survival, is orchestrated by protein kinases via phosphorylation. A critical issue is the study of the mechanisms of cancer cells for the development of more effective drugs. With the application of the new proteomic technologies, together with the advancement in the sequencing of the human proteome, patients will therefore be benefited by the discovery of novel therapeutic and/or diagnostic protein targets. Furthermore, the advances in proteomic approaches and the Human Proteome Organization (HUPO) have opened a new door which is helpful in the identification of patients at risk and towards improving current therapies. Modification of the signaling-networks via mutations or abnormal protein expression underlies the cause or consequence of many diseases including cancer. Resulting data is used to reveal connections between genes proteins and compounds and the related molecular pathways for underlining disease states. As a delegate of HUPO, for human proteome on children assays and studies, we, at Hospital Universitario Niño Jesús, are seeking to support the human proteome in this context. Clinical goals have to be clearly established and proteomics experts have to set up the appropriate proteomic strategy, which coupled to bioinformatics will make it possible to achieve new therapies for patients with poor prognosis. We envision to combine our up-coming data to the HUPO organization in order to support international efforts to advance the cure of cancer disease.

  13. Src enhances osteogenic differentiation through phosphorylation of Osterix.

    PubMed

    Choi, You Hee; Han, YounHo; Lee, Sung Ho; Cheong, Heesun; Chun, Kwang-Hoon; Yeo, Chang-Yeol; Lee, Kwang Youl

    2015-05-15

    Osterix, a zinc-finger transcription factor, is required for osteoblast differentiation and new bone formation during embryonic development. The c-Src of tyrosine kinase is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. Src activity is tightly regulated and its dysregulation leads to constitutive activation and cellular transformation. The function of Osterix can be also modulated by post-translational modification. But the precise molecular signaling mechanisms between Osterix and c-Src are not known. In this study we investigated the potential regulation of Osterix function by c-Src in osteoblast differentiation. We found that c-Src activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. The siRNA-mediated knockdown of c-Src decreased the protein levels and transcriptional activity of Osterix. Conversely, Src specific inhibitor, SU6656, decreased the protein levels and transcriptional activity of Osterix. The c-Src interacts with and phosphorylates Osterix. These results suggest that c-Src signaling modulates osteoblast differentiation at least in part through Osterix.

  14. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells

    PubMed Central

    Balmant, Kelly M.; Zhang, Tong; Chen, Sixue

    2016-01-01

    Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding. PMID:26903877

  15. Serine phosphorylation and arginine methylation at the crossroads to neurodegeneration.

    PubMed

    Basso, Manuela; Pennuto, Maria

    2015-09-01

    Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, polyglutamine diseases and motor neuron diseases, are late-onset and progressive disorders characterized by the accumulation of misfolded proteins inside and outside neurons. No effective therapies exist to delay the onset or arrest the progression of these diseases. One novel and promising therapeutic approach consists of targeting disease-causing proteins at the post-translational level. Here we illustrate this concept using the example of spinal and bulbar muscular atrophy, a neurodegenerative disease caused by polyglutamine expansion in the androgen receptor. Emerging evidence suggests that two key post-translational modifications of polyglutamine-expanded androgen receptor, namely serine phosphorylation by protein kinase B/Akt and arginine methylation by protein arginine methyltransferases, occur at the same consensus site, are mutually exclusive, and have opposing effects on neurotoxicity. Because several proteins linked to neurodegenerative diseases have canonical Akt consensus site motifs, these findings may have a broad impact in the field of neurological diseases caused by misfolded proteins.

  16. Adiponectin inhibits Lrp6 phosphorylation and β-catenin signaling

    PubMed Central

    Reinke, Lauren; Lam, Anna P.; Flozak, Annette S.; Varga, John; Gottardi, Cara J.

    2016-01-01

    Adiponectin is a pleiotropic adipokine implicated in obesity, metabolic syndrome and cardiovascular disease. Recent studies have identified adiponectin as a negative regulator of tissue fibrosis. Wnt/β-catenin signaling has also been implicated in metabolic syndrome and can promote tissue fibrosis, but the extent to which adiponectin cross-regulates Wnt/β-catenin signaling is unknown. Using primary human dermal fibroblasts and recombinant purified proteins, we show that adiponectin can limit β-catenin accumulation and downstream gene activation by inhibiting Lrp6 phosphorylation, a key activation step in canonical Wnt signaling. Inhibition of Wnt3a-mediated Lrp6 phospho-activation is relatively rapid (e.g., by 30 minutes), and is not dependent on established adiponectin G-protein coupled receptors, AdipoR1 and R2, suggesting a more direct relationship to Lrp6 signaling. In contrast, the ability of adiponectin to limit Wnt-induced and baseline collagen production in fibroblasts requires AdipoR1/R2. These results suggest the possibility that the pleiotropic effects of adiponectin may be mediated through distinct cell surface receptor complexes. Accordingly, we propose that the anti-fibrotic activity of adiponectin may be mediated through AdipoR1/R2 receptors, while the ability of adiponectin to inhibit Lrp6 phospho-activation may be relevant to other recently established roles for Lrp6 signaling in glucose metabolism and metabolic syndrome. PMID:26797284

  17. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    PubMed

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.

  18. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds.

    PubMed Central

    Blonski, C; De Moissac, D; Périé, J; Sygusch, J

    1997-01-01

    The interactions of the phosphorylated derivatives of hydroquinone (HQN-P2), resorcinol (RSN-P2), 4-hydroxybenzaldehyde (HBA-P) and 2, 4-dihydroxybenzaldehyde (DHBA-P; phosphate group at position 4) with fructose bisphosphate aldolase were analysed by enzyme kinetics, UV/visible difference spectroscopy and site-directed mutagenesis. Enzyme activity was competitively inhibited in the presence of HQN-P2, RSN-P2 and HBA-P, whereas DHBA-P exhibited slow-binding inhibition. Inhibition by DHBA-P involved active-site Schiff-base formation and required a phenol group ortho to the aldehyde moiety. Rates of enzyme inactivation and of Schiff-base formation by DHBA-P were identical, and corresponded to 3.2-3.5 DHBA-P molecules covalently bound per aldolase tetramer at maximal inactivation. Site-directed mutagenesis of the active-site lysine residues at positions 107, 146 and 229 was found to be consistent with Schiff-base formation between DHBA-P and Lys-146, and this was promoted by Lys-229. Mutation of Glu-187, located vicinally between Lys-146 and Lys-229 in the active site, perturbed the rate of Schiff-base formation, suggesting a functional role for Glu-187 in Schiff-base formation and stabilization. The decreased cleavage activity of the active-site mutants towards fructose 1, 6-bisphosphate is consistent with a proton-transfer mechanism involving Lys-229, Glu-187 and Lys-146. PMID:9173904

  19. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?

    PubMed

    du Plessis, Stefan S; Agarwal, Ashok; Mohanty, Gayatri; van der Linde, Michelle

    2015-01-01

    Spermatozoa are highly specialized cells. Adenosine triphosphate (ATP), which provides the energy for supporting the key functions of the spermatozoa, is formed by 2 metabolic pathways, namely glycolysis and oxidative phosphorylation (OXPHOS). It is produced in the mitochondria through OXPHOS as well as in the head and principal piece of the flagellum through glycolysis. However, there is a great discrepancy as to which method of ATP production is primarily utilized by the spermatozoa for successful fertilization. Mitochondrial respiration is considered to be a more efficient metabolic process for ATP synthesis in comparison to glycolysis. However, studies have shown that the diffusion potential of ATP from the mitochondria to the distal end of the flagellum is not sufficient to support sperm motility, suggesting that glycolysis in the tail region is the preferred pathway for energy production. It is suggested by many investigators that although glycolysis forms the major source of ATP along the flagellum, energy required for sperm motility is mainly produced during mitochondrial respiration. Nevertheless, some studies have shown that when glycolysis is inhibited, proper functioning and motility of spermatozoa remains intact although it is unclear whether such motility can be sustained for prolonged periods of time, or is sufficiently vigorous to achieve optimal fertilization. The purpose of this article is to provide an overview of mammalian sperm energy metabolism and identify the preferred metabolic pathway for ATP generation which forms the basis of energy production in human spermatozoa during fertilization.

  20. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation.

    PubMed

    Mizuno, Kensaku

    2013-02-01

    Cofilin and actin-depolymerizing factor (ADF) are actin-binding proteins that play an essential role in regulating actin filament dynamics and reorganization by stimulating the severance and depolymerization of actin filaments. Cofilin/ADF are inactivated by phosphorylation at the serine residue at position 3 by LIM-kinases (LIMKs) and testicular protein kinases (TESKs) and are reactivated by dephosphorylation by the slingshot (SSH) family of protein phosphatases and chronophin. This review describes recent advances in our understanding of the signaling mechanisms regulating LIMKs and SSHs and the functional roles of cofilin phospho-regulation in cell migration, tumor invasion, mitosis, neuronal development, and synaptic plasticity. Accumulating evidence demonstrates that the phospho-regulation of cofilin/ADF is a key convergence point of cell signaling networks that link extracellular stimuli to actin cytoskeletal dynamics and that spatiotemporal control of cofilin/ADF activity by LIMKs and SSHs plays a crucial role in a diverse array of cellular and physiological processes. Perturbations in the normal control of cofilin/ADF activity underlie many pathological conditions, including cancer metastasis and neurological and cardiovascular disorders.

  1. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  2. Phosphorylation of titan and nebulin in skeletal muscle

    SciTech Connect

    Somerville, L.L.

    1986-01-01

    The in vitro and in vivo phosphorylation of skeletal muscle titin and nebulin are examined. It has been proposed that these proteins are the fundamental components of an elastic cytoskeletal lattice within the sarcomere. Determinations of endogenous phosphate in titin and nebulin purified from rabbit back muscle revealed phosphate contents of 3.10 +/- 0.26 mol phosphate/mol titin and 4.63 +/- 0.43 mol phosphate/mol nebulin. Incubation of rabbit back muscle homogenate in the presence of gamma-/sup 32/P ATP resulted in the labeling of both titin and nebulin; labeling was enhanced by the addition of cAMP-dependent protein kinase. Similar results were obtained from the incubation of chemically skinned rabbit psoas fibers in the presence of labeled ATP. A time dependent increase in phosphate incorporation was observed. Purification of titin and nebulin from Xenopus laevis frog gastrocnemius revealed endogenous phosphate contents of 6.15 +/- 0.12 mol phosphate/mol titin and 9.67 +/- 1.5 mol phosphate/mol nebulin. Titin and nebulin labeling after in vivo injection of Xenopus laevis frogs with /sup 32/P-orthophosphate was demonstrated.

  3. Development of monetite/phosphorylated chitosan composite bone cement.

    PubMed

    Boroujeni, Nariman Mansouri; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2014-02-01

    In this article, we report the development of a biodegradable monetite [dicalcium phosphate anhydrous (DCPA), CaHPO4 ]/phosphorylated chitosan (p-chitosan) composite orthopedic cement. The cement pastes showed desirable handling properties, injectability, and washout resistance. The incorporation of p-chitosan powders at 5 wt % shortened the setting time of DCPA and significantly improved the mechanical performance of DCPA cement, increasing the compressive strength almost twice from 11.09 ± 1.85 MPa at 0% chitosan to 23.43 ± 1.47 MPa at 5 wt % p-chitosan. On the other hand, higher p-chitosan content or untreated chitosan incorporation lowered the performance of DCPA cements. The cytocompatibility of the composite cement was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase in cell proliferation was observed in both DCPA and DCPA-p-chitosan. The results show that both the materials are as cytocompatible as hydroxyapatite. Based on these results, DCPA-p-chitosan composite cement can be considered as potential bone repair material.

  4. Neonatal cardiomyopathies and metabolic crises due to oxidative phosphorylation defects.

    PubMed

    Schiff, Manuel; Ogier de Baulny, Hélène; Lombès, Anne

    2011-08-01

    Neonatal cardiomyopathies due to mitochondrial oxidative phosphorylation (OXPHOS) defects are extremely severe conditions which can be either isolated or included in a multi-organ disease, with or without metabolic crises, of which profound lactic acidosis is the prominent feature. Cardiomyopathy is more often hypertrophic than dilated. Antenatal manifestations such as fetal cardiomyopathy, arrhythmia and/or hydrops have been reported. Pathophysiological mechanisms are complex, going beyond ATP deficiency of the high-energy-consuming neonatal myocardium. Birth is a key metabolic period when the myocardium switches ATP production from anaerobic glycolysis to mitochondrial fatty acid oxidation and OXPHOS. Heart-specificity of the defect may be related to the specific localization of the defect, to the high myocardium dependency on OXPHOS, and/or to interaction between the primary genetic alteration and other factors such as modifier genes. Therapeutic options are limited but standardized diagnostic procedures are mandatory to confirm the OXPHOS defect and to identify its causal mutation, allowing genetic counseling and potential prenatal diagnosis.

  5. Exportability of the mitochondrial oxidative phosphorylation machinery into myelin sheath.

    PubMed

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2011-01-01

    White matter comprises over half of the brain, and its role in axonal survival is being reconsidered, consistently with the observation that axonal degeneration follows demyelination. The recent evidence of an extra-mitochondrial aerobic ATP production in isolated myelin vesicles, thanks to the expression therein of the mitochondrial Oxydative Phosphorylation (OXPHOS) machinery, stands in for myelin playing a functional bioenergetic role in ATP supply for the axon. The observation that subunits of the OXPHOS encoded by the mitochondrial genome are expressed in myelin, suggests that they can be the same as those of the inner mitochondrial membrane. This would mean that the OXPHOS is exportable. Here the hypothesis is exposed that the mitochondrion is the unique site of the assembly of the OXPHOS, so that this is exported to those sub cellular districts displaying high energy demand, such as myelin sheath. There the OXPHOS would display a higher efficiency in oxidative ATP production than inside the mitochondrion itself In this respect, the role of the glia in the nervous conduction is shed new light and the oligodendrocyte mitochondrial OXPHOS are hypothesized to be delivered to nascent myelin.

  6. Diseases of the human mitochondrial oxidative phosphorylation system.

    PubMed

    Montoya, Julio; López-Gallardo, Ester; Herrero-Martín, María Dolores; Martínez-Romero, Iñigo; Gómez-Durán, Aurora; Pacheu, David; Carreras, Magdalena; Díez-Sánchez, Carmen; López-Pérez, Manuel J; Ruiz-Pesini, Eduardo

    2009-01-01

    Mitochondrial diseases, or diseases of the oxidative phosphorylation system, consist of a group of disorders originated by a deficient synthesis of ATP. This system is composed of proteins codified in the two genetic systems of the cell, the nuclear and the mitochondrial genomes, and, therefore, the mode of inheritance could be either mendelian or maternal. The diseases can also appear sporadically. Due to the central role that mitochondria play in cellular physiology, these diseases are a social and health problem of great importance. They are considered rare diseases; however, together they constitute a large variety of genetic disorders. It is also believed that mitochondria are involved, directly or indirectly, in many other human diseases, mainly in age-related diseases. This review will focus mainly on describing the special characteristics of the mitochondrial genetic system and the diseases caused by mitochondrial DNA mutations. We will also note the difficulties in studying these pathologies, and the possible involvement of the genetic variability of the mitochondrial genome in the development of these diseases.

  7. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia

    PubMed Central

    Bergman, Oded

    2016-01-01

    Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca+2, neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder. PMID:27412728

  8. Association of the tyrosine phosphorylated epidermal growth factor receptor with a 55-kD tyrosine phosphorylated protein at the cell surface and in endosomes

    PubMed Central

    1992-01-01

    After the intraportal injection of EGF, the EGF receptor (EGFR) is rapidly internalized into hepatic endosomes where it remains largely receptor bound (Lai et al., 1989. J. Cell Biol. 109:2751-2760). In the present study, we evaluated the phosphotyrosine content of EGFRs at the cell surface and in endosomes in order to assess the consequences of internalization. Quantitative estimates of specific radioactivity of the EGFR in these two compartments revealed that tyrosine phosphorylation of the EGFR was observed at the cell surface within 30 s of ligand administration. However, the EGFR was also highly phosphorylated in endosomes reaching levels of tyrosine phosphorylation significantly higher than those of the cell surface receptor at 5 and 15 min after EGF injection. A 55-kD tyrosine phosphorylated polypeptide (pyp55) was observed in association with the EGFR at the cell surface within 30 s of EGF injection. The protein was also found in association with the EGFR in endosomes as evidenced by coprecipitation studies using a mAb to the EGFR as well as by coelution with the EGR in gel permeation chromatography. Limited proteolysis of isolated endosomes indicated that the tyrosine phosphorylated domains of the EGFR and associated pyp55 were cytosolically oriented while internalized EGF was intraluminal. The identification of pyp55 in association with EGFR in both hepatic plasma membranes and endosomes may be relevant to EGFR function and/or trafficking of the EGFR. PMID:1370492

  9. Hormone-induced protein phosphorylation. I. Relationship between secretagogue action and endogenous protein phosphorylation in intact cells from the exocrine pancreas and parotid

    PubMed Central

    1982-01-01

    We undertook studies to determine whether secretagogue action on the exocrine pancreas and parotid is accompanied by phosphorylation of proteins in intact cells. For this purpose, rat pancreatic, and parotid lobules were preincubated with 32Pi for 45 min at 37 degrees C, washed, and then incubated at 37 degrees C in the presence or absence of secretagogues that effect discharge through different second messengers. Among a variety of polypeptides exhibiting enhanced phosphorylation in pancreatic lobules upon a 30-s incubation in the presence of the secretagogues carbamylcholine, cholecystokinin octapeptide, or secretin, one species with an Mr of 29,000 was especially notable for three reasons: (a) its enhanced level of phosphorylation was dependent on the dose of secretagogue used and was still apparent after incubation for 30 min at 37 degrees C; (b) an analogous phosphorylated polypeptide was observed in isoproterenol- stimulated parotid lobules; and (c) in both tissues its selective dephosphorylation was observed upon termination of stimulation by administration of atropine to carbamylcholine-stimulated pancreatic lobules and propranolol to isoproterenol-stimulated parotid lobules. These results suggest that the phosphorylation of one protein with an Mr of 29,000 is closely correlated both temporally and in a dose- dependent fashion with secretagogue action in both the exocrine pancreas and parotid. PMID:6296160

  10. The long myosin light chain kinase is differentially phosphorylated during interphase and mitosis.

    PubMed

    Dulyaninova, Natalya G; Bresnick, Anne R

    2004-10-01

    We have shown previously that the activity of the long myosin light chain kinase (MLCK) is cell cycle regulated with a decrease in specific activity during mitosis that can be restored following treatment with alkaline phosphatase. To better understand the role and significance of phosphorylation in regulating MLCK function during mitosis, we examined the phosphorylation state of in vivo derived MLCK. Phosphoamino acid analysis and phosphopeptide mapping demonstrate that the long MLCK is differentially phosphorylated on serine residues during interphase and mitosis with the majority of the phosphorylation sites located within the N-terminal IgG domain. Biochemical assays show that Aurora B binds and phosphorylates the IgG domain of the long MLCK. In addition, phosphopeptide maps of the endogenous full-length MLCK from mitotic cells and in vitro phosphorylated IgG domain demonstrate that Aurora B phosphorylates the same sites as those observed in vivo. Altogether, these studies suggest that the long MLCK may be a cellular target for Aurora B during mitosis.

  11. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region.

    PubMed

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A; Vigoreaux, Jim O

    2016-03-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region.

  12. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    SciTech Connect

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  13. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.).

    PubMed

    Lin, Shoukai; Chen, Lijuan; Tao, Huan; Huang, Jian; Xu, Chaoqun; Li, Lin; Ma, Shiwei; Tian, Tian; Liu, Wei; Xue, Lichun; Ai, Yufang; He, Huaqin

    2016-11-11

    Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.

  14. Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry.

    PubMed

    Zolodz, Melissa D; Wood, Karl V

    2003-03-01

    Phosphorylation of proteins is an important post-translational protein modification in cellular response to environmental change and occurs in both prokaryotes and eukaryotes. Identification of the amino acid on individual proteins that become phosphorylated in response to extracellular stimulus is essential for understanding the mechanisms involved in the intracellular signals that these modifications facilitate. Most protein kinases catalyze the phosphorylation of proteins on serine, threonine or tyrosine. Although tyrosine phosphorylation is often the least abundant of the three major phosphorylation sites, it is important owing to its role in signal pathways. Currently available methods for the identification of phosphorylation sites can often miss low levels of tyrosine phosphorylations. This paper describes a method for the identification of phosphotyrosine-containing peptides using electrospray ionization on an ion trap mass spectrometer. Skimmer-activated collision-induced dissociation (CID) was used to generate the phosphotyrosine immonium ion at m/z 216. This method is gentle enough that the protonated molecule of the intact peptide is still observed. In-trap CID was employed for the verification of the phosphotyrosine immonium ion. Using this technique, low levels of phosphotyrosine-containing peptides can be identified from peptide mixtures separated by nanoflow micro liquid chromatography/mass spectrometry.

  15. Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein.

    PubMed

    Qiu, Xusheng; Zhan, Yuan; Meng, Chunchun; Wang, Junqing; Dong, LuNa; Sun, Yingjie; Tan, Lei; Song, Cuiping; Yu, Shengqing; Ding, Chan

    2016-08-01

    Newcastle disease virus (NDV) encodes a highly phosphorylated P protein; however, the phosphorylation sites have not been identified, and the relationship between phosphorylation and protein function is still unclear. In this study, we bioinformatically predicted 26 amino acid residues in the P protein as potential phosphorylation sites. Furthermore, we treated infected cells with kinase inhibitors to investigate NDV propagation and found that protein kinase C (PKC) is involved in the NDV life cycle and that PKC-activated phosphorylation functions in NDV replication. Using an NDV minigenome assay, we found that expression of a reporter protein decreased when the minigenome system contained P mutants lacking T44, S48, T271, S373 and especially T111. The phosphorylation status of S48, T111, S125 and T271 was determined by Phos-tag SDS-PAGE analysis. Coimmunoprecipitation assays showed that the binding activity of NP and the P-T111A mutant was stronger than that of NP and the wild-type P, suggesting that P-T111 is involved in NP-P interaction. This study sheds light on the mechanism by which P protein phosphorylation affects NDV replication and transcription.

  16. A phosphorylation site in the ftz homeodomain is required for activity.

    PubMed Central

    Dong, J; Hung, L H; Strome, R; Krause, H M

    1998-01-01

    The Drosophila homeodomain-containing protein Fushi tarazu (Ftz) is expressed sequentially in the embryo, first in alternate segments, then in specific neuroblasts and neurons in the central nervous system, and finally in parts of the gut. During these different developmental stages, the protein is heavily phosphorylated on different subsets of Ser and Thr residues. This stage-specific phosphorylation suggests possible roles for signal transduction pathways in directing tissue-specific Ftz activities. Here we show that one of the Ftz phosphorylation sites, T263 in the N-terminus of the Ftz homeodomain, is phosphorylated in vitro by Drosophila embryo extracts and protein kinase A. In the embryo, mutagenesis of this site to the non-phosphorylatable residue Ala resulted in loss of ftz-dependent segments. Conversely, substitution of T263 with Asp, which is also non-phosphorylatable, but which successfully mimics phosphorylated residues in a number of proteins, rescued the mutant phenotype. This suggests that T263 is in the phosphorylated state when functioning normally in vivo. We also demonstrate that the T263 substitutions of Ala and Asp do not affect Ftz DNA-binding activity in vitro, nor do they affect stability or transcriptional activity in transfected S2 cells. This suggests that T263 phosphorylation is most likely required for a homeodomain-mediated interaction with an embryonically expressed protein. PMID:9545243

  17. Lectin-induced activation of platelets may require only limited phosphorylation of the 47K protein

    SciTech Connect

    Ganguly, C.; Chelladurai, M.; Ganguly, P.

    1986-05-01

    Wheat germ agglutinin (WGA) is an N-acetylglucosamine (Glc-NAc) specific lectin which can activate platelets. Like thrombin, stimulation of platelets by WGA is accompanied by enhanced phosphorylation of two polypeptides of M/sub r/ 47K and 20K. Addition of GlcNAc at different time intervals arrested that aggregation of platelets by WGA and paralleled the modification of phosphorylation of the 47K polypeptide. So, the phosphorylation of the 47K polypeptide may regulate the WGA-receptor mediated stimulation of platelets. However, the ratio of phosphoserine to phosphothreonine in the 47K protein was markedly different in WGA-activated than thrombin-stimulated platelets. Thus, the molecular mechanism of action of thrombin and WGA could be different. To explore this idea, /sup 32/P/sub i/-labeled platelets were stimulated with WGA and the activation arrested with N-acetyl-glucosamine at different times. Two-dimensional gel electrophoresis of total protein at 5s showed only two phosphorylated species of 47K protein. At 60s, maximally four phosphorylated species were noted. In contrast, with thrombin using the same technique, seven to nine phosphorylated components have been reported. These results suggest that the different activators of platelets may act by different mechanisms. In addition, activation of platelets may require only limited levels of phosphorylation of the 47K polypeptide.

  18. Insulin phosphorylates calmodulin in preparations of solubilized rat hepatocyte insulin receptors

    SciTech Connect

    Sacks, D.B.; McDonald, J.M.

    1987-05-01

    It has previously been shown that insulin stimulates the phosphorylation of calmodulin in adipocyte insulin receptor preparations. Here they demonstrate that insulin also stimulates the phosphorylation of calmodulin in wheat germ lectin-enriched insulin receptor preparations obtained from rat hepatocytes. Standard phosphorylation assays were performed at 30C in the presence of 50mM Tris-HCl (pH 7.5), 0.1% (v/v) Triton X-100, 1mM EGTA, 50 M (el-TSP)ATP, 5mM MgCl2, 0.25 M polylysine, 1.2 M calmodulin and various CaS and insulin concentrations. The phosphorylation of calmodulin was determined by SDS-PAGE and autoradiography. Phosphorylation of calmodulin had an absolute requirement for insulin receptors, insulin and certain basic proteins. Phosphorylation was maximal above 13 nM insulin and at submicromolar CaS concentrations, whereas supramicromolar CaS concentrations were inhibitory. As was observed in the adipocyte insulin receptor system, calmodulin phosphorylation was dependent upon the presence of co-factors, such as polylysine, histone H/sub f/2b and protamine sulfate. The role played by these co-factors has not yet been established. These data suggest that both CaS and calmodulin participate in post receptor insulin events in hepatocytes.

  19. Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha.

    PubMed

    St-Denis, Nicole A; Derksen, D Richard; Litchfield, David W

    2009-04-01

    Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2alpha, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2alpha phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2alpha is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2alpha (CK2alpha-4D, CK2alpha-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2alpha (CK2alpha-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2alpha requires precise regulation to allow proper mitotic progression.

  20. Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion

    SciTech Connect

    Blowers, D.P.; Boss, W.F.; Trewavas, A.J. )

    1988-02-01

    Plasma membrane vesicles from wild carrot cells grown in suspension culture were isolated by aqueous two-phase partitioning, and ATP-dependent phosphorylation was measured with ({gamma}-{sup 32}P)ATP in the presence and absence of calcium. Treatment of the carrot cells with the cell wall digestion enzymes, driselase, in a sorbitol osmoticum for 1.5 min altered the protein phosphorylation pattern compared to that of cells treated with sorbitol alone. Driselase treatment resulted in decreased phosphorylation of a band of M{sub r} 80,000 which showed almost complete calcium dependence in the osmoticum treated cells; decreased phosphorylation of a band of M{sub r} 15,000 which showed little calcium activation, and appearance of a new band of calcium-dependent phosphorylation at M{sub r} 22,000. However, protein phosphorylation was decreased. Adding driselase to the in vitro reaction mixture caused a general decrease in the membrane protein phosphorylation either in the presence or absence of calcium which did not mimic the in vivo response. Cells labeled in vivo with inorganic {sup 32}P also showed a response to the Driselase treatment. An enzymically active driselas preparation was required for the observed responses.

  1. Stress-induced inhibition of translation independently of eIF2α phosphorylation.

    PubMed

    Knutsen, Jon Halvor Jonsrud; Rødland, Gro Elise; Bøe, Cathrine Arnason; Håland, Tine Weise; Sunnerhagen, Per; Grallert, Beáta; Boye, Erik

    2015-12-01

    Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution.

  2. Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes.

    PubMed Central

    James, D E; Hiken, J; Lawrence, J C

    1989-01-01

    We have examined the acute effects of insulin and isoproterenol on the phosphorylation state of the insulin-regulatable glucose transporter (IRGT) in rat adipocytes. The IRGT was immunoprecipitated from either detergent-solubilized whole-cell homogenates or subcellular fractions of 32P-labeled fat cells and subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The 32P-labeled IRGT was detected by autoradiography as a species of apparent Mr 46,000. Insulin stimulated translocation of the IRGT from low-density microsomes to the plasma membrane but did not affect phosphorylation of the transporter in either fraction. Isoproterenol inhibited insulin-stimulated glucose transport by 40% but was without effect on the subcellular distribution of the transporter in either the presence or absence of insulin. Isoproterenol stimulated phosphorylation of the IRGT 2-fold. Incubating cells with dibutyryl-cAMP and 8-bromo-cAMP also stimulated phosphorylation 2-fold, and the transporter was phosphorylated in vitro when IRGT-enriched vesicles were incubated with cAMP-dependent protein kinase and [gamma-32P]ATP. These results suggest that isoproterenol stimulates phosphorylation of the IRGT via a cAMP-dependent pathway and that phosphorylation of the transporter may modulate its ability to transport glucose. Images PMID:2554313

  3. Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.)

    PubMed Central

    Lin, Shoukai; Chen, Lijuan; Tao, Huan; Huang, Jian; Xu, Chaoqun; Li, Lin; Ma, Shiwei; Tian, Tian; Liu, Wei; Xue, Lichun; Ai, Yufang; He, Huaqin

    2016-01-01

    Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding. PMID:27845739

  4. FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC5.

    PubMed

    Li, Weiquan; Aurandt, Jennifer; Jürgensen, Claudia; Jürgense, Claudia; Rao, Yi; Guan, Kun-Liang

    2006-01-01

    During neuronal development, netrin and its receptors UNC5 and DCC (deleted in colorectal cancer) guide axonal growth cones in navigating to their targets. Netrin also plays important roles in the regulation of cell migration, tissue morphogenesis and tumor growth. Here, we show that netrin induces UNC5 tyrosine phosphorylation and that this effect of netrin is dependent on its co-receptor DCC. UNC5 tyrosine phosphorylation is known to be important for netrin to induce cell migration and axonal repulsion. Src tyrosine kinase activity is required for netrin to stimulate UNC5 tyrosine phosphorylation in neurons and transfected cells. The SH2 domain of Src kinase directly interacts with the cytosolic domain of UNC5 in a tyrosine-phosphorylation-dependent manner. Furthermore, the tyrosine kinase focal adhesion kinase (FAK) is also involved in netrin-induced UNC5 tyrosine phosphorylation. Both Src and FAK can phosphorylate UNC5. Our data suggest a model in which netrin stimulates UNC5 tyrosine phosphorylation and signaling in a manner dependent on the co-receptor DCC, through the recruitment of Src and FAK kinases.

  5. SUMOylation of Rb enhances its binding with CDK2 and phosphorylation at early G1 phase.

    PubMed

    Meng, Fengxi; Qian, Jiang; Yue, Han; Li, Xiaofeng; Xue, Kang

    2016-07-02

    Retinoblastoma protein (Rb) is a prototypical tumor suppressor that is vital to the negative regulation of the cell cycle and tumor progression. Hypo-phosphorylated Rb is associated with G0/G1 arrest by suppressing E2F transcription factor activity, whereas Rb hyper-phosphorylation allows E2F release and cell cycle progression from G0/G1 to S phase. However, the factors that regulate cyclin-dependent protein kinase (CDK)-dependent hyper-phosphorylation of Rb during the cell cycle remain obscure. In this study, we show that throughout the cell cycle, Rb is specifically small ubiquitin-like modifier (SUMO)ylated at early G1 phase. SUMOylation of Rb stimulates its phosphorylation level by recruiting a SUMO-interaction motif (SIM)-containing kinase CDK2, leading to Rb hyper-phosphorylation and E2F-1 release. In contrast, a SUMO-deficient Rb mutant results in reduced SUMOylation and phosphorylation, weakened CDK2 binding, and attenuated E2F-1 sequestration. Furthermore, we reveal that Rb SUMOylation is required for cell proliferation. Therefore, our study describes a novel mechanism that regulates Rb phosphorylation during cell cycle progression.

  6. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    PubMed Central

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388

  7. Antibody Array Revealed PRL-3 Affects Protein Phosphorylation and Cytokine Secretion.

    PubMed

    Yang, Yongyong; Lian, Shenyi; Meng, Lin; Qu, Like; Shou, Chengchao

    2017-01-01

    Phosphatase of regenerating liver 3 (PRL-3) promotes cancer metastasis and progression via increasing cell motility and invasiveness, however the mechanism is still not fully understood. Previous reports showed that PRL-3 increases the phosphorylation of many important proteins and suspected that PRL-3-enhanced protein phosphorylation may be due to its regulation on cytokines. To investigate PRL-3's impact on protein phosphorylation and cytokine secretion, we performed antibody arrays against protein phosphorylation and cytokines separately. The data showed that PRL-3 could enhance tyrosine phosphorylation and serine/threonine phosphorylation of diverse signaling proteins. Meanwhile, PRL-3 could affect the secretion of a subset of cytokines. Furthermore, we discovered the PRL-3-increased IL-1α secretion was regulated by NF-κB and Jak2-Stat3 pathways and inhibiting IL-1α could reduce PRL-3-enhanced cell migration. Therefore, our result indicated that PRL-3 promotes protein phosphorylation by acting as an 'activator kinase' and consequently regulates cytokine secretion.

  8. Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex.

    PubMed Central

    Fotedar, R; Roberts, J M

    1992-01-01

    The transition from G1 to S phase of the cell cycle may be regulated by modification of proteins which are essential for initiating DNA replication. One of the first events during initiation is to unwind the origin DNA and this requires a single-stranded DNA binding protein. RPA, a highly conserved multi-subunit single-stranded DNA binding protein, was first identified as a cellular protein necessary for the initiation of SV40 DNA replication. The 32 kDa subunit of RPA has been shown to be phosphorylated at the start of S phase. Using SV40 replication as a model, we have reproduced in vitro the S phase-dependent phosphorylation of RPA-32 and show that it occurs specifically within the replication initiation complex. Phosphorylated RPA-32 is predominantly associated with DNA. Phosphorylation is not a pre-requisite for association with DNA, but occurs after RPA binds to single-stranded DNA formed at the origin during the initiation phase. The protein kinase(s) which phosphorylates RPA-32 is present at all stages of the cell cycle but RPA-32 does not bind to the SV40 origin or become phosphorylated in extracts from G1 cells. Therefore, the cell cycle-dependent phosphorylation of RPA-32 may be regulated by its binding to single-stranded origin DNA during replication initiation. Images PMID:1318194

  9. Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae.

    PubMed Central

    Kim, S; Fyrst, H; Saba, J

    2000-01-01

    Sphingolipid metabolites in mammals can function as signaling molecules with cell-specific functions. In Saccharomyces cerevisiae, phosphorylated long chain bases, such as dihydrosphingosine 1-phosphate and phytosphingosine 1-phosphate, have also been implicated in stress responses. To further explore the biological roles of these molecules, we created disruption mutants for LCB4, LCB5, DPL1, YSR2, YSR3, and SUR2. LCB4 and LCB5 encode kinases that phosphorylate long chain bases. DPL1 and YSR2/YSR3 are involved in degradation of the phosphorylated long chain bases. SUR2 catalyzes conversion of dihydrosphingosine to phytosphingosine. We adapted an HPLC method to measure intracellular concentrations of the phosphorylated long chain bases. Double mutants of dpl1 and ysr2 were inviable, whereas dpl1 ysr2 lcb4 triple mutants were viable. Further, growth inhibition associated with accumulated phosphorylated long chain bases was observed in the triple mutant dpl1 ysr2 lcb4 overexpressing LCB4 or LCB5. These results indicate that phosphorylated long chain bases can inhibit cell growth. Mutants defective in both YSR2 and SUR2, which accumulated dihydrosphingosine 1-phosphate only, grew poorly. The phenotypes of the ysr2 sur2 mutants were suppressed by overexpression of DPL1. Our results clearly show that elevated levels of phosphorylated long chain bases have an antiproliferative effect in yeast. PMID:11102354

  10. Musk Kinase Activity is Modulated By A Serine Phosphorylation Site in The Kinase Loop.

    PubMed

    Camurdanoglu, B Z; Hrovat, C; Dürnberger, G; Madalinski, M; Mechtler, K; Herbst, R

    2016-09-26

    The neuromuscular junction (NMJ) forms when a motor neuron contacts a muscle fibre. A reciprocal exchange of signals initiates a cascade of signalling events that result in pre- and postsynaptic differentiation. At the centre of these signalling events stands muscle specific kinase (MuSK). MuSK activation, kinase activity and subsequent downstream signalling are crucial for NMJ formation as well as maintenance. Therefore MuSK kinase activity is tightly regulated to ensure proper NMJ development. We have identified a novel serine phosphorylation site at position 751 in MuSK that is increasingly phosphorylated upon agrin stimulation. S751 is also phosphorylated in muscle tissue and its phosphorylation depends on MuSK kinase activity. A phosphomimetic mutant of S751 increases MuSK kinase activity in response to non-saturating agrin concentrations . In addition, basal MuSK and AChR phosphorylation as well as AChR cluster size are increased. We believe that the phosphorylation of S751 provides a novel mechanism to relief the autoinhibition of the MuSK activation loop. Such a lower autoinhibition could foster or stabilize MuSK kinase activation, especially during stages when no or low level of agrin are present. Phosphorylation of S751 might therefore represent a novel mechanism to modulate MuSK kinase activity during prepatterning or NMJ maintenance.

  11. Stress-induced inhibition of translation independently of eIF2α phosphorylation

    PubMed Central

    Knutsen, Jon Halvor Jonsrud; Rødland, Gro Elise; Bøe, Cathrine Arnason; Håland, Tine Weise; Sunnerhagen, Per; Grallert, Beáta; Boye, Erik

    2015-01-01

    ABSTRACT Exposure of fission yeast cells to ultraviolet (UV) light leads to inhibition of translation and phosphorylation of the eukaryotic initiation factor-2α (eIF2α). This phosphorylation is a common response to stress in all eukaryotes. It leads to inhibition of translation at the initiation stage and is thought to be the main reason why stressed cells dramatically reduce protein synthesis. Phosphorylation of eIF2α has been taken as a readout for downregulation of translation, but the role of eIF2α phosphorylation in the downregulation of general translation has not been much investigated. We show here that UV-induced global inhibition of translation in fission yeast cells is independent of eIF2α phosphorylation and the eIF2α kinase general control nonderepressible-2 protein (Gcn2). Also, in budding yeast and mammalian cells, the UV-induced translational depression is largely independent of GCN2 and eIF2α phosphorylation. Furthermore, exposure of fission yeast cells to oxidative stress generated by hydrogen peroxide induced an inhibition of translation that is also independent of Gcn2 and of eIF2α phosphorylation. Our findings show that stress-induced translational inhibition occurs through an unknown mechanism that is likely to be conserved through evolution. PMID:26493332

  12. Identification and Functional Characterization of the Phosphorylation Sites of the Neuropeptide FF2 Receptor*

    PubMed Central

    Bray, Lauriane; Froment, Carine; Pardo, Pierre; Candotto, Cédric; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine; Moulédous, Lionel

    2014-01-01

    The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, 412TNST415 at the end of the C terminus of the receptor, and additional sites involved in desensitization (372TS373) and internalization (Ser395). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns. PMID:25326382

  13. Phosphorylation of the herpes simplex virus type 1 tegument protein VP22.

    PubMed

    Elliott, G; O'Reilly, D; O'Hare, P

    1996-12-01

    The herpes simplex virus type 1 tegument protein VP22 is known to be highly phosphorylated during infection. Here we show that two electrophoretic forms of VP22 can be identified in infected cell extracts and that this heterogeneity is accounted for by phosphorylation. Furthermore, the nonphosphorylated form of VP22 appears to be specifically incorporated into virions. We also show that the phosphorylated form of VP22 is the only form detected during transient transfection and as such that VP22 can act as a substrate for a cellular kinase. Phospho-amino acid and phospho-peptide analyses of in vivo labeled VP22 were utilized to demonstrate that the phosphorylation profiles of VP22 synthesized during transfection and infection are the same. In both cases VP22 was modified solely on serine residues located in the N-terminal 120 residues of the protein. Moreover, in vitro phosphorylation was utilized to show that the constitutive cellular kinase, casein kinase II, which has four serine consensus recognition sites at the N-terminus of VP22, phosphorylates VP22 in the same manner as observed in vivo. This kinase also phosphorylates VP22 at the N-terminus in intact capsid-tegument structures. Casein kinase II is therefore likely to be the major kinase of VP22 during infection.

  14. Antibody Array Revealed PRL-3 Affects Protein Phosphorylation and Cytokine Secretion

    PubMed Central

    Meng, Lin; Qu, Like; Shou, Chengchao

    2017-01-01

    Phosphatase of regenerating liver 3 (PRL-3) promotes cancer metastasis and progression via increasing cell motility and invasiveness, however the mechanism is still not fully understood. Previous reports showed that PRL-3 increases the phosphorylation of many important proteins and suspected that PRL-3-enhanced protein phosphorylation may be due to its regulation on cytokines. To investigate PRL-3’s impact on protein phosphorylation and cytokine secretion, we performed antibody arrays against protein phosphorylation and cytokines separately. The data showed that PRL-3 could enhance tyrosine phosphorylation and serine/threonine phosphorylation of diverse signaling proteins. Meanwhile, PRL-3 could affect the secretion of a subset of cytokines. Furthermore, we discovered the PRL-3-increased IL-1α secretion was regulated by NF-κB and Jak2-Stat3 pathways and inhibiting IL-1α could reduce PRL-3-enhanced cell migration. Therefore, our result indicated that PRL-3 promotes protein phosphorylation by acting as an ‘activator kinase’ and consequently regulates cytokine secretion. PMID:28068414

  15. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains.

    PubMed

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-06-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.

  16. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction.

    PubMed

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki

    2015-11-01

    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  17. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region

    PubMed Central

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A.; Vigoreaux, Jim O.

    2015-01-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region. PMID:26691840

  18. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells.

    PubMed

    Bae, Eunjin; Sato, Misako; Kim, Ran-Ju; Kwak, Mi-Kyung; Naka, Kazuhito; Gim, Jungsoo; Kadota, Mitsutaka; Tang, Binwu; Flanders, Kathleen C; Kim, Tae-Aug; Leem, Sun-Hee; Park, Taesung; Liu, Fang; Wakefield, Lalage M; Kim, Seong-Jin; Ooshima, Akira

    2014-11-01

    Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer.

  19. Sequential phosphorylation analysis using dye-tethered peptides and microfluidic isoelectric focusing electrophoresis.

    PubMed

    Choi, Hoseok; Choi, Nakchul; Lim, Butaek; Kim, Tae-Wuk; Song, Simon; Kim, Young-Pil

    2015-11-15

    We report a simple method for analyzing sequential phosphorylation by protein kinases using fluorescent peptide substrates and microfluidic isoelectric focusing (μIEF) electrophoresis. When a dye-labeled peptide substrate was sequentially phosphorylated by two consecutive protein kinases (mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3)), its differently phosphorylated forms were easily separated and visualized by fluorescent focusing zones in the μIEF channel based on a change in the isoelectric point (pI) by phosphorylation. As a result, ratiometric and quantitative analysis of the fluorescent focusing regions shifted by phosphorylation enabled the analysis of phosphorylation efficiency and the relevant inhibition of protein kinases (MAPK and GSK3) with high simplicity and selectivity. Furthermore, the GSK3 activity in the cell lysates was elucidated by μIEF electrophoresis in combination with immunoprecipitation. Our results suggest that this method has great potential for analyzing the sequential phosphorylation of multiple protein kinases that are implicated in cellular signaling pathways.

  20. Differential phosphorylation of tau proteins during kitten brain development and Alzheimer's disease.

    PubMed

    Riederer, B M; Mourton-Gilles, C; Frey, P; Delacourte, A; Probst, A

    2001-02-01

    Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.

  1. A mass spectrometric method for quantifying C3 and C6 phosphorylation of starch.

    PubMed

    Carpenter, Margaret; Joyce, Nigel; Butler, Ruth; Genet, Russell; Timmerman-Vaughan, Gail

    2012-12-15

    The glucosyl residues comprising starch can be phosphorylated at either the C3 or the C6 position of the molecule because of the activities of two distinct dikinase enzymes. After hydrolysis of the starch, the C6 phosphorylation is easy to measure using a routine enzyme assay for glucose 6-phosphate, but the C3 phosphorylation is more difficult to assay. A mass spectrometric (MS) method has been developed that, in a single run, can distinguish and quantify the glucose 3-phosphate and glucose 6-phosphate produced by hydrolysis of starch and can also measure the glucose content to give an accurate estimate of the starting material. The MS method involves quantification by LC/MS with external standards, using normal-phase hydrophilic interaction liquid chromatography and selective reaction monitoring. The MS method has been used to determine degrees of starch phosphorylation in a diverse group of potato lines, revealing threefold differences in phosphorylation between high- and low-phosphate lines. The method was also used to show that cold storage of potato tubers for up to 24weeks had little substantive effect on the levels of starch phosphorylation. MS provided an effective and efficient means of determining both the C6 and the C3 phosphorylation of starch.

  2. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification.

    PubMed

    Sturm, Sebastian; Predel, Reinhard

    2014-07-01

    In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.

  3. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    SciTech Connect

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-09-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  4. Regulation of erythrocyte Na-K-2Cl cotransport by threonine phosphorylation.

    PubMed

    Matskevich, Ioulia; Hegney, Karen L; Flatman, Peter W

    2005-08-01

    A method is described to measure threonine phosphorylation of the Na-K-2Cl cotransporter in ferret erythrocytes using readily available antibodies. We show that most, if not all, cotransporter in these cells is NKCC1, and this was immunoprecipitated with T4. Cotransport rate, measured as 86Rb influx, correlates well with threonine phosphorylation of T4-immunoprecipitated protein. The cotransporter effects large fluxes and is significantly phosphorylated in cells under control conditions. Transport and phosphorylation increase 2.5- to 3-fold when cells are treated with calyculin A or Na+ arsenite. Both fall to 60% control when cell [Mg2+] is reduced below micromolar or when cells are treated with the kinase inhibitors, 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or staurosporine. Importantly, these latter interventions do not abolish either phosphorylation or transport suggesting that a phosphorylated form of the cotransporter is responsible for residual fluxes. Our experiments suggest protein phosphatase 1 (PrP-1) is extremely active in these cells and dephosphorylates key regulatory threonine residues on the cotransporter. Examination of the effects of kinase inhibition after cells have been treated with high concentrations of calyculin indicates that residual PrP-1 activity is capable of rapidly dephosphorylating the cotransporter. Experiments on cotransporter precipitation with microcystin sepharose suggest that PrP-1 binds to a phosphorylated form of the cotransporter.

  5. Studies on cleavage of DNA by N-phosphoryl branched peptides.

    PubMed

    Feng, Yuping; Cao, Shengli; Xiao, Anshan; Xie, Wenjun; Li, Yanmei; Zhao, Yufen

    2006-06-01

    It was found that Nalpha,Nepsilon-di[N-(O,O-diisopropyl)phosphoryl-L-leucy]-L-lysyl-methyl ester (1) and Nalpha,Nepsilon-di[N-(O,O-diisopropyl)phosphoryl-L-phenylalanyl]-L-lysyl-methyl ester (2) could cleave supercoiled DNA such as PUC19 efficiently in 40 mM Britton-Robinson buffer. The cleavage activities for both were investigated by agarose gel electrophoresis. The T4 ligase experiments implied that the cleavage of DNA occurs via a hydrolytic path. The results showed that the cleavage reaction of DNA is dependent on the value of pH and ionic strength in the solution. DNA cleavage is more efficient by N-phosphoryl branched peptide 2 than by N-phosphoryl branched peptide 1. The experiments also show that hydrolysis of DNA by N-phosphoryl branched peptide 1 was accelerated in the presence of Mg2+ or Zn2+ ions. The interactions of DNA with N-phosphoryl branched peptides were also characterized by melting temperature measurements and circular dichroism (CD) techniques. On the basis of experimental data, the possible mechanism of interactions between DNA with N-phosphoryl branched peptides was discussed.

  6. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    PubMed Central

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  7. Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity.

    PubMed

    Cartwright, Ian M; Bell, Justin J; Maeda, Junko; Genet, Matthew D; Romero, Ashley; Fujii, Yoshihiro; Fujimori, Akira; Kitamuta, Hisashi; Kamada, Tadashi; Chen, David J; Kato, Takamitsu A

    2015-04-01

    The present study investigated the effect of targeted mutations in the DNA-dependent protein kinase catalytic subunit and phosphorylation domains on the survival of cells in response to different qualities of ionizing radiation. Mutated Chinese hamster ovary V3 cells were exposed to 500 MeV/nucleon initial energy and 200 keV/μm monoenergetic Fe ions; 290 MeV/nucleon initial energy and average 50 keV/μm spread-out Bragg peak C ions; 70 MeV/nucleon initial energy and 1 keV/μm monoenergetic protons; and 0.663 MeV initial energy and 0.3 keV/μm Cs(137) γ radiation. The results demonstrated that sensitivity to high linear energy transfer radiation is increased when both S2056 and T2609 clusters each contain a point mutation or multiple mutations are present in either cluster, whereas the phosphoinositide 3 kinase cluster only requires a single mutation to induce the sensitized phenotype of V3 cells. Additionally, the present study demonstrated that sensitivity to DNA cross-linking damage by cisplatin only requires a single mutation in one of the three clusters and that additional point mutations do not increase cell sensitivity.

  8. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    PubMed Central

    Espinoza-Fonseca, L. Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca2+4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectories analysis revealed that an inter-domain salt bridges network (R39/E58,E61) facilitates formation of a stable helix-coil-helix (HCH) motif made up by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of blocked head on Ser45 does not induce any substantial structural change. However, phosphorylation of free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH inter-domain folding, phosphorylation of Ser35 unlocks compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head, facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID:26038232

  9. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue*

    PubMed Central

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J.

    2016-01-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  10. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments

    PubMed Central

    Brito, Reicy; Alamo, Lorenzo; Lundberg, Ulf; Guerrero, José R.; Pinto, Antonio; Sulbarán, Guidenn; Gawinowicz, Mary Ann; Craig, Roger; Padrón, Raúl

    2011-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high resolution structure is known. In the relaxed state, tarantula RLCs are ~50% non- and 50% mono-phosphorylated, while on activation mono-phosphorylation increases and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35 while Ca2+-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest they are the targets for protein kinase C (PKC) and myosin light chain kinase (MLCK) respectively. The atomic model of the tarantula filament shows that the two myosin heads (“free” and “blocked”) are in different environments, with only the free head serines readily accessible to kinases. Thus PKC Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest these heads are less strongly bound to the filament backbone, and may oscillate occasionally between attached and detached states (“swaying” heads). These heads would be available for immediate actin interaction upon Ca2+-activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked-head Ser45 to MLCK. This would release the blocked-heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca2+ on tetanus would recruit new, MLCK-activated heads, resulting in force potentiation. PMID:21959262

  11. Monitoring Cellular Phosphorylation Signaling Pathways into Chromatin and Down to the Gene Level*

    PubMed Central

    Han, Yumiao; Yuan, Zuo-Fei; Molden, Rosalynn C.; Garcia, Benjamin A.

    2016-01-01

    Protein phosphorylation, one of the most common and important modifications of acute and reversible regulation of protein function, plays a dominant role in almost all cellular processes. These signaling events regulate cellular responses, including proliferation, differentiation, metabolism, survival, and apoptosis. Several studies have been successfully used to identify phosphorylated proteins and dynamic changes in phosphorylation status after stimulation. Nevertheless, it is still rather difficult to elucidate precise complex phosphorylation signaling pathways. In particular, how signal transduction pathways directly communicate from the outer cell surface through cytoplasmic space and then directly into chromatin networks to change the transcriptional and epigenetic landscape remains poorly understood. Here, we describe the optimization and comparison of methods based on thiophosphorylation affinity enrichment, which can be utilized to monitor