Sample records for cyclic amp formation

  1. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  2. Soluble lymphocytic mediators

    PubMed Central

    Pick, E.

    1974-01-01

    The effect of a number of drugs on the production of macrophage migration inhibitory factor (MIF) by antigen-stimulated sensitized guinea-pig lymph node cells was studied. The drugs were present during the entire culture period and eliminated from supernatants by dialysis. It was found that MIF secretion is inhibited by exogenous dibutyryl cyclic AMP and by theophylline and chlorphenesin, two agents raising the endogenous level of cyclic AMP. On the other hand, isoproterenol, which stimulates cyclic AMP generation in several tissues, did not block MIF production. The formation of the mediator was also suppressed by the microfilament-affecting drug, cytochalasin B. The microtubular disruptive agents, colchicine and vinblastine sulphate, did not influence MIF production. It is concluded that: (a) endogenous cyclic AMP may act as a regulator of MIF production; (b) the activity of contractile microfilaments is probably required for MIF formation; and (c) microtubules are not involved in the secretory process. PMID:4369184

  3. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed Central

    McLean, P. G.; Coupar, I. M.

    1996-01-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A. PMID:8799582

  4. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed

    McLean, P G; Coupar, I M

    1996-06-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A.

  5. Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function.

    PubMed

    Yutani, Masahiro; Ogita, Akira; Fujita, Ken-Ichi; Usuki, Yoshinosuke; Tanaka, Toshio

    2011-03-01

    Sporulation of the yeast Saccharomyces cerevisiae is negatively regulated by cyclic AMP (cAMP). This microbial cell differentiation process was applied for the screening of a substance that can elevate the intracellular cAMP level. Among nucleoside 5'-alkylphosphates, uridine 5'-eicosylphosphate (UMPC20) selectively and predominantly inhibited ascospore formation of the yeast cells. We suppose the inhibitory effect of UMPC20 could indeed reflect the elevation of the cellular cAMP level.

  6. Catabolite Repression of Escherichia coli Biofilm Formation

    PubMed Central

    Jackson, Debra W.; Simecka, Jerry W.; Romeo, Tony

    2002-01-01

    Biofilm formation was repressed by glucose in several species of Enterobacteriaceae. In Escherichia coli, this effect was mediated at least in part by cyclic AMP (cAMP)-cAMP receptor protein. A temporal role for cAMP in biofilm development was indicated by the finding that glucose addition after ∼24 h failed to repress and generally activated biofilm formation. PMID:12029060

  7. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices failed to increase corticosterone production when incubated with cyclic AMP, in contrast to 5-fold increases observed with nontumorous adrenals. PMID:4390412

  8. Cyclic AMP regulates formation of mammary epithelial acini in vitro

    PubMed Central

    Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.

    2012-01-01

    Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028

  9. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Catecholamine-mediated arrhythmias in acute myocardial infarction. Experimental evidence and role of beta-adrenoceptor blockade.

    PubMed

    Opie, L H; Lubbe, W F

    1979-11-24

    Ventricular fibrillation is a major mechanism of sudden death. The cellular link between catecholamine activity and the development of serious ventricular arrhythmias may be in the formation of cyclic adenosine monophosphate (cAMP). Cyclic AMP and agents promoting cAMP accumulation allow development of slow responses which, especially in the presence of regional ischaemia, could develop into ventricular fibrillation. The role of beta-antagonist agents in the therapy of acute myocardial infarction is analysed in relation to the hypothesis linking cAMP and ventricular fibrillation. Reasons for the limited effectiveness of anti-arrhythmic therapy with beta-antagonist agents are given.

  11. Agonist-induced glycogenolysis in rabbit retinal slices and cultures.

    PubMed Central

    Ghazi, H.; Osborne, N. N.

    1989-01-01

    1. The effects of different putative retinal transmitters and/or modulators on glycogenolysis in rabbit retinal slices and in retinal Müller cell cultures were examined. 2. Incubation of rabbit retinal slices or primary retinal cultures (either 3-5 day-old or 25-30 day-old) in a buffer solution containing [3H]-glucose resulted in the accumulation of newly synthesized [3H]-glycogen. 3. Noradrenaline (NA), isoprenaline, vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) and 8-hydroxy-dipropylaminetetralin (8-OH-DPAT) stimulated the hydrolysis of this newly formed 3H-polymer. The potency order of maximal stimulations was: VIP greater than NA greater than isoprenaline greater than 5-HT greater than 8-OH-DPAT. 4. The putative retinal transmitters, dopamine, gamma-aminobutyric acid (GABA), glycine and taurine and the muscarinic agonist carbachol (CCh) had no effect on [3H]-glycogen content. 5. The glycogenolytic effects of NA/isoprenaline and 5-HT/8-OH-DPAT appear to be mediated by beta-adrenoceptors and 5-HT1 receptors (possibly 5-HT1A), respectively while the VIP-induced response involved another receptor subtype. 6. Agonists which mediated [3H]-glycogen hydrolysis also stimulated an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. Both responses are blocked to a similar extent by the same antagonists and so are probably mediated via the same receptor subtypes. Moreover, dibutyryl cyclic AMP (db cyclic AMP) promoted tritiated glycogen breakdown in the three retinal preparations. 7. Not all receptors linked to cyclic AMP production however promote glycogenolysis. Dopamine and apomorphine stimulated cyclic AMP formation via D1-receptors without influencing glycogenolysis. These receptors are exclusively associated with neurones. PMID:2568145

  12. The Influence of Hyperthyroidism and Hypothyroidism on the β-Adrenergic Responsiveness of the Turkey Erythrocyte

    PubMed Central

    Bilezikian, John P.; Loeb, John N.; Gammon, Donald E.

    1979-01-01

    The mechanisms responsible for altered adrenergic tone in hyperthyroidism and hypothyroidism are not fully understood. To investigate these mechanisms, the β-adrenergic receptor-cyclic AMP complex of the turkey erythrocyte was studied among groups of normal, hyperthyroid, and hypothyroid turkeys. In erythrocytes obtained from hypothyroid turkeys, there were fewer β-adrenergic receptors than in normal cells as determined by the specific binding of [125I]iodohydroxybenzylpindolol, as well as associated decreases both in catecholamine-responsive adenylate cyclase activity and in cellular cyclic AMP content. In contrast, erythrocytes obtained from hyperthyroid turkeys contained the same number of β-receptors and had the same catecholamine-responsive adenylate cyclase activity as cells from normal birds. Other characteristics of the β-receptors in cells from hyperthyroid birds were indistinguishable from those present in normal erythrocytes. However, within the range of circulating catecholamine concentrations, 5-50 nM, the erythrocytes of the hyperthyroid turkeys generated substantially more cyclic AMP after exposure to isoproterenol than did normal cells. These results suggest that thyroid hormone affects β-receptor-cyclic AMP interrelationships in the turkey erythrocyte by two distinct mechanisms: (a) In hypothyroidism, both β-receptors and catecholamine-dependent cyclic AMP formation are coordinately decreased; (b) in hyperthyroidism, β-receptors are unchanged but there is an amplification of the hormonal signal so that occupation of a given number of receptors at physiological concentrations of catecholamines leads to increased levels of cyclic AMP. PMID:219032

  13. Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model

    PubMed Central

    Takuma, K; Lee, E; Enomoto, R; Mori, K; Baba, A; Matsuda, T

    2001-01-01

    We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 – 100 μM significantly attenuated the H2O2-induced decrease in cell viability. Ibudilast inhibited the H2O2-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3′,5′-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H2O2-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H2O2-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D4 antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H2O2-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H2O2-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. PMID:11454657

  14. Amp Synthesis in Aqueous Solution of Adenosine and Phosphorus Pentoxide

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Kojima, H.; Ejiri, K.; Inomata, K.

    1982-12-01

    Possible formation of a P4O10 molecule in magma, the stability of the molecule in hydrous volcanic gas at high temperatures and a possible prebiotic phosphate cycle were discussed in relation to chemical evolution. To demonstrate the utility of phosphorus pentoxide as a phosphorylating agent, aqueous solutions of adenosine (0.02M) and phosphorus pentoxide (0.2M) were incubated at 37°C for 5 months. The pH of the solutions was adjusted every day or every few days to each fixed value (9.0, 10.5, 11.5, 12.5) with 10 N NaOH. The HPLC analysis showed the formation of 2'-AMP, 3'-AMP, 5'-AMP, cyclic (2' 3')-AMP and cyclic (3' 5')-AMP. The main components of the products were 2'- and 3'-AMP, though cyclic (2' 3')-AMP was the main component in the early period of the incubation at pH 9.0. The yields (conversion rate of adenosine to AMPs) were increased almost linearly with the incubation time for 5 months in the case of pH 9.0. The final yields were about 3% (pH 9.0), 6% (pH 9.0, 1 M NaCl), 5% (pH 9.0, 0.01 M CaCl2, 0.01 M MgCl2), 7% (pH 9.0, 0.5 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 9% (pH 9.0, 1 M NaCl, 0.01 M CaCl2, 0.01 M MgCl2), 32% (pH 10.5), 43% (pH 11.5), 35% (pH 12.5).

  15. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    PubMed

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms through csgD Additionally, we propose that cAMP may work as a signaling compound for uropathogenic E. coli (UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Regulation of Maltodextrin Phosphorylase Synthesis in Escherichia coli by Cyclic Adenosine 3′, 5′-Monophosphate and Glucose1

    PubMed Central

    Chao, Julie; Weathersbee, Carolyn J.

    1974-01-01

    Cyclic adenosine 3′, 5′-monophosphate (AMP) stimulates maltodextrin phosphorylase synthesis in Escherichia coli cells induced with maltose. A maximal effect occurs at 2 to 3 mM cyclic AMP. The action of cyclic AMP is specific, inasmuch as adenosine triphosphate, 3′-AMP, 5′-AMP, adenosine, and dibutyryl cyclic AMP are inactive. Glucose, α-methyl glucoside, 2-deoxyglucose, and pyridoxal 5′-phosphate repress maltodextrin phosphorylase synthesis. This repression is reversed by cyclic AMP. The action of cyclic AMP appears to be at the transcriptional level, since cyclic AMP fails to stimulate phosphorylase production in induced cells in which messenger ribonucleic acid synthesis has been arrested by rifampin or by inducer removal. The two other enzymes involved in the metabolism of maltose, amylomaltase and maltose permease, are also induced in this strain of E. coli and affected by glucose and cyclic AMP in a manner similar to phosphorylase. PMID:4358043

  17. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less

  18. Species differences in the effects of prostaglandins on inositol trisphosphate accumulation, phosphatidic acid formation, myosin light chain phosphorylation and contraction in iris sphincter of the mammalian eye: interaction with the cyclic AMP system.

    PubMed

    Yousufzai, S Y; Chen, A L; Abdel-Latif, A A

    1988-12-01

    Comparative studies on the effects of prostaglandins (PGs) on 1,2-diacylglycerol, measured as phosphatidic acid (PA), and inositol trisphosphate (IP3) production, cyclic AMP (cAMP) formation, myosin light chain (MLC) phosphorylation and contraction in the iris sphincter smooth muscle of rabbit, bovine and other mammalian species were undertaken and functional and biochemical relationships between the IP3-Ca++ and cAMP second messenger systems were demonstrated. The findings obtained from these studies can be summarized as follows: 1) all PGs investigated, including PGE2, PGF2 alpha, PGF2 alpha-ester, PGE1 and PGA2 increased IP3 accumulation and PA formation, and the extent of stimulation was dependent on the animal species. Thus, PGF2 alpha-ester (1 microM), the most potent of the PGs, increased IP3 accumulation in rabbit and bovine sphincters by 33 and 58%, respectively, and increased PA formation by 67 and 56%, respectively. The PG increased IP3 accumulation in both rabbit and bovine sphincters very rapidly (T1/2 values about 26 sec) and in a dose-dependent manner. 2) The PG had no effect on MLC phosphorylation in the rabbit sphincter, but it increased that of the bovine by 36%. 3) The PG increased cAMP formation by 75% in the rabbit sphincter but it had no effect on that of the bovine. 4) The PG induced a maximal contractile response in the bovine sphincter but it had no effect on that of the rabbit. 5) In the bovine, PGA2 induced IP3 accumulation and contraction, without an effect on cAMP formation; however, in the rabbit, cat and dog it increased cAMP formation and had no effect on IP3 accumulation and contraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Continuous activation of pituitary adenylate cyclase-activating polypeptide receptors elicits antipodal effects on cyclic AMP and inositol phospholipid signaling pathways in CATH.a cells: role of protein synthesis and protein kinases.

    PubMed

    Muller, A; Lutz-Bucher, B; Kienlen-Campard, P; Koch, B; Loeffler, J P

    1998-04-01

    Continuous exposure of cells to agonists develops a process that determines the extent to which the cells eventually respond to further stimuli. Here we used CATH.a cells (a catecholaminergic neuron-like cell line), which express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors linked to both adenylyl cyclase and phospholipase C-beta pathways, to investigate the influence of prolonged hormonal treatment on dual signaling and gene transcription. Prolonged incubation of cells with PACAP failed to down-regulate the density and affinity of membrane binding sites and caused opposite changes in messenger systems: PACAP-stimulated cyclic AMP accumulation was attenuated in a time- and dose-dependent fashion (t(1/2) = 6.7 h and IC50 = 0.1 nM), whereas phosphoinositide turnover was overstimulated. Both effects were insensitive to pertussis toxin, whereas the drop in cyclic AMP concentration was also unchanged in the presence of 3-isobutyl-1-methylxanthine, indicating that neither Gi-like proteins nor cyclic nucleotide phosphodiesterases play a critical role in these processes. Blockade of protein synthesis with cycloheximide, as well as inhibition by H89 of cyclic AMP-dependent protein kinase (but not by bisindolylmaleimide of protein kinase C) antagonized the influences exerted by PACAP on adenylyl cyclase activity and inositol phosphate formation. Transcription of the chimeric GAL4-CREB construct, transiently transfected into CATH.a cells, was stimulated by PACAP, and this effect was potentiated as a result of chronic PACAP treatment. The results of the present investigation provide new insight into the possible differential regulation and cross-talks of transduction signals of receptors linked to multiplex signaling. They demonstrate that prolonged exposure of CATH.a cells to PACAP results in the desensitization of the cyclic AMP pathway and superinduction of the inositol phosphate signal, through protein neosynthesis and cyclic AMP-dependent protein kinase activation. At the same time, they show that desensitization of cyclic AMP signaling not only fails to hamper, but actually amplifies PACAP-stimulated CREB-regulated transcription.

  20. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  1. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  2. Comparative Effects of Angiotensin and ACTH on Cyclic AMP and Steroidogenesis in Isolated Bovine Adrenal Cells

    PubMed Central

    Peytremann, Andre; Nicholson, Wendell E.; Brown, Ronald D.; Liddle, Grant W.; Hardman, Joel G.

    1973-01-01

    The comparative effects of angiotensin II and adrenocorticotropic hormone (ACTH) on cyclic AMP and steroidogenesis were investigated employing isolated bovine adrenal cells from the zona fasciculata. Like ACTH, angiotensin produced a prompt increase in cyclic AMP which preceded the increase in corticosteroid production. Although this increase in cyclic AMP was small when compared to that induced by ACTH, it correlated with the amount of steroidogenesis. This observation is consistent with the view that cyclic AMP is the intracellular mediator of the steroidogenic action of angiotensin. Angiotensin acted synergistically with ACTH on cyclic AMP levels. This synergism was not explained by inhibition of phosphodiesterase activity. Unlike ACTH, angiotensin failed to stimulate adenylate cyclase in broken cell preparations. The observations suggest that more than one mechanism may be involved in effects of ACTH and angiotensin on cyclic AMP levels. PMID:4348344

  3. Metabolic control mechanisms in mammalian systems. Involvement of adenosine 3′:5′-cyclic monophosphate in androgen action

    PubMed Central

    Singhal, Radhey L.; Parulekar, M. R.; Vijayvargiya, R.; Robison, G. Alan

    1971-01-01

    1. The ability of exogenously administered cyclic AMP (adenosine 3′:5′-monophosphate) to exert andromimetic action on certain carbohydrate-metabolizing enzymes was investigated in the rat prostate gland and seminal vesicles. 2. Cyclic AMP, when injected concurrently with theophylline, produced marked increases in hexokinase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, pyruvate kinase, and two hexose monophosphate-shunt enzymes, as well as α-glycerophosphate dehydrogenase activity in accessory sexual tissues of castrated rats. The 6-N,2′-O-dibutyryl analogue of cyclic AMP caused increases of enzyme activity that were greater than those induced by the parent compound. 3. Time-course studies demonstrated that, whereas significant increases in the activities of most enzymes occurred within 4h after the injection of cyclic AMP, maximal increases were attained at 16–24h. 4. Increase in the activity of the various prostatic and vesicular enzymes was dependent on the dose of cyclic AMP; in most instances, 2.5mg of the cyclic nucleotide/rat was sufficient to elicit a statistically significant response. 5. Administration of cyclic AMP and theophylline also produced stimulation of enzyme activities in secondary sexual tissues of immature rats. 6. Cyclic AMP and theophylline did not affect significantly any of the enzymes studied in hepatic tissue. 7. Stimulation of various carbohydrate-metabolizing enzymes in the prostate gland and seminal vesicles by cyclic AMP was independent of adrenal function. 8. Concurrent treatment with actinomycin or cycloheximide prevented the cyclic AMP- and theophylline-induced increases in enzyme activities in both castrated and adrenalectomized–castrated animals. 9. Administration of a single dose of testosterone propionate (5.0mg/100g) to castrated rats caused a significant increase in cyclic AMP concentration in both accessory sexual tissues. 10. In addition, treatment with theophylline potentiated the effects of a submaximal dose of testosterone (1.0mg/100g) on all those prostatic and seminal-vesicular enzymes that are increased by exogenous cyclic AMP. 11. The evidence indicates that cyclic AMP may be involved in triggering the known metabolic actions of androgens on secondary sexual tissues of the rat. PMID:4110460

  4. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  5. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    PubMed

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Histone deacetylases 6 increases the cyclic adenosine monophosphate level and promotes renal cyst growth.

    PubMed

    Wu, Ming; Mei, Changlin

    2016-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by abnormal enhanced cell proliferation and fluid secretion, which are triggered by increased levels of cyclic adenosine monophosphate (cAMP). Cebotaru et al. showed that a HDAC6 inhibitor reduced the cAMP level and inhibited cyst formation in Pkd1 knockout mice, which may become a new potential therapeutic agent for ADPKD. This study also raised several intriguing questions that might advance our understanding of the molecular pathogenesis of ADPKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. TSH-induced cyclic AMP production in an ovine thyroid cell line: OVNIS 5H.

    PubMed

    Fayet, G; Aouani, A; Hovsépian, S

    1986-01-06

    The TSH-induced cyclic AMP response was studied using a 3-year-old ovine thyroid cell line TSH-independent for growth: OVNIS 5H. The kinetics of cyclic AMP production was followed both in cell layers and in cell culture media, with or without phosphodiesterase inhibitor. It is noteworthy that following the first wave in cyclic AMP obtained within minutes, we observed later a sustained exponential increase in cyclic AMP during the 5 days following TSH stimulation. A bioassay of TSH was derived allowing measurement of 1 microU/ml TSH from a crude bTSH preparation.

  8. Cyclic adenosine 3′,5′-monophosphate in human lymphocytes. Alterations after phytohemagglutinin stimulation

    PubMed Central

    Smith, Jay W.; Steiner, Alton L.; Newberry, W. Marcus; Parker, Charles W.

    1971-01-01

    We have studied cyclic adenosine 3′,5′-monophosphate (cyclic AMP) concentrations in human peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA), isoproterenol, prostaglandins, and aminophylline. Purified lymphocytes were obtained by nylon fiber chromatography, and low speed centrifugation to remove platelets. Cyclic AMP levels were determined by a highly sensitive radioimmunoassay. At concentrations of 0.1-1.0 mmoles/liter isoproterenol and aminophylline produced moderate increases in cyclic AMP concentrations, whereas prostaglandins produced marked elevations. High concentrations of PHA produced 25-300% increases in cyclic AMP levels, alterations being demonstrated within 1-2 min. The early changes in cyclic AMP concentration appear to precede previously reported metabolic changes in PHA-stimulated cells. After 6 hr cyclic AMP levels in PHA-stimulated cells had usually fallen to the levels of control cells. After 24 hr the level in PHA-stimulated cells was characteristically below that of the control cells. Adenyl cyclase, the enzyme which converts ATP to cyclic AMP, was measured in lymphocyte homogenates. Adenyl cyclase activity was rapidly stimulated by fluoride, isoproterenol, prostaglandins, and PHA. Since adenyl cyclase is characteristically localized in external cell membranes, our results are consistent with an initial action of PHA at this level. PMID:4395563

  9. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN) Ion Channels.

    PubMed

    VanSchouwen, Bryan; Melacini, Giuseppe

    2016-10-03

    The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. In the absence of cAMP, the IR cAMP-binding domain (CBD) mainly samples its inactive conformation, resulting in steric clashes that destabilize the IR tetramer. Although these clashes with the inactive CBD are released through tetramer dissociation into monomers, functional mutagenesis suggests that the apo IR is not fully monomeric. To investigate the inhibitory non-monomeric IR species, we performed molecular dynamics simulations starting from "hybrid" structures that are tetrameric, but contain inactive apo-state CBD conformations. The ensemble of simulated trajectories reveals that full dissociation of the tetramer into monomers is not necessary to release the steric hindrance with the inactive CBD. Specifically, we found that partial dissociation of the tetramer into dimers is sufficient to accommodate four inactive CBDs, while reduction of the quaternary symmetry of the non-dissociated tetramer from four- to two-fold permits accommodation of two inactive CBDs. Our findings not only rationalize available electrophysiological, fluorometry and sedimentation equilibrium data, but they also provide unprecedented structural insight into previously elusive non-monomeric auto-inhibitory HCN species.

  10. Protein kinase C is involved in cyclic adenosine monophosphate formation due to PGF2 alpha desensitization in bovine iris sphincter.

    PubMed

    Tachado, S D; Zhang, Y; Abdel-Latif, A A

    1993-05-01

    To examine the mechanisms underlying the effects of PGF2 alpha receptor desensitization on agonist-induced second messenger formation and contraction in bovine iris sphincter. Short-term PGF2 alpha receptor desensitization of the bovine iris sphincter was carried out by incubating the tissue in Krebs-Ringer bicarbonate buffer containing 25 microM PGF2 alpha for 45 min at 37 degrees C. The effects of PGF2 alpha and other pharmacologic agents on inositol 1,4,5-triphosphate (IP3) production and cyclic adenosine monophosphate (cAMP) formation in desensitized and nondesensitized tissues were monitored by anion-exchange chromatography and radioimmunoassay. In the isolated bovine iris sphincter, protein kinase C (PKC) is involved in the activation of adenylate cyclase and the desensitization of prostaglandin F2 alpha receptor-mediated responses supported by these findings. (A) Exposure of the tissue to phorbol 12,13-dibutyrate, used to activate PKC, enhanced basal cAMP formation in a dose (EC50 = 8.8 x 10(-8) M) and time (t1/2 = 7.5 min) dependent manner. Phorbol 12,13-dibutyrate increased cAMP levels by twofold and it potentiated the isoproterenol-induced cAMP formation. The biologically inactive phorbol ester, 4 alpha-phorbol had no effect. Staurosporine, a potent PKC inhibitor, inhibited phorbol 12,13-dibutyrate-induced cAMP formation in a dose-dependent manner (IC50 of 0.25 microM). The increase in cAMP levels by phorbol 12,13-dibutyrate results from stimulation of adenylate cyclase, rather than from inhibition of cAMP phosphodiesterase, and it is not mediated through Ca2+ mobilization. Pretreatment of the tissue with phorbol 12,13-dibutyrate inhibited IP3 production in response to PGF2 alpha. (B) Desensitization of the sphincter with PGF2 alpha for 45 min increased cAMP formation and attenuated IP3 production and contraction. The effects of PGF2 alpha desensitization were reversed by pretreatment of the tissue with staurosporine. Down-regulation of PKC prevented the PGF2 alpha-stimulated increase in cAMP formation. In the desensitized tissue, diacylglycerol, the endogenous activator of PKC, may arise from phosphatidylcholine, via phospholipase D. (A) Activation of PKC in the bovine iris sphincter leads to stimulation of adenylate cyclase and to an increase in cAMP formation. The cAMP formed inhibits IP3 production and muscle contraction. (B) PGF2 alpha desensitization results in adenylate cyclase activation, mediated through PKC. (C) PGF2 alpha desensitization could uncouple the receptor from the Gq and Gi proteins and enhance PG stimulation of adenylate cyclase activity through the Gs protein. (D) Uncoupling of the G proteins from the PG receptor and activation of PKC, both of which result in enhanced cAMP formation, may underlie the mechanism of PGF2 alpha desensitization. (E) These observations demonstrate "cross talk" between the two second messenger systems and their physiologic consequences.

  11. Effects of protopine on blood platelet aggregation. II. Effect on metabolic system of adenosine 3',5'-cyclic monophosphate in platelets.

    PubMed

    Shiomoto, H; Matsuda, H; Kubo, M

    1990-08-01

    The mode of action of protopine on rabbit platelet aggregation was investigated in the metabolic system of adenosine 3',5'-cyclic monophosphate (cyclic AMP) in vitro experimental models. The inhibitory activity of protopine on adenosine 5'-diphosphate induced platelet aggregation was increased in the presence of prostaglandin I2 or papaverine in platelets. Protopine elevated content of the basal cyclic AMP accumulation in platelets and enhanced activity of crude adenylate cyclase prepared from platelets, but was ineffective on cyclic AMP phosphodiesterase. It is concluded that protopine has an inhibitory activity on platelet aggregation, activates adenylate cyclase and increases cyclic AMP content in platelets, in addition to other inhibitory actions in the metabolic system of cyclic AMP.

  12. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels*♦

    PubMed Central

    VanSchouwen, Bryan; Akimoto, Madoka; Sayadi, Maryam; Fogolari, Federico; Melacini, Giuseppe

    2015-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating. PMID:25944904

  13. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed Central

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-01-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing. PMID:2159144

  14. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-05-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing.

  15. Regulation of theta-antigen expression by agents altering cyclic AMP level and by thymic factor.

    PubMed

    Bach, M A; Fournier, C; Bach, J F

    1975-02-28

    Thymic factor, cyclic AMP, and products increasing its cellular level, such as Prostaglandin E1, induce the appearance of the theta-antigen on T-cell precursors whether assessed by a rossette-inhibition assay or a cytotoxic assay after cell fractionation on BSA discontinuous gradiet. Synergism has been demonstrated between cyclic AMPT and TF for that effect. Conversely, decrease of theta expression has been obtained by altering cyclic AMP level in theta-positive cells either increasing it by dibutyryl cAMP treatment or decreasing it by indomethacin treatment. Finally, these data suggest the involvement of cyclic AMP in the regulation of theta expression under thymic hormone control.

  16. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

    PubMed

    Dix, C J; Habberfield, A D; Cooke, B A

    1984-06-15

    The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.

  17. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Park, Keun Hong; Park, Hyun Jin; Shin, Keon Sung; Choi, Hyun Sook; Kai, Masaaki; Lee, Myung Koo

    2012-07-01

    The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.

  18. Mediation by prostaglandins of the stimulatory effect of substance P on cyclic AMP production in dog iris sphincter smooth muscle.

    PubMed

    Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A

    1996-10-25

    The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.

  19. Effect of nitrogen starvation on the level of adenosine 3',5'-monophosphate in Anabaena variabilis.

    PubMed

    Hood, E E; Armour, S; Ownby, J D; Handa, A K; Bressan, R A

    1979-12-03

    Low levels of adenosine 3',5'-monophosphate (cyclic AMP) were detected in the cyanobacterium Anabaena variabilis using a protein binding assay and two radioisotopic labelling methods. The basal concentration of intracellular cyclic AMP ranged from 0.27 pmol/mg protein in A. variabilis Kutz grown under heterotrophic conditions to 1.0--2.7 pmol/mg protein in A. variabilis strain 377 grown autotrophically. Extracellular cyclic AMP was found to comprise as much as 90% of the total cyclic AMP in rapidly growing cultures. When A. variabilis strain 377 was starved of nitrogen, a 3--4-fold increase in intracellular cyclic AMP was observed during the 24 h period coincident with early heterocyst development.

  20. A possible signal-coupling role for cyclic AMP during endocytosis in Amoeba proteus.

    PubMed

    Prusch, R D; Roscoe, J C

    1993-01-01

    Cytoplasmic levels of cAMP in Amoeba proteus were measured utilizing radioimmunoassays under control conditions and when stimulated by inducers of either pinocytosis or phagocytosis. In control cells, cytoplasmic cAMP levels were approximately 0.39 pM/mg cells. When exposed to either chemotactic peptide or mannose which stimulate phagocytosis in the amoeba, there is a rapid doubling of the cAMP level within 45 sec of stimulation which then returns to the control level within 3-5 min. Theophylline prolongs the elevation of cytoplasmic cAMP in stimulated cells and is also capable of eliciting food vacuole formation in the amoeba. In addition isoproterenol also causes food vacuole formation in the amoeba as well as a large and prolonged increase in cytoplasmic cAMP levels. Inducers of pinocytosis (BSA and Na Cl) also elicit changes in cytoplasmic cAMP in the amoeba, but the response appears to differ from that elicited by inducers of phagocytosis in that the peak cAMP levels are broader and biphasic. It is concluded that cAMP plays a signal-coupling role during the early phases of both forms of endocytosis in Amoeba proteus.

  1. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    PubMed

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  2. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells.

    PubMed

    Doorn, Joyce; Siddappa, Ramakrishnaiah; van Blitterswijk, Clemens A; de Boer, Jan

    2012-03-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.

  3. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions

    PubMed Central

    Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.

    2015-01-01

    ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134

  4. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  5. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed Central

    Pinkney, M; Hoggett, J G

    1988-01-01

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  6. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    PubMed

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.

  7. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    PubMed

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  8. Possible mechanisms of stimulatory action of papaverine on calcium-uptake by rat uterine microsomal fraction.

    PubMed

    Koike, K; Takayanagi, I

    1981-10-01

    Effects of papaverine and cyclic AMP on Ca-uptake by the microsomal fraction from rat uterus were studied. Papaverine (3 x 10(-5) M) potentiated Ca-uptake by the microsomal fraction in the presence of potassium oxalate. However, cyclic AMP and MIX (3-isobutyl-1-methylxanthine; 1 mM), a potent phosphodiesterase inhibitor, did not influence Ca-uptake by the microsomal fraction in the presence of potassium oxalate. Cyclic AMP in concentrations of 10(-8) to 10(-4) M did not influence Ca-uptake by the microsomal fraction in the presence of potassium oxalate. In the absence of potassium oxalate, papaverine and Aspaminol (1,1,-diphenyl-3-piperidinobutanol hydrochloride), a nonspecific smooth muscle relaxant, inhibited Ca-uptake by the microsomal fraction and cyclic AMP had no influence on this uptake. These results suggest that papaverine potentiated Ca-uptake by membranes such as sarcoplasmic reticulum, in the presence of potassium oxalate and inhibited Ca-uptake by the plasma membrane-derived vesicles in the absence of potassium oxalate. These results suggest that relaxation of smooth muscle by papaverine is related to a cyclic AMP-independent mechanism as well as to a mechanism mediated via cyclic AMP.

  9. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  10. Comparison between the effects of inhaled isoprenaline and fenoterol on plasma cyclic AMP and heart rate in normal subjects.

    PubMed Central

    Fairfax, A J; Rehahn, M; Jones, D; O'Malley, B

    1984-01-01

    The time course of changes in plasma cyclic AMP, heart rate and bronchial tone after inhalation of fenoterol or isoprenaline from a dose-metered aerosol are reported in a group of normal subjects. After isoprenaline, plasma cyclic AMP increased rapidly reaching a peak by 10 min and returned to basal levels within 60 min. A rapid, transient rise in heart rate occurred that was maximal by 5 min and returned to a basal level by 45 min. After fenoterol, the changes in cyclic AMP and heart rate were of much longer duration. The rise in plasma cyclic AMP was slower in onset and of greater magnitude than for isoprenaline, reaching a peak by 20 min and remaining above basal level for more than 6 h. The maximum increase in heart rate after fenoterol was less than that observed with isoprenaline but an elevated rate persisted for 4 h after inhalation of fenoterol. Fenoterol is known to have a longer duration of action as a bronchodilator in comparison with isoprenaline. The prolonged rise in plasma cyclic AMP in normal subjects given inhaled fenoterol may reflect this long duration of action. The concomitant rise in heart rate, however, suggests that the duration of plasma cyclic AMP response may in part be due to the systemic effect of the fraction of inhaled fenoterol known to be absorbed via the buccal and intestinal routes. PMID:6322828

  11. Lipopolysaccharide and cAMP modify placental calcitriol biosynthesis reducing antimicrobial peptides gene expression.

    PubMed

    Olmos-Ortiz, Andrea; García-Quiroz, Janice; Avila, Euclides; Caldiño-Soto, Felipe; Halhali, Ali; Larrea, Fernando; Díaz, Lorenza

    2018-06-01

    Calcitriol, the hormonal form of vitamin D 3 (VD), stimulates placental antimicrobial peptides expression; nonetheless, the regulation of calcitriol biosynthesis in the presence of bacterial products and its consequence on placental innate immunity have scarcely been addressed. We investigated how some bacterial products modify placental VD metabolism and its ability to induce antimicrobial peptides gene expression. Cultured human trophoblasts biosynthesized calcitriol only in the presence of its precursor calcidiol, a process that was inhibited by cyclic-AMP but stimulated by lipopolysaccharide (LPS). Intracrine calcitriol upregulated cathelicidin, S100A9, and β-defensins (HBDs) gene expression, while LPS further stimulated HBD2 and S100A9. Unexpectedly, LPS significantly repressed cathelicidin basal mRNA levels and drastically diminished calcidiol ability to induce it. Meanwhile, cyclic-AMP, which is used by many microbes to avoid host defenses, suppressed calcitriol biosynthesis, resulting in significant inhibition of most VD-dependent microbicidal peptides gene expression. While LPS stimulated calcitriol biosynthesis, cyclic-AMP inhibited it. LPS downregulated cathelicidin mRNA expression, whereas cyclic-AMP antagonized VD-dependent-upregulation of most antimicrobial peptides. These findings reveal LPS and cyclic-AMP involvement in dampening placental innate immunity, highlighting the importance of cyclic-AMP in the context of placental infection and suggesting its participation to facilitate bacterial survival. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Earl Sutherland (1915-1974) [corrected] and the discovery of cyclic AMP.

    PubMed

    Blumenthal, Stanley A

    2012-01-01

    In 1945, Earl Sutherland (1915-1974) [corrected] and associates began studies of the mechanism of hormone-induced glycogen breakdown in the liver. In 1956, their efforts culminated in the identification of cyclic AMP, an ancient molecule generated in many cell types in response to hormonal and other extracellular signals. Cyclic AMP, the original "second messenger," transmits such signals through pathways that regulate a diversity of cellular functions and capabilities: metabolic processes such as lipolysis and glycogenolysis; hormone secretion; the permeability of ion channels; gene expression; cell proliferation and survival. Indeed, it can be argued that the discovery of cyclic AMP initiated the study of intracellular signaling pathways, a major focus of contemporary biomedical inquiry. This review presents relevant details of Sutherland's career; summarizes key contributions of his mentors, Carl and Gerti Cori, to the knowledge of glycogen metabolism (contributions that were the foundation for his own research); describes the experiments that led to his identification, isolation, and characterization of cyclic AMP; assesses the significance of his work; and considers some aspects of the impact of cyclic nucleotide research on clinical medicine.

  13. Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1

    PubMed Central

    Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip

    1980-01-01

    The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154

  14. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  15. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    PubMed Central

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  16. Regulation of Phosphorylation of a Specific Protein in Toad-Bladder Membrane by Antidiuretic Hormone and Cyclic AMP, and Its Possible Relationship to Membrane Permeability Changes

    PubMed Central

    DeLorenzo, Robert J.; Walton, Kenneth G.; Curran, Peter F.; Greengard, Paul

    1973-01-01

    Phosphorylation of a specific protein was decreased in intact toad bladders by exposure to either antidiuretic hormone or monobutyryl cyclic AMP. The decrease in phosphorylation caused by these agents preceded the change in electrical potential difference (an indicator of the rate of sodium ion transport) observed in response to the same compounds. The addition of cyclic AMP to homogenates of toad bladder led to a decrease in phosphorylation of the same, or a similar, protein. In subcellular fractionation studies, the effect of cyclic AMP on the phosphorylation of this protein was observed in those fractions rich in membrane fragments, but not in the nuclear or cell-sap fractions. These and other results are compatible with the possibility that the regulation by vasopressin and cyclic AMP of sodium and/or water transport in toad bladder may be mediated through regulation of the phosphorylation of this specific protein. Images PMID:4351809

  17. Cyclic AMP- and (Rp)-cAMPS-induced Conformational Changes in a Complex of the Catalytic and Regulatory (RIα) Subunits of Cyclic AMP-dependent Protein Kinase*

    PubMed Central

    Anand, Ganesh S.; Krishnamurthy, Srinath; Bishnoi, Tanushree; Kornev, Alexandr; Taylor, Susan S.; Johnson, David A.

    2010-01-01

    We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((Sp)-adenosine cyclic 3′:5′-monophosphorothioate ((Sp)-cAMPS)) and the other a diastereoisomeric antagonist ((Rp)-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91–244)·C-subunit, by using fluorescence spectroscopy and amide H/2H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91–244), and the effects of cAMP, (Sp)-cAMPS, and (Rp)-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (Rp)-cAMPS on amide exchange of the RIα(91–244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91–244). Surprisingly, (Rp)-cAMPS not only increased the affinity of RIα(91–244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (Rp)-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (Rp)-cAMPS-induced increase in affinity of RIα(91–244) toward the C-subunit indicates that (Rp)-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity. PMID:20167947

  18. Crystal structures of RIalpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP.

    PubMed

    Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S

    2004-06-01

    Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.

  19. Early effects of synthetic bovine parathyroid hormone and synthetic salmon calcitonin on urinary excretion of cyclic AMP, phosphate and calcium in man.

    PubMed

    Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R; Galli, M

    1976-04-20

    Bovine synthetic parathyroid hormone infused intravenously in man increased both the urinary excretion of cyclic AMP and the urinary excretion of phosphate whereas a Salmon synthetic calcitonin infusion increased the urinary excretion of phosphate without change in urinary excretion of cyclic AMP. These data are consistent with the hypothesis that different renal mechanisms are involved in the response to each hormone.

  20. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  1. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines.

    PubMed

    Dicitore, Alessandra; Grassi, Elisa Stellaria; Caraglia, Michele; Borghi, Maria Orietta; Gaudenzi, Germano; Hofland, Leo J; Persani, Luca; Vitale, Giovanni

    2016-01-01

    The oncogenic activation of the rearranged during transfection (RET) proto-oncogene has a main role in the pathogenesis of medullary thyroid cancer (MTC). Several lines of evidence suggest that RET function could be influenced by cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity. We evaluated the in vitro anti-tumor activity of 8-chloroadenosine-3',5'-cyclic monophosphate (8-Cl-cAMP) and PKA type I-selective cAMP analogs [equimolar combination of the 8-piperidinoadenosine-3',5'-cyclic monophosphate (8-PIP-cAMP) and 8-hexylaminoadenosine-3',5'-cyclic monophosphate (8-HA-cAMP) in MTC cell lines (TT and MZ-CRC-1)]. 8-Cl-cAMP and the PKA I-selective cAMP analogs showed a potent anti-proliferative effect in both cell lines. In detail, 8-Cl-cAMP blocked significantly the transition of TT cell population from G2/M to G0/G1 phase and from G0/G1 to S phase and of MZ-CRC-1 cells from G0/G1 to S phase. Moreover, 8-Cl-cAMP induced apoptosis in both cell lines, as demonstrated by FACS analysis for annexin V-FITC/propidium iodide, the activation of caspase-3 and PARP cleavage. On the other hand, the only effect induced by PKA I-selective cAMP analogs was a delay in G0/G1-S and S-G2/M progression in TT and MZ-CRC-1 cells, respectively. In conclusion, these data demonstrate that cAMP analogs, particularly 8-Cl-cAMP, significantly suppress in vitro MTC proliferation and provide rationale for a potential clinical use of cAMP analogs in the treatment of advanced MTC.

  2. Involvement of plasma membrane-located calmodulin in the response decay of cyclic nucleotide-gated cation channel of cultured carrot cells.

    PubMed

    Kurosaki, F; Kaburaki, H; Nishi, A

    1994-03-07

    Increase in cytoplasmic cyclic AMP concentration stimulates Ca2+ influx through the cyclic AMP-gated cation channel in the plasma membrane of cultured carrot cells. However, the Ca2+ current terminated after a few minutes even in the presence of high concentrations of cyclic AMP indicating that hydrolysis of the nucleotide is not responsible for stop of the Ca2+ influx. Cyclic AMP evoked discharge of Ca2+ from inside-out sealed vesicles of carrot plasma membrane, and it was strongly inhibited when the suspension of the vesicles was supplemented with 1 microM of free Ca2+, while Ca2+ lower than 0.1 microM did not affect the Ca(2+)-release. The Ca2+ flux across plasma membrane was restored from this Ca(2+)-induced inhibition by the addition of calmodulin inhibitors or anti-calmodulin. These results suggest that Ca2+ influx initiated by the increase in intracellular cAMP in cultured carrot cells is terminated when the cytosolic Ca2+ concentration reaches the excitatory level in the cells, and calmodulin located in the plasma membrane plays an important role in the response decay of the cyclic nucleotide-gated Ca2+ channel.

  3. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    USDA-ARS?s Scientific Manuscript database

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  4. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.

    PubMed

    Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre

    2007-10-01

    The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both basal and more markedly, the enhanced production of ET-1 from LPS-activated guinea pig airway EpCs. In addition, these compounds increase cyclic AMP levels in the cells. It is suggested that there is a correlation between cyclic AMP increase and inhibition of ET-1 release by guinea pig airway EpCs. Since ET-1 production was shown to be elevated in asthmatic subjects and in patients suffering from other inflammatory lung disorders, the inhibition of its production by beta adrenoceptor agonists, such as salbutamol and salmeterol, could be added to their therapeutical benefits.

  5. Microgravity changes in heart structure and cyclic-AMP metabolism

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  6. Cyclic AMP-induced Chromatin Changes Support the NFATc-mediated Recruitment of GATA-3 to the Interleukin 5 Promoter*

    PubMed Central

    Klein-Hessling, Stefan; Bopp, Tobias; Jha, Mithilesh K.; Schmidt, Arthur; Miyatake, Shoichiro; Schmitt, Edgar; Serfling, Edgar

    2008-01-01

    Elevated intracellular cyclic AMP levels, which suppress the proliferation of naive T cells and type 1 T helper (Th1) cells are a property of T helper 2 (Th2) cells and regulatory T cells. While cyclic AMP signals interfere with the IL-2 promoter induction, they support the induction of Th2-type genes, in particular of il-5 gene. We show here that cyclic AMP signals support the generation of three inducible DNase I hypersensitive chromatin sites over the il-5 locus, including its promoter region. In addition, cyclic AMP signals enhance histone H3 acetylation at the IL-5 promoter and the concerted binding of GATA-3 and NFATc to the promoter. This is facilitated by direct protein-protein interactions involving the C-terminal Zn2+-finger of GATA-3 and the C-terminal region of the NFATc1 DNA binding domain. Because inhibition of NFATc binding to the IL-5 promoter in vivo also affects the binding of GATA-3, one may conclude that upon induction of Th2 effector cells NFATc recruits GATA-3 to Th2-type genes. These data demonstrate the functional importance of cyclic AMP signals for the interplay between GATA-3 and NFATc factors in the transcriptional control of lymphokine expression in Th2 effector cells. PMID:18772129

  7. ON THE MECHANISM OF ACTION OF ADRENOCORTICOTROPIC HORMONE: THE BINDING OF CYCLIC-3′,5′-ADENOSINE MONOPHOSPHATE TO AN ADRENAL CORTICAL PROTEIN*

    PubMed Central

    Gill, Gordon N.; Garren, Leonard D.

    1969-01-01

    The binding of cyclic 3′,5′-adenosine monophosphate (cyclic AMP) within the adrenal cortical cell was studied. Cyclic AMP binds specifically to a protein which is associated predominantly with the microsomal fraction of the cell. The binding protein was purified approximately 100-fold. PMID:4308274

  8. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  9. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.« less

  10. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  11. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines.

    PubMed

    Ghosh, Mousumi; Xu, Yong; Pearse, Damien D

    2016-01-13

    Microglia and macrophages play a central role in neuroinflammation. Pro-inflammatory cytokines trigger their conversion to a classically activated (M1) phenotype, sustaining inflammation and producing a cytotoxic environment. Conversely, anti-inflammatory cytokines polarize the cells towards an alternatively activated (M2), tissue reparative phenotype. Elucidation of the signal transduction pathways involved in M1 to M2 phenotypic conversion may provide insight into how the innate immune response can be harnessed during distinct phases of disease or injury to mediate neuroprotection and neurorepair. Microglial cells (cell line and primary) were subjected to combined cyclic adenosine monophosphate (cyclic AMP) and IL-4, or either alone, in the presence of pro-inflammatory mediators, lipopolysaccharide (LPS), or tumor necrosis factor-α (TNF-α). Their effects on the expression of characteristic markers for M1 and M2 microglia were assessed. Similarly, the M1 and M2 phenotypes of microglia and macrophages within the lesion site were then evaluated following a contusive spinal cord injury (SCI) to the thoracic (T8) spinal cord of rats and mice when the agents were administered systemically. It was demonstrated that cyclic AMP functions synergistically with IL-4 to promote M1 to M2 conversion of microglia in culture. The combination of cyclic AMP and IL-4, but neither alone, induced an Arg-1(+)/iNOS(-)cell phenotype with concomitant expression of other M2-specific markers including TG2 and RELM-α. M2-converted microglia showed ameliorated production of pro-inflammatory cytokines (TNF-α and IP-10) and reactive oxygen species, with no alteration in phagocytic properties. M2a conversion required protein kinase A (PKA), but not the exchange protein directly activated by cyclic AMP (EPAC). Systemic delivery of cyclic AMP and IL-4 after experimental SCI also promoted a significant M1 to M2a phenotypic change in microglia and macrophage population dynamics in the lesion. Using primary microglia, microglial cell lines, and experimental models of CNS injury, we demonstrate that cyclic AMP levels are a critical determinant in M1-M2 polarization. High levels of cyclic AMP promoted an Arg-1(+) M2a phenotype when microglia were activated with pro-inflammatory stimuli and Th2 cytokines. Th2 cytokines or cyclic AMP independently did not promote these changes. Phenotypic conversion of microglia provides a powerful new therapeutic approach for altering the balance of cytotoxic to reparative microglia in a diversity of neurological diseases and injury.

  12. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    PubMed

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Inactivation of the Catalytic Subunit of cAMP-Dependent Protein Kinase A Causes Delayed Appressorium Formation and Reduced Pathogenicity of Colletotrichum gloeosporioides

    PubMed Central

    Priyatno, Tri Puji; Abu Bakar, Farah Diba; Kamaruddin, Nurhaida; Mahadi, Nor Muhammad; Abdul Murad, Abdul Munir

    2012-01-01

    The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides. PMID:22666136

  14. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.

    PubMed

    Vigil, Dominico; Lin, Jung-Hsin; Sotriffer, Christoph A; Pennypacker, Juniper K; McCammon, J Andrew; Taylor, Susan S

    2006-01-01

    Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.

  15. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.

    PubMed Central

    Prestwich, S A; Bolton, T B

    1995-01-01

    1. The effects of caffeine, isoprenaline, dibutyryl cyclic AMP, isobutylmethylxanthine (IBMX), 12-O-tetradecanoylphorbol-13-acetate (TPA) or 1-oleoyl-2-acetylglycerol (OAG), (protein kinase C (PKC) activators), 2-methoxy verapamil (D600), thapsigargin and ryanodine on muscarinic acetylcholine receptor (AChR)-stimulated inositol phospholipid hydrolysis were studied in smooth muscle fragments from the longitudinal layer of the small intestine of the guinea-pig. 2. Incubation of the fragments with the muscarinic agonist, carbachol (CCh) (100 microM) resulted in rapid increases in the levels of all the inositol phosphate isomers with maximal increases in the [3H]-inositol (1,4,5) trisphosphate ([3H]-Ins(1,4,5)P3) isomer occurring 10 s following incubation. 3. The beta-adrenoceptor agonist, isoprenaline (10 microM) and dibutyryl cyclic AMP (10 microM), a membrane permeant analogue of cyclic AMP both reduced the CCh stimulation, but not the basal levels of [3H]-inositol phosphates. This inhibition by dibutyryl cyclic AMP was enhanced in the presence of the phosphodiesterase inhibitor, IBMX. CCh inhibited the isoprenaline-induced increases in the levels of cyclic AMP and this was via a pertussi toxin (PTX)-sensitive G-protein mechanism. 4. TPA (1 microM) and OAG (100 microM) a 1,2-diacylglycerol (DAG) analogue both reduced the CCh-induced increases in [3H]-inositol phosphates levels but neither affected basal values nor the basal levels of cyclic AMP. 5. D600 (10 microM), which blocks voltage-dependent Ca2+ channels, also reduced the CCh-stimulated levels of [3H]-inositol phosphates suggesting that some of the agonist-induced increases are due to a potentiating effect of Ca2+ entering the cell. 6. Caffeine (0.5-30 mM) significantly inhibited both the basal and CCh-induced increases in all the [3H]-inositol phosphate isomers. Its inhibitory action was not due to increases in cyclic AMP since caffeine had no effect on the levels of cyclic AMP at concentrations up to 30 mM. 7. Incubation with thapsigargin (1 microM) and ryanodine (10 microM) had no effect on either basal or CCh-induced inositol phospholipid hydrolysis or cyclic AMP levels. 8. The results indicate a reciprocal inhibition by beta-adrenoceptors and muscarinic AChRs of their effects on cyclic AMP and inositol phosphate levels respectively. Ca2+ entering the cell (but not the action of ryanodine or thapsigargin) potentiates while caffeine inhibits muscarinic AChR-induced rises in inositol phosphate levels. Diacylglycerols may exert a negative feedback inhibition on inositol phosphate production. PMID:7537591

  16. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  17. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production.

    PubMed

    First, Eric A

    2015-08-15

    A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  19. A novel dimerization interface of cyclic nucleotide binding domain, which is disrupted in presence of cAMP: implications for CNG channels gating.

    PubMed

    Gushchin, Ivan Y; Gordeliy, Valentin I; Grudinin, Sergei

    2012-09-01

    Cyclic nucleotide binding domain (CNBD) is a ubiquitous domain of effector proteins involved in signalling cascades of prokaryota and eukaryota. CNBD activation by cyclic nucleotide monophosphate (cNMP) is studied well in the case of several proteins. However, this knowledge is hardly applicable to cNMP-modulated cation channels. Despite the availability of CNBD crystal structures of bacterial cyclic nucleotide-gated (CNG) and mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels in presence and absence of the cNMP, the full understanding of CNBD conformational changes during activation is lacking. Here, we describe a novel CNBD dimerization interface found in crystal structures of bacterial CNG channel MlotiK1 and mammalian cAMP-activated guanine nucleotide-exchange factor Epac2. Molecular dynamics simulations show that the found interface is stable on the studied timescale of 100 ns, in contrast to the dimerization interface, reported previously. Comparisons with cN-bound structures of CNBD show that the dimerization is incompatible with cAMP binding. Thus, the cAMP-dependent monomerization of CNBD may be an alternative mechanism of the cAMP sensing. Based on these findings, we propose a model of the bacterial CNG channel modulation by cAMP.

  20. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  1. Ex vivo and in vivo studies of CME-1, a novel polysaccharide purified from the mycelia of Cordyceps sinensis that inhibits human platelet activation by activating adenylate cyclase/cyclic AMP.

    PubMed

    Lu, Wan-Jung; Chang, Nen-Chung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Chou, Duen-Suey; Thomas, Philip Aloysius; Sheu, Joen-Rong

    2014-12-01

    CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation. The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study. CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH(●)) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation. This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and MAPKs), ultimately inhibiting platelet activation. This novel role of CME-1 indicates that CME-1 exhibits high potential for application in treating and preventing CVDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    PubMed Central

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. PMID:28783096

  3. Coordinated modulation of albumin synthesis and mRNA levels in cultured hepatoma cells by hydrocortisone and cyclic AMP analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.C.; Papaconstantinou, J.

    The treatment of Hepa-2 cells, a permanent mouse hepatoma cell line, for 72 h with hydrocortisone (10/sup -6/ M), N/sup 6/,O/sup 2/-dibutyryl cyclic AMP (10/sup -3/ M), or 8-bromo cyclic AMP(10/sup -3/ M) results in a 2-, 3-, or 4-fold increase, respectively, in rates of synthesis and secretion of mouse serum albumin. Simultaneous treatment with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP results in a 10-fold stimulation in these parameters, an effect that is significantly more than additive for the two compounds tested. The number of albumin mRNA sequences, determined by hybridization of total cell RNA to albumin complementary DNA,more » was increased in direct proportion to the increases in albumin synthesis in all experiments. The relative rate of albumin synthesis approaches in vivo levels in cells treated simultaneously with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP. We propose that these factors may be necessary to maintain the maximal level of differentiated function in the continuous culture of Hepa-2 cells.« less

  4. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugio, K.; Daly, J.W.

    1984-01-09

    The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin were investigated using (/sup 125/I) bovine serum albumin (/sup 125/I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E/sub 1/-induced response. The phosphodiesterase inhibitors, ZK 627ll, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited and prostaglandin E/sub 1/-induced response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 ..mu..g potentiated the bradykinin-induced plasma exudation, but hadmore » no effect at doses of 10 and 100 ..mu..g. 8-bromo cyclic AMP at all doses significantly inhibited the prostaglandin E/sub 1/-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin derive from activation of cyclic AMP-generating systems.« less

  5. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    PubMed

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  6. Further studies on the effect of adenosine cyclic monophosphate derivatives on cell proliferation in the jejunal crypts of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    1. Cell proliferation in the jejunal crypt epithelium of rat was measured using a stathmokinetic technique. 2. Sodium butyrate was found to promote jejunal crypt cell proliferation. 3. N6, O2'-Dibutyryl cyclic adenosine monophosphate (cAMP), N6-monobutyryl-cAMP and N6-monobutyryl-8-bromo-cAMP were found to inhibit cell proliferation when compared to sodium butyrate treated tissues. 4. 8-Chlorophenylthio-cAMP was found to inhibit cell division when compared to untreated animals. 5. O2'-Monobutyryl cAMP and 8-bromo-cAMP were not found to inhibit cell proliferation.

  7. Inhibition of hormone-stimulated lipolysis by clofibrate. A possible mechanism for its hypolipidemic action.

    PubMed Central

    D'Costa, M A; Angel, A

    1975-01-01

    The present study was undertaken to investigate the mechanism of the antilipolytic action of clofibrate (p-chlorophenoxyisobutyrate). Clofibrate, in the dose range of 10-80 mg/199 ml, inhibited the initial rate of norepinephrine-stimulated lipolysis 17-44 percent in isolated rat fat cells. At a dose corresponding to therapeutic levels in vivo (10 mg/100 ml) clofibrate also inhibited hormone-stimulated lipolysis by 20-30 percent in fragments of human subcutaneous fat. Inhibition of lipolysis by clofibrate occurred at all concentrations of norepinephrine and ACTH (0.02-0.1 mug/ml) but did not occur with equilipolytic concentrations of dibutyryl cyclic AMP, suggesting a proximal site of action on the lipolytic sequence. Clofibrate reduced by 60 percent (315plus or minus40 vs. 120plus or minus25 pmol/g lipid; meanplus or minusSEM) the norepinephrine-stimulated initial rise in cyclic AMP, measured 10 min after addition of hormone. Because the antilipolytic effect occurred in the presence of glucose and without altering cellular ATP levels, the reduction in intracellular cyclic AMP levels could not be attributed to uncoupling of oxidative metabolism or to secondary effects of free fatty acid accumulation. In the secondary effects of free fatty acid accumulation. In the presence of procaine-HC1, which blocks hormone-stimulated lipolysis without inhibiting cyclic AMP accumulation, addition of clofibrate prevented the hormone-stimulated rise in cyclic AMP. Clofibrate did not affect the activity of the low-Km 3',5'-cyclic AMP phosphodiesterase in norepinephrine-stimulated adipocytes. These data suggest that the antilipolytic effect of clofibrate is due to its suppression of cyclic AMP production by inhibition of adenylate cyclase. The drug's hypolipidemic action may in part be explained by its antilipolytic effect, which deprives the liver of free fatty acid substrate for lipoprotein synthesis. Images PMID:162783

  8. [Prognostic significance of the cyclic AMP concentration in acute leukemias].

    PubMed

    Paietta, E; Mittermayer, K; Schwarzmeier, J D

    1979-01-01

    In patients with acute leukemia (myeloblastic, lymphoblastic, undifferentiated) proliferation kinetics and cyclic adenosine-3', 5'-monophosphate (cAMP) concentration of the leukemic cells were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly faster turnover and lower cAMP-levels than those who failed to respond to treatment.

  9. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  10. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    PubMed Central

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  11. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.

  12. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    PubMed Central

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-01-01

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1. Images PMID:7971267

  13. Direct Inhibitory Effect of Hypercalcemia on Renal Actions of Parathyroid Hormone

    PubMed Central

    Beck, Nama; Singh, Harbans; Reed, Sarah W.; Davis, Bernard B.

    1974-01-01

    The effects of calcium on the renal actions of parathyroid hormone (PTH) were studied in vivo and in vitro. In parathyroidectomized rats, variable levels of blood calcium concentration were induced by intravenous infusion of calcium. The renal responses to the injected PTH, i.e. phosphate and cyclic AMP excretion, were compared in these animals. After PTH injection, the increases of both phosphate and cyclic AMP excretion were less in the calcium-infused animals than in the control group without calcium infusion. There was an inverse correlation between the renal responses to PTH and plasma calcium concentration of 4.2-13.5 mg/100 ml. But calcium had no effect on phosphate excretion induced by infusion of dibutyryl cyclic AMP. In the in vitro experiments, the increase of cyclic AMP concentration in response to PTH was less in renal cortical slices taken from the calcium-infused animals than in ones from the control group without calcium infusion. Calcium also inhibited the activation of renal cortical adenylate cyclase in response to PTH, but calcium had no effect on phosphodiesterase. The data indicate that calcium directly inhibits renal actions of PTH both in vivo and in vitro. Such inhibitory mechanism is probably at or before the step of PTH-dependent cyclic AMP generation in the kidney. PMID:4359938

  14. Age-related decrease in sensitivity to glucagon and dibutyryl cyclic AMP inhibition of fatty acid synthesis in hepatocytes isolated from obese female Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Harris, R A

    1984-02-01

    Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.

  15. Roles of cyclic AMP and Ca in epithelial ion transport across corneal epithelium: a review.

    PubMed

    Reinach, P S

    1985-04-01

    The messenger roles of cyclic AMP and the calcium ion in stimulus-secretion coupling are considered in the frog and bovine corneal epithelium, respectively. In the frog cornea, epinephrine stimulates net C1 transport by increasing cyclic AMP content. This stimulation is associated with a larger apical membrane C1 conductance and basolateral membrane ionic conductance. The response of the apical membrane conductance is thought to result from an increase in cyclic AMP content whereas the basolateral membrane ionic conductance increase is unrelated based on measurements of the effects of the calcium channel antagonist, diltiazem, and the beta agonist, isoproterenol, on the electrical parameters and cyclic AMP content. The basolateral membrane is essentially K permselective since the K channel blocker, Ba, depolarized the intracellular potential difference and increased the basolateral membrane resistance. Diltiazem had even larger effects on these parameters suggesting that this compound is a more effective inhibitor of K channel activity than barium. In broken cell preparations of bovine corneal epithelium, a high affinity form of Ca + Mg activated ATPase is present (Km = .06 microM for Ca) and is essentially of plasma membrane origin. This ATPase activation is at a Ca activity similar to the expected intracellular value and suggests that this activity is the enzymatic basis for net Ca transport.

  16. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  17. Miniaturized GPCR signaling studies in 1536-well format.

    PubMed

    Shultz, S; Worzella, T; Gallagher, A; Shieh, J; Goueli, S; Hsiao, K; Vidugiriene, J

    2008-09-01

    G protein-coupled receptors (GPCRs) are involved in various physiological processes, such as behavior changes, mood alteration, and regulation of immune-system activity. Thus, GPCRs are popular targets in drug screening, and a well-designed assay can speed up the discovery of novel drug candidates. The Promega cAMP-Glo Assay is a homogenous bioluminescent assay to monitor changes in intracellular cyclic adenosine monophosphate (cAMP) concentrations in response to the effect of an agonist, antagonist, or test compound on GPCRs. Together with the Labcyte Echo 555 acoustic liquid handler and the Deerac Fluidics Equator HTS reagent dispenser, this setup can screen compounds in 96-, 384-, and 1536-well formats for their effects on GPCRs. Here, we describe our optimization of the cAMP-Glo assay in 1536-well format, validate the pharmacology, and assess the assay robustness for HTS. We have successfully demonstrated the use of the assay in primary screening applications of known agonist and antagonist compounds, and confirmed the primary hits via secondary screening. Implementing a high-throughput miniaturized GPCR assay as demonstrated here allows effective screening for potential drug candidates.

  18. Miniaturized GPCR Signaling Studies in 1536-Well Format

    PubMed Central

    Shultz, S.; Worzella, T.; Gallagher, A.; Shieh, J.; Goueli, S.; Hsiao, K.; Vidugiriene, J.

    2008-01-01

    G protein-coupled receptors (GPCRs) are involved in various physiological processes, such as behavior changes, mood alteration, and regulation of immune-system activity. Thus, GPCRs are popular targets in drug screening, and a well-designed assay can speed up the discovery of novel drug candidates. The Promega cAMP-Glo Assay is a homogenous bioluminescent assay to monitor changes in intracellular cyclic adenosine monophosphate (cAMP) concentrations in response to the effect of an agonist, antagonist, or test compound on GPCRs. Together with the Labcyte Echo 555 acoustic liquid handler and the Deerac Fluidics Equator HTS reagent dispenser, this setup can screen compounds in 96-, 384-, and 1536-well formats for their effects on GPCRs. Here, we describe our optimization of the cAMP-Glo assay in 1536-well format, validate the pharmacology, and assess the assay robustness for HTS. We have successfully demonstrated the use of the assay in primary screening applications of known agonist and antagonist compounds, and confirmed the primary hits via secondary screening. Implementing a high-throughput miniaturized GPCR assay as demonstrated here allows effective screening for potential drug candidates. PMID:19137117

  19. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  20. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  1. Targeting Signal Transducers and Activators of Transcription-3 (STAT3) as a Novel Strategy in Sensitizing Breast Cancer to EGFR-Targeted Therapy

    DTIC Science & Technology

    2009-06-01

    Osman, F. The human glutathione S-transferase P1 ( GSTP1 ) gene is transactivated by cyclic AMP (cAMP) via a cAMP response element (CRE) proximal to the...transcription start site. Chem-Biol. Interactions 133, 320-321, 2001. 4. Lo, H.-W. and Ali-Osman, F. Cyclic AMP mediated GSTP1 gene activation in...tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. Journal of Cellular

  2. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  3. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  4. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    PubMed Central

    Hoggett, J G; Brierley, I

    1992-01-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid. PMID:1445251

  5. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    PubMed

    Hoggett, J G; Brierley, I

    1992-11-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid.

  6. Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei.

    PubMed

    Ferreyra, G A; Golombek, D A

    2000-03-06

    The levels of cyclic AMP and protein kinase A, as well as the activity of this enzyme, were measured in the hamster suprachiasmatic nuclei at different time points throughout the daily or circadian cycle. Significant diurnal variations for levels of AMPc and the catalytic subunit of protein kinase A and the activity of this enzyme were found. All of these parameters tended to increase throughout the nocturnal phase, reaching higher values at the end of the night and the beginning of the day and minimal values around the time of lights off. This rhythmicity appears to be under exogenous control, since constant darkness abolished fluctuations throughout the circadian cycle. In vitro incubation in the presence of melatonin during the day significantly decreased cyclic AMP levels and basal protein kinase A activity in the SCN, while neither neuropeptide Y nor light pulses affected these parameters. These results suggest a significant diurnal regulation of the cyclic AMP-dependent system in the hamster circadian clock.

  7. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  8. Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion.

    PubMed

    Lasko, Jodi; Schlingmann, Karen; Klocke, Ann; Mengel, Grace Ann; Turner, Regina

    2012-06-01

    In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    PubMed

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  10. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine.

    PubMed Central

    Souness, J. E.; Brazdil, R.; Diocee, B. K.; Jordan, R.

    1989-01-01

    1. The mechanism by which M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine (MIMAX), which have been described as selective cyclic GMP phosphodiesterase (PDE) inhibitors, relax rat aorta was investigated. 2. Three cyclic nucleotide PDEs were identified in the soluble fraction of rat aorta; a Ca2+-insensitive form exhibiting substrate selectivity for cyclic GMP (cGMP PDE), a Ca2+/calmodulin-stimulated form which also preferentially hydrolyzed cyclic GMP (Ca2+ PDE), and a form demonstrating substrate selectivity for cyclic AMP (cAMP PDE). 3. M&B 22,948 and MIMAX inhibited cGMP PDE (Ki = 0.16 microM and 0.43 microM, respectively) and Ca2+ PDE (Ki = 9.9 microM and 0.55 microM, respectively), but exhibited weak activity against cAMP PDE (Ki = 249 microM and 42 microM, respectively). MY-5445 selectivity inhibited cGMP PDE (Ki = 1.3 microM) and vinpocetine selectively inhibited Ca2+ PDE (Ki = 14 microM). 4. M&B 22,948 and MIMAX induced dose-dependent increases in the accumulation of cyclic GMP, but not cyclic AMP, in rat aorta pieces. These effects were greatly reduced by endothelial denudation and by methylene blue (5 microM) which blocks the actions of endothelium-derived relaxant factor. MY-5445 and vinpocetine had no effect on rat aorta cyclic GMP or cyclic AMP accumulation. 5. All four compounds caused dose-related relaxation of 5-hydroxytryptamine (10 microM) contracted, endothelium-intact rat aorta, the effects of M&B 22,948 and MIMAX being greatly reduced by methylene blue (5 microM). Methylene blue also caused 10 fold and 100 fold rightward shifts in the dose-response curves of MY-5445 and vinpocetine, respectively. 6. The results are consistent with the smooth muscle relaxant actions of M&B 22,948 and MIMAX, but not vinpocetine and MY-5445, being mediated through a mechanism involving inhibition of cyclic GMP hydrolysis. PMID:2480168

  11. On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices.

    PubMed

    Ververken, D; Van Veldhoven, P; Proost, C; Carton, H; De Wulf, H

    1982-05-01

    Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; alpha-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 microM noradrenaline is mediated by beta-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 mM K+ or 100 microM veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A half-maximal activation of phosphorylase occurs at about 12 mM K+. Addition of EGTA or LaCl3 reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.

  12. STUDIES ON THE MECHANISM OF ACTION OF CYCLIC 3’,5’-ADENOSINE MONOPHOSPHATE ON STEROID HYDROXYLATIONS IN ADRENAL HOMOGENATES,

    DTIC Science & Technology

    Cyclic 3’,5’-adenosine monophosphate (cyclic 3’,5’AMP) has recently been shown to stimulate selectively steroid C-11- beta hydroxylase activity in rat...to be mediated via stimulation of alpha- glucan phosphorylase, which in turn led to enhanced production of G-6-P from glycogen and a concomitant...increase in NADPH generation. However, if cyclic 3’,5’-AMP stimulated steroid 11- beta -hydroxylation in adrenal homogenates only by this mechanism, its

  13. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  14. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  15. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  16. 21 CFR 862.1230 - Cyclic AMP test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  17. Cyclic nucleotides in tissues during long-term hypokinesia

    NASA Technical Reports Server (NTRS)

    Makeyeva, V. F.; Komolova, G. S.; Yegorov, I. A.; Serova, L. V.; Chelnaya, N. A.

    1981-01-01

    Male Wistar rates were kept hypokinetic by placing them in small containers for 22 days. Blood plasma cAMP content was subsequently found increased, and cGMP content decreased, in the experimental animals. Liver and thymus cAMP content was similar in the control and experimental animals. There was a 20 and 38% decrease of cAMP content in the kidneys and spleen, respectively. Hypokinesia's reduction of cyclic nucleotides seems to inhibit RNA and protein synthesis.

  18. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.

    PubMed

    Mizunami, Makoto; Nemoto, Yuko; Terao, Kanta; Hamanaka, Yoshitaka; Matsumoto, Yukihisa

    2014-01-01

    Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+)/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+) influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+) signaling and cAMP signaling for LTM formation, a new role of CaMKII in learning and memory.

  19. Dual contradictory roles of cAMP signaling pathways in hydroxyl radical production in the rat striatum.

    PubMed

    Hara, Shuichi; Kobayashi, Masamune; Kuriiwa, Fumi; Mukai, Toshiji; Mizukami, Hajime

    2012-03-15

    Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The cyclic AMP cascade is altered in the fragile X nervous system.

    PubMed

    Kelley, Daniel J; Davidson, Richard J; Elliott, Jamie L; Lahvis, Garet P; Yin, Jerry C P; Bhattacharyya, Anita

    2007-09-26

    Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.

  1. Release of prostaglandins from the isolated frog ventricle and associated changes in endogenous cyclic nucleotide levels.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of the decline in contractility and some associated metabolic changes which occur in the isolated frog ventricle during the development of hypodynamic depression. 2. The release of two identified prostaglandins (PG), E1 and E2, together with several as yet unknown prostaglandin-related substances (PRS), accompanies the development of hypodynamic depression. There is a close correlation between the extent to which the isometric twitch is depressed and the quantity of prostaglandin released into the superfusate. 3. Fractionation of extracts of 'used' superfusates, using preparative-scale thin-layer chromatography, revealed the presence of six major components, four of which (PGE1 and PGE2 and two unidentified components) were found to be cardioactive and potentiated contraction when tested subsequently on hypodynamic preparations. 4. Two agents which influence prostaglandin biosynthesis, arachidonic acid and indomethacin, are found to affect both the rate at which the hypodynamic state develops and the extent to which the 'steady-state' twitch tension is depressed, in a dose-dependent manner. Indomethacin, a PG-synthetase inhibitor, accelerates the decay and depresses the final 'steady-state' tension attained, whereas arachidonic acid, the principal precursor for prostaglandin biosynthesis, has the converse effects. 5. Measurements of endogenous 3'5'-cyclic nucleotide levels reveal a time-dependent decrease in intracellular adenosine 3'5'-cyclic monophosphate (3'5'-cyclic AMP) and a concomitant increase in guanosine 3'5' cyclic monophosphate (3'5'-cyclic GMP). The decline in isometric twitch tension is paralleled almost exactly by an equivalent reduction in the ratio 3'5'-cyclic AMP: 3'5'-cyclic GMP. 6. Superfusion of isolated ventricles with Ringer solution containing exogenous, lipid-soluble derivatives of 3'5'-cyclic AMP and 3'5'-cyclic GMP affects both the rate of decline of the isometric twitch and the steady-state tension ultimately reached: thus, 8-bromo-3'5'-cyclic GMP accelerates the decline in contractility and depresses the steady-state level, whereas dibutyryl 3'5'-cyclic AMP delays the development of hypodynamic depression, and elevates the final twitch tension. The effects of both 3'5' cyclic nucleotide derivatives are dose-dependent. 7. The possible involvement of prostaglandins and 3'5'-cyclic nucleotides as causal agents in the mechanism of hypodynamic depression is discussed. The biochemical basis for the implied antangonistic effects of 3'5'-cyclic AMP and 3'5'-cyclic GMP in regulating ventricular contractility is considered in the following paper (Flitney & Singh, 1980). PMID:6255139

  2. Nephrogenous Cyclic Adenosine Monophosphate as a Parathyroid Function Test

    PubMed Central

    Broadus, Arthur E.; Mahaffey, Jane E.; Bartter, Frederic C.; Neer, Robert M.

    1977-01-01

    Nephrogenous cyclic AMP (NcAMP), total cyclic AMP excretion (UcAMP), and plasma immunoreactive parathyroid hormone (iPTH), determined with a multivalent antiserum, were prospectively measured in 55 control subjects, 57 patients with primary hyperparathyroidism (1°HPT), and 10 patients with chronic hypoparathyroidism. In the group with 1° HPT, NcAMP was elevated in 52 patients (91%), and similar elevations were noted in subgroups of 26 patients with mild (serum calcium ≤10.7 mg/dl) or intermittent hypercalcemia, 19 patients with mild renal insufficiency (mean glomerular filtration rate, 64 ml/min), and 10 patients with moderate renal insufficiency (mean glomerular filtration rate, 43 ml/min). Plasma iPTH was increased in 41 patients (73%). The development of a parametric expression for UcAMP was found to be critically important in the clinical interpretation of results for total cAMP excretion. Because of renal impairment in a large number of patients, the absolute excretion rate of cAMP correlated poorly with the hyperparathyroid state. Expressed as a function of creatinine excretion, UcAMP was elevated in 81% of patients with 1° HPT, but the nonparametric nature of the expression led to a number of interpretive difficulties. The expression of cAMP excretion as a function of glomerular filtration rate was developed on the basis of the unique features of cAMP clearance in man, and this expression, which provided elevated values in 51 (89%) of the patients with 1° HPT, avoided entirely the inadequacies of alternative expressions. Results for NcAMP and UcAMP in nonazotemic and azotemic patients with hypoparathyroidism confirmed the validity of the measurements and the expressions employed. PMID:197123

  3. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG)*♦

    PubMed Central

    VanSchouwen, Bryan; Selvaratnam, Rajeevan; Giri, Rajanish; Lorenz, Robin; Herberg, Friedrich W.; Kim, Choel; Melacini, Giuseppe

    2015-01-01

    Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state. PMID:26370085

  4. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket.

    PubMed

    Han, Xiaobiao; Shen, Liqiang; Wang, Qijun; Cen, Xufeng; Wang, Jin; Wu, Meng; Li, Peng; Zhao, Wei; Zhang, Yu; Zhao, Guoping

    2017-01-27

    The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans.

    PubMed

    Hollomon, Jeffrey M; Grahl, Nora; Willger, Sven D; Koeppen, Katja; Hogan, Deborah A

    2016-01-01

    Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.

  6. Global Role of Cyclic AMP Signaling in pH-Dependent Responses in Candida albicans

    PubMed Central

    Hollomon, Jeffrey M.; Grahl, Nora; Willger, Sven D.; Koeppen, Katja

    2016-01-01

    ABSTRACT Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways. PMID:27921082

  7. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    PubMed

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  8. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells.

    PubMed

    Gilbert, K M; Hoffmann, M K

    1985-09-01

    Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.

  9. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function

    PubMed Central

    Saponaro, Andrea; Pauleta, Sofia R.; Cantini, Francesca; Matzapetakis, Manolis; Hammann, Christian; Donadoni, Chiara; Hu, Lei; Thiel, Gerhard; Banci, Lucia; Santoro, Bina; Moroni, Anna

    2014-01-01

    cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD. PMID:25197093

  10. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.

    PubMed

    Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens

    2009-05-01

    To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.

  11. cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.

    PubMed

    Cisneros-Mejorado, Abraham; Sánchez Herrera, Daniel P

    2012-01-20

    During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. [The effect of vestibuloprotectors on the cyclic nucleotide system in experimental motion sickness].

    PubMed

    Leshchiniuk, I I; Konovalova, E O; Kvitchataia, A I; Shamraĭ, V G; Bobkov, Iu G

    1989-01-01

    Changes in the blood plasma cyclic nucleotide (cAMP and cGMP) level under the effect of vestibuloprotectors: bemytil and etoxibemytil were studied in rats with experimental motion sickness. It is established that rotation causes increase in the cAMP level and decrease in the cGMP level. The effect of the vestibuloprotectors is determined by the dose of the drug and is aimed first of all at maintaining a stable cAMP level in vestibular exertion. Under conditions of this experiment etoxibemytil was more effective than bemytil.

  13. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding.

    PubMed

    Zawilska, Jolanta B; Dejda, Agnieszka; Niewiadomski, Pawel; Gozes, Illana; Nowak, Jerzy Z

    2005-01-01

    Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.

  14. Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts.

    PubMed

    Donini, Andrew; Lange, Angela B

    2004-04-01

    Visualization of the tyraminergic innervation of the oviducts was demonstrated by immunohistochemistry, and the presence of tyramine was confirmed using high-performance liquid chromatography coupled to electrochemical detection. Oviducts incubated in high-potassium saline released tyramine in a calcium-dependent manner. Stimulation of the oviducal nerves also resulted in tyramine release, suggesting that tyramine might function as a neurotransmitter/neuromodulator at the locust oviducts. Tyramine decreased the basal tension, and also attenuated proctolin-induced contractions in a dose-dependent manner over a range of doses between 10(-7) and 10(-4) M. Low concentrations of tyramine attenuated forskolin-stimulated cyclic AMP levels in a dose-dependent manner. This effect was not blocked by yohimbine. High concentrations of tyramine increased basal cyclic AMP levels of locust oviducts in a dose-dependent manner; however, the increases in cyclic AMP were only evident at the highest concentrations tested, 5 x 10(-5) and 10(-4) M tyramine. The tyramine-induced increase in cyclic AMP shared a similar pharmacological profile with the octopamine-induced increase in cyclic AMP. Tyramine increased the amplitude of excitatory junction potentials at low concentrations while hyperpolarizing the membrane potential by 2-5 mV. A further increase in the amplitude of the excitatory junction potentials and the occurrence of an active response was seen upon washing tyramine from the preparation. These results suggest that tyramine can activate at least three different endogenous receptors on the locust oviducts a putative tyramine receptor at low concentrations, a different tyramine receptor to inhibit muscle contraction, and an octopamine receptor at high concentrations.

  15. Enhancement of neurite outgrowth in PC12 cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives.

    PubMed

    Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru

    2003-03-01

    It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.

  16. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  17. 5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients

    NASA Astrophysics Data System (ADS)

    Rich, Thomas C.; Annamdevula, Naga; Trinh, Kenny; Britain, Andrea L.; Mayes, Samuel A.; Griswold, John R.; Deal, Joshua; Hoffman, Chase; West, Savannah; Leavesley, Silas J.

    2017-02-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-tonoise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 μM isoproterenol, 0.1 or 1 μM PGE1, or 50 μM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains.

  18. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".

    PubMed

    Nestler, Eric J

    2016-08-15

    In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP-dependent protein kinase, and certain phosphoproteins in the rat locus coeruleus, but not in several other brain regions studied, and that chronic morphine decreases levels of Giα and increases levels of adenylate cyclase in dorsal root ganglion/spinal cord (DRG-SC) co-cultures. These findings led us to survey the effects of chronic morphine on the G-protein/cyclic AMP system in a large number of brain regions to determine how widespread such regulation might be. We found that while most regions showed no regulation in response to chronic morphine, nucleus accumbens (NAc) and amygdala did show increases in adenylate cyclase and cyclic AMP-dependent protein kinase activity, and thalamus showed an increase in cyclic AMP-dependent protein kinase activity only. An increase in cyclic AMP-dependent protein kinase activity was also observed in DRG-SC co-cultures. Morphine regulation of G-proteins was variable, with decreased levels of Giα seen in the NAc, increased levels of Giα and Goα amygdala, and no change in thalamus or the other brain regions studied. Interestingly, chronic treatment of rats with cocaine, but not with several non-abused drugs, produced similar changes compared to morphine in G-proteins, adenylate cyclase, and cyclic AMP-dependent protein kinase in the NAc, but not in the other brain regions studied. These results indicate that regulation of the G-protein/cyclic AMP system represents a mechanism by which a number of opiate-sensitive neurons adapt to chronic morphine and thereby develop aspects of opiate tolerance and/or dependence. The findings that chronic morphine and cocaine produce similar adaptations in the NAc, a brain region important for the reinforcing actions of many types of abused substances, suggest further that common mechanisms may underlie psychological aspects of drug addiction mediated by this brain region. © 1991. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels*

    PubMed Central

    Puljung, Michael C.; Zagotta, William N.

    2013-01-01

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108

  20. A forskolin derivative, colforsin daropate hydrochloride, inhibits rat mesangial cell mitogenesis via the cyclic AMP pathway.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio

    2003-11-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel

  1. Effect of parathyroid hormone and insulin on extracellular cyclic adenosine-3',5'-monophosphate in patients with benign and malignant breast tumors.

    PubMed

    Berstein, L M; Semiglazov, V F; Vishnevski, A S; Dilman, V M

    1978-01-01

    Basal excretion of cyclic adenosine monophosphate (cAMP) and its basal level in blood plasma in breast cancer (BC) patients and those with fibroadenomatosis did not differ essentially. However, intravenous injection of parathyroid hormone (100 U) and insulin (0.08 U/kg body weight) was followed by a much less rise in urine-cAMP excretion and blood-cAMP levels in BC patients than in benign process in mammary gland. A substantial correlation between changes in plasma cAMP level and the degree of insulin-induced hypoglycemia was not observed. There was a negative correlation between reponse to parathyroid hormone and insulin and body overweight in BC patients. It was suggested that body fat content may influence the peculiarities of metabolism of extracellular cAMP in cancer patients considerably.

  2. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  3. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    PubMed

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  4. Functional somatostatin receptors on a rat pancreatic acinar cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less

  5. Effect of dibutyryl cyclic AMP on the kinetics of myo-inositol transport in cultured astrocytes.

    PubMed

    Isaacks, R E; Bender, A S; Reuben, J S; Kim, C Y; Shi, Y F; Norenberg, M D

    1999-07-01

    Dibutyryl cyclic AMP (dBcAMP) is known to induce maturation and differentiation in astrocytes. As myo-inositol is an important osmoregulator in astrocytes, we examined the effects of maturation and biochemical differentiation on the kinetic properties of myo-inositol transport. Treatment of astrocytes with dBcAMP significantly decreased the Vmax of myo-inositol uptake, but the effect on Km was not significant. The myo-inositol content of astrocytes was significantly decreased in cells treated for 5 days with dBcAMP as compared with untreated controls. Maximum suppression of myo-inositol uptake occurred 7 days after exposure of astrocytes to dBcAMP; this was gradually reversible when dBcAMP was removed from the medium. After exposure to hypertonic medium for 6 h, mRNA expression of the myo-inositol co-transporter was diminished by approximately 36% in astrocytes treated with dBcAMP as compared with untreated cells. It appears that myo-inositol transporters in astrocytes treated with dBcAMP are either decreased in number or inactivated during maturation and differentiation, suggesting that the stage of differentiation and biochemical maturation of astrocytes is an important factor in osmoregulation.

  6. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis

    PubMed Central

    Skopova, Karolina; Tomalova, Barbora; Kanchev, Ivan; Rossmann, Pavel; Svedova, Martina; Adkins, Irena; Bibova, Ilona; Tomala, Jakub; Masin, Jiri; Guiso, Nicole; Osicka, Radim; Sedlacek, Radislav; Kovar, Marek

    2017-01-01

    ABSTRACT The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b− cells. The nonhemolytic AC+ Hly− bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly− mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b− cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent. PMID:28396322

  7. Activation of Exchange Protein Activated by Cyclic-AMP Enhances Long-Lasting Synaptic Potentiation in the Hippocampus

    ERIC Educational Resources Information Center

    Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.

    2008-01-01

    cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…

  8. Regulation of Brain Muscarinic Receptors by Protein Kinase C

    DTIC Science & Technology

    1991-06-21

    esters or to high concentrations of muscarinic agonists. Neuronal mouse neuroblastoma cells maintained in culture (clone N1E - 115 ) were used as a...E.E. El-Fakahany: Inhibition of Cyclic AMP Formation in N1E - 115 Neuroblastoma Cells is Mediated by a Noncardiac M2 Muscarinic Receptor Subtype...Receptor-Mediated Second Messenger Responses in N1E - 115 Neuroblastoma Cells. Journal of Neurochemistry. 53, 1300-1308, 1989. 15. McKinney, M., D

  9. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain.

    PubMed

    Chen, Jie; Tabatabaei, Ali; Zook, Doug; Wang, Yan; Danks, Anne; Stauber, Kathe

    2017-11-30

    A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine- 13 C 5 monophosphate ( 13 C 5 -cAMP) and 3',5'-cyclic guanosine- 13 C, 15 N 2 monophosphate ( 13 C 15 N 2 -cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r 2 >0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  11. The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs

    PubMed Central

    Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J.

    2014-01-01

    The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. PMID:24631457

  12. Proliferation kinetics and cyclic AMP as prognostic factors in adult acute leukemia.

    PubMed

    Paietta, E; Mittermayer, K; Schwarzmeier, J

    1980-07-01

    In 41 adult patients with acute leukemia (myeloblastic, lymphoblastic, and undifferentiated), proliferation kinetics (as determined by double-label autoradiography) and cyclic adenosine 3',5'-monophosphate (cAMP) concentration were studied for their significance in the prediction of responsiveness to cytostatic therapy. Patients with good clinical response had significantly shorter turnover times and higher labeling indices in the bone marrow than did those who failed to respond to treatment. Cases for which cell kinetics did not correlate with clinical response were explained by variance in the distribution of leukemic blasts between the proliferative cell cycle and the resting pool. Good clinical response was also found to be associated with low levels of cAMP in leukemic cells prior to therapy, whereas high cAMP contents predicted failure. Low cAMP concentrations, however, did not necessarily correlate with short turnover times and vice versa. This might be due to fluctuations of the cAMP concentrations during the cell cycle.

  13. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  14. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  15. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  16. Relationship between inhibition of cyclic AMP production in Chinese hamster ovary cells expressing the rat D2(444) receptor and antagonist/agonist binding ratios.

    PubMed Central

    Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.

    1995-01-01

    1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561

  17. Dose and Chemical Modification Considerations for Continuous Cyclic AMP Analog Delivery to the Injured CNS

    PubMed Central

    Fouad, Karim; Ghosh, Mousumi; Vavrek, Romana; Tse, Arthur D.

    2009-01-01

    Abstract In this investigation, two cell-permeable synthetic analogs of cAMP, dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP, which are widely used to elevate intracellular cAMP levels under experimental conditions, were investigated for their ability to dose-dependently improve histological and functional outcomes following continuous delivery in two models of incomplete spinal cord injury (SCI). The cAMP analogs were delivered via osmotic minipumps at 1–250 mM through an indwelling cortical cannula or by intrathecal infusion for up to 4 weeks after either a T8 unilateral over-hemisection or a C2-3 dorsolateral quadrant lesion, respectively. In both SCI models, continuous db-cAMP delivery was associated with histopathological changes that included sporadic micro-hemorrhage formation and cavitation, enhanced macrophage infiltration and tissue damage at regions beyond the immediate application site; no deleterious or beneficial effect of agent delivery was observed at the spinal injury site. Furthermore, these changes were accompanied by pronounced behavioral deficits that included an absence of progressive locomotor recovery, increased extensor tone, paralysis, and sensory abnormalities. These deleterious effects were not observed in saline-treated animals, in animals in which the db-cAMP dose did not exceed 1 mM, or in those animals that received a high dose (250 mM) of the alternative cAMP analog, 8-bromo-cAMP. These results demonstrate that, for continuous intraparenchymal or intrathecal administration of cAMP analogs for the study of biological or therapeutic effects within the central nervous system (CNS), consideration of the effective concentration applied as well as the potential toxicity of chemical moieties on the parent molecule and/or their activity needs to be taken into account. PMID:19397425

  18. Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Van Damme, Thomas; Zhang, Yanhua; Lynen, Frédéric; Sandra, Pat

    2012-11-15

    3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are essential second messenger molecules. They are involved in signal transduction within cells, in physiological functions such as neurotransmission and in the modulation of cell growth and differentiation of organisms, respectively. A quantitative solid phase extraction method (SPE) based on hydrophilic interaction on silica was developed and applied to both plasma and tissue samples. The stable isotope-labeled internal standards ²D₁, ¹⁵N₃-3',5'-cGMP and ¹³C₁₀, ¹⁵N₅-3',5'-cAMP were added prior to the sample preparation to ensure high precision and accuracy. The samples were analyzed by reversed-phase liquid chromatography (RP-LC). Negative electrospray (ESI)-MS/MS was used to selectively monitor several transitions of each metabolite. The method for the analysis of 3',5'-cAMP and 3',5'-cGMP in plasma was validated in the range of 0.15-20 ng/mL (R²=0.9996 and 0.9994 for 3',5'-cAMP and 3',5'-cGMP, respectively). Basal plasma concentrations for fifteen healthy human patients determined with this method varied between 4.66-9.20 ng/mL for 3',5'-cAMP and between 0.30-1.20 ng/mL for 3',5'-cGMP, with precisions better than 9.1%. 3',5'-cGMP and 3',5'-cAMP together with their 2',3'-isomers were also determined in a semi quantitative way in animal tissues. The structures of the isomers were confirmed by analysis with LC-high resolution time-of-flight MS and subsequently by comparison of retention times with standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Temporal Analysis of the Magnaporthe Oryzae Proteome During Conidial Germination and Cyclic AMP (cAMP)-mediated Appressorium Formation*

    PubMed Central

    Franck, William L.; Gokce, Emine; Oh, Yeonyee; Muddiman, David C.; Dean, Ralph A.

    2013-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity. PMID:23665591

  20. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain.

    PubMed

    Salehi, Forouz; Hosseini-Zare, Mahshid S; Aghajani, Haleh; Seyedi, Seyedeh Yalda; Hosseini-Zare, Maryam S; Sharifzadeh, Mohammad

    2017-08-01

    The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  1. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level.

    PubMed

    Dunlap, P V

    1992-07-01

    Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.

  2. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    PubMed

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  3. Cyclic AMP agonist inhibition increases at low levels of histamine release from human basophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, R.S.; Lichtenstein, L.M.

    1981-09-01

    The relationship between the intensity of the signal for antigen-induced immunoglobulin E-mediated histamine release from human basophils and the concentration of agonist needed to inhibit release has been determined. The agonists, prostaglandin E1, dimaprit, fenoterol, isobutylmethylxanthine and dibutyryl cyclic AMP, all act by increasing the cyclic AMP level. Each agonist was 10- to 1000-fold more potent (relative ID50) at low levels of histamine release (5-10% of total histamine) than at high levels (50-80%). Thus, the inhibitory potential of a drug is a function of the concentration of antigen used to initiate the response. Our results are now more in accordmore » with the inhibitory profile of these drugs in human lung tissue. It is suggested that in vivo release is likely to be low and that this is the level at which to evaluate drugs in vitro.« less

  4. The influence of dibutyryl adenosine cyclic monophosphate on cell proliferation in the epithelium of the jejunal crypts, the colonic crypts and in colonic carcinomata of rat.

    PubMed

    Tutton, P J; Barkla, D H

    1980-01-01

    1. Cell proliferation in the jejunal crypts, the colonic crypts and in dimethylhydrazine (DMH)-induced adenocarcinomata of rat colon was measured using a stathmokinetic technique. 2. Dibutryl cyclic adneosine monophosphate (dibutyryl cAMP) was found to inhibit cell proliferation in colonic crypts and in colonic adenocarcinomata. 3. Dibutryl cAMP at very high doses was found to inhibit jejunal crypt cell proliferation but at lower doses was found to accelerate jejunal crypt cell proliferation. 4. Neither bilateral adrenalectomy nor chemical sympathectomy was found to abolish the ability of dibutryl cAMP to stimulate jejunal crypt cell proliferation. 5. The present results are difficult to interpret in terms of known hormonal influences on cell proliferation in the tissues examined and of established actions, of these hormones on cyclic nucleotide metabolism in other tissues.

  5. The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs.

    PubMed

    Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J

    2014-05-02

    The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Cyclic nucleotide content of tobacco BY-2 cells.

    PubMed

    Richards, Helen; Das, Swadipa; Smith, Christopher J; Pereira, Louisa; Geisbrecht, Alan; Devitt, Nicola J; Games, David E; van Geyschem, Jan; Gareth Brenton, A; Newton, Russell P

    2002-11-01

    The cyclic nucleotide content of cultured tobacco bright yellow-2 (BY-2) cells was determined, after freeze-killing, perchlorate extraction and sequential chromatography, by radioimmunoassay. The identities of the putative cyclic nucleotides, adenosine 3',5'-cyclic monophosphate (cyclic AMP), guanosine 3',5'-cyclic monophosphate (cyclic GMP) and cytidine 3',5'-cyclic monophosphate (cyclic CMP) were unambiguously confirmed by tandem mass spectrometry. The potential of BY-2 cell cultures as a model system for future investigations of cyclic nucleotide function in higher plants is discussed.

  7. Benzodiazepines modulate the A2 adenosine binding sites on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Snell, C. R.; Snell, P. H.

    1984-01-01

    We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742

  8. An adenylyl cyclase gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

    USDA-ARS?s Scientific Manuscript database

    The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in som...

  9. Dibutyryl Adenosine Cyclic 3′:5′-Monophosphate Effects on Goldfish Behavior and Brain RNA Metabolism

    PubMed Central

    Shashoua, Victor E.

    1971-01-01

    Intraventricular administration of dibutyryl adenosine cyclic 3′:5′-monophosphate into goldfish brains produced hyperactive animals. A study of the effects of the drug (25-50 mg/kg) on the incorporation of [5-3H] orotic acid, as a precursor of labeled uridine and cytidine, into newly synthesized RNA showed the formation of an RNA with a uridine to cytidine ratio 20-50% higher than that of the control. In double-labeling experiments with uridine as the labeled precursor, the synthesis of a nuclear RNA fraction (not produced in the absence of drug) was demonstrated. Some of this RNA was found to migrate into the cytoplasmic fraction and to become associated with polysomes. The results suggest that cyclic AMP might function as a “metabolic demand signal” for eliciting new RNA synthesis in goldfish brain. PMID:4330944

  10. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide-gated channels.

    PubMed

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca 2+ influx by opening CNG channels in a cAMP-dependent manner. Ca 2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  11. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  12. Dibutyryl cyclic AMP stimulates expression of ependymin mRNA and the synthesis and release of the protein into the culture medium by neuroblastoma cells (NB2a/d1).

    PubMed

    Shashoua, V E; Nolan, P M; Shea, T B; Milinazzo, B

    1992-06-01

    Northern blot, immunoprecipitation, and gel electrophoretic data demonstrate that the mouse neuroblastoma NB2a/d1 cells express ependymin mRNA and synthesize and release into the culture medium a protein with immunoreactivity and electrophoretic mobility properties identical to ependymin. This is a brain extracellular glycoprotein that has been implicated in the consolidation process of memory formation and neuronal regeneration. In labeling experiments with 35S-methionine, dibutyrylcyclic3',5'-adenosine-monophosphate (dbcAMP) was found to stimulate the expression of ependymin mRNA and the enhanced synthesis and release of ependymin into the culture medium at the same time that dbcAMP stimulation of neurite outgrowth takes place. These results are consistent with the proposed role of the protein in the mechanism of neuronal regeneration and synaptogenesis. The data indicate that the NB2a/d1 cell line is a good model system for studies of the functional properties of ependymin.

  13. Sodium and calcium currents in neuroblastoma x glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP.

    PubMed

    Bodewei, R; Hering, S; Schubert, B; Wollenberger, A

    1985-04-01

    Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.

  14. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    PubMed

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2018-03-05

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  15. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  16. [Physiopathology of cAMP/PKA signaling in neurons].

    PubMed

    Castro, Liliana; Yapo, Cedric; Vincent, Pierre

    2016-01-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.

  17. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  18. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  19. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  20. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  1. Structural basis for modulation and agonist specificity of HCN pacemaker channels.

    PubMed

    Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric

    2003-09-11

    The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.

  2. Interplay of the modified nucleotide phosphoadenosine 5'-phosphosulfate (PAPS) with global regulatory proteins in Escherichia coli: modulation of cyclic AMP (cAMP)-dependent gene expression and interaction with the HupA regulatory protein.

    PubMed

    Longo, Francesca; Motta, Sara; Mauri, Pierluigi; Landini, Paolo; Rossi, Elio

    2016-11-25

    In the bacterium Escherichia coli, some intermediates of the sulfate assimilation and cysteine biosynthesis pathway can act as signal molecules and modulate gene expression. In addition to sensing and utilization of sulphur sources, these signaling mechanisms also impact more global cell processes, such as resistance to antimicrobial agents and biofilm formation. In a recent work, we have shown that inactivation of the cysH gene, encoding phosphoadenosine-phosphosulfate (PAPS) reductase, and the consequent increase in intracellular PAPS concentration, strongly affect production of several cell surface-associated structures, enhancing surface adhesion and cell aggregation. In order to identify the molecular mechanism relaying intracellular PAPS concentration to regulation of cell surface-associated structures, we looked for mutations able to suppress the effects of cysH inactivation. We found that mutations in the adenylate cyclase-encoding cyaA gene abolished the effects of PAPS accumulation; consistent with this result, cyclic AMP (cAMP)-dependent gene expression appears to be increased in the cysH mutant. Experiments aimed at the direct identification of proteins interacting with either CysC or CysH, i.e. the PAPS-related proteins APS kinase and PAPS reductase, allowed us to identify several regulators, namely, CspC, CspE, HNS and HupA. Protein-protein interaction between HupA and CysH was confirmed by a bacterial two hybrid system, and inactivation of the hupA gene enhanced the effects of the cysH mutation in terms of production of cell surface-associated factors. Our results indicate that PAPS can modulate different regulatory systems, providing evidence that this molecule acts as a global signal molecule in E. coli. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Clinical and Molecular Genetics of the Phosphodiesterases (PDEs)

    PubMed Central

    Azevedo, Monalisa F.; Faucz, Fabio R.; Bimpaki, Eirini; Horvath, Anelia; Levy, Isaac; de Alexandre, Rodrigo B.; Ahmad, Faiyaz; Manganiello, Vincent

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases. PMID:24311737

  4. New findings on phosphodiesterases, MoPdeH and MoPdeL, in Magnaporthe oryzae revealed by structural analysis.

    PubMed

    Yang, Li-Na; Yin, Ziyi; Zhang, Xi; Feng, Wanzhen; Xiao, Yuhan; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2018-05-01

    The cyclic adenosine monophosphate (cAMP) signalling pathway mediates signal communication and sensing during infection-related morphogenesis in eukaryotes. Many studies have implicated cAMP as a critical mediator of appressorium development in the rice blast fungus, Magnaporthe oryzae. The cAMP phosphodiesterases, MoPdeH and MoPdeL, as key regulators of intracellular cAMP levels, play pleiotropic roles in cell wall integrity, cellular morphology, appressorium formation and infectious growth in M. oryzae. Here, we analysed the roles of domains of MoPdeH and MoPdeL separately or in chimeras. The results indicated that the HD and EAL domains of MoPdeH are indispensable for its phosphodiesterase activity and function. Replacement of the MoPdeH HD domain with the L1 and L2 domains of MoPdeL, either singly or together, resulted in decreased cAMP hydrolysis activity of MoPdeH. All of the transformants exhibited phenotypes similar to that of the ΔMopdeH mutant, but also revealed that EAL and L1 play additional roles in conidiation, and that L1 is involved in infectious growth. We further found that the intracellular cAMP level is important for surface signal recognition and hyphal autolysis. The intracellular cAMP level negatively regulates Mps1-MAPK and positively regulates Pmk1-MAPK in the rice blast fungus. Our results provide new information to better understand the cAMP signalling pathway in the development, differentiation and plant infection of the fungus. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Complex Structure and Biochemical Characterization of the Staphylococcus aureus Cyclic Diadenylate Monophosphate (c-di-AMP)-binding Protein PstA, the Founding Member of a New Signal Transduction Protein Family*

    PubMed Central

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G.; Freemont, Paul S.; Gründling, Angelika

    2015-01-01

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein. PMID:25505271

  6. Modulation of normal human melanocyte dendricity by growth-promoting agents.

    PubMed

    Nakazawa, K; Damour, O; Collombel, C

    1993-12-01

    Dendrite formation and extension, which comprise a characteristic morphology of human normal melanocytes in the skin, represent one of the functional activities of melanocytes, the ability to transfer melanosomes into neighboring keratinocytes. However, the morphology of the melanocyte in vitro is usually quite different from that observed in vivo. it is probably due to the hyperproliferative condition of the melanocytes in culture. No studies have ever compared the effects of a single factor on both dendricity and proliferation at the same time. Therefore, we have compared the effects of six growth-promoting agents commonly used for melanocyte cultures on dendrite formation and proliferation. The addition of agents that increase the intracellular levels of cyclic adenosine monophosphate (cAMP)--dibutyryl cyclic adenosine monophosphate (db cAMP; 1 mM) or isobutylmethyl xanthine (IBMX; 0.1 mM)--had a strong effect on dendrite formation and a negative effect on proliferation. This was especially true with db cAMP. In the presence of 2% or 5% of heat-inactivated fetal bovine serum (FBS), dendrite formation was significantly increased as was proliferation. The number of dendrites was decreased in the culture with 12-o-tetradecanoylphorbol-13-acetate (TPA), but cell growth was slightly increased. With human recombinant basic fibroblast growth factor (bFGF) (0.5, 1.0 ng/ml) in the presence of bovine pituitary extract (BPE) (60 micrograms/ml), cell growth was increased. With 2 ng/ml of bFGF, however, a strong inhibitory effect on proliferation was observed. However, dendrite formation was constant at all concentrations of bFGF tested (0.5, 1.0 or 2.0 ng/ml) with BPE (30 or 60 micrograms/ml). In this study, we have demonstrated that dendrite formation was suppressed by the reagents that stimulate melanocyte proliferation, and vice versa, with the only exception being heat-inactivated FBS. Both dendrite formation and proliferation were induced by the heat-inactivated FBS. This approach is crucial to the development of an adequate culture system for proliferation and/or dendrite formation of normal human melanocytes. It is necessary to keep these aspects in mind as we further investigate the biology of melanocytes, especially the cell-to-cell interactions between melanocytes and keratinocytes, involved in melanogenesis and melanin pigmentation in vivo. This study also provides practical and important information for a future reconstitutive skin system composed of melanocytes, keratinocytes, and fibroblasts in a single culture medium.

  7. Colchicine therapy for hepatic murine schistosomal fibrosis: image analysis and serological study

    PubMed Central

    BADAWY, AFKAR A; EL-BADRAWY, NAWAL M; HASSAN, MONA M; EBEID, FATMA A

    1999-01-01

    Colchicine in a dose of 200 μg kg body weight/day (5 days/week) was administered to groups of Schistosoma mansoni infected mice 12 weeks post infection, either alone or following previous praziquantel therapy at the 8th week of infection. Certain groups received colchicine for 6 weeks and others received it for 10 weeks. Colchicine alone did not significantly change the light microscopic appearance of schistosomal liver fibrosis, or hepatic collagen content estimated histomorphometrically, and did not reduce the elevated IL-2 serum level. Colchicine induced hepatic injury consisted of intense inflammatory reaction in granuloma and portal tracts, hepatocytic degeneration, and elevation of serum AST and ALT levels. Colchicine seemed to postpone granulomatous reaction healing and collagen deposition rather than inhibiting collagen formation or degrading it. Colchicine inhibited proliferation of hepatocytes of infected mice by expanding G2-M phases of cell cycle, thus reduced Ag NOR count and raised cell ploidy and cyclic AMP serum level. Subsidence of schistosomal infection by praziquantel prior to colchicine therapy greatly reduced inflammatory cellular reaction, significantly diminished hepatic collagen deposition and serum IL-2 level, minimized the elevated nuclear ploidy and cyclic AMP serum level that followed colchicine therapy when administered alone. PMID:10365084

  8. Synthesis of protein in intestinal cells exposed to cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-11-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells andmore » Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.« less

  9. The progestin levonorgestrel induces endothelium-independent relaxation of rabbit jugular vein via inhibition of calcium entry and protein kinase C: role of cyclic AMP

    PubMed Central

    Herkert, Olaf; Kuhl, Herbert; Busse, Rudi; Schini-Kerth, Valérie B

    2000-01-01

    The progestin and oestrogen component of oral contraceptives have been involved in the development of venous thromboembolic events in women. In the present study we determined the vasoactive effects of sex steroids used in oral contraceptives in isolated preconstricted rabbit jugular veins in the presence of diclofenac and examined the underlying mechanisms.The natural hormone progesterone, the synthetic progestins levonorgestrel, 3-keto-desogestrel, gestodene and chlormadinone acetate, and the synthetic estrogen 17 α-ethinyloestradiol induced concentration-dependent relaxations of endothelium-intact veins constricted with U46619. Levonorgestrel also inhibited constrictions evoked by either a high potassium (K+) solution or phorbol myristate acetate (PMA) in the absence and presence of extracellular calcium (Ca2+). In addition, levonorgestrel depressed contractions evoked by Ca2+ and reduced 45Ca2+ influx in depolarized veins.Relaxations to levonorgestrel in U46619-constricted veins were neither affected by the presence of the endothelium nor by the inhibitor of soluble guanylyl cyclase, NS2028, but were significantly improved either by the selective cyclic AMP phosphodiesterase inhibitor rolipram or in the absence of diclofenac, and decreased by the protein kinase A inhibitor, Rp-8-CPT-cAMPS. Rolipram also potentiated relaxations to levonorgestrel in PMA-constricted veins in the presence, but not in the absence of extracellular Ca2+. Levonorgestrel increased levels of cyclic AMP and inhibited PMA-induced activation of protein kinase C in veins.These findings indicate that levonorgestrel caused endothelium-independent relaxations of jugular veins via inhibition of Ca2+ entry and of protein kinase C activation. In addition, the cyclic AMP effector pathway contributes to the levonorgestrel-induced relaxation possibly by depressing Ca2+ entry. PMID:10952682

  10. Effect of cAMP on short-circuit current in isolated human ciliary body.

    PubMed

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  11. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.

    PubMed

    Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M

    2014-07-01

    Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.

  12. PKA and Epac synergistically inhibit smooth muscle cell proliferation

    PubMed Central

    Hewer, Richard C.; Sala-Newby, Graciela B.; Wu, Yih-Jer; Newby, Andrew C.; Bond, Mark

    2011-01-01

    Cyclic AMP signalling promotes VSMC quiescence in healthy vessels and during vascular healing following injury. Cyclic AMP inhibits VSMC proliferation via mechanisms that are not fully understood. We investigated the role of PKA and Epac signalling on cAMP-induced inhibition of VSMC proliferation. cAMP-mediated growth arrest was PKA-dependent. However, selective PKA activation with 6-Benzoyl-cAMP did not inhibit VSMC proliferation, indicating a requirement for additional pathways. Epac activation using the selective cAMP analogue 8-CPT-2′-O-Me-cAMP, did not affect levels of hyperphosphorylated Retinoblastoma (Rb) protein, a marker of G1-S phase transition, or BrdU incorporation, despite activation of the Epac-effector Rap1. However, 6-Benzoyl-cAMP and 8-CPT-2′-O-Me-cAMP acted synergistically to inhibit Rb-hyperphosphorylation and BrdU incorporation, indicating that both pathways are required for growth inhibition. Consistent with this, constitutively active Epac increased Rap1 activity and synergised with 6-Benzoyl-cAMP to inhibit VSMC proliferation. PKA and Epac synergised to inhibit phosphorylation of ERK and JNK. Induction of stellate morphology, previously associated with cAMP-mediated growth arrest, was also dependent on activation of both PKA and Epac. Rap1 inhibition with Rap1GAP or siRNA silencing did not negate forskolin-induced inhibition of Rb-hyperphosphorylation, BrdU incorporation or stellate morphology. This data demonstrates for the first time that Epac synergises with PKA via a Rap1-independent mechanism to mediate cAMP-induced growth arrest in VSMC. This work highlights the role of Epac as a major player in cAMP-dependent growth arrest in VSMC. PMID:20971121

  13. The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors

    PubMed Central

    Townsend, Philip D.; Jungwirth, Britta; Pojer, Florence; Bußmann, Michael; Money, Victoria A.; Cole, Stewart T.; Pühler, Alfred; Tauch, Andreas; Bott, Michael; Cann, Martin J.; Pohl, Ehmke

    2014-01-01

    The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition. PMID:25469635

  14. Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein.

    PubMed

    Choi, Philip H; Sureka, Kamakshi; Woodward, Joshua J; Tong, Liang

    2015-06-01

    Cyclic-di-AMP (c-di-AMP) is a broadly conserved bacterial second messenger that is of importance in bacterial physiology. The molecular receptors mediating the cellular responses to the c-di-AMP signal are just beginning to be discovered. PstA is a previously uncharacterized PII -like protein which has been identified as a c-di-AMP receptor. PstA is widely distributed and conserved among Gram-positive bacteria in the phylum Firmicutes. Here, we report the biochemical, structural, and functional characterization of PstA from Listeria monocytogenes. We have determined the crystal structures of PstA in the c-di-AMP-bound and apo forms at 1.6 and 2.9 Å resolution, respectively, which provide the molecular basis for its specific recognition of c-di-AMP. PstA forms a homotrimer structure that has overall similarity to the PII protein family which binds ATP. However, PstA is markedly different from PII proteins in the loop regions, and these structural differences mediate the specific recognition of their respective nucleotide ligand. The residues composing the c-di-AMP binding pocket are conserved, suggesting that c-di-AMP recognition by PstA is of functional importance. Disruption of pstA in L. monocytogenes affected c-di-AMP-mediated alterations in bacterial growth and lysis. Overall, we have defined the PstA family as a conserved and specific c-di-AMP receptor in bacteria. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl− channels

    PubMed Central

    Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu

    2001-01-01

    Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521

  16. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion

    PubMed Central

    Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.

    2015-01-01

    cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564

  17. Effects of adrenomedullin on cyclic AMP formation and on relaxation in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Ali, N; Abdel-Latif, A A

    1999-12-01

    To determine whether iris sphincter and other tissues of the iris-ciliary body secrete adrenomedullin (ADM), a novel hypotensive peptide that is classified into the calcitonin gene-related peptide (CGRP) family and to determine the binding sites for ADM and compare the effects of ADM and CGRP in the absence and presence of their receptor antagonists on cAMP formation and relaxation in the iris sphincter. Sphincter muscle was incubated in Krebs-Ringer bicarbonate buffer in the absence and presence of ADM for 10 minutes. Accumulation of cAMP in the tissue extract was determined by radioimmunoassay (RIA). The binding of [125I]ADM to iris sphincter membranes was carried out by rapid filtration. Distribution of ADM in the ocular tissues was determined by RIA. Changes in muscle tension were recorded isometrically. Immunoreactive ADM was present in all tissues of the cat iris-ciliary body. In the isolated cat iris sphincter, ADM increased cAMP accumulation in a time- (t1/2 = 2.2 minutes) and concentration- (EC50 = 13 nM) dependent manner, and this effect was sixfold more efficacious than CGRP. ADM, CGRP, vasoactive intestinal peptide, prostaglandin E2, isoproterenol, and forskolin increased cAMP formation in cat sphincter by 12.5-, 2-, 2.2-, 1-, 2.6-, and 2.4-fold, respectively. The rank of the effects of ADM on cAMP formation in iris sphincter isolated from different animal species was in the following order: cat > dog > bovine > human > rabbit. In the cat iris sphincter, the CGRP antagonist, CGRP(8 to 37), was more effective than the ADM antagonist, ADM (26 to 52), in inhibiting both ADM- and CGRP-induced cAMP formation. ADM and CGRP inhibited carbachol-induced contraction in a concentration-dependent manner with IC50 values of 10 and 90 nM, respectively. Both ADM and CGRP displaced the binding of [125I]ADM to sphincter membranes effectively, with IC50 values of 0.81 and 1.15 nM, respectively. In iris sphincter isolated from cat and other mammalian species including human, ADM is a much more efficacious activator of adenylate cyclase and a much more effective relaxant than CGRP. Its biological effects may be due to direct involvement of ADM receptors, but also to activation of CGRP receptors. Activation of ADM receptors by the peptide leads to concentration-dependent increases in cAMP accumulation and subsequent inhibition (relaxation) of smooth muscle contraction. These findings suggest a role for ADM as a local modulator of smooth muscle tone. A possible function for this potent hypotensive peptide in the regulation of intraocular pressure remains to be investigated.

  18. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    PubMed

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. (S)-α-Chlorohydrin Inhibits Protein Tyrosine Phosphorylation through Blocking Cyclic AMP - Protein Kinase A Pathway in Spermatozoa

    PubMed Central

    Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5′-triphosphate (ATP) levels, 3′-5′-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH. PMID:22916194

  20. (S)-α-chlorohydrin inhibits protein tyrosine phosphorylation through blocking cyclic AMP - protein kinase A pathway in spermatozoa.

    PubMed

    Zhang, Hao; Yu, Huan; Wang, Xia; Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2012-01-01

    α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.

  1. A Temporal-Specific and Transient cAMP Increase Characterizes Odorant Classical Conditioning

    ERIC Educational Resources Information Center

    Cui, Wen; Smith, Andrew; Darby-King, Andrea; Harley, Carolyn W.; McLean, John H.

    2007-01-01

    Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory…

  2. [Qualitative analysis of bis-(3'-5')-cyclic dimeric adenosine monophosphate of Porphyromonas gingivalis by high performance liquid chromatography coupled with mass spectrometry].

    PubMed

    Yongmei, Tan; Xiaojun, Yang; Juan, Du; Wanghong, Zhao; Xiaodan, Chen; Jin, Hou

    2016-06-01

    To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3'-5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Based on the signal/noise (S/N) for 3 : 1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N > 3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances pre- sented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. The nucleic acid extrac- tions from P. gingivalis contained c-di-AMP, which shows that P. gingivalis could produce c-di-AMP.

  3. Activation of Cyclic Adenosine Monophosphate Pathway Increases the Sensitivity of Cancer Cells to the Oncolytic Virus M1.

    PubMed

    Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei

    2016-02-01

    Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.

  4. Flavonoid Regulation of HCN2 Channels*

    PubMed Central

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  5. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  6. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  7. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  8. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong

    2016-04-01

    Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. In Vitro and In Vivo Activities of Pterostilbene against Candida albicans Biofilms

    PubMed Central

    Li, De-Dong; Zhao, Lan-Xue; Mylonakis, Eleftherios; Hu, Gan-Hai; Zou, Yong; Huang, Tong-Kun; Yan, Lan

    2014-01-01

    Pterostilbene (PTE) is a stilbene-derived phytoalexin that originates from several natural plant sources. In this study, we evaluated the activity of PTE against Candida albicans biofilms and explored the underlying mechanisms. In 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assays, biofilm biomass measurement, confocal laser scanning microscopy, and scanning electron microscopy, we found that ≤16 μg/ml PTE had a significant effect against C. albicans biofilms in vitro, while it had no fungicidal effect on planktonic C. albicans cells, which suggested a unique antibiofilm effect of PTE. Then we found that PTE could inhibit biofilm formation and destroy the maintenance of mature biofilms. At 4 μg/ml, PTE decreased cellular surface hydrophobicity (CSH) and suppressed hyphal formation. Gene expression microarrays and real-time reverse transcription-PCR showed that exposure of C. albicans to 16 μg/ml PTE altered the expression of genes that function in morphological transition, ergosterol biosynthesis, oxidoreductase activity, and cell surface and protein unfolding processes (heat shock proteins). Filamentation-related genes, especially those regulated by the Ras/cyclic AMP (cAMP) pathway, including ECE1, ALS3, HWP1, HGC1, and RAS1 itself, were downregulated upon PTE treatment, indicating that the antibiofilm effect of PTE was related to the Ras/cAMP pathway. Then, we found that the addition of exogenous cAMP reverted the PTE-induced filamentous growth defect. Finally, with a rat central venous catheter infection model, we confirmed the in vivo activity of PTE against C. albicans biofilms. Collectively, PTE had strong activities against C. albicans biofilms both in vitro and in vivo, and these activities were associated with the Ras/cAMP pathway. PMID:24514088

  10. A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific phosphodiesterase 4 as a treatment tool.

    PubMed

    Eskandari, Nahid; Mirmosayyeb, Omid; Bordbari, Gazaleh; Bastan, Reza; Yousefi, Zahra; Andalib, Alireza

    2015-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.

  11. OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells.

    PubMed

    Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H

    1999-01-01

    Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.

  12. Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells.

    PubMed

    Sands, William A; Woolson, Hayley D; Milne, Gillian R; Rutherford, Claire; Palmer, Timothy M

    2006-09-01

    Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Ralpha/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.

  13. Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona

    PubMed Central

    2014-01-01

    Background Encased in a matrix of extracellular polymeric substances (EPS) composed of flagella, adhesins, amyloid fibers (curli), and exopolysaccharides (cellulose, β-1,6-N-acetyl-D-glucosamine polymer-PGA-, colanic acid), the bacteria Escherichia coli is able to attach to and colonize different types of biotic and abiotic surfaces forming biofilms and colonies of intricate morphological architectures. Many of the biological aspects that underlie the generation and development of these E. coli’s formations are largely poorly understood. Results Here, we report the characterization of a novel E. coli sessile behaviour termed "crowning" due to the bacterial generation of a new 3-D architectural pattern: a corona. This bacterial pattern is formed by joining bush-like multilayered "coronal flares or spikes" arranged in a ring, which self-organize through the growth, self-clumping and massive self-aggregation of cells tightly interacting inside semisolid agar on plastic surfaces. Remarkably, the corona’s formation is developed independently of the adhesiveness of the major components of E. coli’s EPS matrix, the function of chemotaxis sensory system, type 1 pili and the biofilm master regulator CsgD, but its formation is suppressed by flagella-driven motility and glucose. Intriguingly, this glucose effect on the corona development is not mediated by the classical catabolic repression system, the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Thus, corona formation departs from the canonical regulatory transcriptional core that controls biofilm formation in E. coli. Conclusions With this novel "crowning" activity, E. coli expands its repertoire of colonizing collective behaviours to explore, invade and exploit environments whose critical viscosities impede flagella driven-motility. PMID:24568619

  14. Mechanism of Action of the Presynaptic Neurotoxin Tetanus Toxin

    DTIC Science & Technology

    1994-01-31

    E, J. G. Scammell , S. J. Strada, and W. J. Thompson. 1991. Phosphodiesterase II, the cGMP-actIvatable cyclic nucleotide phosphodlesterase, regulates cyclic AMP metabolism In PC12 cells. Mot Pharmacol 39:711-717. 39

  15. 8-Bromo-cAMP decreases the Ca2+ sensitivity of airway smooth muscle contraction through a mechanism distinct from inhibition of Rho-kinase.

    PubMed

    Endou, Katsuaki; Iizuka, Kunihiko; Yoshii, Akihiro; Tsukagoshi, Hideo; Ishizuka, Tamotsu; Dobashi, Kunio; Nakazawa, Tsugio; Mori, Masatomo

    2004-10-01

    To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.

  16. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli.

    PubMed

    Okagaki, Laura H; Wang, Yina; Ballou, Elizabeth R; O'Meara, Teresa R; Bahn, Yong-Sun; Alspaugh, J Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-10-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.

  17. Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli▿†

    PubMed Central

    Okagaki, Laura H.; Wang, Yina; Ballou, Elizabeth R.; O'Meara, Teresa R.; Bahn, Yong-Sun; Alspaugh, J. Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-01-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens. PMID:21821718

  18. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  19. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways

    NASA Technical Reports Server (NTRS)

    Mills, I.; Cohen, C. R.; Kamal, K.; Li, G.; Shin, T.; Du, W.; Sumpio, B. E.

    1997-01-01

    Smooth muscle cell (SMC) phenotype can be altered by physical forces as demonstrated by cyclic strain-induced changes in proliferation, orientation, and secretion of macromolecules. However, the magnitude of strain required and the intracellular coupling pathways remain ill defined. To examine the strain requirements for SMC proliferation, we selectively seeded bovine aortic SMC either on the center or periphery of silastic membranes which were deformed with 150 mm Hg vacuum (0-7% center; 7-24% periphery). SMC located in either the center or peripheral regions showed enhanced proliferation compared to cells grown under the absence of cyclic strain. Moreover, SMC located in the center region demonstrated significantly (P < 0.005) greater proliferation as compared to those in the periphery. In contrast, SMC exposed to high strain (7-24%) demonstrated alignment perpendicular to the strain gradient, whereas SMC in the center (0-7%) remained aligned randomly. To determine the mechanisms of these phenomena, we examined the effect of cyclic strain on bovine aortic SMC signaling pathways. We observed strain-induced stimulation of the cyclic AMP pathway including adenylate cyclase activity and cyclic AMP accumulation. In addition, exposure of SMC to cyclic strain caused a significant increase in protein kinase C (PKC) activity and enzyme translocation from the cytosol to a particulate fraction. Further study was conducted to examine the effect of strain magnitude on signaling, particularly protein kinase A (PKA) activity as well as cAMP response element (CRE) binding protein levels. We observed significantly (P < 0.05) greater PKA activity and CRE binding protein levels in SMC located in the center as compared to the peripheral region. However, inhibition of PKA (with 10 microM Rp-cAMP) or PKC (with 5-20 ng/ml staurosporine) failed to alter either the strain-induced increase in SMC proliferation or alignment. These data characterize the strain determinants for activation of SMC proliferation and alignment. Although strain activated both the AC/cAMP/PKA and the PKC pathways in SMC, singular inhibition of PKA and PKC failed to prevent strain-induced alignment and proliferation, suggesting either their lack of involvement or the multifactorial nature of these responses.

  20. Elevated Cyclic AMP Levels in T Lymphocytes Transformed by Human T-Cell Lymphotropic Virus Type 1▿

    PubMed Central

    Kress, Andrea K.; Schneider, Grit; Pichler, Klemens; Kalmer, Martina; Fleckenstein, Bernhard; Grassmann, Ralph

    2010-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4+ T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence. PMID:20573814

  1. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic GMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and finally inhibition of platelet aggregation. PMID:20525309

  2. Regulation of cyclic AMP metabolism by prostaglandins in rabbit cortical collecting tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenburg, W.K.

    1987-01-01

    In the rabbit cortical collecting tubule (RCCT), prostaglandin E/sub 1/ (PGE/sub 1/) and prostaglandin E/sub 2/ (PGE/sub 2/) at 1 nM inhibit arginine-vasopressin (AVP)-induced water reabsorption, while 100 nM PGE/sub 1/ and PGE/sub 2/ alone stimulate water reabsorption. Reported here are studies designed to investigate the molecular basis for the biphasic physiological action of PGE/sub 1/ and PGE/sub 2/ in the collecting duct. In freshly isolated RCCT cells, PGE/sub 1/, PGE/sub 2/, and 16,16-dimethyl-PGE/sub 2/ (DM-PGE/sub 2/) stimulated cAMP synthesis at concentrations ranging from 0.1 to 10 M. Other prostaglandins including the synthetic PGE/sub 2/ analogue, sulprostone, failed to stimulatemore » cAMP synthesis. Moreover, sulprostone did not antagonize PGE/sub 2/-stimulated cAMP formation. In contrast, PGE/sub 2/ and sulprostone at concentrations ranging from 1 to 100 nM, inhibited AVP-induced cAMP accumulation in freshly isolated RCCT cells. PGE/sub 2/, PGE/sub 1/, DM-PGE/sub 2/ and sulprostone at 100 nM were equally effective in inhibiting AVP-induced cAMP formation. Moreover sulprostone inhibited AVP-stimulated adenylate cyclase activity. These results suggest that PGE derivatives mediate either inhibition or activation of adenylate cyclase by stimulating different PGE receptors. To further test this concept, PGE/sub 2/ binding to freshly isolated RCCT cell membranes was characterized. Two different classes of PGE/sub 2/ binding were detected. //sup 3/H/PGE/sub 2/ binding to the high affinity class of sites was increased by the GTP-analogue, GTP S, while pertussis toxin pretreatment blocked the stimulatory action. In contrast, //sup 3/H/ PGE/sub 2/ binding to the low affinity class of sites was decreased by GTP S; this inhibitory effect was not blocked by pertussis toxin pretreatment.« less

  3. Protein phosphorylation in human peripheral blood lymphocytes. Phosphorylation of endogenous plasma membrane and cytoplasmic proteins

    PubMed Central

    Chaplin, David D.; Wedner, H. James; Parker, Charles W.

    1979-01-01

    Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of 32P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem. 250, 4007–4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of 32P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t½=5–12s at 25°C. Between 40 and 70% of the 32P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:228657

  4. Intracellular ascorbate tightens the endothelial permeability barrier through Epac1 and the tubulin cytoskeleton

    PubMed Central

    Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.

    2016-01-01

    Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450

  5. Schwann Cells Metabolize Extracellular 2′,3′-cAMP to 2′-AMP

    PubMed Central

    Verrier, Jonathan D.; Kochanek, Patrick M.

    2015-01-01

    The 3′,5′-cAMP–adenosine pathway (3′,5′-cAMP→5′-AMP→adenosine) and the 2′,3′-cAMP–adenosine pathway (2′,3′-cAMP→2′-AMP/3′-AMP→adenosine) are active in the brain. Oligodendrocytes participate in the brain 2′,3′-cAMP–adenosine pathway via their robust expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; converts 2′,3′-cAMP to 2′-AMP). Because Schwann cells also express CNPase, it is conceivable that the 2′,3′-cAMP–adenosine pathway exists in the peripheral nervous system. To test this and to compare the 2′,3′-cAMP–adenosine pathway to the 3′,5′-cAMP–adenosine pathway in Schwann cells, we examined the metabolism of 2′,3′-cAMP, 2′-AMP, 3′-AMP, 3′,5′-cAMP, and 5′-AMP in primary rat Schwann cells in culture. Addition of 2′,3′-cAMP (3, 10, and 30 µM) to Schwann cells increased levels of 2′-AMP in the medium from 0.006 ± 0.002 to 21 ± 2, 70 ± 3, and 187 ± 10 nM/µg protein, respectively; in contrast, Schwann cells had little ability to convert 2′,3′-cAMP to 3′-AMP or 3′,5′-cAMP to either 3′-AMP or 5′-AMP. Although Schwann cells slightly converted 2′,3′-cAMP and 2′-AMP to adenosine, they did so at very modest rates (e.g., 5- and 3-fold, respectively, more slowly compared with our previously reported studies in oligodendrocytes). Using transected myelinated rat sciatic nerves in culture medium, we observed a time-related increase in endogenous intracellular 2′,3′-cAMP and extracellular 2′-AMP. These findings indicate that Schwann cells do not have a robust 3′,5′-cAMP–adenosine pathway but do have a 2′,3′-cAMP–adenosine pathway; however, because the pathway mostly involves 2′-AMP formation rather than 3′-AMP, and because the conversion of 2′-AMP to adenosine is slow, metabolism of 2′,3′-cAMP mostly results in the accumulation of 2′-AMP. Accumulation of 2′-AMP in peripheral nerves postinjury could have pathophysiological consequences. PMID:25998049

  6. Copper Regulates Cyclic AMP-Dependent Lipolysis

    PubMed Central

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.

    2016-01-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  7. Role of CNPase in the Oligodendrocytic Extracellular 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Bansal, Rashmi; Goebbels, Sandra; Nave, Klaus-Armin; Kochanek, Patrick M.; Jackson, Edwin K.

    2014-01-01

    Extracellular adenosine 3′,5′-cyclic monophosphate (3′,5′-cAMP) is an endogenous source of localized adenosine production in many organs. Recent studies suggest that extracellular 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) is also a source of adenosine, particularly in the brain in vivo post-injury. Moreover, in vitro studies show that both microglia and astrocytes can convert extracellular 2′,3′-cAMP to adenosine. Here we examined the ability of primary mouse oligodendrocytes and neurons to metabolize extracellular 2′,3′-cAMP and their respective adenosine monophosphates (2′-AMP and 3′-AMP). Cells were also isolated from mice deficient in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase). Oligodendrocytes metabolized 2′,3′-cAMP to 2′-AMP with 10-fold greater efficiency than did neurons (and also more than previously examined microglia and astrocytes); whereas, the production of 3′-AMP was minimal in both oligodendrocytes and neurons. The production of 2′-AMP from 2′,3′-cAMP was reduced by 65% in CNPase -/- versus CNPase +/+ oligodendrocytes. Oligodendrocytes also converted 2′-AMP to adenosine, and this was also attenuated in CNPase -/- oligodendrocytes. Inhibition of classic 3′,5′-cAMP-3′-phosphodiesterases with 3-isobutyl-1-methylxanthine did not block metabolism of 2′,3′-cAMP to 2′-AMP and inhibition of classic ecto-5′-nucleotidase (CD73) with α,β-methylene-adenosine-5′-diphosphate did not attenuate the conversion of 2′-AMP to adenosine. These studies demonstrate that oligodendrocytes express the extracellular 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP → adenosine). This pathway is more robustly expressed in oligodendrocytes than in all other CNS cell types because CNPase is the predominant enzyme that metabolizes 2′,3′-cAMP to 2-AMP in CNS cells. By reducing levels of 2′,3′-cAMP (a mitochondrial toxin) and increasing levels of adenosine (a neuroprotectant), oligodendrocytes may protect axons from injury. PMID:23922219

  8. Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway

    PubMed Central

    Gillespie, Delbert G.; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Energy depletion increases the renal production of 2′,3′-cAMP (a positional isomer of 3′,5′-cAMP that opens mitochondrial permeability transition pores) and 2′,3′-cAMP is converted to 2′-AMP and 3′-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this “2′,3′-cAMP-adenosine pathway” are unknown, we examined whether 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) participates in the renal metabolism of 2′,3′-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3′,5′-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2′,3′-cAMP to 2′-AMP. Infusions of 2′,3′-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2′-AMP, and this response was diminished by 63% in CNPase knockout (−/−) kidneys, whereas the conversion of 3′,5′-cAMP to 5′-AMP was similar in CNPase +/+ vs. −/− kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2′,3′-cAMP. In contrast, in CNPase −/− kidneys, energy depletion increased kidney tissue levels of 2′,3′-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2′,3′-cAMP-adenosine pathway. PMID:24808540

  9. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.

    PubMed

    Castro, Liliana R V; Guiot, Elvire; Polito, Marina; Paupardin-Tritsch, Daniéle; Vincent, Pierre

    2014-02-01

    Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progress made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the sub-cellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus, and axon. Combining this imaging approach with pharmacology or genetic models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly emerge as a forefront tool to decipher the subtle mechanics of intracellular signaling. This will certainly help us to understand the mechanism of action of current drugs and foster the development of novel molecules for neuropsychiatric diseases. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport.

    PubMed

    Jin, Daqing; Ni, Terri T; Sun, Jianjian; Wan, Haiyan; Amack, Jeffrey D; Yu, Guangju; Fleming, Jonathan; Chiang, Chin; Li, Wenyan; Papierniak, Anna; Cheepala, Satish; Conseil, Gwenaëlle; Cole, Susan P C; Zhou, Bin; Drummond, Iain A; Schuetz, John D; Malicki, Jarema; Zhong, Tao P

    2014-09-01

    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4(T804M) mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.

  11. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    PubMed

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  12. Cooperative DNA binding of heterologous proteins: Evidence for contact between the cyclic AMP receptor protein and RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Y.L.; Garges, S.; Adhya, S.

    1988-06-01

    Four cAMP-independent receptor protein mutants (designated CRP* mutants) isolated previously are able to activate in vivo gene transcription in the absence of cAMP and their activity can be enhanced by cAMP or cGMP. One of the four mutant proteins, CRP*598 (Arg-142 to His, Ala-144 to Thr), has been characterized with regard to its conformational properties and ability to bind to and support abortive initiation from the lac promoter. Binding of wild-type CRP to its site on the lac promoter and activation of abortive initiation by RNA polymerase on this promoter are effected by cAMP but not by cGMP. CRP*598 canmore » activate lacP{sup +}-directed abortive initiation in the presence of cAMP and less efficiently in the presence of cGMP or in the absence of cyclic nucleotide. DNase I protection (footprinting) indicates that cAMP-CRP* binds to its site on the lac promoter whereas unliganded CRP* and cGMP-CRP* form a stable complex with the ({sup 32}P)lacP{sup +} fragment only in the presence of RNA polymerase, showing cooperative binding of two heterologous proteins. This cooperative binding provides strong evidence for a contact between CRP and RNA polymerase for activation of transcription. Although cGMP binds to CRP, it cannot replace cAMP in effecting the requisite conformational transition necessary for site-specific promoter binding.« less

  13. Coexpression of alpha and beta subunits of the rod cyclic GMP-gated channel restores native sensitivity to cyclic AMP: role of D604/N1201.

    PubMed Central

    Pagès, F; Ildefonse, M; Ragno, M; Crouzy, S; Bennett, N

    2000-01-01

    Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding. PMID:10692312

  14. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  15. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    PubMed Central

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  16. Cloning and expression of cDNA for a human low-K sub m , rolipram-sensitive cyclic AMP phosphodiesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livi, G.P.; McHale, M.J.; Sathe, G.M.

    1990-06-01

    The authors have isolated cDNA clones representing cyclic AMP (cAMP)-specific phosphodiesterases (PDEases) from a human monocyte cDNA library. One cDNA clone (hPDE-1) defines a large open reading frame of ca. 2.1 kilobases, predicting a 686-amino-acid, ca. 77-kilodalton protein which contains significant homology to both rat brain and {ital Drosophila} cAMP PDEases, especially within an internal conserved domain of ca. 270 residues. Amino acid sequence divergence exists at the NH{sub 2} terminus and also within a 40- to 100-residue domain near the COOH-terminal end. hPDE-1 hybridizes to a major 4.8-kilobase mRNA transcript from both human monocytes and placenta. The coding regionmore » of hPDE-1 was engineered for expression in COS-1 cells, resulting in the overproduction of cAMP PDEase activity. The hPDE-1 recombinant gene product was identified as a low-{ital K{sub m}} cAMP phosphodiesterase on the basis of several biochemical properties including selective inhibition by the antidepressant drug rolipram. Known inhibitors of other PDEases (cGMP-specific PDEase, cGMP-inhibited PDEase) had little or no effect on the hPDE-1 recombinant gene product.« less

  17. Species differences in the effects of substance P on inositol trisphosphate accumulation and cyclic AMP formation, and on contraction in isolated iris sphincter of the mammalian eye: differences in receptor density.

    PubMed

    Tachado, S D; Akhtar, R A; Yousufzai, S Y; Abdel-Latif, A A

    1991-12-01

    The effects of substance P (SP) on inositol trisphosphate (IP3) accumulation, myosin light chain (MLC) phosphorylation, cAMP formation and contraction were studied in iris sphincter smooth muscle of different mammalian species. SP receptor density was also examined in membrane fractions from this tissue. The data obtained can be summarized as follows. (1) In the iris sphincters of rabbit, bovine and pig, SP receptors are coupled to the phospholipase C system, whereas in dog, cat and human these receptors are coupled to the adenylate cyclase system. (2) In those species which employ the phospholipase C system, SP induced IP3 accumulation, MLC phosphorylation and contraction in a dose-dependent manner; in contrast, in those species in which SP induced the formation of cAMP we found the neuropeptide to cause muscle relaxation. The findings on cAMP formation in intact tissue were confirmed in iris sphincter membranes. Both the effect of SP on IP3 accumulation in rabbit and bovine sphincters and its effect on cAMP formation in the dog were blocked by the SP antagonist, (D-Pro2, D-Trp7, 9)-SP. (3) The density of SP receptors in rabbit, bovine and dog were found to be 227, 110.9 and 13.6 fmol mg-1 protein, respectively, and the Kd values were 1.9, 1.8 and 1.3 nM, respectively. (4) Of the neuropeptides investigated SP, neurokinin A and neurokinin B had significant stimulatory effects on IP3 accumulation and on contraction in the rabbit iris sphincter; however, neither neurokinin Y nor the calcitonin gene-related peptide (CGRP) had any effect on these responses. In addition, none of the neuropeptides studied had any effect on IP3 or on contraction in the dog iris sphincter. While it is possible that SP may have dual actions, with the predominant action dependent on the species, the data presented could suggest the presence of two SP receptor subtypes, one coupled to phospholipase C and the other to adenylate cyclase. The results of this investigation indicate major species differences in biochemical and functional responsiveness to SP and in SP receptor density in the iris sphincter of the mammalian eye, and support a modulatory role for the neuropeptide in muscle response in this tissue.

  18. Hydrostatic pressure-dependent changes in cyclic AMP signaling in optic nerve head astrocytes from Caucasian and African American donors

    PubMed Central

    Chen, Lin; Hernandez, M. Rosario

    2009-01-01

    Purpose Investigate the effect of hydrostatic pressure (HP) on 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and downstream signaling in cultures of normal optic nerve head (ONH) astrocytes from Caucasian American (CA) and African American (AA) donors. Methods Intracellular cAMP levels were assayed after exposing ONH astrocytes to HP for varying times. Quantitative RT–PCR was used to determine the expression levels of selected cAMP pathway genes in human ONH astrocytes after HP treatment. Western blots were used to measure changes in the phosphorylation state of cAMP response element binding protein (CREB) in astrocytes subjected to HP, ATP, and phosphodiesterase or kinase inhibitors. Results The basal intracellular cAMP level is similar among AA and CA astrocytes. After exposure to HP for 15 min and 30 min in the presence of a phosphodiesterase inhibitor a further increase of intracellular cAMP was observed in AA astrocytes, but not in CA astrocytes. Consistent with activation of the cAMP-dependent protein kinase pathway, CREB phosphorylation (Ser-133) was increased to a greater extent in AA than in CA astrocytes after 3 h of HP. Exposure to elevated HP for 3–6 h differentially altered the expression levels of selected cAMP pathway genes (ADCY3, ADCY9, PTHLH, PDE7B) in AA compared to CA astrocytes. Treatment with ATP increased more CREB phosphorylation in CA than in AA astrocytes, suggesting differential Ca2+ signaling in these populations. Conclusions Activation of the cAMP-dependent signaling pathway by pressure may be an important contributor to increased susceptibility to elevated intraocular pressure and glaucoma in AA, a population at higher risk for the disease. PMID:19710943

  19. Cooperation induces other cooperation: Fruiting bodies promote the evolution of macrocysts in Dictyostelium discoideum.

    PubMed

    Shibasaki, Shota; Shirokawa, Yuka; Shimada, Masakazu

    2017-05-21

    Biological studies of the evolution of cooperation are challenging because this process is vulnerable to cheating. Many mechanisms, including kin discrimination, spatial structure, or by-products of self-interested behaviors, can explain this evolution. Here we propose that the evolution of cooperation can be induced by other cooperation. To test this idea, we used a model organism Dictyostelium discoideum because it exhibits two cooperative dormant phases, the fruiting body and the macrocyst. In both phases, the same chemoattractant, cyclic AMP (cAMP), is used to collect cells. This common feature led us to hypothesize that the evolution of macrocyst formation would be induced by coexistence with fruiting bodies. Before forming a mathematical model, we confirmed that macrocysts coexisted with fruiting bodies, at least under laboratory conditions. Next, we analyzed our evolutionary game theory-based model to investigate whether coexistence with fruiting bodies would stabilize macrocyst formation. The model suggests that macrocyst formation represents an evolutionarily stable strategy and a global invader strategy under this coexistence, but is unstable if the model ignores the fruiting body formation. This result indicates that the evolution of macrocyst formation and maintenance is attributable to coexistence with fruiting bodies. Therefore, macrocyst evolution can be considered as an example of evolution of cooperation induced by other cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors

    PubMed Central

    Browning, Christopher; Beresford, Isabel; Fraser, Neil; Giles, Heather

    2000-01-01

    We have pharmacologically characterized recombinant human mt1 and MT2 receptors, stably expressed in Chinese hamster ovary cells (CHO-mt1 and CHO-MT2), by measurement of [3H]-melatonin binding and forskolin-stimulated cyclic AMP (cAMP) production. [3H]-melatonin bound to mt1 and MT2 receptors with pKD values of 9.89 and 9.56 and Bmax values of 1.20 and 0.82 pmol mg−1 protein, respectively. Whilst most melatonin receptor agonists had similar affinities for mt1 and MT2 receptors, a number of putative antagonists had substantially higher affinities for MT2 receptors, including luzindole (11 fold), GR128107 (23 fold) and 4-P-PDOT (61 fold). In both CHO-mt1 and CHO-MT2 cells, melatonin inhibited forskolin-stimulated accumulation of cyclic AMP in a concentration-dependent manner (pIC50 9.53 and 9.74, respectively) causing 83 and 64% inhibition of cyclic AMP production at 100 nM, respectively. The potencies of a range of melatonin receptor agonists were determined. At MT2 receptors, melatonin, 2-iodomelatonin and 6-chloromelatonin were essentially equipotent, whilst at the mt1 receptor these agonists gave the rank order of potency of 2-iodomelatonin>melatonin>6-chloromelatonin. In both CHO-mt1 and CHO-MT2 cells, melatonin-induced inhibition of forskolin-stimulated cyclic AMP production was antagonized in a concentration-dependent manner by the melatonin receptor antagonist luzindole, with pA2 values of 5.75 and 7.64, respectively. Melatonin-mediated responses were abolished by pre-treatment of cells with pertussis toxin, consistent with activation of Gi/Go G-proteins. This is the first report of the use of [3H]-melatonin for the characterization of recombinant mt1 and MT2 receptors. Our results demonstrate that these receptor subtypes have distinct pharmacological profiles. PMID:10696085

  1. Mechanical control of cyclic AMP signalling and gene transcription through integrins

    NASA Technical Reports Server (NTRS)

    Meyer, C. J.; Alenghat, F. J.; Rim, P.; Fong, J. H.; Fabry, B.; Ingber, D. E.

    2000-01-01

    This study was carried out to discriminate between two alternative hypotheses as to how cells sense mechanical forces and transduce them into changes in gene transcription. Do cells sense mechanical signals through generalized membrane distortion or through specific transmembrane receptors, such as integrins? Here we show that mechanical stresses applied to the cell surface alter the cyclic AMP signalling cascade and downstream gene transcription by modulating local release of signals generated by activated integrin receptors in a G-protein-dependent manner, whereas distortion of integrins in the absence of receptor occupancy has no effect.

  2. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  3. Immunomodulatory Effects of Lippia sidoides Extract: Induction of IL-10 Through cAMP and p38 MAPK-Dependent Mechanisms

    PubMed Central

    Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.

    2015-01-01

    Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252

  4. Immunomodulatory effects of Lippia sidoides extract: induction of IL-10 through cAMP and p38 MAPK-dependent mechanisms.

    PubMed

    Rajgopal, Arun; Rebhun, John F; Burns, Charlie R; Scholten, Jeffrey D; Balles, John A; Fast, David J

    2015-03-01

    Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway.

  5. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGES

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; ...

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  6. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    PubMed

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus*

    PubMed Central

    Bowman, Lisa; Zeden, Merve S.; Kaever, Volkhard

    2016-01-01

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5′-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism. PMID:27834680

  8. Transcriptional regulatory proteins as biosensing tools.

    PubMed

    Turner, Kendrick; Joel, Smita; Feliciano, Jessika; Feltus, Agatha; Pasini, Patrizia; Wynn, Daniel; Dau, Peter; Dikici, Emre; Deo, Sapna K; Daunert, Sylvia

    2017-06-22

    We have developed sensing systems employing different classes of transcriptional regulatory proteins genetically and chemically modified to incorporate a fluorescent reporter molecule for detection of arsenic, hydroxylated polychlorinated biphenyls (OH-PCBs), and cyclic AMP (cAMP). These are the first examples of optical sensing systems based on transcriptional regulatory proteins.

  9. Increased intestinal absorption in the rat caused by sodium lauryl sulphate, and its possible relation to the cAMP system.

    PubMed

    Briseid, G; Briseid, K; Kirkevold, K

    1976-01-01

    The increases in the absorption of ouabain, phenolsulphonphthalein and pralidoxime caused by 17 mM sodium lauryl sulphate (SLS) from jejunal loops of anaesthetized rats were significantly reduced if sodium and chloride (Briseid et al., 1974) or chloride and bicarbonate were replaced by other ions in the loop fluid. Separate substitutions of sodium, chloride of bicarbonate did not significantly alter the SLS-caused absorption, except that the substitution of choline for sodium reduced the absorption of pralidoxime, both in the presence and in the absence of SLS. The increases in the absorption of phenolsulphonphthalein and pralidoxime caused by SLS were potentiated by theophylline (25 mM) and reduced by imidazole (25 mM). The addition of dibutyryl cyclic AMP (2.5 mM) to the loop fluid increased this absorption of the test substances. This effect was reduced by imidazole, but under the experimental conditions it was not potentiated by theophylline. Determinations of cyclic AMP in the rat intestinal mucosa showed that the level of this substance was significantly higher in the presence than in the absence of SLS. The experimental conditions were as described for the absorption experiments. It is concluded that the data obtained support the idea of an increased level of cyclic AMP as the main basis for the effect of SLS on the absorption.

  10. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  11. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    PubMed

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  12. Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons.

    PubMed

    Gerhold, Lynnette M; Rosewell, Katherine L; Wise, Phyllis M

    2005-01-05

    Input from the suprachiasmatic nucleus (SCN) to gonadotropin-releasing hormone (GnRH) neurons is critical to the occurrence of regular cyclic GnRH secretion. It is thought that an essential neuropeptide in the SCN that communicates this cyclic information to GnRH neurons is vasoactive intestinal polypeptide (VIP) and that it may act through cAMP. We tested the hypothesis that (1) aging involves a blunting of cAMP diurnal rhythmicity in the SCN; (2) administration of antisense oligonucleotides (anti-oligos) against VIP, which produces an aging-like pattern in VIP, would lead to an aging-like suppression of cAMP; and (3) this in turn would lead to inhibition of the steroid-induced activation of GnRH neurons. We measured cAMP concentrations in the SCN and rostral preoptic nucleus throughout the day in young and middle-aged rats that were ovariectomized (OVX) or OVX and treated with estradiol. Our results show that cAMP concentrations exhibit a diurnal rhythm in young rats, and that this rhythm is totally abolished by the time rats are middle age. Administration of antisense oligonucleotides against VIP or random oligos suppresses VIP concentrations and abolishes the cAMP rhythm, leading to significantly reduced activation of GnRH neurons. Together, these findings strongly suggest that the SCN conveys diurnal information to GnRH neurons by driving VIP-dependent cAMP rhythms. In addition, aging involves deterioration in this VIP-driven rhythmicity, which impacts the ability of steroids to induce GnRH neuronal activation.

  13. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Adenylate Cyclase and the Cyclic AMP Receptor Protein Modulate Stress Resistance and Virulence Capacity of Uropathogenic Escherichia coli

    PubMed Central

    Donovan, Grant T.; Norton, J. Paul; Bower, Jean M.

    2013-01-01

    In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H2O2) and acid stress. In the mutant strains, H2O2 resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract. PMID:23115037

  15. Estimating the magnitude of near-membrane PDE4 activity in living cells.

    PubMed

    Xin, Wenkuan; Feinstein, Wei P; Britain, Andrea L; Ochoa, Cristhiaan D; Zhu, Bing; Richter, Wito; Leavesley, Silas J; Rich, Thomas C

    2015-09-15

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. Copyright © 2015 the American Physiological Society.

  16. Estimating the magnitude of near-membrane PDE4 activity in living cells

    PubMed Central

    Xin, Wenkuan; Feinstein, Wei P.; Britain, Andrea L.; Ochoa, Cristhiaan D.; Zhu, Bing; Richter, Wito; Leavesley, Silas J.

    2015-01-01

    Recent studies have demonstrated that functionally discrete pools of phosphodiesterase (PDE) activity regulate distinct cellular functions. While the importance of localized pools of enzyme activity has become apparent, few studies have estimated enzyme activity within discrete subcellular compartments. Here we present an approach to estimate near-membrane PDE activity. First, total PDE activity is measured using traditional PDE activity assays. Second, known cAMP concentrations are dialyzed into single cells and the spatial spread of cAMP is monitored using cyclic nucleotide-gated channels. Third, mathematical models are used to estimate the spatial distribution of PDE activity within cells. Using this three-tiered approach, we observed two pharmacologically distinct pools of PDE activity, a rolipram-sensitive pool and an 8-methoxymethyl IBMX (8MM-IBMX)-sensitive pool. We observed that the rolipram-sensitive PDE (PDE4) was primarily responsible for cAMP hydrolysis near the plasma membrane. Finally, we observed that PDE4 was capable of blunting cAMP levels near the plasma membrane even when 100 μM cAMP were introduced into the cell via a patch pipette. Two compartment models predict that PDE activity near the plasma membrane, near cyclic nucleotide-gated channels, was significantly lower than total cellular PDE activity and that a slow spatial spread of cAMP allowed PDE activity to effectively hydrolyze near-membrane cAMP. These results imply that cAMP levels near the plasma membrane are distinct from those in other subcellular compartments; PDE activity is not uniform within cells; and localized pools of AC and PDE activities are responsible for controlling cAMP levels within distinct subcellular compartments. PMID:26201952

  17. In Vivo Activation of cAMP Signaling Induces Growth Arrest and Differentiation in Acute Promyelocytic Leukemia

    PubMed Central

    Guillemin, Marie-Claude; Raffoux, Emmanuel; Vitoux, Dominique; Kogan, Scott; Soilihi, Hassane; Lallemand-Breitenbach, Valérie; Zhu, Jun; Janin, Anne; Daniel, Marie-Thérèse; Gourmel, Bernard; Degos, Laurent; Dombret, Hervé; Lanotte, Michel; de Thé, Hugues

    2002-01-01

    Differentiation therapy for acute myeloid leukemia uses transcriptional modulators to reprogram cancer cells. The most relevant clinical example is acute promyelocytic leukemia (APL), which responds dramatically to either retinoic acid (RA) or arsenic trioxide (As2O3). In many myeloid leukemia cell lines, cyclic adenosine monophosphate (cAMP) triggers growth arrest, cell death, or differentiation, often in synergy with RA. Nevertheless, the toxicity of cAMP derivatives and lack of suitable models has hampered trials designed to assess the in vivo relevance of theses observations. We show that, in an APL cell line, cAMP analogs blocked cell growth and unraveled As2O3-triggered differentiation. Similarly, in RA-sensitive or RA-resistant mouse models of APL, continuous infusions of 8-chloro-cyclic adenosine monophosphate (8-Cl-cAMP) triggered major growth arrest, greatly enhanced both spontaneous and RA- or As2O3-induced differentiation and accelerated the restoration of normal hematopoiesis. Theophylline, a well-tolerated phosphodiesterase inhibitor which stabilizes endogenous cAMP, also impaired APL growth and enhanced spontaneous or As2O3-triggered cell differentiation in vivo. Accordingly, in an APL patient resistant to combined RA–As2O3 therapy, theophylline induced blast clearance and restored normal hematopoiesis. Taken together, these results demonstrate that in vivo activation of cAMP signaling contributes to APL clearance, independently of its RA-sensitivity, thus raising hopes that other myeloid leukemias may benefit from this therapeutic approach. PMID:12438428

  18. Loss of absorptive capacity for sodium and chloride in the colon causes diarrhoea in Potomac horse fever.

    PubMed

    Rikihisa, Y; Johnson, G C; Wang, Y Z; Reed, S M; Fertel, R; Cooke, H J

    1992-05-01

    Ehrlichia risticii, an obligate intracellular bacterium in the family Rickettsiaceae, causes Potomac horse fever which is often associated with severe watery diarrhoea. The mechanism of the diarrhoea is unknown. The aim of this study was to determine whether sodium and chloride transport, morphology and cyclic adenosine 3', 5'-monophosphate (cyclic AMP) content of colonic mucosa was altered in E risticii-infected horses. Mucosa-submucosa sheets from the large and small colon of nine infected and seven to nine uninfected horses were set up in Ussing chambers for measurement of short-circuit current and transepithelial 22Na and 36Cl fluxes. Uninfected tissues absorbed both sodium and chloride whereas absorption of sodium and chloride was abolished in infected tissues. Bethanechol and histamine evoked a concentration-dependent increase in short-circuit current in both groups, but the responses were attenuated at all concentrations in infected horses. Slight focal degeneration of colonic epithelial cells and loss of microvilli from glandular epithelial cells occurred in infected horses. There was a significant increase in cyclic AMP content in colonic mucosa of infected animals. The results suggest that E risticii infection induces focal microscopic degeneration of epithelial cells and an increase in intracellular cyclic AMP in colonic mucosa. These alterations are associated with malabsorption of sodium and chloride and could cause diarrhoea.

  19. The high-affinity phosphodiesterase PdeH regulates development and aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Yang, Kunlong; Liu, Yinghang; Liang, Linlin; Li, Zhenguo; Qin, Qiuping; Nie, Xinyi; Wang, Shihua

    2017-04-01

    Cyclic AMP signaling controls a range of physiological processes in response to extracellular stimuli in organisms. Among the signaling cascades, cAMP, as a second messenger, is orchestrated by adenylate cyclase (biosynthesis) and cAMP phosphodiesterases (PDEs) (hydrolysis). In this study, we investigated the function of the high-affinity (PdeH) and low-affinity (PdeL) cAMP phosphodiesterase from the carcinogenic aflatoxin producing fungus Aspergillus flavus, and found that instead of PdeL, inactivation of PdeH exhibited a reduction in conidiation and sclerotia formation. However, the ΔpdeL/ΔpdeH mutant exhibited an enhanced phenotype defects, a similar phenotype defects to wild-type strain treated with exogenous cAMP. The activation of PKA activity was inhibited in the ΔpdeH or ΔpdeL/ΔpdeH mutant, both of whom exhibited increasing AF production. Further analysis by qRT-PCR revealed that pdeH had a high transcriptional level compared to pdeL in wild-type strain, and affected pdeL transcription. Green fluorescent protein tagging at the C-terminus of PDEs showed that PdeH-GFP is broadly compartmentalized in the cytosol, while PdeL-GFP localized mainly to the nucleus. Overall, our results indicated that PdeH plays a major role, but has overlapping function with PdeL, in vegetative growth, development and AF biosynthesis in A. flavus. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels.

    PubMed

    Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev

    2011-08-12

    Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.

  1. Interactions of Neuromodulators with Cells of the Immune System

    DTIC Science & Technology

    1991-06-20

    that cyclic AMP (cAMP), minoxidil and norepinephrine inhibit ConA- mediated lymphocyte activation. These experiments test the effects of these... minoxidil or 8x0W1M norepinephrine markedly inhibited IL2 activation (95%, 50% and 60% respec- tively) and showed similar effects in a ConA-activated...and 2) suggest that the inhibi- tory effects of cAMP, minoxidil and norepinephrine occur at points distal to 1L2 interaction in the lymphocyte

  2. Control of cell cycle by metabolites of prostaglandin D2 through a non-cAMP mediated mechanism

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Fukushima, M.

    1993-01-01

    The dehydration products of PGD2, 9-deoxy-9 prostaglandin D2(PGJ2), 9-deoxy-delta 9, delta 12, delta 13 dehydroprostaglandin D2 (delta 12 PGJ2), and PGA2 all contain an unsaturated cyclopentenone structure which is characteristic of prostaglandins which effectively inhibit cell growth. It has been suggested that the action of the inhibitory prostaglandins may be through a cAMP mechanism. In this study, we use S49 wild type (WT) and adenylate cyclase variant (cyc-) cells to show that PGD2 and PGJ2 are not acting via a cyclic AMP mechanism. First, the increase in cyclic AMP in wild type S-49 cells is not proportional to its effects on DNA synthesis. More importantly, when S-49 cyc- cells were exposed to PGJ2, the adenylate cyclase (cyc-) mutant had decreased DNA synthesis with no change in its nominal cAMP content. Short-term (2 hours or less) exposure of the cyc- cells to prostaglandin J2 caused an inhibition of DNA synthesis. PGJ2 caused cytolysis at high concentrations. Long-term exposure (>14 hrs) of the cells to PGJ2, delta 12PGJ2 or delta 12, delta 14PGJ2 caused a cell cycle arrest in G1 demonstrating a cell cycle specific mechanism of action for growth inhibition by naturally occurring biological products independent of cAMP.

  3. An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli.

    PubMed

    Zhou, Xianxuan; Meng, Xiaoming; Sun, Baolin

    2008-09-01

    Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-dependent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.

  4. Effects of fenspiride on human bronchial cyclic nucleotide phosphodiesterase isoenzymes: functional and biochemical study.

    PubMed

    Cortijo, J; Naline, E; Ortiz, J L; Berto, L; Girard, V; Malbezin, M; Advenier, C; Morcillo, E J

    1998-01-02

    We have investigated the role of human bronchial cyclic nucleotide phosphodiesterases in the effects of fenspiride, a drug endowed with bronchodilator and anti-inflammatory properties. Functional studies on human isolated bronchi showed that fenspiride (10(-6)-3 x 10(-3) M, 30 min) induced a shift to the left of the concentration-response curves for isoprenaline and sodium nitroprusside with -logEC50 values of 4.1+/-0.1 (n = 7) and 3.5+/-0.2 (n = 8), respectively. Biochemical studies were carried out on three human bronchi in which separation of cyclic nucleotide phosphodiesterase isoenzymes was performed by ion exchange chromatography followed by determination of phosphodiesterase activity with a radioisotopic method. Phosphodiesterase 4 (cyclic AMP-specific) and phosphodiesterase 5 (cyclic GMP-specific) were the major phosphodiesterase isoforms present in the human bronchial tissue. The presence of phosphodiesterase 1 (Ca2+/calmodulin-stimulated), phosphodiesterase 2 (cyclic GMP-stimulated) and, in two cases, phosphodiesterase 3 (cyclic GMP-inhibited) was also identified. Fenspiride inhibited phosphodiesterase 4 and phosphodiesterase 3 activities with -logIC50 values of 4.16+/-0.09 and 3.44+/-0.12, respectively. Phosphodiesterase 5 activity was also inhibited with a -logIC50 value of approximately 3.8. Fenspiride (< or = 10(-3) M) produced less than 25% inhibition of phosphodiesterase 1 and phosphodiesterase 2 activities. In conclusion, fenspiride is an effective inhibitor of both cyclic AMP and cyclic GMP hydrolytic activity in human bronchial tissues and this action may contribute to its airway effects.

  5. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations.

    PubMed

    Heckman, P R A; Blokland, A; Bollen, E P P; Prickaerts, J

    2018-04-01

    The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma

    PubMed Central

    Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.

    2015-01-01

    Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641

  7. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury.

    PubMed

    Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie; Lin, Chih-Lung

    2015-10-01

    Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.

    PubMed

    Shinkai, Akeo; Kira, Satoshi; Nakagawa, Noriko; Kashihara, Aiko; Kuramitsu, Seiki; Yokoyama, Shigeyuki

    2007-05-01

    The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.

  9. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. CYCLIC AMP-DEPENDENT PROTEIN KINASE INDUCTION BY POLYCHLORINATED BIPHENYLS (PCBS) STIMULATES CREB PHOSPHORYLATION VIA A CALCIUM-DEPENDENT, PKC-INDEPENDENT PATHWAY IN CORTICAL NEURONS.

    EPA Science Inventory

    We have previously demonstrated that the PCB mixture, Aroclor 1254 (A1254), increases the phosphorylated form of CREB (pCREB), the cAMP-responsive element binding protein. This transcription factor is important in nervous system development and plasticity. Phosphorylation
    of C...

  11. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  12. Reduced sensitivity of the hepatic adenylate cyclase-cyclic AMP system to glucagon during sustained hormonal stimulation.

    PubMed Central

    DeRubertis, F R; Craven, P

    1976-01-01

    Hormone-induced desensitization of hormonal regulation of cyclic AMP (cAMP) content has been described in a number of tissues. In the present study, we examined responses of rat liver to glucagon after periods of sustained exposure to the hormone in vivo and in vitro. In intact anesthetized rats infused with glucagon (50 ng/min) for 1 h or more and in liver slices incubated with the hormone (10 muM) for this period, hepatic cAMP responsiveness to glucagon was significantly blunted compared with that of tissue exposed to the hormone for shorter periods. The reduction in hepatic cAMP responsiveness to glucagon appeared to be fully expressed by 2 h. With the doses of hormone employed, the sequential alterations in hepatic responsiveness seemed to be limited to the cAMP system, since other parameters of glucagon action did not wane with time. Diminished hepatic cAMP responsiveness during sustained hormonal exposure could not be attributed to decreased glucagon availability, accelerated extracellular release of cAMP, hepatic ATP depletion, or enhanced phosphodiesterase activity. Studies in vitro suggested that modulation of the cAMP response occurred at the level of adenylate cyclase (AC). During sustained exposure of hepatic slices to glucagon, reductions in glucagon-responsive AC correlated temporally with those in cAMP and both changes were reversible. Alterations in glucagon-responsive AC were demonstrated over a wide range of ATP (10 muM-0.1 mM) and glucagon (10 nM-5 MM) concentrations in the cyclase reaction mixture, and appeared to be a noncompetitive phenomenon relative to glucagon. Maximal NaF-responsive AC did not fall concomitantly with time. Thus, the reduction in glucagon-responsive AC was probably not related to a reduction in the catalytic unit of the enzyme, but could have been due to an alteration in glucagon binding to its receptor sites, or in the coupling mechanism involved in transmission of the hormonal signal to the catalytic unit. Images PMID:176180

  13. Role of adrenal hormones and prostaglandins in the control of mouse thymocytes lysis.

    PubMed

    Durant, S; Seillan, C; Duval, D; Homo-Delarche, F

    1984-01-01

    The cytolytic actions of glucocorticoids and of agents increasing cyclic AMP were studied in vitro in thymocyte suspensions isolated from adrenalectomized or hydrocortisone-treated mice. Although considered as corticoresistant cells, the thymocytes isolated from hydrocortisone-treated mice were lysed to the same extent although more slowly in vitro by dexamethasone than whole thymocyte populations (i.e. corticosensitive cells). Moreover, these two cell populations were shown to contain comparable amounts of glucocorticoid receptors and to be almost equally sensitive to the metabolic effects of glucocorticoids when measured by inhibition of RNA and DNA synthesis. Studies performed with corticosensitive cells showed that prostaglandin E2, isoproterenol and dibutyrilcyclic AMP were also able to induce cell lysis and that, isoproterenol and dexamethasone exerted additive cytolytic action in vitro. In vivo experiments showed also an additive effect of steroids and isoproterenol on thymus atrophy. In contrast, cells isolated from hydrocortisone-treated animals were not sensitive to the cytotoxic action of prostaglandin E2, isoproterenol and dibutyril cyclic AMP. This difference between the two populations was not associated with any difference in the responsiveness of adenylate cyclase as determined following isoproterenol-induced accumulation of cyclic AMP. The cytolytic action of dexamethasone but also that of prostaglandin E2 and isoproterenol, could be blocked in the presence of cycloheximide, an inhibitor of protein synthesis, thus suggesting that glucocorticoids and agents increasing cyclic AMP control the synthesis of some proteins involved in the triggering of cell lysis. Among the hypotheses proposed to explain the differences between in vitro and in vivo sensitivity of lymphoid cell to glucocorticoids, it was suggested that the drug may in vivo indirectly control the viability or the proliferation of thymocytes through the release of other mediators. We have shown that in vivo injection of hydrocortisone induces an accumulation of fatty acids in the whole thymus gland but not in the isolated thymocytes. Since exogenous fatty acids exert cytolytic actions on isolated thymocytes, we suggest that glucocorticoids may exert in vivo an indirect toxic action by promoting the release of fatty acids from adipose tissue or other sources.

  14. On the Mechanism of Lithium-Induced Diabetes Insipidus in Man and the Rat

    PubMed Central

    Forrest, John N.; Cohen, Alan D.; Torretti, Jorge; Himmelhoch, Jonathan M.; Epstein, Franklin H.

    1974-01-01

    The mechanism of lithium-induced diabetes insipidus was investigated in 96 patients and in a rat model. Polydipsia was reported by 40% and polyuria (more than 3 liter/day) by 12% of patients receiving lithium. Maximum concentrating ability after dehydration and vasopressin was markedly impaired in 10 polyuric patients and was reduced in 7 of 10 nonpolyuric patients studied before and during lithium therapy. Severe polyuria (more than 6 liter/day) was unresponsive to trials of vasopressin and chlorpropamide, but improved on chlorothiazide. Rats receiving lithium (3-4 meq/kg/day) developed massive polyuria that was resistant to vasopressin, in comparison to rats with comparable polyuria induced by drinking glucose. Analysis of renal tissue in rats with lithium polyuria showed progressive increase in the concentration of lithium from cortex to papilla with a 2.9-fold corticopapillary gradient for lithium. The normal corticopapillary gradient for sodium was not reduced by lithium treatment. The polyuria was not interrupted by brief intravenous doses of vasopressin (5-10 mU/kg) or dibutyryl cyclic AMP (10-15 mg/kg) capable of reversing water diuresis in normal and hypothalamic diabetes insipidus rats (Brattleboro strain). The present studies suggest that nephrogenic diabetes insipidus is a common finding after lithium treatment and results in part from interference with the mediation of vasopressin at a step distal to the formation of 3′,5′ cyclic AMP. PMID:4360856

  15. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    PubMed

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  16. Studies on the cardiac actions of flosequinan in vitro.

    PubMed Central

    Gristwood, R. W.; Beleta, J.; Bou, J.; Cardelús, I.; Fernández, A. G.; Llenas, J.; Berga, P.

    1992-01-01

    1. We have investigated the in vitro cardiac actions of flosequinan and of its major metabolite in man, BTS 53554. 2. Positive inotropic activity was seen with flosequinan in guinea-pig isolated ventricles, the threshold concentration for effect being less than 1 x 10(-5) M. BTS 53554 was approximately half as potent as the parent compound. 3. In guinea-pig working whole hearts flosequinan increased left ventricular dp/dtmax, indicating a positive inotropic action. This effect was accompanied by increases in heart rate, cardiac output and stroke volume. 4. The virtual complete inhibition of inotropic responses to flosequinan and BTS 53554 by carbachol suggests that these responses are adenosine 3':5'-cyclic monophosphate (cyclic AMP)-mediated. 5. Flosequinan was shown to increase calcium inward current in guinea-pig ventricle, an action consistent with a cyclic AMP involvement in the response. 6. The inotropic activity of flosequinan was not potentiated by the selective phosphodiesterase (PDE) III inhibitor SK&F 94120, a result which indicates that flosequinan does not increase cyclic AMP concentrations via stimulation of adenylate cyclase. 7. Flosequinan inotropic responses were potentiated by rolipram, a selective PDE IV inhibitor, a result consistent with flosequinan being itself a PDE III inhibitor. 8. Biochemical studies with purified enzymes confirmed that flosequinan and BTS 53554 are relatively selective inhibitors of PDE III. 9. A comparison of pharmacological and biochemical data for both flosequinan and BTS 53554 indicates that their PDE III inhibitory potency is sufficient to account for their inotropic activity. PMID:1324061

  17. Evidence from immunoneutralization and antisense studies that the inhibitory actions of glucocorticoids on growth hormone release in vitro require annexin 1 (lipocortin 1)

    PubMed Central

    Taylor, A D; Christian, H C; Morris, J F; Flower, R J; Buckingham, J C

    2000-01-01

    Our previous studies have identified a role for annexin 1 as a mediator of glucocorticoid action in the neuroendocrine system. The present study centred on growth hormone (GH) and exploited antisense and immunoneutralization strategies to examine in vitro the potential role of annexin 1 in effecting the regulatory actions of glucocorticoids on the secretion of this pituitary hormone. Rat anterior pituitary tissue responded in vitro to growth hormone releasing hormone, forskolin, 8-Bromo-cyclic adenosine 3′5′-monophosphate (8-Br-cyclic AMP) and an L-Ca2+ channel opener (BAY K8644) with concentration-dependent increases GH release which were readily inhibited by corticosterone and dexamethasone. The inhibitory actions of the steroids on GH release elicited by the above secretagogues were effectively reversed by an annexin 1 antisense oligodeoxynucleotide (ODN), but not by control (sense or scrambled) ODNs, as also were the glucocorticoid-induced increases in annexin 1. Similarly, a specific anti-annexin 1 monoclonal antibody quenched the corticosterone-induced suppression of secretagogue-evoked GH release while an isotype matched control antibody was without effect. Transmission electron micrographs showed that the integrity and ultrastructural morphology of the pituitary cells were well preserved at the end of the incubation and unaffected by exposure to the ODNs, antibodies, steroids or secretagogues. The results provide novel evidence for a role for annexin 1 as a mediator of the inhibitory actions of glucocorticoids on the secretion of GH by the anterior pituitary gland and suggest that its actions are effected at a point distal to the formation of cyclic AMP and Ca2+ entry. PMID:11090102

  18. Evidence from immunoneutralization and antisense studies that the inhibitory actions of glucocorticoids on growth hormone release in vitro require annexin 1 (lipocortin 1).

    PubMed

    Taylor, A D; Christian, H C; Morris, J F; Flower, R J; Buckingham, J C

    2000-12-01

    1. Our previous studies have identified a role for annexin 1 as a mediator of glucocorticoid action in the neuroendocrine system. The present study centred on growth hormone (GH) and exploited antisense and immunoneutralization strategies to examine in vitro the potential role of annexin 1 in effecting the regulatory actions of glucocorticoids on the secretion of this pituitary hormone. 2. Rat anterior pituitary tissue responded in vitro to growth hormone releasing hormone, forskolin, 8-Bromo-cyclic adenosine 3'5'-monophosphate (8-Br-cyclic AMP) and an L-Ca(2+) channel opener (BAY K8644) with concentration-dependent increases GH release which were readily inhibited by corticosterone and dexamethasone. 3. The inhibitory actions of the steroids on GH release elicited by the above secretagogues were effectively reversed by an annexin 1 antisense oligodeoxynucleotide (ODN), but not by control (sense or scrambled) ODNs, as also were the glucocorticoid-induced increases in annexin 1. Similarly, a specific anti-annexin 1 monoclonal antibody quenched the corticosterone-induced suppression of secretagogue-evoked GH release while an isotype matched control antibody was without effect. 4. Transmission electron micrographs showed that the integrity and ultrastructural morphology of the pituitary cells were well preserved at the end of the incubation and unaffected by exposure to the ODNs, antibodies, steroids or secretagogues. 5. The results provide novel evidence for a role for annexin 1 as a mediator of the inhibitory actions of glucocorticoids on the secretion of GH by the anterior pituitary gland and suggest that its actions are effected at a point distal to the formation of cyclic AMP and Ca(2+) entry.

  19. Beta-Adrenergic Receptor Population is Up-Regulated by Increased Cyclic Amp Concentration in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1999-01-01

    Skeletal muscle hypertrophy is promoted in vivo by administration of beta-drenergic receptor (bAR) agonists. Chicken skeletal muscle cells were treated with 1 (mu)M isoproterenol, a strong bAR agonist, between days 7 and 10 in culture. bAR population increased by approximately 40% during this treatment; however, the ability of the cells to synthesize cyclic AMP (cAMP) was diminished by two-fold. The quantity of myosin heavy chain (MHC) was not affected. To understand further the relationship between intracellular cAMP levels, bAR population, and muscle protein accumulation, intracellular cAMP levels were artificially elevated by treatment with 0-10 uM forskolin for up to three days. The basal concentration of CAMP in forskolin-treated cells increased up to 7-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in bAR population, with a maximum increase of approximately 40-60% at 10 uM forskolin. A maximum increase of 40-50% in the quantity of MHC was observed at 0.2 uM forskolin, but higher concentrations of forskolin reduced the quantity of MHC back to control levels. At 0.2 uM forskolin, intracellular levels of cAMP were higher by approximately 35%, and the (beta)AR population was higher by approximately 30%. Neither the number of muscle nuclei fused into myotubes nor the percentage of nuclei in myotubes were affected by forskolin at any of the concentrations studied.

  20. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    NASA Astrophysics Data System (ADS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-02-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  1. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  2. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  3. Cyclic AMP regulates the biosynthesis of cellobiohydrolase in Cellulomonas flavigena growing in sugar cane bagasse.

    PubMed

    Herrera-Herrera, Jesús Antonio; Pérez-Avalos, Odilia; Salgado, Luis M; Ponce-Noyola, Teresa

    2009-10-01

    Cellulomonas flavigena produces a battery of cellulase components that act concertedly to degrade cellulose. The addition of cAMP to repressed C. flavigena cultures released catabolic repression, while addition of cAMP to induced C. flavigena cultures led to a cellobiohydrolase hyperproduction. Exogenous cAMP showed positive regulation on cellobiohydrolase production in C. flavigena grown on sugar cane bagasse. A C. flavigena cellobiohydrolase gene was cloned (named celA), which coded for a 71- kDa enzyme. Upstream, a repressor celR1, identified as a 38 kDa protein, was monitored by use of polyclonal antibodies.

  4. Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria.

    PubMed

    Shpakov, A O; Derkach, K V; Uspenskaya, Z I

    2012-02-01

    The sensitivities of cyclase enzymes adenylate cyclase and guanylate cyclase to glucose and extracellular cAMP were studied in Tetrahymena pyriformis infusoria. Glucose effectively stimulated activities of both cyclase enzymes, while cAMP more effectively stimulated adenylate cyclase. It was shown that [6-(14)C]glucose specifically bound to Tetrahymena pyriformis infusoria at dissociation constant (K(D)) and number of binding sites (B(max)) 43 nM and 7.53 fmol glucose per 100,000 cells and [8-(3)H]cAMP bound at 19 nM and 4.46 fmol cAMP per 100,000 cells, respectively. Hence, glucose and cAMP specifically bound to Tetrahymena pyriformis cells and stimulated activities of cyclases in these infusoria.

  5. Temporal changes in the calcium-dependence of the histamine H1-receptor-stimulation of cyclic AMP accumulation in guinea-pig cerebral cortex.

    PubMed Central

    Donaldson, J.; Brown, A. M.; Hill, S. J.

    1989-01-01

    1. 2-Chloroadenosine (2CA) causes a maintained rise in adenosine 3':5'-cyclic monophosphate (cyclic AMP) content of guinea-pig cerebral cortical slices which is augmented by addition of histamine. We have investigated the temporal profile of the sensitivity of this response to calcium. 2. Rapid removal of extracellular calcium with EGTA (5 mM) at 2CA (30 microM)-induced steady state caused a slight increase in the cyclic AMP response to 2CA alone and completely abolished the augmentation produced by histamine (0.1 mM) added 20 min later. When EGTA was added only 2 min before histamine, the augmentation was reduced by 72%. 3. The calcium sensitivity of the histamine response was also indicated in studies in which EGTA was added 1 or 3 min after histamine at 2CA-induced steady state. Following addition of EGTA at either of these times, the augmentation was not maintained. 4. When calcium was rapidly removed with EGTA once a steady state level of cyclic AMP had been achieved with histamine, the augmentation response was maintained. This was despite the fact that EGTA had a similar effect on both extracellular free calcium and tissue calcium content when it was applied before or after histamine. 5. The 2CA response was augmented by phorbol esters (which mimic the actions of diacylglycerol) in a calcium-independent manner. 6. These results suggest that calcium is important for the initiation and early stages of the histamine-induced augmentation response. The apparent lack of calcium sensitivity of the response at later stages could mean that calcium is not involved in the maintenance of the response or that the intracellular machinery involved in the augmentation process becomes more sensitive to calcium as the response progresses, such that it becomes able to operate at a much lower level of intracellular calcium. A possible role for diacylglycerol in the maintenance of the response is discussed. PMID:2558762

  6. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  7. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments.

    PubMed

    Sharma, Suruchi; Zaveri, Anisha; Visweswariah, Sandhya S; Krishnan, Yamuna

    2014-11-12

    cAMPhor: In the presence of cAMP, cAMPhor folds into a structure that binds DFHBI (green), increasing its fluorescence, while Alexa 647 (red) functions as a normalizing dye. It can thus be used to spatially image cAMP quantitatively in membrane-bound compartments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    USDA-ARS?s Scientific Manuscript database

    The importance of cAMP signaling in fungal development and pathogenesis has been well documented in many fungal species including several phytopathogenic Fusarium spp. Two key components of the cAMP-PKA pathway, adenylate cyclase (AC) and catalytic subunit of PKA (CPKA), have been functionally chara...

  9. Mlc is a transcriptional activator with a key role in integrating cyclic AMP receptor protein and integration host factor regulation of leukotoxin RNA synthesis in Aggregatibacter actinomycetemcomitans

    USDA-ARS?s Scientific Manuscript database

    Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cAMP receptor protein (CRP) indirectly increases ltxA expression...

  10. Inhibition of cortiocosteroidogenesis by delta-9-tetrahydrocannabinol.

    PubMed

    Warner, W; Harris, L S; Carchman, R A

    1977-12-01

    ACTH, cholera toxin, cyclic AMP but not pregnenolone-induced steroidogenesis in Y-1 functional mouse adrenal tumor cells was significantly inhibited by delta-9-tetrahydrocannabinol, cannabidiol, and cannabinol. The inhibition of steroidogenesis could not be correlated with a general depression in cell function or viability. The data suggest that cannabinoids inhibit corticosteroidogenesis at a site between the synthesis of cAMP and of pregnenolone.

  11. Involvement of the Global Crp Regulator in Cyclic AMP-Dependent Utilization of Aromatic Amino Acids by Pseudomonas putida

    PubMed Central

    Herrera, M. Carmen; Daddaoua, Abdelali; Fernández-Escamilla, Ana

    2012-01-01

    The phhAB operon encodes a phenylalanine hydroxylase involved in the conversion of l-phenylalanine into l-tyrosine in Pseudomonas putida. The phhAB promoter is transcribed by RNA polymerase sigma-70 and is unusual in that the specific regulator PhhR acts as an enhancer protein that binds to two distant upstream sites (−75 to −92 and −132 to −149). There is an integration host factor (IHF) binding site that overlaps the proximal PhhR box, and, consequently, IHF acts as an inhibitor of transcription. Use of l-phenylalanine is compromised in a crp-deficient background due to reduced expression from the phhAB promoter. Electrophoretic mobility shift assays and DNase I footprinting assays reveal that Crp binds at a site centered at −109 only in the presence of cyclic AMP (cAMP). We show, using circular permutation analysis, that the simultaneous binding of Crp/cAMP and PhhR bends DNA to bring positive regulators and RNA polymerase into close proximity. This nucleoprotein complex promotes transcription from phhA only in response to l-phenylalanine. PMID:22081386

  12. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  13. Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum.

    PubMed

    Lindgren, N; Xu, Z Q; Lindskog, M; Herrera-Marschitz, M; Goiny, M; Haycock, J; Goldstein, M; Hökfelt, T; Fisone, G

    2000-06-01

    The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.

  14. Selective inhibition of osmotic water flow by general anesthetics to toad urinary bladder.

    PubMed Central

    Levine, S D; Levine, R D; Worthington, R E; Hays, R M

    1976-01-01

    Vasopressin increases the permeability of the total urinary bladder, an analogue of the mammalian renal collecting duct, to water and small solutes, especially the amide urea. We have observed that three general anesthetic agents of clinical importance, the gases methoxyflurane and halothane and the ultrashortacting barbiturate methohexital, reversibly inhibit vasopressin-stimulated water flow, but do not depress permeability to urea, or the the lipophilic solute diphenylhydantoin. In contrast to their effects in vasopressin-treated bladders, the anesthetics do not inhibit cyclic AMP-stimulated water flow, consistent with an effect on vasopressin-responsive adenylate cyclase. The selectivity of the anesthetic-induced depression of water flow suggests that separate adenylate cyclases and cyclic AMP pools may exist for control of water and urea permeabilities in to toad bladder. Furthermore, theophylline's usual stimulatory effect on water flow, but not its effect on urea permeability, was entirely abolished in methoxyflurane-treated bladders, suggesting that separate phosphodiesterases that control water and urea permeabilities are present as well. We conclude that the majority of water and urea transport takes place via separate pathways across the rate-limiting luminal membrane of the bladder cell, and that separate vasopressin-responsive cellular pools of cyclic AMP appear to control permeability to water and to urea. PMID:184113

  15. cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San

    2009-04-03

    Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less

  16. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.

    PubMed Central

    Brown, R L; Snow, S D; Haley, T L

    1998-01-01

    In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET. PMID:9675183

  17. AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade.

    PubMed

    Smith, F Donelson; Langeberg, Lorene K; Cellurale, Cristina; Pawson, Tony; Morrison, Deborah K; Davis, Roger J; Scott, John D

    2010-12-01

    Mitogen-activated protein kinase (MAPK) cascades propagate a variety of cellular activities. Processive relay of signals through RAF-MEK-ERK modulates cell growth and proliferation. Signalling through this ERK cascade is frequently amplified in cancers, and drugs such as sorafenib (which is prescribed to treat renal and hepatic carcinomas) and PLX4720 (which targets melanomas) inhibit RAF kinases. Natural factors that influence ERK1/2 signalling include the second messenger cyclic AMP. However, the mechanisms underlying this cascade have been difficult to elucidate. We demonstrate that the A-kinase-anchoring protein AKAP-Lbc and the scaffolding protein kinase suppressor of Ras (KSR-1) form the core of a signalling network that efficiently relay signals from RAF, through MEK, and on to ERK1/2. AKAP-Lbc functions as an enhancer of ERK signalling by securing RAF in the vicinity of MEK1 and synchronizing protein kinase A (PKA)-mediated phosphorylation of Ser 838 on KSR-1. This offers mechanistic insight into cAMP-responsive control of ERK signalling events.

  18. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  19. In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate.

    PubMed

    Melzig, M F; Putscher, I; Henklein, P; Haber, H

    2000-11-01

    Cocoa and chocolate contain the tetrahydroisoquinoline alkaloid salsolinol up to a concentration of 25 microg/g. Salsolinol is a dopaminergic active compound which binds to the D(2) receptor family, especially to the D(3) receptor with a K(i) of 0.48+/-0.021 micromol/l. It inhibits the formation of cyclic AMP and the release of beta-endorphin and ACTH in a pituitary cell system. Taking the detected concentration and the pharmacological properties into account, salsolinol seems to be one of the main psychoactive compounds present in cocoa and chocolate and might be included in chocolate addiction.

  20. Bacterial nucleotide-based second messengers.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  1. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact platelets. Whereas trequinsin (EC50 = 19 +/- 3 nM), lixazinone (EC50 = 122 +/- 8 nM), milrinone (EC50 = 5320 +/- 970 nM) and siguazodan (EC50 = 18880 +/- 3110 nM) all increased platelet cAMP to the same maximum extent, cilostamide and IBMX increased cAMP further, indicating that they inhibited a PDE isozyme in addition to PDE III.

  2. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions.

    PubMed

    Zeden, Merve S; Schuster, Christopher F; Bowman, Lisa; Zhong, Qiyun; Williams, Huw D; Gründling, Angelika

    2018-03-02

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA , the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides.

    PubMed

    Guo, Li; Breakspear, Andrew; Zhao, Guoyi; Gao, Lixin; Kistler, H Corby; Xu, Jin-Rong; Ma, Li-Jun

    2016-02-01

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is a central signalling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signalling in fungal biology has been well documented and the key conserved components, adenylate cyclase (AC) and the catalytic subunit of PKA (CPKA), have been functionally characterized. However, other genes involved in this signalling pathway and their regulation are not well understood in filamentous fungi. Here, we performed a comparative transcriptomics analysis of AC and CPKA mutants in two closely related fungi: Fusarium graminearum (Fg) and F. verticillioides (Fv). Combining available Fg transcriptomics and phenomics data, we reconstructed the Fg cAMP signalling pathway. We developed a computational program that combines sequence conservation and patterns of orthologous gene expression to facilitate global transcriptomics comparisons between different organisms. We observed highly correlated expression patterns for most orthologues (80%) between Fg and Fv. We also identified a subset of 482 (6%) diverged orthologues, whose expression under all conditions was at least 50% higher in one genome than in the other. This enabled us to dissect the conserved and unique portions of the cAMP-PKA pathway. Although the conserved portions controlled essential functions, such as metabolism, the cell cycle, chromatin remodelling and the oxidative stress response, the diverged portions had species-specific roles, such as the production and detoxification of secondary metabolites unique to each species. The evolution of the cAMP-PKA signalling pathway seems to have contributed directly to fungal divergence and niche adaptation. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  4. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability*

    PubMed Central

    Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G.; Bonfiglio, Rita; Salustri, Antonietta

    2016-01-01

    Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3′,5′-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability. PMID:26694612

  5. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current.

    PubMed

    Cummings, T A; Daniels, C; Kinnamon, S C

    1996-03-01

    1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.

  6. Cyclic AMP imaging sheds light on PDF signaling in circadian clock neurons.

    PubMed

    Tomchik, Seth M; Davis, Ronald L

    2008-04-24

    In Drosophila, the neuropeptide PDF is required for circadian rhythmicity, but it is unclear where PDF acts. In this issue of Neuron, Shafer et al. use a novel bioimaging methodology to demonstrate that PDF elevates cAMP in nearly all clock neurons. Thus, PDF apparently exerts more widespread effects on the circadian clock network than suggested by previous studies of PDF receptor expression.

  7. Regulation of Neurotransmitter Responses in the Central Nervous System.

    DTIC Science & Technology

    1987-05-01

    Key Words: Phospholi- ygenase nor lipoxygenase inhibitors selectively in- pase A-Phospholipase C-Cyclic AMP accumulation fluenced the facilitating... inhibitors of these en- cause 6-fluoronorepinephrine facilitated isoproter- z~mes were incapable of selectively reducing the enol-stimulated cAMP... anxiety , and insomnia might result from a deficit in GABA A receptor function, or in the activity of selected GABAergic neurons. Indeed it has been

  8. Regulation of cyclic adenosine monophosphate response element binding protein on renin expression in kidney via complex cyclic adenosine monophosphate response element-binding-protein-binding protein/P300 recruitment.

    PubMed

    Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin

    2015-11-01

    Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.

  9. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response.

    PubMed

    Lim, Dong-Mee; Park, Keun-Young; Hwang, Won-Min; Kim, Ju-Young; Kim, Byung-Joon

    2017-05-01

    Receptors for glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are present in vascular endothelial cells. Previous studies investigating euglycemic status have demonstrated that GIP is directly involved in the physiology of blood vessels by controlling the blood flow rate of portal veins and that GLP-1 has a protective effect on blood vessels by acting on endothelial cells. However, to the best of our knowledge, the effects of GIP and GLP-1 on endothelial cells in patients with hyperglycemia remain unknown. Therefore, the present study investigated whether the effect of the incretin hormones GLP-1 and GIP differed with regards to the reversal of endothelial cell dysfunction caused by hyperglycemia. The production of nitric oxide (NO) was measured using the Griess reagent system kit and the expression of cyclic adenosine monophosphate (cAMP) in the cell was measured at a wavelength of 405 nm with the ELISA reader using the cyclic AMP EIA kit. Exposure of human umbilical vein endothelial cells (HUVEC) to a high glucose concentration decreased NO and endothelial nitric oxide synthase (eNOS) levels but increased inducible NOS (iNOS) levels. However, when HUVECs were pretreated with GLP-1, a reduction of iNOS expression was observed and the expression of eNOS and NO were increased, as opposed to pretreatment with GIP. The results differed according to the response of cAMP, the second messenger of incretin hormones: The GIP pretreatment group did not exhibit an increase in cAMP levels while the GLP-1 pretreatment group did. The results of the present study provide evidence that GLP-1, but not GIP, has a protective effect on endothelial function associated with cardiovascular disease, as it is associated with increased eNOS expression and the levels of NO. This effect may be due to an increase in the cAMP concentration during hyperglycemic events.

  10. The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation.

    PubMed

    Garcia, Gene L; Rericha, Erin C; Heger, Christopher D; Goldsmith, Paul K; Parent, Carole A

    2009-07-01

    Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.

  11. The Group Migration of Dictyostelium Cells Is Regulated by Extracellular Chemoattractant Degradation

    PubMed Central

    Garcia, Gene L.; Rericha, Erin C.; Heger, Christopher D.; Goldsmith, Paul K.

    2009-01-01

    Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA− cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA− cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact. PMID:19477920

  12. The Rhizobium etli cyaC Product: Characterization of a Novel Adenylate Cyclase Class

    PubMed Central

    Téllez-Sosa, Juan; Soberón, Nora; Vega-Segura, Alicia; Torres-Márquez, María E.; Cevallos, Miguel A.

    2002-01-01

    Adenylate cyclases (ACs) catalyze the formation of 3′,5′-cyclic AMP (cAMP) from ATP. A novel AC-encoding gene, cyaC, was isolated from Rhizobium etli by phenotypic complementation of an Escherichia coli cya mutant. The functionality of the cyaC gene was corroborated by its ability to restore cAMP accumulation in an E. coli cya mutant. Further, overexpression of a malE::cyaC fusion protein allowed the detection of significant AC activity levels in cell extracts of an E. coli cya mutant. CyaC is unrelated to any known AC or to any other protein exhibiting a currently known function. Thus, CyaC represents the first member of a novel class of ACs (class VI). Hypothetical genes of unknown function similar to cyaC have been identified in the genomes of the related bacterial species Mesorhizobium loti, Sinorhizobium meliloti, and Agrobacterium tumefaciens. The cyaC gene is cotranscribed with a gene similar to ohr of Xanthomonas campestris and is expressed only in the presence of organic hydroperoxides. The physiological performance of an R. etli cyaC mutant was indistinguishable from that of the wild-type parent strain both under free-living conditions and during symbiosis. PMID:12057950

  13. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    PubMed

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.

  14. cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP).

    PubMed

    Roberts, Owain Llŷr; Dart, Caroline

    2014-02-01

    The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.

  15. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  16. Msn2p and Msn4p Control a Large Number of Genes Induced at the Diauxic Transition Which Are Repressed by Cyclic AMP in Saccharomyces cerevisiae

    PubMed Central

    Boy-Marcotte, Emmanuelle; Perrot, Michel; Bussereau, Françoise; Boucherie, Hélian; Jacquet, Michel

    1998-01-01

    The multicopy suppressors of the snf1 defect, Msn2p and Msn4p transcription factors (Msn2/4p), activate genes through the stress-responsive cis element (CCCCT) in response to various stresses. This cis element is also the target for repression by the cyclic AMP (cAMP)-signaling pathway. We analyzed the two-dimensional gel electrophoresis pattern of protein synthesis of the msn2 msn4 double mutant and compared it with that of the wild-type strain during exponential growth phase and at the diauxic transition. Thirty-nine gene products (including those of ALD3, GDH3, GLK1, GPP2, HSP104, HXK1, PGM2, SOD2, SSA3, SSA4, TKL2, TPS1, and YBR149W) are dependent upon Msn2/4p for their induction at the diauxic transition. The expression of all these genes is repressed by cAMP. Thirty other genes identified during this study are still inducible in the mutant. A subset of these genes were found to be superinduced at the diauxic transition, and others were subject to cAMP repression (including ACH1, ADH2, ALD6, ATP2, GPD1, ICL1, and KGD2). We conclude from this analysis that Msn2/4p control a large number of genes induced at the diauxic transition but that other, as-yet-uncharacterized regulators, also contribute to this response. In addition, we show here that cAMP repression applies to both Msn2/4p-dependent and -independent control of gene expression at the diauxic shift. Furthermore, the fact that all the Msn2/4p gene targets are subject to cAMP repression suggests that these regulators could be targets for the cAMP-signaling pathway. PMID:9495741

  17. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  18. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.

    PubMed

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60  μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  19. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    PubMed Central

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545

  20. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes.

    PubMed

    McMacken, Grace; Cox, Dan; Roos, Andreas; Müller, Juliane; Whittaker, Roger; Lochmüller, Hanns

    2018-05-01

    Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective β2 adrenergic agonist salbutamol and the α and β adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective β2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via β2 adrenoceptors and via a cAMP-dependent pathway.

  1. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes

    PubMed Central

    McMacken, Grace; Cox, Dan; Roos, Andreas; Müller, Juliane; Whittaker, Roger; Lochmüller, Hanns

    2018-01-01

    Abstract Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective β2 adrenergic agonist salbutamol and the α and β adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective β2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via β2 adrenoceptors and via a cAMP-dependent pathway. PMID:29462491

  2. Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

    PubMed Central

    Schuster, André; Tisch, Doris; Seidl-Seiboth, Verena; Kubicek, Christian P.

    2012-01-01

    The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process. PMID:22286997

  3. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  4. Regulation of ketogenesis during the suckling-weanling transition in the rat. Studies with isolated hepatocytes.

    PubMed Central

    Benito, M; Whitelaw, E; Williamson, D H

    1979-01-01

    The rates of ketogenesis from endogenous substrates, butyrate or oleate, have been measured in isolated hepatocytes from suckling and weanling rats. Ketogenesis from endogenous substrate and from oleate decreased on weaning, whereas the rate from butyrate remained unchanged. It is concluded that the major site of regulation of ketogenesis during this period of development involves the disposal of long-chain fatty acyl-CoA between the esterification and beta-oxidation pathways. Modulators of lipogenesis [dihydroxyacetone and 5-(tetradecyloxy)-2-furoic acid] did not alter the rate of ketogenesis in hepatocytes from suckling rats, and it is suggested that this is due to the low rate of lipogenesis in these cells. Hepatocytes from fed weanling rats have a high rate of lipogenesis and evidence is presented for a reciprocal relationship between ketogenesis and lipogenesis, and ketogenesis, and esterification in these cells. Dibutyryl cyclic AMP stimulated ketogenesis from oleate in hepatocytes from fed weanling rats, even in the presence of an inhibitor of lipogenesis [5-(tetradecyloxy)-2-furoic acid], but not in cells from suckling rats. It is suggested that cyclic AMP may act via inhibition of esterification and that in hepatocytes from suckling rats ketogenesis is already maximally stimulated by the high basal concentrations of cyclic AMP [Beaudry, Chiasson & Exton (1977) Am. J. Physiol. 233, E175--E180]. PMID:226064

  5. Effects of endopeptidase inhibition on the relaxation response of isolated human penile erectile tissue to vasoactive peptides.

    PubMed

    Rahardjo, H E; Reichelt, K; Sonnenberg, J E; Sohn, M; Kuczyk, M A; Ückert, S

    2016-12-01

    Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides. © 2016 Blackwell Verlag GmbH.

  6. Somatostatin promotes glucose generation of Ca2+oscillations in pancreatic islets both in the absence and presence of tolbutamide.

    PubMed

    Hellman, Bo; Dansk, Heléne; Grapengiesser, Eva

    2018-06-01

    Many cellular processes, including pulsatile release of insulin, are triggered by increase of cytoplasmic Ca 2+ . This study examines how somatostatin affects glucose generation of cytoplasmic Ca 2+ oscillations in mouse islets in absence and presence of tolbutamide blockade of the K ATP channels. Ca 2+ was measured with dual wavelength microflurometry in isolated islets loaded with the indicator Fura-2. Rise of glucose from 3 to 20 mM evoked introductory lowering of Ca 2+ prolonged by activation of somatostatin receptors. During continued superfusion exposure to somatostatin triggered oscillations mediated by periodic increase from the basal level (absence of tolbutamide) or by periodic interruption of an elevated level (presence of tolbutamide). In the latter situation the oscillations were transformed into sustained elevation by activation of muscarinic receptors (acetylcholine) or increase of cyclic AMP (IBMX, 8-bromo-cyclic AMP, forskolin). The observed effect of cyclic AMP raises the question whether high proportions of the glucagon-producing α-cells promote steady-state elevation of Ca 2+ . In support for this idea somatostatin was found to trigger glucose-induced Ca 2+ oscillations essentially in small islets that contain very few α-cells. The results indicate that somatostatin promotes glucose generation of Ca 2+ oscillations with similar characteristics both in the absence and presence of functional K ATP channels. Copyright © 2018. Published by Elsevier Ltd.

  7. Riboswitches in eubacteria sense the second messenger c-di-AMP

    PubMed Central

    Nelson, James W.; Sudarsan, Narasimhan; Furukawa, Kazuhiro; Weinberg, Zasha; Wang, Joy X.; Breaker, Ronald R.

    2013-01-01

    Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered bacterial second messenger implicated in the control of cell wall metabolism, osmotic stress responses, and sporulation. However, the mechanisms by which c-di-AMP triggers these physiological responses have remained largely unknown. Intriguingly, a candidate riboswitch class called ydaO associates with numerous genes involved in these same processes. Although a representative ydaO motif RNA recently was reported to weakly bind ATP, we report that numerous members of this noncoding RNA class selectively respond to c-di-AMP with sub-nanomolar affinity. Our findings resolve the mystery regarding the primary ligand for this extremely common riboswitch class and expose a major portion of the super-regulon of genes that are controlled by the widespread bacterial second messenger c-di-AMP. PMID:24141192

  8. Effects of drugs affecting endogenous amines or cyclic nucleotides on ethanol withdrawal head twitches in mice.

    PubMed Central

    Collier, H O; Hammond, M D; Schneider, C

    1976-01-01

    1 Twenty-four hours after ethanol withdrawal, dependent mice exhibited frequent head twitching. Naive mice exhibited similar twitching 15 min after treatment with 5-hydroxytryptophan (5-HTP) or 6 h after alpha-methyl-p-tyrosine (AMPT). Ethanol lessened the incidence of head twitches induced by any of these treatments. 5-HTP and AMPT each increased the incidence of head twitches induced by withdrawal of ethanol from dependent mice. 2 Drugs that affect the amount or activity of endogenous amines or cyclic nucleotides modified the incidence of head twitches. Nearly all drugs acted in the same direction on twitching elicited by any of these three treatments. 3 The incidence was lessened by: (a) methysergide, methergoline, MA 1420, p-chlorophenylalanine and p-chloroamphetamine; (b) dopamine, noradrenaline, L-DOPA, amphetamine and apomorphine; (c) hyoscine and nicotine; and (d) adenosine triphosphate, dibutyryl cyclic adenosine-3',5'-monophosphate (db cyclic AMP) and prostaglandins E1 and E2. 4 The incidence was increased by: (a) acetylcholine, carbachol and physostigmine; and (b) guanosine triphosphate, dibutyryl cyclic guanosine monophosphate (db cyclic GMP), theophylline and 3-isobutyl-1-methyl-xanthine. 5 These findings suggest that head twitching induced by these three treatments arises from a common biochemical mechanism, which may ultimately be a change in favour of cyclic GMP of the balance between this nucleotide and cyclic AMP within appropriate neurones. This imbalance appears to be elicited or increased by 5-hydroxytryptamine and acetylcholine and to be decreased by dopamine, noradrenaline and E prostaglandins. 6 Neither actinomycin D nor cycloheximide, given during the induction of ethanol dependence, altered the incidence of head twitches after ethanol withdrawal. PMID:987821

  9. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2- 18 F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3', 5'-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium

    PubMed Central

    2012-01-01

    The capacity of white-rot fungi to degrade wood lignin may be highly applicable to the development of novel bioreactor systems, but the mechanisms underlying this function are not yet fully understood. Lignin peroxidase (LiP) and manganese peroxidase (MnP), which are thought to be very important for the ligninolytic property, demonstrated increased activity in Phanerochaete chrysosporium RP-78 (FGSC #9002, ATCC MYA-4764™) cultures following exposure to 5 mM cyclic adenosine 3', 5'-monophosphate (cAMP) and 500 μM 3'-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that transcription of most LiP and MnP isozyme genes was statistically significantly upregulated in the presence of the cAMP and IBMX compared to the untreated condition. However, 100 μM calmodulin (CaM) inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which had insignificant effects on fungal growth and intracellular cAMP concentration, not only offset the increased activity and transcription induced by the drugs, but also decreased them to below basal levels. Like the isozyme genes, transcription of the CaM gene (cam) was also upregulated by cAMP and IBMX. These results suggest that cAMP signaling functions to increase the transcription of LiP and MnP through the induction of cam transcription. PMID:22273182

  11. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide‐gated channels

    PubMed Central

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G.; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre‐Olivier; Hell, Stefan W.

    2017-01-01

    Key points Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell‐to‐cell diffusion of ions, metabolites and second messengers.Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood–brain barrier endothelial cell line hCMEC/D3.Although the increased gap junction coupling is cAMP‐dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase.We found that cAMP activates cyclic nucleotide‐gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling.The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood–brain barrier. Abstract The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood–brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT‐PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2‐phenylaminoadenosine (2‐PAA) on the gap junction coupling. We found that 2‐PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration‐dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2‐PAA‐related enhancement of gap junction coupling. In contrast, the cyclic nucleotide‐gated (CNG) channel inhibitor l‐cis‐diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+, suppressed the 2‐PAA‐related enhancement of gap junction coupling. Moreover, we observed a 2‐PAA‐dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP‐dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor‐dependent signalling of endothelial cells of the blood–brain barrier. PMID:28075020

  12. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed

    Flitney, F W; Singh, J

    1980-07-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are complex, but the accompanying change in isometric twitch tension is paralleled closely by corresponding changes in the ratio 3',5'cyclic AMP:3',5'-cyclic GMP. 5. It is concluded that ATP exerts a dual effect on the ventricle and that the contractile response is regulated by changes in the metabolism of 3',5'-cyclic nucleotides. The effects of indomethacin indicate a possible involvement of prostaglandins in mediating the ATP response. It is suggested that the initial effect of ATP on the ventricle is to increase the permeability of the fibres to Ca2+. 6. The relationship between 3',5' cyclic nucleotide levels and ventricular contractility is discussed. It is postulated that the antagonistic effects of 3',5'-cyclic AMP and 3',5'-cyclic GMP are expressed at the level of certain phosphoproteins which regulate both the availability of Ca2+ and the sensitivity of the contractile proteins to Ca2+.

  13. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Masatoshi, E-mail: ohnishi@fupharm.fukuyama-u.ac.jp; Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292; Urasaki, Tomoka

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), withmore » dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram increased wnt4 expression in the rat striatum and hippocampus.« less

  14. Interleukin-1β and cyclic AMP mediate the invasion of sheared chondrosarcoma cells via a matrix metalloproteinase-1-dependent mechanism.

    PubMed

    Wang, Pu; Guan, Pei-Pei; Wang, Tao; Yu, Xin; Guo, Jian-Jun; Konstantopoulos, Konstantinos; Wang, Zhan-You

    2014-05-01

    Matrix metalloproteinase-1 (MMP-1) is a potential biomarker for chondrosarcoma that is overexpressed at the invading edges of articular cartilage, and its expression correlates with poor survival rates. However, the molecular mechanisms of MMP-1 regulation and its potential contribution to chondrosarcoma cell invasion have yet to be elucidated, especially in shear-activated cells. Using molecular biology tools and an in vitro fluid shear model, we report that shear stress upregulates cyclic AMP (cAMP) and interleukin-1β (IL-1β) release, which in turn promotes the invasion of chondrosarcoma cells via the induction of MMP-1 in a phosphoinositide 3-kinase (PI3-K)- and ERK1/2-dependent manner. Activated PI3-K and ERK1/2 signaling pathways phosphorylate c-Jun, which in turn transactivates MMP-1 in human chondrosarcoma cells. Collectively, fluid shear stress upregulates matrix MMP-1 expression, which is responsible for the enhanced invasion of human chondrosarcoma cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ticagrelor Compared with Clopidogrel Increased Adenosine and Cyclic Adenosine Monophosphate Plasma Concentration in Acute Coronary Syndrome Patients.

    PubMed

    Li, Xiaoye; Wang, Qibing; Xue, Ying; Chen, Jiahui; Lv, Qianzhou

    2017-06-01

    Ticagrelor produces a more potent antiplatelet effect than clopidogrel and inhibits cellular uptake of adenosine, which is associated with several cardiovascular consequences. We aimed to explore the correlation between adenosine and cyclic adenosine monophosphate (cAMP) plasma concentration and antiplatelet effect by clopidogrel or ticagrelor in patients with acute coronary syndrome (ACS) receiving dual antiplatelet therapy (DAPT). We conducted a prospective, observational and single-centre cohort study enrolling 68 patients with non-ST-segment elevation ACS from January 2016 to May 2016. We monitored the inhibition of platelet aggregation (IPA) and assessed adenosine, adenosine deaminase (ADA) and cAMP plasma concentrations by immunoassay on admission and 48 hr after coronary angiography. The demographic and clinical data were collected by reviewing their medical records. The two groups exhibited similar baseline characteristics including adenosine, ADA and cAMP. The mean IPA in patients receiving ticagrelor was significantly higher than that in patients receiving clopidogrel (93.5% versus 67.2%; p = 0.000). Also, we observed that patients treated with ticagrelor had a significantly higher increase in levels of adenosine and cAMP compared with those treated with clopidogrel (1.04 (0.86; 1.41) versus 0.04 (-0.25; 0.26); p = 0.029 and 0.78 (-1.67; 1.81) versus 0.60 (-1.91; 4.60); p = 0.037, respectively). And there was a weak correlation between IPA and adenosine as well as cAMP plasma concentration (r = 0.390, p = 0.001 and r = 0.335, p = 0.005, respectively). Ticagrelor increased adenosine and cAMP plasma concentration compared with clopidogrel in patients with ACS. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture.

    PubMed

    Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G

    2006-04-01

    The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

  17. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System

    PubMed Central

    Zahid, M. Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M.; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens. PMID:26361388

  18. Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System.

    PubMed

    Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Asakura, Masahiro; Chatterjee, Shruti; Hinenoya, Atsushi; Faruque, Shah M; Yamasaki, Shinji

    2015-01-01

    Use of natural compounds as antivirulence drugs could be an alternative therapeutic approach to modify the outcome of bacterial infections, particularly in view of growing resistance to available antimicrobials. Here, we show that sub-bactericidal concentration of anethole, a component of sweet fennel seed, could suppress virulence potential in O1 El Tor biotype strains of toxigenic Vibrio cholerae, the causative agent of the ongoing 7th cholera pandemic. The expression of cholera toxin (CT) and toxin coregulated pilus (TCP), the major virulence factors of V. cholerae, is controlled through a regulatory cascade involving activation of ToxT with synergistic coupling interaction of ToxR/ToxS with TcpP/TcpH. We present evidence that anethole inhibits in vitro expression of CT and TCP in a toxT-dependent but toxR/toxS-independent manner and through repression of tcpP/tcpH, by using bead-ELISA, western blotting and quantitative real-time RT-PCR assays. The cyclic AMP (cAMP)-cAMP receptor protein (CRP) is a well-studied global signaling system in bacterial pathogens, and this complex is known to suppress expression of tcpP/tcpH in V. cholerae. We find that anethole influences the virulence regulatory cascade by over-expressing cyaA and crp genes. Moreover, suppression of toxigenic V. cholerae-mediated fluid accumulation in ligated ileum of rabbit by anethole demonstrates its potentiality as an antivirulence drug candidate against the diseases caused by toxigenic V. cholerae. Taken altogether, these results revealing a mechanism of virulence inhibition in V. cholerae by the natural compound anethole, may have relevance in designing antivirulence compounds, particularly against multiple antibiotic resistant bacterial pathogens.

  19. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell

    2016-11-01

    Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca 2+ /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca 2+ release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca 2+ /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca 2+ release and pigment aggregation. The second messengers IP 3 and cADPR do not stimulate SER Ca 2+ release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century. © 2016 Wiley Periodicals, Inc.

  20. Second-messenger regulation of sodium transport in mammalian airway epithelia.

    PubMed Central

    Graham, A; Steel, D M; Alton, E W; Geddes, D M

    1992-01-01

    1. Sodium absorption is the dominant ion transport process in conducting airways and is a major factor regulating the composition of airway surface liquid. However, little is known about the control of airway sodium transport by intracellular regulatory pathways. 2. In sheep tracheae and human bronchi mounted in Ussing chambers under short circuit conditions, the sodium current can be isolated by pretreating tissues with acetazolamide (100 microM) to inhibit bicarbonate secretion, bumetanide (100 microM) to inhibit chloride secretion and phloridzin (200 microM) to inhibit sodium-glucose cotransport. This sodium current consists of amiloride-sensitive (57%) and amiloride-insensitive (43%) components. 3. The regulation of the isolated sodium current by three second messenger pathways was studied using the calcium ionophore A23187 to elevate intracellular calcium, a combination of forskolin and the phosphodiesterase inhibitor zardaverine to elevate intracellular cyclic AMP, and the phorbol ester 12,13-phorbol dibutyrate (PDB) to stimulate protein kinase C. 4. In sheep trachea, A23187 produces a dose-related inhibition of the sodium current with maximal effect (38% of ISC) at 10 microM and IC50 1 microM. This response affects both the amiloride-sensitive and insensitive components of the sodium current and is not altered by prior stimulation of protein kinase C or elevation of intracellular cyclic AMP. In human bronchi, A23187 (10 microM) produced a significantly greater inhibition of ISC (68%), a response which was unaffected by prior treatment with PDB or forskolin-zardaverine. 5. In sheep trachea, stimulation of protein kinase C with PDB produced a dose-related inhibition of ISC maximal (56% of ISC) at 50 nM (IC50 7 nM). This response was abolished by amiloride (100 microM) pretreatment suggesting a selective effect on the amiloride-sensitive component of the sodium current. The response was not altered by prior elevation of intracellular calcium or cyclic AMP. PDB (10 nM) caused a similar inhibition of ISC in human bronchi (43%). The effect of PKC stimulation following pretreatment with A23187 was diminished in human bronchi. Elevating intracellular cyclic AMP did not alter this response. 6. Addition of forskolin (1 microM) together with the phosphodiesterase inhibitor zardaverine (100 microM) produced a mean 35-fold increase in intracellular cyclic AMP in sheep trachea. This was associated with a small, but significant, 6% transient increase in ISC followed by a significant 4% fall. Neither effect could be abolished by amiloride pretreatment. In human bronchi, a small decrease in ISC which could not be distinguished from that occurring in controls was observed.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1464841

  1. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: Insights for cGMP-dependent protein kinase agonist design

    DOE PAGES

    Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...

    2014-10-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less

  2. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  3. Effect of the dB-c-AMP and forskolin on /sup 45/Ca influx, net Ca uptake and tension on rabbit aortic smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-03-01

    The effect of dibutiryl-adenosine-3',5'-cyclic-monophosphate (dB-c-AMP) and forskolin on aortic tension and /sup 45/Ca influx were measured. dB-c-AMP reduced both the rate of force development and the maximal tension achieved in solutions containing various K/sup +/ concentrations. Stimulated /sup 45/Ca influx was also reduced however to a lesser extent than was the tension. Forskolin showed more marked effects of a similar nature. Thus, both these agents which increase intracellular c-AMP caused a rightward shift in the curve expressing force(ordinate) as a function of Ca influx (abscissa). Consequently, they found that dB-c-AMP stimulated more net Ca to be taken up by themore » sarcoplasmic reticulum(SR) at the same influx rate. The conclusion that c-AMP produced these effects by stimulating Ca uptake into the superficial SR was supported by the finding that dB-c-AMP increased the amount of Ca taken up into a caffeine releasable fraction.« less

  4. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  5. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

    PubMed

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-06-01

    3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  6. Prevention by zinc of cadmium-induced alterations in pancreatic and hepatic functions.

    PubMed Central

    Merali, Z; Singhal, R L

    1976-01-01

    Subacute cadmium treatment (CdCl2, 1 mg/kg twice daily for 7 days) in rats disturbs glucose homeostasis as shown by hyperglycemia and decreased glucose tolerance associated with suppression of insulin release, enhancement of hepatic gluconeogenic enzymes and decrease in hepatic glycogen content. 2 Exposure to cadmium increases hepatic cyclic adenosine 3',5'-monophosphate (cyclic AMP) and this is accompanied by stimulation of basal, adrenaline- as well as glucagon-stimulated form(s) of adenylate cyclase. 3 In contrast to cadmium, subacute administration of zinc (ZnCl2, 2 mg/kg twice daily for 7 days) fails to alter the activities of hepatic gluconeogenic enzymes, cyclic AMP synthesis, as well as glucose clearance and insulin release in response to a glucose load. 4 Zinc, when administered at the same time as cadmium, prevents the cadmium-induced lesions in both hepatic and pancreatic functions. 5 The results are discussed in relation to the possible mechanisms of cadmium toxicity and to the role of sulphydryl groups in the protection exercised by zinc. PMID:183849

  7. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  8. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis.

    PubMed

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-02-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  9. Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS

    PubMed Central

    Guo, Mengyue; Wang, Huanyu; Xie, Nengbin

    2015-01-01

    ABSTRACT Natural plasmid transformation of Escherichia coli is a complex process that occurs strictly on agar plates and requires the global stress response factor σS. Here, we showed that additional carbon sources could significantly enhance the transformability of E. coli. Inactivation of phosphotransferase system genes (ptsH, ptsG, and crr) caused an increase in the transformation frequency, and the addition of cyclic AMP (cAMP) neutralized the promotional effect of carbon sources. This implies a negative role of cAMP in natural transformation. Further study showed that crp and cyaA mutations conferred a higher transformation frequency, suggesting that the cAMP-cAMP receptor protein (CRP) complex has an inhibitory effect on transformation. Moreover, we observed that rpoS is negatively regulated by cAMP-CRP in early log phase and that both crp and cyaA mutants show no transformation superiority when rpoS is knocked out. Therefore, it can be concluded that both the crp and cyaA mutations derepress rpoS expression in early log phase, whereby they aid in the promotion of natural transformation ability. We also showed that the accumulation of RpoS during early log phase can account for the enhanced transformation aroused by additional carbon sources. Our results thus demonstrated that the presence of additional carbon sources promotes competence development and natural transformation by reducing cAMP-CRP and, thus, derepressing rpoS expression during log phase. This finding could contribute to a better understanding of the relationship between nutrition state and competence, as well as the mechanism of natural plasmid transformation in E. coli. IMPORTANCE Escherichia coli, which is not usually considered to be naturally transformable, was found to spontaneously take up plasmid DNA on agar plates. Researching the mechanism of natural transformation is important for understanding the role of transformation in evolution, as well as in the transfer of pathogenicity and antibiotic resistance genes. In this work, we found that carbon sources significantly improve transformation by decreasing cAMP. Then, the low level of cAMP-CRP derepresses the general stress response regulator RpoS via a biphasic regulatory pattern, thereby contributing to transformation. Thus, we demonstrate the mechanism by which carbon sources affect natural transformation, which is important for revealing information about the interplay between nutrition state and competence development in E. coli. PMID:26260461

  10. A Novel Ras-interacting Protein Required for Chemotaxis and Cyclic Adenosine Monophosphate Signal Relay in Dictyostelium

    PubMed Central

    Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.

    1999-01-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation. PMID:10473630

  11. Potent antiplatelet activity of sesamol in an in vitro and in vivo model: pivotal roles of cyclic AMP and p38 mitogen-activated protein kinase.

    PubMed

    Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R

    2010-12-01

    Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.

    PubMed

    Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A

    1999-12-01

    Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.

  13. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  14. Thymocyte cyclic AMP and cyclic GMP response to treatment with metabolites issued from the lipoxygenase pathway.

    PubMed

    Mexmain, S; Cook, J; Aldigier, J C; Gualde, N; Rigaud, M

    1985-08-01

    Evidence has been presented that cGMP is the second messenger for the lipoxygenase metabolites 15-HETE and LTB4 in the mouse splenocyte and thymocyte. Incubation of splenocytes with 10(-7) to 10(-9) M 15-HETE caused a slight decrease in cAMP levels and an increase in cGMP levels after 10 to 20 min. Mature PNA-, immature PNA+, and whole thymocytes treated with 10(-7) to 10(-10) M 15-HETE and 10(-11) M LTB4 showed an approximately 100% increase in cGMP production. In mixed lymphocyte reactions, 15-HETE- and LTB4-treated PNA+, PNA-, and whole thymocyte populations inhibited thymidine uptake by fresh allostimulated splenocytes. These results demonstrate that the eicosanoid-induced generation of suppressor cells follows a rise in lymphocyte cGMP levels.

  15. The Clinical Correlation of Regulatory T Cells and Cyclic Adenosine Monophosphate in Enterovirus 71 Infection

    PubMed Central

    Wang, Shih-Min; Chen, I-Chun; Liao, Yu-Ting; Liu, Ching-Chuan

    2014-01-01

    Background Brainstem encephalitis (BE) and pulmonary edema (PE) are notable complications of enterovirus 71 (EV71) infection. Objective This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment. Study Design Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD) or BE group, and the autonomic nervous system (ANS) dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP) levels, and the regulatory T cell (Tregs) profiles of the patients were determined. Results Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4+CD25+Foxp3+ and CD4+Foxp3+ T cells compared with patients with HFMD or BE. The expression frequency of CD4−CD8− was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment. Conclusions These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels. PMID:25010330

  16. The Role of Cyclic AMP and Its Relationship to Parathyroid Hormone Response in an In Vitro Model of Chondrogenesis.

    DTIC Science & Technology

    1992-06-01

    1986; Lewinson and Silbermann 1986; Pines and Hurwitz 1988; Livne 1989), cytodifferentiation ( Hiraki et al. 1985; Takano et al. 1985), enhancement of...exposed to chondrocytes in vitro (Sullivan et al. 1984; Hiraki et al. 1985). For example, cartilage grown in medium containing N6-monobutyryl cAMP... Hiraki Y., Y. Yutani, M. Fukuya, M. Takigawa, F. Suzuki. 1985. Differentiation and de-differentiation of cultured chondroctyes: increase in monomeric

  17. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  18. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos).

    PubMed

    Yang, S; Fan, R; Shi, Z; Ji, K; Zhang, J; Wang, H; Herrid, M; Zhang, Q; Yao, J; Smith, G W; Dong, C

    2015-04-01

    The molecular mechanisms underlying the formation of coat colors in animals are poorly understood. Recent studies have demonstrated that microRNA play important roles in the control of melanogenesis and coat color in mammals. In a previous study, we characterized the miRNA expression profiles in alpaca skin with brown and white coat color and identified a novel miRNA (named lpa-miR-nov-66) that is expressed significantly higher in white skin compared to brown skin. The present study was conducted to determine the functional roles of this novel miRNA in the regulation of melanogenesis in alpaca melanocytes. lpa-miR-nov-66 is predicted to target the soluble guanylate cyclase (sGC) gene based on presence of a binding site in the sGC coding sequence (CDS). Overexpression of lpa-miR-nov-66 in alpaca melanocyes upregulated the expression of sGC both at the mRNA and protein level. Overexpression of lpa-miR-nov-66 in melanocyes also resulted in decreased expression of key melanogenic genes including tyrosinase (TYR), tyrosinase related protein 1 (TYRP1), and microphthalmia transcription factor (MITF). Our ELISA assays showed increased cyclic guanosine monophosphate (cGMP) but decreased cyclic adenosine monophosphate (cAMP) production in melanocytes overexpressing lpa-miR-nov-66. In addition, overexpression of lpa-miR-nov-66 also reduced melanin production in cultured melanocytes. Results support a role of lpa-miR-nov-66 in melanocytes by directly or indirectly targeting , which regulates melanogenesis via the cAMP pathway.

  19. Parathyroid Hormone-Related Protein Negatively Regulates Tumor Cell Dormancy Genes in a PTHR1/Cyclic AMP-Independent Manner

    PubMed Central

    Johnson, Rachelle W.; Sun, Yao; Ho, Patricia W. M.; Chan, Audrey S. M.; Johnson, Jasmine A.; Pavlos, Nathan J.; Sims, Natalie A.; Martin, T. John

    2018-01-01

    Parathyroid hormone-related protein (PTHrP) expression in breast cancer is enriched in bone metastases compared to primary tumors. Human MCF7 breast cancer cells “home” to the bones of immune deficient mice following intracardiac inoculation, but do not grow well and stain negatively for Ki67, thus serving as a model of breast cancer dormancy in vivo. We have previously shown that PTHrP overexpression in MCF7 cells overcomes this dormant phenotype, causing them to grow as osteolytic deposits, and that PTHrP-overexpressing MCF7 cells showed significantly lower expression of genes associated with dormancy compared to vector controls. Since early work showed a lack of cyclic AMP (cAMP) response to parathyroid hormone (PTH) in MCF7 cells, and cAMP is activated by PTH/PTHrP receptor (PTHR1) signaling, we hypothesized that the effects of PTHrP on dormancy in MCF7 cells occur through non-canonical (i.e., PTHR1/cAMP-independent) signaling. The data presented here demonstrate the lack of cAMP response in MCF7 cells to full length PTHrP(1–141) and PTH(1–34) in a wide range of doses, while maintaining a response to three known activators of adenylyl cyclase: calcitonin, prostaglandin E2 (PGE2), and forskolin. PTHR1 mRNA was detectable in MCF7 cells and was found in eight other human breast and murine mammary carcinoma cell lines. Although PTHrP overexpression in MCF7 cells changed expression levels of many genes, RNAseq analysis revealed that PTHR1 was unaltered, and only 2/32 previous PTHR1/cAMP responsive genes were significantly upregulated. Instead, PTHrP overexpression in MCF7 cells resulted in significant enrichment of the calcium signaling pathway. We conclude that PTHR1 in MCF7 breast cancer cells is not functionally linked to activation of the cAMP pathway. Gene expression responses to PTHrP overexpression must, therefore, result from autocrine or intracrine actions of PTHrP independent of PTHR1, through signals emanating from other domains within the PTHrP molecule. PMID:29867773

  20. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  1. Dispatch. Dictyostelium chemotaxis: fascism through the back door?

    PubMed

    Insall, Robert

    2003-04-29

    Aggregating Dictyostelium cells secrete cyclic AMP to attract their neighbours by chemotaxis. It has now been shown that adenylyl cyclase is enriched in the rear of cells, and this localisation is required for normal aggregation.

  2. Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation.

    PubMed

    Lauzeral, J; Halloy, J; Goldbeter, A

    1997-08-19

    Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals.

  3. Desynchronization of cells on the developmental path triggers the formation of spiral waves of cAMP during Dictyostelium aggregation

    PubMed Central

    Lauzeral, Jacques; Halloy, José; Goldbeter, Albert

    1997-01-01

    Whereas it is relatively easy to account for the formation of concentric (target) waves of cAMP in the course of Dictyostelium discoideum aggregation after starvation, the origin of spiral waves remains obscure. We investigate a physiologically plausible mechanism for the spontaneous formation of spiral waves of cAMP in D. discoideum. The scenario relies on the developmental path associated with the continuous changes in the activity of enzymes such as adenylate cyclase and phosphodiesterase observed during the hours that follow starvation. These changes bring the cells successively from a nonexcitable state to an excitable state in which they relay suprathreshold cAMP pulses, and then to autonomous oscillations of cAMP, before the system returns to an excitable state. By analyzing a model for cAMP signaling based on receptor desensitization, we show that the desynchronization of cells on this developmental path triggers the formation of fully developed spirals of cAMP. Developmental paths that do not correspond to the sequence of dynamic transitions no relay-relay-oscillations-relay are less able or fail to give rise to the formation of spirals. PMID:9256451

  4. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  5. THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR

    PubMed Central

    FORREST, JOHN N.

    2016-01-01

    The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051

  6. Melanocyte response to gravitational stress: an overview with a focus on the role of cyclic nucleotides

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Tsiockas, Wasiliki; Eiermann, Peter; Hauslage, Jens; Hemmersbach, Ruth; Block, Ingrid; Gerzer, Rupert

    Human melanocytes are responsible for skin pigmentation by synthesizing the pigment melanin. A well known modulator of melanogenesis is the second messenger adenosine 3',5'-cyclic monophos-phate (cAMP). It has also been reported that the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/guanosine 3',5'-cyclic monophosphate (cGMP) pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals during oxidative stress, but it may additionally act as a photosensitizer that generates active oxygen species upon UV radiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. Melanoma, a deadly skin cancer which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we were able to show that hu-man melanocytic cells differentially respond to gravitational stress. Hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured human melanocytes and non-metastatic melanoma cells, but not in metastatic phenotypes under the conditions of limited degradation [e.g., in the presence of phosphodiesterase (PDE) inhibitors] or stimulated synthesis of cGMP [e.g., by NO donors, but not natriuretic peptides], whereas cellular proliferation and morphology were not altered. Interestingly, long-term exposure to hypergravity stimulated an increase in both intra-cellular as well as extracellular cAMP levels as well as melanogenesis in pigmented melanocytes and non-metastatic melanoma cells. As some cAMP-PDEs are regulated by cGMP, it seems that the hypergravity-induced alteration of melanocyte pigmentation could be a result of a cross-talk between these two cyclic nucleotides. Hypergravity induced further an increase in the mRNA and protein levels of the selective cGMP and cAMP exporters, the multidrug resistance proteins (MRP) 4 and 5 -but not 8 -, whereas simulated microgravity (up to 1.21x10-2 g for 24 h) -provided by a fast-rotating clinostat (60 rpm) with one rotating axis -reduced the mRNA levels for MRP4/5 in these cells. The alterations are dependent on the expression of func-tional NO-sensitive sGC (a heterodimeric hemeprotein, consisting of α and β subunits), since no changes in the expression of mRNA for MRP4/5 were found in non-metastatic melanoma cells transfected with siRNA for sGC-β1. In addition, long-term exposure to simulated mi-crogravity slightly reduced the proliferation rate of the melanocytes, whereas morphology was not affected. Taken together, the results of our studies suggest a role of the cyclic nucleotides cGMP and cAMP as well as of MRP4/5 in the adaptation of melanocytic cells to gravitational stress. Since MRP4/5 may confer resistance to nucleobase and nucleoside analogs, which are used in anticancer and antiviral therapy, medication and drug resistance may be different in altered gravity in comparison to terrestrial conditions.

  7. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line.

    PubMed

    Schachter, J B; Wolfe, B B

    1992-03-01

    The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.

  8. Phosphodiesterase inhibitors suppress Lactobacillus casei cell-wall-induced NF-κB and MAPK activations and cell proliferation through protein kinase A--or exchange protein activated by cAMP-dependent signal pathway.

    PubMed

    Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro

    2012-01-01

    Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.

  9. The effect of prolonged treatment with imipramine on the biosynthesis and functional characteristics of D2 dopamine receptors in the rat caudate putamen

    PubMed Central

    Dziedzicka-Wasylewska, Marta; Rogoż, Renata

    1998-01-01

    The present study shows the effects of imipramine in a single dose (10 mg kg−1, p.o.) or following repeated (14 days, twice a day) treatment on the level of mRNA coding for D2 dopamine receptors in the rat caudate putamen (CP). Repeated administration of imipramine resulted in the increase of the level of mRNA coding for D2 dopamine receptors. Radioligand binding studies with the D2 receptor agonist, [3H]-N-0437, indicated, that following imipramine administration, the affinity of the agonist for the D2 dopamine receptor significantly increased, though without any alterations in the Bmax. Pharmacological manipulations (by use of forskolin, GppNHp and quinpirole) of the cyclic AMP generating system, ex vivo following administration of imipramine indicated that an up-regulation of factors inhibiting cyclic GMP formation takes place. Most probably it is the D2 dopamine receptor which undergoes functional up-regulation, resulting from the enhancement of its biosynthesis. PMID:9535010

  10. Challenges and Limits Using Antimicrobial Peptides in Boar Semen Preservation.

    PubMed

    Schulze, M; Grobbel, M; Müller, K; Junkes, C; Dathe, M; Rüdiger, K; Jung, M

    2015-07-01

    Antibiotics are of great importance for the preservation of ejaculates for livestock breading. The use of antibiotics, however, is not an appropriate compensation for a lack of hygiene standards in artificial insemination (AI) centres. Sophisticated hygiene management and the proper identification of hygienic critical control points (HCCPs) at AI centres provide the basis for counteracting the development of antibiotic resistance in contaminant bacteria and their settlement in AI centres. In recent years, efforts have been made to use antimicrobial peptides (AMPs) in the preservation of boar semen. Investigations have included the testing of synthetic magainin derivatives and cyclic hexapeptides. One prerequisite for the application of AMPs is that they have a minor impact on eukaryotic cells. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and mechanisms including synergistic interaction with conventional antibiotics have made cyclic hexapeptides highly promising candidates for potential application as peptide antibiotics for semen preservation. © 2015 Blackwell Verlag GmbH.

  11. Beta-adrenergic control of phosphatidylcholine synthesis by transmethylation in hepatocytes from juvenile, adult and adrenalectomized rats.

    PubMed Central

    Marin-Cao, D; Alvarez Chiva, V; Mato, J M

    1983-01-01

    Changes in isoprenaline-sensitive phospholipid methyltransferase were studied in hepatocytes isolated from juvenile, mature and adrenalectomized rats. Isoprenaline produced greater stimulation of cyclic AMP accumulation in juvenile and mature adrenalectomized rats than in mature animals. Similarly, isoprenaline stimulated phospholipid methyltransferase in juvenile and mature adrenalectomized rats but had no effect in mature animals. Isoprenaline-mediated activation of phospholipid methyltransferase in adrenalectomized rats was time- and dose-dependent. In hepatocytes isolated from adrenalectomized rats incubated with [Me-3H]methionine or [3H]-ethanolamine the addition of isoprenaline increased the amount of radioactivity incorporated into phosphatidylcholine. The activation by isoprenaline of phospholipid methyltransferase was abolished by the beta-blocker propranolol and by insulin. These results indicate that rat liver the occupation of functional beta-receptors causes a stimulation of phospholipid methylation. It is suggested that, as reported previously, cyclic AMP activates phospholipid methyltransferase. PMID:6320796

  12. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-03-14

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii , in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13 R -manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13 R -manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana . The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

  13. An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations.

    PubMed

    Sawai, Satoshi; Thomason, Peter A; Cox, Edward C

    2005-01-20

    Nutrient-deprived Dictyostelium amoebae aggregate to form a multicellular structure by chemotaxis, moving towards propagating waves of cyclic AMP that are relayed from cell to cell. Organizing centres are not formed by founder cells, but are dynamic entities consisting of cores of outwardly rotating spiral waves that self-organize in a homogeneous cell population. Spiral waves are ubiquitously observed in chemical reactions as well as in biological systems. Although feedback control of spiral waves in spatially extended chemical reactions has been demonstrated in recent years, the mechanism by which control is achieved in living systems is unknown. Here we show that mutants of the cyclic AMP/protein kinase A pathway show periodic signalling, but fail to organize coherent long-range wave territories, owing to the appearance of numerous spiral cores. A theoretical model suggests that autoregulation of cell excitability mediated by protein kinase A acts to optimize the number of signalling centres.

  14. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  15. Purine 3':5'-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP.

    PubMed

    Řlepokura, Katarzyna Anna

    2016-06-01

    Purine 3':5'-cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid-state conformational details still require investigation. Five crystals containing purine 3':5'-cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3':5'-cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3':5'-cyclic phosphate 0.3-hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3':5'-cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H11N5O7P(-)·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H10N4O7P(-)·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP(-) in (IV) and cIMP(-) in (V)] are syn conformers about the N-glycosidic bond, and this nucleobase arrangement is accompanied by Crib-H...Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of syn-anti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter-nucleotide contacts in (I)-(V) have been systematized in terms of the chemical groups involved. All five structures display three-dimensional hydrogen-bonded networks.

  16. cAMP Level Modulates Scleral Collagen Remodeling, a Critical Step in the Development of Myopia

    PubMed Central

    Liu, Shufeng; Fang, Fang; Lu, Runxia; Lu, Chanyi; Zheng, Min; An, Jianhong; Xu, Hongjia; Zhao, Fuxin; Chen, Jiang-fan; Qu, Jia; Zhou, Xiangtian

    2013-01-01

    The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP). We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs). Form-deprived myopia (FDM) was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC) activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia. PMID:23951163

  17. Increases in cAMP, MAPK Activity and CREB Phosphorylation during REM Sleep: Implications for REM Sleep and Memory Consolidation

    PubMed Central

    Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.

    2013-01-01

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844

  18. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging.

    PubMed

    Shafer, Orie T; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O; Lohse, Martin J; Taghert, Paul H

    2008-04-24

    The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.

  19. Mechanism of vasorelaxation induced by Tridax procumbens extract in rat thoracic aorta

    PubMed Central

    Salahdeen, Hussein Mofomosara; Idowu, Gbolahan O; Salami, Shakiru A; Murtala, Babatunde A; Alada, AbdulRasak A

    2016-01-01

    Background/Aim: Tridax procumbens (Linn) (Asteraceae) is one of the herbs widely distributed in many parts of the world. Its leaves have long been used for the treatment of hypertension in Nigeria. Previous studies have shown that aqueous leaves of T. procumbens extract (TPE) lowers blood pressure through endothelium-dependent and -independent mechanism in the aortic rings isolated from normotensive rats. The aim of the present study was to further investigate mechanisms of TPE-induced relaxation in the aortic artery by assessing its mechanistic interactions with nitric oxide (NO) synthase, cyclic guanosine monophosphate (cGMP), and cyclic adenosine monophosphate (cAMP). Materials and Methods: The aortic artery isolated from healthy, young adult normotensive Wistar albino rats (250-300 g) were pre-contracted with phenylephrine (PE) (10–7 M) and KCl (60 mM) and were treated with various concentrations of aqueous extract of TPE (0.5-9.0 mg/ml). The changes in arterial tension were recorded using Ugo Basile model 7004 coupled to data capsule acquisition system model 17400. The interaction between TPE with cAMP and cGMP inhibitors was also evaluated. Results: The results showed that the TPE (0.5-9.0 mg/ml) significantly (P < 0.05) reduced the contraction induced by PE in a concentration-dependent manner. The vasorelaxant effect caused by the TPE was significantly (P < 0.05) attenuated with pre-incubation of cGMP (Rp-8Br PET cGMPS) and cAMP (Rp-AMP) inhibitor, respectively. Conclusion: These results suggest that TPE causes vasodilatory effects in a concentration-dependent manner in the isolated rat aortic artery. The mechanism of action of TPE is complex. A part of its relaxing effect is mediated directly by blocking or modulating cGMP and cAMP. PMID:27104039

  20. Mechanism of vasorelaxation induced by Tridax procumbens extract in rat thoracic aorta.

    PubMed

    Salahdeen, Hussein Mofomosara; Idowu, Gbolahan O; Salami, Shakiru A; Murtala, Babatunde A; Alada, AbdulRasak A

    2016-01-01

    Tridax procumbens (Linn) (Asteraceae) is one of the herbs widely distributed in many parts of the world. Its leaves have long been used for the treatment of hypertension in Nigeria. Previous studies have shown that aqueous leaves of T. procumbens extract (TPE) lowers blood pressure through endothelium-dependent and -independent mechanism in the aortic rings isolated from normotensive rats. The aim of the present study was to further investigate mechanisms of TPE-induced relaxation in the aortic artery by assessing its mechanistic interactions with nitric oxide (NO) synthase, cyclic guanosine monophosphate (cGMP), and cyclic adenosine monophosphate (cAMP). The aortic artery isolated from healthy, young adult normotensive Wistar albino rats (250-300 g) were pre-contracted with phenylephrine (PE) (10-7 M) and KCl (60 mM) and were treated with various concentrations of aqueous extract of TPE (0.5-9.0 mg/ml). The changes in arterial tension were recorded using Ugo Basile model 7004 coupled to data capsule acquisition system model 17400. The interaction between TPE with cAMP and cGMP inhibitors was also evaluated. The results showed that the TPE (0.5-9.0 mg/ml) significantly (P < 0.05) reduced the contraction induced by PE in a concentration-dependent manner. The vasorelaxant effect caused by the TPE was significantly (P < 0.05) attenuated with pre-incubation of cGMP (Rp-8Br PET cGMPS) and cAMP (Rp-AMP) inhibitor, respectively. These results suggest that TPE causes vasodilatory effects in a concentration-dependent manner in the isolated rat aortic artery. The mechanism of action of TPE is complex. A part of its relaxing effect is mediated directly by blocking or modulating cGMP and cAMP.

  1. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  3. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  4. Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs.

    PubMed

    Zhang, Han-Ting

    2009-01-01

    Phosphodiesterase-4 (PDE4), one of eleven PDE enzyme families, specifically catalyzes hydrolysis of cyclic AMP (cAMP); it has four subtypes (PDE4A-D) with at least 25 splice variants. PDE4 plays a critical role in the control of intracellular cAMP concentrations. PDE4 inhibitors produce antidepressant actions in both animals and humans via enhancement of cAMP signaling in the brain. However, their clinical utility has been hampered by side effects, in particular nausea and emesis. While there is still a long way to go before PDE4 inhibitors with high therapeutic indices are available for treatment of depressive disorders, important advances have been made in the development of PDE4 inhibitors as antidepressants. First, limited, but significant studies point to PDE4D as the major PDE4 subtype responsible for antidepressant-like effects of PDE4 inhibitors, although the role of PDE4A cannot be excluded. Second, PDE4D may contribute to emesis, the major side effect of PDE4 inhibitors. For this reason, identification of roles of PDE4D splice variants in mediating antidepressant activity is particularly important. Recent studies using small interfering RNAs (siRNAs) have demonstrated the feasibility to identify cellular functions of individual PDE4 variants. Third, mixed inhibitors of PDE4 and PDE7 or PDE4 and serotonin reuptake have been developed and may be potential antidepressants with minimized side effects. Finally, relatively selective inhibitors of one or two PDE4 subtypes have been synthesized using structure- and scaffold-based design. This review also discusses the relationship between PDE4 and antidepressant activity based on structures, brain distributions, and pharmacological properties of PDE4 and its isoforms.

  5. The N Terminus of Phosphodiesterase TbrPDEB1 of Trypanosoma brucei Contains the Signal for Integration into the Flagellar Skeleton ▿

    PubMed Central

    Luginbuehl, Edith; Ryter, Damaris; Schranz-Zumkehr, Judith; Oberholzer, Michael; Kunz, Stefan; Seebeck, Thomas

    2010-01-01

    The precise subcellular localization of the components of the cyclic AMP (cAMP) signaling pathways is a crucial aspect of eukaryotic intracellular signaling. In the human pathogen Trypanosoma brucei, the strict control of cAMP levels by cAMP-specific phosphodiesterases is essential for parasite survival, both in cell culture and in the infected host. Among the five cyclic nucleotide phosphodiesterases identified in this organism, two closely related isoenzymes, T. brucei PDEB1 (TbrPDEB1) (PDEB1) and TbrPDEB2 (PDEB2) are predominantly responsible for the maintenance of cAMP levels. Despite their close sequence similarity, they are distinctly localized in the cell. PDEB1 is mostly located in the flagellum, where it forms an integral part of the flagellar skeleton. PDEB2 is mainly located in the cell body, and only a minor part of the protein localizes to the flagellum. The current study, using transfection of procyclic trypanosomes with green fluorescent protein (GFP) reporters, demonstrates that the N termini of the two enzymes are essential for determining their final subcellular localization. The first 70 amino acids of PDEB1 are sufficient to specifically direct a GFP reporter to the flagellum and to lead to its detergent-resistant integration into the flagellar skeleton. In contrast, the analogous region of PDEB2 causes the GFP reporter to reside predominantly in the cell body. Mutagenesis of selected residues in the N-terminal region of PDEB2 demonstrated that single amino acid changes are sufficient to redirect the reporter from a cell body location to stable integration into the flagellar skeleton. PMID:20693305

  6. Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.

    PubMed

    Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S

    2018-01-01

    Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibition of basolateral cAMP permeability in the toad urinary bladder.

    PubMed

    Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R

    2000-10-01

    1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.

  8. Modeling beta-adrenergic control of cardiac myocyte contractility in silico.

    PubMed

    Saucerman, Jeffrey J; Brunton, Laurence L; Michailova, Anushka P; McCulloch, Andrew D

    2003-11-28

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  9. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  10. Mechanism of inhibition of net ion transport across frog corneal epithelium by calcium channel antagonists.

    PubMed

    Huff, J W; Reinach, P S

    1985-01-01

    In the isolated bullfrog cornea, three calcium channel antagonists had dose-dependent inhibitory effects on the Cl-originated short-circuit current (SCC). Their order of decreasing potency was bepridil, verapamil and diltiazem. One millimolar diltiazem inhibited the SCC by 98% and subsequent incubation with the calcium ionophore A23187 had no restorative effect. Increasing the bathing solution Ca concentration from 0.05 to 15 mM, however, decreased diltiazem's inhibitory efficacy. This antagonist depolarized the intracellular potential difference Vsc from -54 to -18 mV (tear:reference) and the voltage divider ratio FRo decreased from 0.58 to 0.30, suggesting an increase in basolateral membrane electrical resistance. Additional indication of a basolateral membrane effect by the drug was that preincubation with 10(-5) M amphotericin B in Cl-free Ringer's did not eliminate the inhibitory effect of the drug on the Na- and K-elicited SCC. In the absence of amphotericin B in Cl-free Ringer's (SCC = 0), 1 X 10(-3) M diltiazem depolarized the Vsc from -78 to -9 mV suggesting that the increase in basolateral membrane resistance was due to K channel blockade. Diltiazem (1 X 10(-3) M) significantly decreased cyclic AMP content; however, isoproterenol in the presence of the drug increased cyclic AMP fourfold without having any restorative effect on the inhibited SCC. Therefore, the inhibition of the Cl-originated SCC resulting from an increase in basolateral membrane K resistance is not caused by a decline in cyclic AMP content.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Ventilation-induced release of phosphatidylcholine from neonatal-rat lungs in vitro.

    PubMed Central

    Nijjar, M S

    1984-01-01

    Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis. PMID:6477485

  12. 3',5'-cyclic adenosine monophosphate response element binding protein up-regulated cytochrome P450 lanosterol 14alpha-demethylase expression involved in follicle-stimulating hormone-induced mouse oocyte maturation.

    PubMed

    Ning, Gang; Ouyang, Hong; Wang, Songbo; Chen, Xiufen; Xu, Baoshan; Yang, Jiange; Zhang, Hua; Zhang, Meijia; Xia, Guoliang

    2008-07-01

    Cytochrome P450 lanosterol 14alpha-demethylase (CYP51) is a key enzyme in sterols and steroids biosynthesis that can induce meiotic resumption in mouse oocytes. The present study investigated the expression mechanism and function of CYP51 during FSH-induced mouse cumulus oocyte complexes (COCs) meiotic resumption. FSH increased cAMP-dependent protein kinase (PKA) RIIbeta level and induced cAMP response element-binding protein (CREB) phosphorylation and CYP51 expression in cumulus cells before oocyte meiotic resumption. Moreover, CYP51 and epidermal growth factor (EGF)-like factor [amphiregulin (AR)] expression were blocked by (2)-naphthol-AS-Ephosphate (KG-501) (a drug interrupting the formation of CREB functional complex). KG-501 and RS21607 (a specific inhibitor of CYP51 activity) inhibited oocyte meiotic resumption, which can be partially rescued by progesterone. These two inhibitors also inhibited FSH-induced MAPK phosphorylation. EGF could rescue the suppression by KG-501 but not RS21607. Furthermore, type II PKA analog pairs, N(6)-monobutyryl-cAMP plus 8-bromo-cAMP, increased PKA RIIbeta level and mimicked the action of FSH, including CREB phosphorylation, AR and CYP51 expression, MAPK activation, and oocyte maturation. All these data suggest that CYP51 plays a critical role in FSH-induced meiotic resumption of mouse oocytes. CYP51 and AR gene expression in cumulus cells are triggered by FSH via a type II PKA/CREB-dependent signal pathway. Our study also implicates that CYP51 activity in cumulus cells participates in EGF receptor signaling-regulated oocyte meiotic resumption.

  13. Neurotrophic Effect of Citrus 5-Hydroxy-3,6,7,8,3′,4′-Hexamethoxyflavone: Promotion of Neurite Outgrowth via cAMP/PKA/CREB Pathway in PC12 Cells

    PubMed Central

    Lai, Hui-Chi; Wu, Ming-Jiuan; Chen, Pei-Yi; Sheu, Ting-Ting; Chiu, Szu-Ping; Lin, Meng-Han; Ho, Chi-Tang; Yen, Jui-Hung

    2011-01-01

    5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43). 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB) phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501), a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA) inhibitor, but not MEK1/2, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) or calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action. PMID:22140566

  14. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim.

    PubMed Central

    Newgreen, D. T.; Bray, K. M.; McHarg, A. D.; Weston, A. H.; Duty, S.; Brown, B. S.; Kay, P. B.; Edwards, G.; Longmore, J.; Southerton, J. S.

    1990-01-01

    1. The actions of diazoxide and minoxidil sulphate have been compared with those of cromakalim in rat aorta and portal vein. 2. Diazoxide and minoxidil sulphate hyperpolarized the rat portal vein in a similar manner to cromakalim. 3. Cromakalim, diazoxide and minoxidil sulphate increased 42K and 86Rb efflux from rat portal vein, although minoxidil sulphate had only a small effect on 86Rb efflux. 4. Cromakalim, diazoxide and minoxidil sulphate increased 42K efflux from rat aorta but only cromakalim and diazoxide increased 86Rb efflux from this tissue. 5. Glibenclamide inhibited the relaxant actions of cromakalim, diazoxide and minoxidil sulphate on rat aorta and the increase in 42K efflux produced by these agents in this tissue. 6. Diazoxide relaxed an 80 mM KCl-induced contraction of rat aorta, whilst cromakalim and minoxidil sulphate were without effect. 7. Cromakalim, diazoxide and minoxidil sulphate had no effect on cyclic AMP or cyclic GMP concentrations in rat aorta. 8. It is concluded that diazoxide and minoxidil sulphate like cromakalim exhibit K+ channel opening properties in vascular smooth muscle. Diazoxide exerts an additional inhibitory action not related to the production of cyclic AMP or cyclic GMP. The action of minoxidil sulphate may be primarily located at a K+ channel which is relatively impermeable to 86Rb. PMID:2167738

  15. Involvement of a cyclic adenosine monophosphate-dependent signal in the diet-induced canalicular trafficking of adenosine triphosphate-binding cassette transporter g5/g8.

    PubMed

    Yamazaki, Yasuhiro; Yasui, Kenta; Hashizume, Takahiro; Suto, Arisa; Mori, Ayaka; Murata, Yuzuki; Yamaguchi, Masahiko; Ikari, Akira; Sugatani, Junko

    2015-10-01

    The adenosine triphosphate-binding cassette (ABC) half-transporters Abcg5 and Abcg8 promote the secretion of neutral sterol into bile. Studies have demonstrated the diet-induced gene expression of these transporters, but the regulation of their trafficking when the nutritional status changes in the liver remains to be elucidated. Here, we generated a novel in vivo kinetic analysis that can monitor the intracellular trafficking of Abcg5/Abcg8 in living mouse liver by in vivo transfection of the genes of fluorescent protein-tagged transporters and investigated how hypernutrition affects the canalicular trafficking of these transporters. The kinetic analysis showed that lithogenic diet consumption accelerated the translocation of newly synthesized fluorescent-tagged transporters to intracellular pools in an endosomal compartment and enhanced the recruitment of these pooled gene products into the bile canalicular membrane in mouse liver. Because some ABC transporters are reported to be recruited from intracellular pools to the bile canaliculi by cyclic adenosine monophosphate (cAMP) signaling, we next evaluated the involvement of this machinery in a diet-induced event. Administration of a protein kinase A inhibitor, N-(2-{[3-(4-bromophenyl)-2-propenyl]amino}ethyl)-5-isoquinolinesulfonamide, decreased the canalicular expression of native Abcg5/Abcg8 in lithogenic diet-fed mice, and injection of a cAMP analog, dibutyryl cAMP, transiently increased their levels in standard diet-fed mice, indicating the involvement of cAMP signaling. Indeed, canalicular trafficking of the fluorescent-tagged Abcg5/Abcg8 was enhanced by dibutyryl cAMP administration. These observations suggest that diet-induced lipid loading into liver accelerates the trafficking of Abcg5/Abcg8 to the bile canalicular membrane through cAMP signaling machinery. © 2015 by the American Association for the Study of Liver Diseases.

  16. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.

    PubMed

    Li, H J; Sutton-McDowall, M L; Wang, X; Sugimura, S; Thompson, J G; Gilchrist, R B

    2016-04-01

    Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of pre-IVM duration. The final blastocyst yields (proportion of blastocysts/immature oocyte) were 26.3% for the control, compared with 39.2, 35.2 and 34.2%, for the 2, 4 and 6 h pre-IVM FSK + IBMX treatments, respectively. In contrast to standard IVM (control), pre-IVM with cAMP modulators maintained open gap junctions between cumulus cells and oocytes for the duration (6 h) of pre-IVM examined, and persisted for a further 8 h in the IVM phase. Cyclic AMP-modulated pre-IVM increased intra-oocyte GSH levels at the completion of both pre-IVM and IVM, in a pre-IVM duration-dependent manner (P < 0.05), which was ablated when GJC was blocked using CBX (P < 0.05). By 4 h of pre-IVM treatment with cAMP modulators, oocyte H2O2 levels were reduced compared the control (P < 0.05), although this beneficial effect was lost when oocytes were co-treated with BSO. Inhibiting glutathione synthesis with BSO during pre-IVM ablated any positive benefits of cAMP-mediated pre-IVM on oocyte developmental competence (P < 0.01). It is unclear if the improvement in oocyte antioxidant defence and developmental competence reported here is due to direct transfer of total and/or reduced glutathione from cumulus cells to the oocyte via gap junctions, or whether a GSH synthesis signal and/or amino acid substrates are supplied to the oocyte via gap junctions. Embryo transfer experiments are required to determine if the cAMP-mediated improvement in blastocyst rates leads to improved live birth rates. IVM offers significant benefits to infertile and cancer patients and has the potential to significantly alter ART practice, if IVM efficiency in embryo production could be improved closer to that of conventional IVF (using ovarian hyperstimulation). Pre-IVM with cAMP modulators is a simple and reliable means to improve IVM outcomes. This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1007551, 627007, 1008137, 1023210) and by scholarships from the Chinese Scholarship Council (CSC) awarded to H.J.L. and the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad awarded to S.S. The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. We acknowledge partial support from the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Regulatory actions of 3',5'-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling.

    PubMed

    Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H

    2018-05-30

    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.

  18. Role of the human cytomegalovirus major immediate-early promoter's 19-base-pair-repeat cyclic AMP-response element in acutely infected cells.

    PubMed

    Keller, M J; Wheeler, D G; Cooper, E; Meier, J L

    2003-06-01

    Prior studies have suggested a role of the five copies of the 19-bp-repeat cyclic AMP (cAMP)-response element (CRE) in major immediate-early (MIE) promoter activation, the rate-limiting step in human cytomegalovirus (HCMV) replication. We used two different HCMV genome modification strategies to test this hypothesis in acutely infected cells. We report the following: (i) the CREs do not govern basal levels of MIE promoter activity at a high or low multiplicity of infection (MOI) in human foreskin fibroblast (HFF)- or NTera2-derived neuronal cells; (ii) serum and virion components markedly increase MIE promoter-dependent transcription at a low multiplicity of infection (MOI), but this increase is not mediated by the CREs; (iii) forskolin stimulation of the cAMP signaling pathway induces a two- to threefold increase in MIE RNA levels in a CRE-specific manner at a low MOI in both HFF- and NTera2-derived neuronal cells; and (iv) the CREs do not regulate basal levels of HCMV DNA replication at a high or low MOI in HFF. Their presence does impart a forskolin-induced increase in viral DNA replication at a low MOI but only when basal levels of MIE promoter activity are experimentally diminished. In conclusion, the 19-bp-repeat CREs add to the robust MIE promoter activity that occurs in the acutely infected stimulated cells, although the CREs' greater role may be in other settings.

  19. Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain.

    PubMed

    Jiang, Bo; Henstra, Anne-Meint; Paulo, Paula L; Balk, Melike; van Doesburg, Wim; Stams, Alfons J M

    2009-02-01

    A thermophilic spore-forming bacterium (strain AMP) was isolated from a thermophilic methanogenic bioreactor that was fed with cobalt-deprived synthetic medium containing methanol as substrate. 16S rRNA gene analysis revealed that strain AMP was closely related to the acetogenic bacterium Moorella thermoacetica DSM 521(T) (98.3% sequence similarity). DNA-DNA hybridization showed 75.2 +/- 4.7% similarity to M. thermoacetica DSM 521(T), suggesting that strain AMP is a M. thermoacetica strain. Strain AMP has a unique one-carbon metabolism compared to other Moorella species. In media without cobalt growth of strain AMP on methanol was only sustained in coculture with a hydrogen-consuming methanogen, while in media with cobalt it grew acetogenically in the absence of the methanogen. Addition of thiosulfate led to sulfide formation and less acetate formation. Growth of strain AMP with CO resulted in the formation of hydrogen as the main product, while other CO-utilizing Moorella strains produce acetate as product. Formate supported growth only in the presence of thiosulfate or in coculture with the methanogen. Strain AMP did not grow with H(2)/CO(2), unlike M. thermoacetica (DSM 521(T)). The lack of growth with H(2)/CO(2) likely is due to the absence of cytochrome b in strain AMP.

  20. Current topics in membranes and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinzeller, A.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: Expression of the Oxytocin and Vasopressin Genes; Steroid Effects on Excitable Membranes: The Secretory Vesicle in Processing and Secretion of Neuropeptides: and Steroid Hormone Influences on Cyclic AMP-Generating Systems.

  1. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression.

    PubMed

    Hesse, Raphael; Lausser, Ludwig; Gummert, Pauline; Schmid, Florian; Wahler, Anke; Schnack, Cathrin; Kroker, Katja S; Otto, Markus; Tumani, Hayrettin; Kestler, Hans A; Rosenbrock, Holger; von Arnim, Christine A F

    2017-03-09

    Alzheimer's disease (AD) is a neurodegenerative disorder, primarily affecting memory. That disorder is thought to be a consequence of neuronal network disturbances and synapse loss. Decline in cognitive function is associated with a high burden of neuropsychiatric symptoms (NPSs) such as depression. The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are essential second messengers that play a crucial role in memory processing as well as synaptic plasticity and are potential therapeutic targets. Biomarkers that are able to monitor potential treatment effects and that reflect the underlying pathology are of crucial interest. In this study, we measured cGMP and cAMP in cerebrospinal fluid (CSF) in a cohort of 133 subjects including 68 AD patients and 65 control subjects. To address the association with disease progression we correlated cognitive status with cyclic nucleotide levels. Because a high burden of NPSs is associated with decrease in cognitive function, we performed an exhaustive evaluation of AD-relevant marker combinations in a depressive subgroup. We show that cGMP, but not cAMP, levels in the CSF of AD patients are significantly reduced compared with the control group. Reduced cGMP levels in AD patients correlate with memory impairment based on Mini-Mental State Examination score (r = 0.17, p = 0.048) and tau as a marker of neurodegeneration (r = -0.28, p = 0.001). Moreover, we were able to show that AD patients suffering from current depression show reduced cGMP levels (p = 0.07) and exhibit a higher degree of cognitive impairment than non-depressed AD patients. These results provide further evidence for an involvement of cGMP in AD pathogenesis and accompanying co-morbidities, and may contribute to elucidating synaptic plasticity alterations during disease progression.

  2. A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans.

    PubMed

    Khanna, Amit; Kumar, Jitendra; Vargas, Misha A; Barrett, LaKisha; Katewa, Subhash; Li, Patrick; McCloskey, Tom; Sharma, Amit; Naudé, Nicole; Nelson, Christopher; Brem, Rachel; Killilea, David W; Mooney, Sean D; Gill, Matthew; Kapahi, Pankaj

    2016-12-13

    Molecular pathways involved in dauer formation, an alternate larval stage that allows Caenorhabditis elegans to survive adverse environmental conditions during development, also modulate longevity and metabolism. The decision to proceed with reproductive development or undergo diapause depends on food abundance, population density, and temperature. In recent years, the chemical identities of pheromone signals that modulate dauer entry have been characterized. However, signals derived from bacteria, the major source of nutrients for C. elegans, remain poorly characterized. To systematically identify bacterial components that influence dauer formation and aging in C. elegans, we utilized the individual gene deletion mutants in E. coli (K12). We identified 56 diverse E. coli deletion mutants that enhance dauer formation in an insulin-like receptor mutant (daf-2) background. We describe the mechanism of action of a bacterial mutant cyaA, that is defective in the production of cyclic AMP, which extends lifespan and enhances dauer formation through the modulation of TGF-β (daf-7) signaling in C. elegans. Our results demonstrate the importance of bacterial components in influencing developmental decisions and lifespan in C. elegans. Furthermore, we demonstrate that C. elegans is a useful model to study bacterial-host interactions.

  3. Quantitative Proteomics Analysis of the cAMP/Protein Kinase A Signaling Pathway

    PubMed Central

    2012-01-01

    To define the proteins whose expression is regulated by cAMP and protein kinase A (PKA), we used a quantitative proteomics approach in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma cells. We also compared the impact of endogenous increases in the level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP). We identified 1056 proteins in WT and kin- S49 cells and found that 8-CPT-cAMP and Fsk with IBMX produced differences in protein expression. WT S49 cells had a correlation coefficient of 0.41 between DNA microarray data and the proteomics analysis in cells incubated with 8-CPT-cAMP for 24 h and a correlation coefficient of 0.42 between the DNA microarray data obtained at 6 h and the changes in protein expression after incubation with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher level of basal expression in kin- S49 cells than in WT cells. Consistent with this finding, kin- cells are less sensitive to cell killing and generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad impact on protein expression in mammalian cells, including in the regulation of Gsr and oxidative stress. PMID:23110364

  4. Glutathione upregulates cAMP signalling via G protein alpha 2 during the development of Dictyostelium discoideum.

    PubMed

    Lee, Hyang-Mi; Kim, Ji-Sun; Kang, Sa-Ouk

    2016-12-01

    Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development. © 2016 Federation of European Biochemical Societies.

  5. Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway

    PubMed Central

    Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei

    2011-01-01

    Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943

  6. Cyclic AMP Receptor Protein Regulates Pheromone-Mediated Bioluminescence at Multiple Levels in Vibrio fischeri ES114

    PubMed Central

    Lyell, Noreen L.; Colton, Deanna M.; Bose, Jeffrey L.; Tumen-Velasquez, Melissa P.; Kimbrough, John H.

    2013-01-01

    Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45–50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040–4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199–1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87–91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density. PMID:23995643

  7. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related agents.

  8. [Accumulation of cyclic adenosine monophosphate in the ovary of the eel (Anguilla anguilla L.) in vitro under the effect of carp gonadotropin or ovine lutropin: kinetics and thermodependence].

    PubMed

    Salmon, C; Marchelidon, J; Fontaine-Bertrand, E; Fontaine, Y A

    1986-01-01

    Cyclic AMP (cAMP) in pieces of eel ovary was greatly increased in vitro by the gonadotropin (cGTH) of carp, another teleost fish; after one hour at 20 degrees C, maximal stimulation = 31.7 and E.D. 50 = 0.08 micrograms/ml. Ovine lutropin (oLH) had less effect (maximal stimulation: 2.35; E.D. 50: 1.42 micrograms/ml); its action suggested that it involved a subfraction (oLH/cGTH RAc) of the receptor-adenylate cyclase (RAc) systems which mediate the action of cGTH. Another difference was the percentage of total cAMP accumulated under hormonal stimulation and released into the incubation medium; this percentage was much higher with oLH than with cGTH (47 vs 8% after one hour at 20 degrees C). This result might be explained by a localization of oLH/cGTH RAc in cells (theca ?) situated on the outside of the follicles and/or by a relative lack of cAMP binding proteins in the case of cAMP produced by oLH/cGTH RAc. Kinetic and thermodependence studies also disclosed hormone-dependent differences; at 5 degrees C, cAMP concentration was maximal after 40 min with oLH, whereas it was still increasing after 3 h with cGTH. Differences in the properties of phosphodiesterases and/or in the clearance rate of hormone-receptor (HR) complexes could explain these results. The set of RAc systems in eel ovary recognizing fish gonadotropin would then be heterogeneous; some of them would be endowed with original properties concerning receptor specificity and cAMP diffusion as well as associated phosphodiesterase activity and/or HR metabolism. We suggest that at a stage of evolution when a single sensu stricto GTH is present (instead of two in tetrapods), "isoreceptors", differing in specificity and in their fate after hormone binding, could be an important element in the fine regulation of gonadal functions.

  9. Recent Advances in the Development of Antimicrobial Peptides (AMPs): Attempts for Sustainable Medicine?

    PubMed

    Kokel, Anne; Torok, Marianna

    2018-01-17

    Since the first isolation of antimicrobial peptides (AMPs) they have attracted extensive interest in medicinal chemistry. However, only a few AMP-based drugs are currently available on the market. Despite their effectiveness, biodegradability, and versatile mode of action that is less likely to induce resistance compared to conventional antibiotics, AMPs suffer from major issues that need to be addressed to broaden their use. Notably, AMPs can lack selectivity leading to side effects and cytotoxicity, and also exhibit in vivo instability. Several strategies are being actively considered to overcome the limitations that restrain the success of AMPs. In the current work, recent strategies reported for improving AMPs in the context of drug design and delivery were surveyed, and also their possible impact on patients and the environment was assessed. As a major advantage AMPs possess an easily tunable skeleton offering opportunities to improve their properties. Strategic structural modifications and the beneficial properties of cyclic or branched AMPs in term of stability have been reported. The conjugation of AMPs with nanoparticles has also been explored to increase their in vivo stability. Other techniques such as the coupling of AMPs with specific antibodies aim to increase the selectivity of the potential drug towards the target. These strategies were evaluated for their effect on the environment highlighting green technologies. Although further research is needed taking into account both environmental and human health consequences of novel AMPs several of these compounds are promising drug candidates for use in sustainable medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    ERIC Educational Resources Information Center

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  11. Dibutyryl cAMP effects on thromboxane and leukotriene production in decompression-induced lung injury

    NASA Technical Reports Server (NTRS)

    Little, T. M.; Butler, B. D.

    1997-01-01

    Decompression-induced venous bubble formation has been linked to increased neutrophil counts, endothelial cell injury, release of vasoactive eicosanoids, and increased vascular membrane permeability. These actions may account for inflammatory responses and edema formation. Increasing the intracellular cAMP has been shown to decrease eicosanoid production and edema formation in various models of lung injury. Reduction of decompression-induced inflammatory responses was evaluated in decompressed rats pretreated with saline (controls) or dibutyryl cAMP (DBcAMP, an analog of cAMP). After pretreatment, rats were exposed to either 616 kPa for 120 min or 683 kPa for 60 min. The observed increases in extravascular lung water ratios (pulmonary edema), bronchoalveolar lavage, and pleural protein in the saline control group (683 kPa) were not evident with DBcAMP treatment. DBcAMP pretreatment effects were also seen with the white blood cell counts and the percent of neutrophils in the bronchoalveolar lavage. Urinary levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were significantly increased with the 683 kPa saline control decompression exposure. DBcAMP reduced the decompression-induced leukotriene E4 production in the urine. Plasma levels of thromboxane B2, 11-dehydrothromboxane B2, and leukotriene E4 were increased with the 683-kPa exposure groups. DBcAMP treatment did not affect these changes. The 11-dehydrothromboxane B2 and leukotriene E4 levels in the bronchoalveolar lavage were increased with the 683 kPa exposure and were reduced with the DBcAMP treatment. Our results indicate that DBcAMP has the capability to reduce eicosanoid production and limit membrane permeability and subsequent edema formation in rats experiencing decompression sickness.

  12. Beautiful Math, Part 5: Colorful Archimedean Tilings from Dynamical Systems.

    PubMed

    Ouyang, Peichang; Zhao, Weiguo; Huang, Xuan

    2015-01-01

    The art of tiling originated very early in the history of civilization. Almost every known human society has made use of tilings in some form or another. In particular, tilings using only regular polygons have great visual appeal. Decorated regular tilings with continuous and symmetrical patterns were widely used in decoration field, such as mosaics, pavements, and brick walls. In science, these tilings provide inspiration for synthetic organic chemistry. Building on previous CG&#x0026;A &#x201C;Beautiful Math&#x201D; articles, the authors propose an invariant mapping method to create colorful patterns on Archimedean tilings (1-uniform tilings). The resulting patterns simultaneously have global crystallographic symmetry and local cyclic or dihedral symmetry.

  13. Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance.

    PubMed

    Linglart, Agnès; Menguy, Christine; Couvineau, Alain; Auzan, Colette; Gunes, Yasemin; Cancel, Mathilde; Motte, Emmanuelle; Pinto, Graziella; Chanson, Philippe; Bougnères, Pierre; Clauser, Eric; Silve, Caroline

    2011-06-09

    The skeletal dysplasia characteristic of acrodysostosis resembles the Albright's hereditary osteodystrophy seen in patients with pseudohypoparathyroidism type 1a, but defects in the α-stimulatory subunit of the G-protein (GNAS), the cause of pseudohypoparathyroidism type 1a, are not present in patients with acrodysostosis. We report a germ-line mutation in the gene encoding PRKAR1A, the cyclic AMP (cAMP)-dependent regulatory subunit of protein kinase A, in three unrelated patients with acrodysostosis and resistance to multiple hormones. The mutated subunit impairs the protein kinase A response to stimulation by cAMP; this explains our patients' hormone resistance and the similarities of their skeletal abnormalities with those observed in patients with pseudohypoparathyroidism type 1a.

  14. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    PubMed

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  15. Maximization of transcription of the serC (pdxF)-aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12.

    PubMed

    Man, T K; Pease, A J; Winkler, M E

    1997-06-01

    The arrangement of the Escherichia coli serC (pdxF) and aroA genes into a cotranscribed multifunctional operon allows coregulation of two enzymes required for the biosynthesis of L-serine, pyridoxal 5'-phosphate, chorismate, and the aromatic amino acids and vitamins. RNase T2 protection assays revealed two major transcripts that were initiated from a promoter upstream from serC (pdxF). Between 80 to 90% of serC (pdxF) transcripts were present in single-gene mRNA molecules that likely arose by Rho-independent termination between serC (pdxF) and aroA. serC (pdxF)-aroA cotranscripts terminated at another Rho-independent terminator near the end of aroA. We studied operon regulation by determining differential rates of beta-galactosidase synthesis in a merodiploid strain carrying a single-copy lambda[phi(serC [pdxF]'-lacZYA)] operon fusion. serC (pdxF) transcription was greatest in bacteria growing in minimal salts-glucose medium (MMGlu) and was reduced in minimal salts-glycerol medium, enriched MMGlu, and LB medium. serC (pdxF) transcription was increased in cya or crp mutants compared to their cya+ crp+ parent in MMGlu or LB medium. In contrast, serC (pdxF) transcription decreased in an lrp mutant compared to its lrp+ parent in MMGlu. Conclusions obtained by using the operon fusion were corroborated by quantitative Western immunoblotting of SerC (PdxF), which was present at around 1,800 dimers per cell in bacteria growing in MMGlu. RNase T2 protection assays of serC (pdxF)-terminated and serC (pdxF)-aroA cotranscript amounts supported the conclusion that the operon was regulated at the transcription level under the conditions tested. Results with a series of deletions upstream of the P(serC (pdxF)) promoter revealed that activation by Lrp was likely direct, whereas repression by the cyclic AMP (cAMP) receptor protein-cAMP complex (CRP-cAMP) was likely indirect, possibly via a repressor whose amount or activity was stimulated by CRP-cAMP.

  16. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2.

    PubMed

    Zoccarato, Anna; Surdo, Nicoletta C; Aronsen, Jan M; Fields, Laura A; Mancuso, Luisa; Dodoni, Giuliano; Stangherlin, Alessandra; Livie, Craig; Jiang, He; Sin, Yuan Yan; Gesellchen, Frank; Terrin, Anna; Baillie, George S; Nicklin, Stuart A; Graham, Delyth; Szabo-Fresnais, Nicolas; Krall, Judith; Vandeput, Fabrice; Movsesian, Matthew; Furlan, Leonardo; Corsetti, Veronica; Hamilton, Graham; Lefkimmiatis, Konstantinos; Sjaastad, Ivar; Zaccolo, Manuela

    2015-09-25

    Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications. © 2015 American Heart Association, Inc.

  17. Multiple Facets of cAMP Signalling and Physiological Impact: cAMP Compartmentalization in the Lung

    PubMed Central

    Oldenburger, Anouk; Maarsingh, Harm; Schmidt, Martina

    2012-01-01

    Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target. PMID:24281338

  18. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers

    PubMed Central

    Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2015-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany) brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i) c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology, with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  19. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.

    PubMed

    Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong

    2005-11-01

    In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.

  20. Studies on the synergistic effect of androgen on the stimulation of progestin secretion by FSH in cultured rat granulosa cells: a search for the mechanism of action.

    PubMed

    Nimrod, A

    1977-09-01

    Cultures of granulosa cells from immature hypophysectomized DES-treated rats were unable to maintain progestin production of more than 48 h in medium without hormone supplementation or in the presence of FSH only. Production of progestin (20alpha-dihydroprogesterone, as measured by radioimmunoassay) remained unimpaired in the presence of androstenedione (Ad) and was markedly increased in the presence of both Ad and FSH. The combined treatment with FSH and Ad during the first 48 h of culture brought about persistent changes in the cultured cells, since progestin accumulation did not decline upon subsequent removal of these hormones during days 3 and 4 of culture. Dibutyryl cyclic AMP (DBC) was able to mimic the changes in steroidogenic capability induced by the combined action of FSH and Ad. The extent of [125I]-FSH binding, FSH-stimulable cAMP accumulation and cyclic 3',5'-nucleotide phosphodiesterase activity were not affected by addition of Ad to the culture medium. Ad synergized with DBC in the stimulation of progestin accumulation in granulosa cell cultures. It is suggested that androgen acts at a step in the regulation of progestin biosynthesis distal to cAMP production.

  1. The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae.

    PubMed

    Hu, Yun; Liu, Enkai; Bai, Xiaojia; Zhang, Aili

    2010-03-01

    The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.

  2. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  3. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata.

    PubMed

    Demuyser, Liesbeth; Van Genechten, Wouter; Mizuno, Hideaki; Colombo, Sonia; Van Dijck, Patrick

    2018-05-29

    The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment. © 2018 John Wiley & Sons Ltd.

  4. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  5. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.

    PubMed

    Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András

    2015-09-05

    Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Theoretical Analysis of Allosteric and Operator Binding for Cyclic-AMP Receptor Protein Mutants

    NASA Astrophysics Data System (ADS)

    Einav, Tal; Duque, Julia; Phillips, Rob

    2018-02-01

    Allosteric transcription factors undergo binding events both at their inducer binding sites as well as at distinct DNA binding domains, and it is often difficult to disentangle the structural and functional consequences of these two classes of interactions. In this work, we compare the ability of two statistical mechanical models - the Monod-Wyman-Changeux (MWC) and the Koshland-N\\'emethy-Filmer (KNF) models of protein conformational change - to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. In light of these models, we examine data from a beautiful recent experiment that created a single-chain version of the CRP homodimer, thereby enabling each subunit to be mutated separately. Using this construct, six mutants were created using all possible combinations of the wild type subunit, a D53H mutant subunit, and an S62F mutant subunit. We demonstrate that both the MWC and KNF models can explain the behavior of all six mutants using a small, self-consistent set of parameters. In comparing the results, we find that the MWC model slightly outperforms the KNF model in the quality of its fits, but more importantly the parameters inferred by the MWC model are more in line with structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.

  7. Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells.

    PubMed

    Nguyen, Thi-Mong Diep; Filliatreau, Laura; Klett, Danièle; Combarnous, Yves

    2018-05-15

    We have compared various Luteinizing Hormone (LH) and Chorionic Gonadotropin (CG) preparations from non-human and human species in their ability to synergize with 10 µM forskolin (FSK) for cyclic AMP intracellular accumulation, in MLTC cells. LH from rat pituitary as well as various isoforms of pituitary ovine, bovine, porcine, equine and human LHs and equine and human CG were studied. In addition, recombinant human LH and CG were also compared with the natural human and non-human hormones. Sub-stimulating concentrations of all LHs and CGs (2-100 pM) were found to stimulate cyclic AMP accumulation in MLTC cells in the presence of an also non-stimulating FSK concentration (10 µM). Like rat LH, the most homologous available hormone for mouse MLTC cells, all non-human LHs and CG exhibit a strong potentiating effect on FSK response. The human, natural and recombinant hLH and hCG also do so but in addition, they were found to elicit a permissive effect on FSK stimulation. Indeed, when incubated alone with MLTC cells at non-stimulating concentrations (2-70 pM) hLH and hCG permit, after being removed, a dose-dependent cyclic AMP accumulation with 10 µM FSK. Our data show a clearcut difference between human LH and CG compared to their non-human counterparts on MLTC cells adenylate cyclase activity control. This points out the risk of using hCG as a reference ligand for LHR in studies using non-human cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.

    PubMed

    Han, Jinzhi; Gao, Peng; Zhao, Shengming; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia

    2017-01-06

    LI-F type peptides (AMP-jsa9) produced by Paenibacillus polymyxa JSa-9 are a group of cyclic lipodepsipeptide antibiotics that exhibit a broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi, especially Bacillus cereus and Fusarium moniliforme. In this study, to better understand the antibacterial mechanism of AMP-jsa9 against B. cereus, the ultrastructure of AMP-jsa9-treated B. cereus cells was observed by both atomic force microscopy and transmission electron microscopy, and quantitative proteomic analysis was performed on proteins extracted from treated and untreated bacterial cells by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis, including determinations of ATP, NAD (+) H, NADP (+) H, reactive oxygen species (ROS), the activities of catalase (CAT) and superoxide dismutase (SOD), and the relative expression of target genes by quantitative real-time PCR. Bacterial cells exposed to AMP-jsa9 showed irregular surfaces with bleb projections and concaves; we hypothesize that AMP-jsa9 penetrated the cell wall and was anchored on the cytoplasmic membrane and that ROS accumulated in the cell membrane after treatment with AMP-jsa9, modulating the bacterial membrane properties and increasing membrane permeability. Consequently, the blebs were formed on the cell wall by the impulsive force of the leakage of intercellular contents. iTRAQ-based proteomic analysis detected a total of 1317 proteins, including 176 differentially expressed proteins (75 upregulated (fold >2) and 101 downregulated (fold <0.5)). Based on proteome analysis, the putative pathways of AMP-jsa9 action against B. cereus can be summarized as: (i) inhibition of bacterial sporulation, thiamine biosynthesis, energy metabolism, DNA transcription and translation, and cell wall biosynthesis, through direct regulation of protein levels; and (ii) indirect effects on the same pathways through the accumulation of ROS and the consequent impairment of cellular functions, resulting from downregulation of antioxidant proteins, especially CAT and SOD. The mode of action of LI-F type antimicrobial peptides (AMP-jsa9) against B. cereus was elucidated at the proteomic level. Two pathways of AMP-jsa9 action upon B. cereus cells were identified and the mechanism of bleb formation on the surfaces of bacterial cells was predicted based on the results of ultrastructural observation and proteomic analysis. These results are helpful in understanding the mechanism of LI-F type peptides and in providing the theoretical base for applying AMP-jsa9 or its analogs to combat Gram-positive pathogenic bacteria in the food and feed industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  10. cAMP-induced activation of protein kinase A and p190B RhoGAP mediates down-regulation of TC10 activity at the plasma membrane and neurite outgrowth.

    PubMed

    Koinuma, Shingo; Takeuchi, Kohei; Wada, Naoyuki; Nakamura, Takeshi

    2017-11-01

    Cyclic AMP plays a pivotal role in neurite growth. During outgrowth, a trafficking system supplies membrane at growth cones. However, the cAMP-induced signaling leading to the regulation of membrane trafficking remains unknown. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking. Recent studies have shown a role of TC10 in neurite growth in NGF-treated PC12 cells. Here, we investigated a mechanical linkage between cAMP and TC10 in neuritogenesis. Plasmalemmal TC10 activity decreased abruptly after cAMP addition in neuronal cells. TC10 was locally inactivated at extending neurite tips in cAMP-treated PC12 cells. TC10 depletion led to a decrease in cAMP-induced neurite outgrowth. Constitutively active TC10 could not rescue this growth reduction, supporting our model for a role of GTP hydrolysis of TC10 in neuritogenesis by accelerating vesicle fusion. The cAMP-induced TC10 inactivation was mediated by PKA. Considering cAMP-induced RhoA inactivation, we found that p190B, but not p190A, mediated inactivation of TC10 and RhoA. Upon cAMP treatment, p190B was recruited to the plasma membrane. STEF depletion and Rac1-N17 expression reduced cAMP-induced TC10 inactivation. Together, the PKA-STEF-Rac1-p190B pathway leading to inactivation of TC10 and RhoA at the plasma membrane plays an important role in cAMP-induced neurite outgrowth. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A*

    PubMed Central

    Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S.; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N.; Taylor, Susan S.; Insel, Paul A.

    2015-01-01

    Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin− (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin− S49 cells. WT, but not kin−, S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin− cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin− cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin− S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin− cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. PMID:26203188

  12. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions.

    PubMed

    Schmidt, Martina; Dekker, Frank J; Maarsingh, Harm

    2013-04-01

    Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.

  13. Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites.

    PubMed

    Stella, Nicholas A; Lahr, Roni M; Brothers, Kimberly M; Kalivoda, Eric J; Hunt, Kristin M; Kwak, Daniel H; Liu, Xinyu; Shanks, Robert M Q

    2015-08-01

    Serratia marcescens generates secondary metabolites and secreted enzymes, and it causes hospital infections and community-acquired ocular infections. Previous studies identified cyclic AMP (cAMP) receptor protein (CRP) as an indirect inhibitor of antimicrobial secondary metabolites. Here, we identified a putative two-component regulator that suppressed crp mutant phenotypes. Evidence supports that the putative response regulator eepR was directly transcriptionally inhibited by cAMP-CRP. EepR and the putative sensor kinase EepS were necessary for the biosynthesis of secondary metabolites, including prodigiosin- and serratamolide-dependent phenotypes, swarming motility, and hemolysis. Recombinant EepR bound to the prodigiosin and serratamolide promoters in vitro. Together, these data introduce a novel regulator of secondary metabolites that directly connects the broadly conserved metabolism regulator CRP with biosynthetic genes that may contribute to competition with other microbes. This study identifies a new transcription factor that is directly controlled by a broadly conserved transcription factor, CRP. CRP is well studied in its role to help bacteria respond to the amount of nutrients in their environment. The new transcription factor EepR is essential for the bacterium Serratia marcescens to produce two biologically active compounds, prodigiosin and serratamolide. These two compounds are antimicrobial and may allow S. marcescens to compete for limited nutrients with other microorganisms. Results from this study tie together the CRP environmental nutrient sensor with a new regulator of antimicrobial compounds. Beyond microbial ecology, prodigiosin and serratamolide have therapeutic potential; therefore, understanding their regulation is important for both applied and basic science. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Methylxanthines and reproduction.

    PubMed

    Minelli, Alba; Bellezza, Ilaria

    2011-01-01

    Reproduction is the process by which organisms create descendants. In human reproduction, two kinds of sex cells, or gametes, are involved. Sperm, the male gamete, and egg egg , or ovum ovum Vedi egg , the female gamete, must meet in the female reproductive system to create a new individual and both the female and the male reproductive systems are essential to the occurrence of reproduction. Scientific reports dealing with the effects of methylxanthines on reproduction are mostly centred on the use of these compounds as phosphodiesterase inhibitors that, by maintaining high intracellular levels of cyclic AMP (cAMP) cyclic AMP , will affect the gametes differently. High cAMP levels will sustain sperm sperm maturation while they hold the oocytes in mitotic arrest. Caffeine caffeine , being the methylxanthine most widely consumed by every segment of the population, has been the subject of greatest interest among health professionals and researchers. Conflicting results still seem to characterize the association between male/female caffeine caffeine consumption in adult life and semen quality/fertility fertility , although moderate daily caffeine consumption of levels up to 400-450 mg/day (5.7-6.4 mg/kg/day in a 70-kg adult) do not seem to be associated with adverse effects, i.e. general toxicity, effects on bone status and calcium balance, cardiovascular effects, behavioural changes, increased incidence of cancer, or effects on male fertility. A clear stimulation of egg-laying by the coffee leaf pest Leucoptera coffeella was recently reported, providing support for the hypothesis that caffeine, in a dose-dependent way, in insects stimulates egg-laying, thus leading to the death of coffee trees.

  15. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.

    PubMed

    Xing, Fan; Luan, Yizhao; Cai, Jing; Wu, Sihan; Mai, Jialuo; Gu, Jiayu; Zhang, Haipeng; Li, Kai; Lin, Yuan; Xiao, Xiao; Liang, Jiankai; Li, Yuan; Chen, Wenli; Tan, Yaqian; Sheng, Longxiang; Lu, Bingzheng; Lu, Wanjun; Gao, Mingshi; Qiu, Pengxin; Su, Xingwen; Yin, Wei; Hu, Jun; Chen, Zhongping; Sai, Ke; Wang, Jing; Chen, Furong; Chen, Yinsheng; Zhu, Shida; Liu, Dongbing; Cheng, Shiyuan; Xie, Zhi; Zhu, Wenbo; Yan, Guangmei

    2017-01-10

    Glioblastoma multiforme (GBM) is among the most aggressive of human cancers. Although differentiation therapy has been proposed as a potential approach to treat GBM, the mechanisms of induced differentiation remain poorly defined. Here, we established an induced differentiation model of GBM using cAMP activators that specifically directed GBM differentiation into astroglia. Transcriptomic and proteomic analyses revealed that oxidative phosphorylation and mitochondrial biogenesis are involved in induced differentiation of GBM. Dibutyryl cyclic AMP (dbcAMP) reverses the Warburg effect, as evidenced by increased oxygen consumption and reduced lactate production. Mitochondrial biogenesis induced by activation of the CREB-PGC1α pathway triggers metabolic shift and differentiation. Blocking mitochondrial biogenesis using mdivi1 or by silencing PGC1α abrogates differentiation; conversely, overexpression of PGC1α elicits differentiation. In GBM xenograft models and patient-derived GBM samples, cAMP activators also induce tumor growth inhibition and differentiation. Our data show that mitochondrial biogenesis and metabolic switch to oxidative phosphorylation drive the differentiation of tumor cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant.

    PubMed

    Struthers, R S; Vale, W W; Arias, C; Sawchenko, P E; Montminy, M R

    1991-04-18

    Most of the transcriptional effects of cyclic AMP are mediated by the cAMP response element binding protein (CREB). After activation of cAMP-dependent protein kinase A, the catalytic subunits of this enzyme apparently mediate the phosphorylation and activation of CREB. As cAMP serves as a mitogenic signal for anterior pituitary somatotrophic cells, we investigated whether CREB similarly regulates proliferation of these cells. We prepared transgenic mice expressing a transcriptionally inactive mutant of CREB (CREBM1), which cannot be phosphorylated, in cells of the anterior pituitary. If CREB activity is required for proliferation, the overexpressed mutant protein would effectively compete with wild-type CREB activity and thereby block the response to cAMP. As predicted, the CREBM1 transgenic mice exhibited a dwarf phenotype with atrophied pituitary glands markedly deficient in somatotroph but not other cell types. We conclude that transcriptional activation of CREB is necessary for the normal development of a highly restricted cell type, and that environmental cues, possibly provided by the hypothalamic growth hormone-releasing factor, are necessary for population of the pituitary by somatotrophic cells.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  18. A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: ex vivo and in vivo studies.

    PubMed

    Jayakumar, Thanasekaran; Chen, Wei-Fan; Lu, Wan-Jung; Chou, Duen-Suey; Hsiao, George; Hsu, Chung-Yi; Sheu, Joen-Rong; Hsieh, Cheng-Ying

    2013-06-01

    Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca(2+) mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH(●)) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH(●) formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

    PubMed Central

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-01-01

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L. DOI: http://dx.doi.org/10.7554/eLife.23001.001 PMID:28290983

  20. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway.

    PubMed

    Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M

    1995-05-05

    A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.

  1. Phosphodiesterases regulate airway smooth muscle function in health and disease.

    PubMed

    Krymskaya, Vera P; Panettieri, Reynold A

    2007-01-01

    On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.

  2. In vitro action of bombesin and bombesin-like peptides on amylase secretion, calcium efflux, and adenylate cyclase activity in the rat pancreas: a comparison with other secretagogues.

    PubMed Central

    Deschodt-Lanckman, M; Robberecht, P; De Neef, P; Lammens, M; Christophe, J

    1976-01-01

    Bombesin (a tetradecapeptide), the C-terminal nonapeptide of bombesin (bombesin-NP), and litorin (a parent nonapeptide), each stimulated amylase secretion from rat pancreatic fragments. These responses were not affected by atropine. The concentrations that produced half-maximal stumulation of secretion were 0.25 nM for bombesin, 0.30 nM for bombesin-NP, and 0.07 nM for litorin, as compared to 0.12 nM for caerulein and 0.80 muM for the cholinergic agent carbamylcholine. When used at maximal concentrations, bombesin, bombesin-NP, and litorin showed no action on cyclic AMP levels in the presence of 5 mM theophylline. By contrast, caerulein and secretin increased cyclic AMP levels by 27 and 208%, respectively. Bombesin, bombesin-NP, and litorin did not activate adenylate cyclase in a purified pancreatic plasma membrane preparation, whereas caerulein and secretin increased this activity 20 and 16-times, respectively... PMID:184111

  3. Interaction of 2',3'-cAMP with Rbp47b Plays a Role in Stress Granule Formation.

    PubMed

    Kosmacz, Monika; Luzarowski, Marcin; Kerber, Olga; Leniak, Ewa; Gutiérrez-Beltrán, Emilio; Moreno, Juan Camilo; Gorka, Michał; Szlachetko, Jagoda; Veyel, Daniel; Graf, Alexander; Skirycz, Aleksandra

    2018-05-01

    2',3'-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2',3'-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2',3'-cAMP in Arabidopsis ( Arabidopsis thaliana ) protein complexes isolated from native lysate, suggesting that 2',3'-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2',3'-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2',3'-cAMP. Furthermore, SG formation was promoted in 2',3'-cAMP-treated Arabidopsis seedlings, and interactions between 2',3'-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2',3'-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors. © 2018 American Society of Plant Biologists. All Rights Reserved.

  4. Interaction of 2′,3′-cAMP with Rbp47b Plays a Role in Stress Granule Formation1[OPEN

    PubMed Central

    Kerber, Olga; Leniak, Ewa; Szlachetko, Jagoda; Veyel, Daniel

    2018-01-01

    2′,3′-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2′,3′-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2′,3′-cAMP in Arabidopsis (Arabidopsis thaliana) protein complexes isolated from native lysate, suggesting that 2′,3′-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2′,3′-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2′,3′-cAMP. Furthermore, SG formation was promoted in 2′,3′-cAMP-treated Arabidopsis seedlings, and interactions between 2′,3′-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2′,3′-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors. PMID:29618637

  5. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa.

    PubMed

    Heydari, Samira; Eftekhar, Fereshteh

    2015-03-01

    Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC β-lactamase production. More importantly, multiple-β-lactamase phenotype was associated with formation of strong biofilms.

  6. Protective mechanisms of adenosine 5'-monophosphate in platelet activation and thrombus formation.

    PubMed

    Fuentes, E; Badimon, L; Caballero, J; Padró, T; Vilahur, G; Alarcón, M; Pérez, P; Palomo, I

    2014-03-03

    Platelet activation is relevant to a variety of acute thrombotic events. We sought to examine adenosine 5'-monophosphate (AMP) mechanisms of action in preventing platelet activation, thrombus formation and platelet-related inflammatory response. We assessed the effect of AMP on 1) P-selectin expression and GPIIb/IIIa activation by flow cytometry; 2) Platelet aggregation and ATP secretion induced by ADP, collagen, TRAP-6, convulxin and thrombin; 3) Platelet rolling and firm adhesion, and platelet-leukocyte interactions under flow-controlled conditions; and, 4) Platelet cAMP levels, sP-selectin, sCD40L, IL-1β, TGF-β1 and CCL5 release, PDE3A activity and PKA phosphorylation. The effect of AMP on in vivo thrombus formation was also evaluated in a murine model. The AMP docking with respect to A2 adenosine receptor was determined by homology. AMP concentration-dependently (0.1 to 3 mmol/l) inhibited P-selectin expression and GPIIb/IIIa activation, platelet secretion and aggregation induced by ADP, collagen, TRAP-6 and convulxin, and diminished platelet rolling and firm adhesion. Furthermore, AMP induced a marked increase in the rolling speed of leukocytes retained on the platelet surface. At these concentrations AMP significantly decreased inflammatory mediator from platelet, increased intraplatelet cAMP levels and inhibited PDE3A activity. Interestingly, SQ22536, ZM241385 and SCH58261 attenuated the antiplatelet effect of AMP. Docking experiments revealed that AMP had the same orientation that adenosine inside the A2 adenosine receptor binding pocket. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. Considering the successful use of combined antiplatelet therapy, AMP may be further developed as a novel antiplatelet agent.

  7. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    PubMed

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  8. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    PubMed

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  9. Cyclic AMP Enhances TGFβ Responses of Breast Cancer Cells by Upregulating TGFβ Receptor I Expression

    PubMed Central

    Oerlecke, Ilka; Bauer, Elke; Dittmer, Angela; Leyh, Benjamin; Dittmer, Jürgen

    2013-01-01

    Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein) and TβRI (TGFβ receptor 1), were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB) nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation. As a consequence, cancer cell functions such as proliferation are affected. PMID:23349840

  10. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene.

    PubMed

    Burton, F H; Hasel, K W; Bloom, F E; Sutcliffe, J G

    1991-03-07

    Cyclic AMP is thought to act as an intracellular second messenger, mediating the physiological response of many cell types to extracellular signals. In the pituitary, growth hormone (GH)-producing cells (somatotrophs) proliferate and produce GH in response to hypothalamic GH-releasing factor, which binds a receptor that stimulates Gs protein activation of adenylyl cyclase. We have now determined whether somatotroph proliferation and GH production are stimulated by cAMP alone, or require concurrent, non-Gs-mediated induction of other regulatory molecules by designing a transgene to induce chronic supraphysiological concentrations of cAMP in somatotrophs. The rat GH promoter was used to express an intracellular form of cholera toxin, a non-cytotoxic and irreversible activator of Gs. Introduction of this transgene into mice caused gigantism, elevated serum GH levels, somatotroph proliferation and pituitary hyperplasia. These results support the direct triggering of these events by cAMP, and illustrate the utility of cholera toxin transgenes as a tool for physiological engineering.

  11. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.

    PubMed

    Arasteh, Shima; Bagheri, Mojtaba

    2017-01-01

    A great deal of research has been undertaken in order to discover antimicrobial peptides (AMPs) with unexploited mechanisms of action to counteract the health-threatening issues associated with bacterial resistance. The intrinsic effectiveness of AMPs is strongly influenced by their initial interactions with the bacterial cell membrane. Understanding these interactions in the atomistic details is important for the design of the less prone bacteria-resistant peptides. However, these studies always require labor-intensive and difficult steps. With this regard, modeling studies of the AMPs binding to simple lipid membrane systems, e.g., lipid bilayers, is of great advantage. In this chapter, we present an applicable step-by-step protocol to run the molecular dynamics (MD) simulation of the interaction between cyclo-RRWFWR (c-WFW) (a small cyclic AMP) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer using the Groningen machine for chemical simulations (GROMACS) package. The protocol as described here may simply be optimized for other peptide-lipid systems of interest.

  12. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes.

    PubMed

    Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae

    2015-01-01

    Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.

  13. Copper amplification of prostaglandin E/sub 2/ stimulation of the release of luteinizing hormone-releasing hormone is a postreceptor event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnea, A.; Cho, G.

    1987-01-01

    The authors have shown that copper amplifies prostaglandin E/sub 2/ (PGE/sub 2/) stimulation of luteinizing hormone-releasing hormone (LH-RH) from explants of the median eminence area (MEA) and that this process is calcium-dependent. Since a Ca-cAMP pathway has been implicated in PGE/sub 2/ action on the LH-RH neuron, in this study the authors wished to ascertain if copper exerts its effect on the PGE/sub 2/ receptor or on a postreceptor component involved in PGE/sub 2/ action. MEA of adult male rats were incubated for 5 min with 200 ..mu..M Cu/histidine and then incubated for 15 min either with 10 ..mu..M PGE/submore » 2/ (Cu/PGE/sub 2/), 100 ..mu..M forskolin (Cu/forskolin), or 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (Cu/cAMP). Basal release of LH-RH was 4.6 +/- 0.45 pg/15 min per MEA determined by radioimmunoassay. Net stimulated release during the 15-min exposure to PGE/sub 2/, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate was 3.6 +/- 0.52, 3.1 +/- 0.39, and 1.6 +/- 0.42 pg/15 min per MEA, respectively. Net stimulated release after exposure to Cu/PGE/sub 2/, Cu/forskolin, or Cu/cAMP indicated that copper amplifies the action of PGE/sub 2/ and forskolin but not cAMP action. When MEA were exposed to a mixture of PGE/sub 2/ and forskolin for 15 min, the effects of these two secretagogues on LH-RH release were not additive. In contrast to PGE/sub 2/ and forskolin, copper did not amplify K/sup +/ stimulation of OH-RH release. These results are supportive of the proposition that PGE/sub 2/ stimulation of OH-RH release is mediated by the Ca-cAMP pathway and that copper amplification of PGE/sub 2/ action is a postreceptor event.« less

  14. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    PubMed Central

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  15. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    PubMed

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  16. The Regulatory Subunit of PKA-I Remains Partially Structured and Undergoes β-Aggregation upon Thermal Denaturation

    PubMed Central

    Dao, Khanh K.; Pey, Angel L.; Gjerde, Anja Underhaug; Teigen, Knut; Byeon, In-Ja L.; Døskeland, Stein O.; Gronenborn, Angela M.; Martinez, Aurora

    2011-01-01

    Background The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212–216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. PMID:21394209

  17. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo.

    PubMed

    Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai

    2017-06-08

    Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.

  18. Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai

    2017-01-01

    Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression. PMID:28629115

  19. Cationic synthetic peptides: assessment of their antimicrobial potency in liquid preserved boar semen.

    PubMed

    Speck, Stephanie; Courtiol, Alexandre; Junkes, Christof; Dathe, Margitta; Müller, Karin; Schulze, Martin

    2014-01-01

    Various semen extender formulas are in use to maintain sperm longevity and quality whilst acting against bacterial contamination in liquid sperm preservation. Aminoglycosides are commonly supplemented to aid in the control of bacteria. As bacterial resistance is increasing worldwide, antimicrobial peptides (AMPs) received lively interest as alternatives to overcome multi-drug resistant bacteria. We investigated, whether synthetic cationic AMPs might be a suitable alternative for conventional antibiotics in liquid boar sperm preservation. The antibacterial activity of two cyclic AMPs (c-WWW, c-WFW) and a helical magainin II amide analog (MK5E) was studied in vitro against two Gram-positive and eleven Gram-negative bacteria. Isolates included ATCC reference strains, multi-resistant E. coli and bacteria cultured from boar semen. Using broth microdilution, minimum inhibitory concentrations were determined for all AMPs. All AMPs revealed activity towards the majority of bacteria but not against Proteus spp. (all AMPs) and Staphylococcus aureus ATCC 29213 (MK5E). We could also demonstrate that c-WWW and c-WFW were effective against bacterial growth in liquid preserved boar semen in situ, especially when combined with a small amount of gentamicin. Our results suggest that albeit not offering a complete alternative to traditional antibiotics, the use of AMPs offers a promising solution to decrease the use of conventional antibiotics and thereby limit the selection of multi-resistant strains.

  20. Elevated leukocyte phosphodiesterase as a basis for depressed cyclic adenosine monophosphate responses in the Basenji greyhound dog model of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S.C.; Hanifin, J.M.; Holden, C.A.

    1985-08-01

    The BG dog manifests various characteristics of human asthma, including airway hyperreactivity to low concentrations of methacholine. Studies have suggested that airway hyperreactivity in asthma is related to inadequate intracellular cAMP responses. The authors studied cAMP characteristics in MNL from 19 BG and 14 mongrel dogs. beta-Adrenergic receptors were assessed by /sup 125/I CYP in the presence and absence of propranolol. The responses of cAMP to ISO were measured by radioimmunoassay. Adenylate cyclase activity was determined in homogenized MNL preparations by cAMP generation. PDE activity was quantitated by radioenzyme assay. Mongrel dog leukocyte ISO-stimulated cAMP levels doubled, whereas there weremore » negligible increases in MNL from BG dogs. Basal PDE levels were higher in BG dogs than in mongrel dogs. The PDE inhibitor Ro 20-1724 restored ISO-stimulated cAMP responses in MNL of BG dogs. Adenylate cyclase activity was not lower in MNL homogenates from BG dogs than in mongrel dogs. Cells from both BG and mongrel dogs demonstrated similar receptor numbers and affinities of saturable, specific beta-adrenergic binding over a 10 pM to 400 pM range. The results suggest that depressed cAMP responses in BG dogs are due to high PDE activity rather than to a defect in the beta-adrenergic receptor adenylate cyclase system.« less

  1. PML–RARA-RXR Oligomers Mediate Retinoid and Rexinoid/cAMP Cross-Talk in Acute Promyelocytic Leukemia Cell Differentiation

    PubMed Central

    Kamashev, Dmitrii; Vitoux, Dominique; de Thé, Hugues

    2004-01-01

    PML–RARA was proposed to initiate acute promyelocytic leukemia (APL) through PML–RARA homodimer–triggered repression. Here, we examined the nature of the PML–RARA protein complex and of its DNA targets in APL cells. Using a selection/amplification approach, we demonstrate that PML–RARA targets consist of two AGGTCA elements in an astonishing variety of orientations and spacings, pointing to highly relaxed structural constrains for DNA binding and identifying a major gain of function of this oncogene. PML–RARA-specific response elements were identified, which all conveyed a major transcriptional response to RA only in APL cells. In these cells, we demonstrate that PML–RARA oligomers are complexed to RXR. Directly probing PML–RARA function in APL cells, we found that the differentiation enhancer cyclic AMP (cAMP) boosted transcriptional activation by RA. cAMP also reversed the normal silencing (subordination) of the transactivating function of RXR when bound to RARA or PML–RARA, demonstrating that the alternate rexinoid/cAMP-triggered APL differentiation pathway also activates PML–RARA targets. Finally, cAMP restored both RA-triggered differentiation and PML–RARA transcriptional activation in mutant RA-resistant APL cells. Collectively, our findings directly demonstrate that APL cell differentiation parallels transcriptional activation through PML–RARA-RXR oligomers and that those are functionally targeted by cAMP, identifying this agent as another oncogene-targeted therapy. PMID:15096541

  2. Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    PubMed

    Mardones, Pablo; Chang, Jung Chin; Oude Elferink, Ronald P J

    2014-06-01

    The hydration of CO2 catalyzed by the ubiquitous carbonic anhydrase 2 (Ca2) is central for bicarbonate transport, bone metabolism and acid-base homeostasis in metazoans. There is evidence that in some tissues Ca2 expression can be acutely induced by cAMP, whereas in other cell types it is unresponsive to cAMP-mediated transcriptional activation. We isolated fibroblasts from wild type and mice lacking the ubiquitous chloride/bicarbonate exchanger (Ae2a,b(-/-) mice). In these cells the regulation of carbonic anhydrase 2 by cAMP was studied. We show that Ca2 expression is strongly inhibited by chronic incubation with dibutyryl-cAMP, forskolin or alkaline pH in cultured mouse fibroblasts. Furthermore, fibroblasts obtained from anion exchanger 2 deficient (Ae2a,b(-/-)) mice, which display intracellular alkalosis and increased cAMP production, express less than 10% of control Ca2 mRNA and protein. Surprisingly, inhibition of the bicarbonate-sensitive soluble adenylyl cyclase (sAC) was found to reduce CA2 expression instead of increasing it. CA2 expression is strongly regulated by intracellular pH and by cAMP, suggesting a role for soluble adenylyl cyclase. Regulation occurs in opposite directions which may be explained by an incoherent feedforward loop consisting of activation by pCREB and repression by ICER. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Cationic Synthetic Peptides: Assessment of Their Antimicrobial Potency in Liquid Preserved Boar Semen

    PubMed Central

    Speck, Stephanie; Courtiol, Alexandre; Junkes, Christof; Dathe, Margitta; Müller, Karin; Schulze, Martin

    2014-01-01

    Various semen extender formulas are in use to maintain sperm longevity and quality whilst acting against bacterial contamination in liquid sperm preservation. Aminoglycosides are commonly supplemented to aid in the control of bacteria. As bacterial resistance is increasing worldwide, antimicrobial peptides (AMPs) received lively interest as alternatives to overcome multi-drug resistant bacteria. We investigated, whether synthetic cationic AMPs might be a suitable alternative for conventional antibiotics in liquid boar sperm preservation. The antibacterial activity of two cyclic AMPs (c-WWW, c-WFW) and a helical magainin II amide analog (MK5E) was studied in vitro against two Gram-positive and eleven Gram-negative bacteria. Isolates included ATCC reference strains, multi-resistant E. coli and bacteria cultured from boar semen. Using broth microdilution, minimum inhibitory concentrations were determined for all AMPs. All AMPs revealed activity towards the majority of bacteria but not against Proteus spp. (all AMPs) and Staphylococcus aureus ATCC 29213 (MK5E). We could also demonstrate that c-WWW and c-WFW were effective against bacterial growth in liquid preserved boar semen in situ, especially when combined with a small amount of gentamicin. Our results suggest that albeit not offering a complete alternative to traditional antibiotics, the use of AMPs offers a promising solution to decrease the use of conventional antibiotics and thereby limit the selection of multi-resistant strains. PMID:25148109

  4. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus.

    PubMed

    Chia, Ta-Jui; Wu, Yu-Chi; Chen, Jyh-Yih; Chi, Shau-Chi

    2010-03-01

    Nervous necrosis virus (NNV) is classified as betanodavirus of Nodaviridae, and has caused mass mortality of numerous marine fish species at larval stage. Antimicrobial peptides (AMPs) play an important role of innate immunity either against bacterial pathogens or viruses. Up to date, little is known if any AMP could effectively inhibit fish nodaviruses and its mechanism. In this study, the antiviral activities of three antimicrobial peptides (AMPs) against grouper NNV (GNNV) were screened in the fish cell line. Two of the three AMPs, tilapia hepcidin 1-5 (TH 1-5) and cyclic shrimp anti-lipopolysaccharide factor (cSALF), were able to agglutinate purified NNV particles into clump, and the clumps were further confirmed to be viral proteins by TEM and Western blot. The NNV solution, separately pre-mixed with AMP (TH 1-5 or cSALF) or deionized-distilled water for 1 h, was used to infect GF-1 cells, and the levels of capsid protein in the GNNV-AMP-infected cells at 1 h post infection were much lower than that in the GNNV-H(2)O-infected cells, indicating that only a small portion of viral particles in the GNNV-AMP mixture could successfully infected the cells. Treatment of cBB cells with TH 1-5 and cSALF did not induce Mx gene expression; however, grouper epinecidin-1 (CP643-1) could induce the expression of Mx in the pre-treated cBB cells. This study revealed three AMPs with anti-NNV activity through two different mechanisms, and shed light on the future application in aquaculture. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Desensitization of atriopeptin stimulated accumulation and extrusion of cyclic GMP from a kidney epithelial cell line (MDCK).

    PubMed

    Woods, M; Houslay, M D

    1991-02-01

    Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.

  6. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  7. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    PubMed

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  8. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  9. Bacillus anthracis Edema Toxin Inhibits Staphylococcus aureus Enterotoxin B Effects in Vitro: A Potential Protein Therapeutic?

    DTIC Science & Technology

    2005-10-01

    5). Inherent characteristics of edema toxin and other procaryotic adenylate cyclases from Bordetella pertussis, Pseudomonas aeruginosa, and Yersinia...by mouse peritoneal macrophages: the role of cellular cyclic AMP. Immunology 64:719–724. 12. Krakauer, T. 1999. Induction of CC chemokines in human

  10. Regulation of Nutrient Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia.

    DTIC Science & Technology

    1996-10-01

    cells after addition of serum, peptide growth factors, and agents which increase intracellular cAMP concentration( Hiraki , et al., 1989). The two...Histol. 14:433-445. Hiraki , Y., I. M. McMorrow and M. J. Birnbaum. 1989. The regulation of glucose transporter gene expression by cyclic adenosine

  11. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  12. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner.

    PubMed

    Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir

    2010-03-01

    The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.

  13. Studies on Cu(II) ternary complexes involving an aminopenicillin drug and imidazole containing ligands

    NASA Astrophysics Data System (ADS)

    Regupathy, Sthanumoorthy; Nair, Madhavan Sivasankaran

    2010-02-01

    Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm -3 (NaClO 4) show the presence of CuABH, CuAB and CuAB 2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB 2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.

  14. The Synthetic Melanocortin (CKPV)2 Exerts Anti-Fungal and Anti-Inflammatory Effects against Candida albicans Vaginitis via Inducing Macrophage M2 Polarization

    PubMed Central

    Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong

    2013-01-01

    In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491

  15. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE PAGES

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; ...

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R 2:C 2), with a regulatory subunit homodimer (R 2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the typemore » IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  16. Localization of angiotensin-II type 1(AT1) receptors on buffalo spermatozoa: AT1 receptor activation during capacitation triggers rise in cyclic AMP and calcium.

    PubMed

    Vedantam, Sivaram; Rani, Rita; Garg, Monica; Atreja, Suresh K

    2014-01-01

    The purpose of this study was to determine the role of Ang-II in buffalo spermatozoa; localize angiotensin type 1 (AT1) receptors on the sperm surface and understand the signaling mechanisms involved therein. Immunoblotting and immunocytochemistry using polyclonal Rabbit anti-AT1 (N-10) IgG were performed to confirm the presence of AT1 receptors. Intracellular levels of cyclic adenosine monophosphate (cAMP) were determined by non-radioactive enzyme immunoassay, while that of Calcium [Ca(2+)] were estimated by fluorimetry using Fura2AM dye. The results obtained showed that AT1 receptors were found on the post-acrosomal region, neck and tail regions. Immunoblotting revealed a single protein band with molecular weight of 40 kDa. Ang-II treated cells produced significantly higher level of cAMP compared to untreated cells (22.66 ± 2.4 vs. 10.8 ± 0.98 pmol/10(8) cells, p < 0.01). The mean levels of Ca(2+) were also higher in Ang-II treated cells compared to control (117.4 ± 6.1 vs. 61.15 ± 4.2 nmol/10(8) cells; p < 0.01). The stimulatory effect of Ang-II in both the cases was significantly inhibited in the presence of Losartan (AT1 antagonist; p < 0.05) indicating the involvement of AT1 receptors. Further, presence of neomycin (protein kinase C inhibitor) inhibited significantly the Ang-II mediated rise in Ca(2+) indicating the involvement of PKC pathway. These findings confirm the presence of AT1 receptors in buffalo spermatozoa and that Ang-II mediates its actions via the activation of these receptors. Ang-II stimulates the rise in intracellular levels of cAMP and Ca(2+) during capacitation.

  17. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    PubMed

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  19. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds.

    PubMed

    Broillet, M C; Firestein, S

    1996-02-01

    The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.

  20. Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity.

    PubMed

    Scott, Glynis; Leopardi, Sonya; Printup, Stacey; Malhi, Namrita; Seiberg, Miri; Lapoint, Randi

    2004-05-01

    Prostaglandins (PG) are key mediators of diverse functions in the skin and several reports suggest that PG mediate post-inflammatory pigmentary changes through modulation of melanocyte dendricity and melanin synthesis. The proteinase-activated receptor 2 (PAR-2) is important for skin pigmentation because activation of keratinocyte PAR-2 stimulates uptake of melanosomes through phagocytosis in a Rho-dependent manner. In this report, we show that activation of keratinocyte PAR-2 stimulates release of PGE(2) and PGF(2alpha) and that PGE(2) and PGF(2alpha) act as paracrine factors that stimulate melanocyte dendricity. We characterized the expression of the EP and FP receptors in human melanocytes and show that human melanocytes express EP1 and EP3, and the FP receptor, but not EP2 and EP4. Treatment of melanocytes with EP1 and EP3 receptor agonists resulted in increased melanocyte dendricity, indicating that both EP1 and EP3 receptor signaling contribute to PGE(2)-mediated melanocyte dendricity. Certain EP3 receptor subtypes have been shown to increase adenosine 3',5'-cyclic monophosphate (cAMP) through coupling to Gs, whereas EP1 is known to couple to Gq to activate phospholipase C with elevation in Ca(2+). The cAMP/protein kinase A system is known to modulate melanocyte dendrite formation through modulation of Rac and Rho activity. Neither PGF(2alpha) or PGE(2) elevated cAMP in human melanocytes showing that dendricity observed in response to PGE(2) and PGF(2alpha) is cAMP-independent. Our data suggest that PAR-2 mediates cutaneous pigmentation both through increased uptake of melanosomes by keratinocytes, as well as by release of PGE(2) and PGF(2alpha) that stimulate melanocyte dendricity through EP1, EP3, and FP receptors.

  1. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    PubMed

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli

    PubMed Central

    Pannuri, Archana; Vakulskas, Christopher A.; Zere, Tesfalem; McGibbon, Louise C.; Edwards, Adrianne N.; Georgellis, Dimitris; Babitzke, Paul

    2016-01-01

    ABSTRACT Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. IMPORTANCE Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower-affinity mRNA targets, thus eliciting major shifts in the bacterial lifestyle. CsrB/C transcription and turnover are activated by carbon metabolism products (e.g., formate and acetate) and by a preferred carbon source (glucose), respectively. We show that cAMP-CRP, a mediator of classical catabolite repression, inhibits csrC transcription by binding to the upstream region of this gene and also inhibits csrB transcription, apparently indirectly. We propose that glucose availability activates pathways for both synthesis and turnover of CsrB/C, thus shaping the dynamics of global signaling in response to the nutritional environment by poising CsrB/C sRNA levels for rapid response. PMID:27551019

  3. Cyclic AMP Affects Oocyte Maturation and Embryo Development in Prepubertal and Adult Cattle

    PubMed Central

    Bernal-Ulloa, Sandra Milena; Heinzmann, Julia; Herrmann, Doris; Hadeler, Klaus-Gerd; Aldag, Patrick; Winkler, Sylke; Pache, Dorit; Baulain, Ulrich; Lucas-Hahn, Andrea; Niemann, Heiner

    2016-01-01

    High cAMP levels during in vitro maturation (IVM) have been related to improved blastocyst yields. Here, we employed the cAMP/cGMP modulators, forskolin, IBMX, and cilostamide, during IVM to unravel the role of high cAMP in early embryonic development produced from prepubertal and adult bovine oocytes. Oocytes were collected via transvaginal aspiration and randomly assigned to three experimental groups: TCM24 (24h IVM/control), cAMP30 (2h pre-IVM (forskolin-IBMX), 30h IVM-cilostamide), and DMSO30 (Dimethyl Sulfoxide/vehicle control). After IVM, oocytes were fertilized in vitro and zygotes were cultured in vitro to blastocysts. Meiotic progression, cAMP levels, mRNA abundance of selected genes and DNA methylation were evaluated in oocytes. Blastocysts were used for gene expression or DNA methylation analyses. Blastocysts from the cAMP30 groups were transferred to recipients. The cAMP elevation delayed meiotic progression, but developmental rates were not increased. In immature oocytes, mRNA abundance of PRKACA was higher for cAMP30 protocol and no differences were found for PDE3A, SMAD2, ZAR1, PRDX1 and SLC2A8. EGR1 gene was up-regulated in prepubertal cAMP30 immature oocytes and down-regulated in blastocysts from all in vitro treatments. A similar gene expression profile was observed for DNMT3b, BCL2L1, PRDX1 and SLC2A8 in blastocysts. Satellite DNA methylation profiles were different between prepubertal and adult oocytes and blastocysts derived from the TCM24 and DMSO30 groups. Blastocysts obtained from prepubertal and adult oocytes in the cAMP30 treatment displayed normal methylation profiles and produced offspring. These data indicate that cAMP regulates IVM in prepubertal and adult oocytes in a similar manner, with impact on the establishment of epigenetic marks and acquisition of full developmental competency. PMID:26926596

  4. Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa

    PubMed Central

    Heydari, Samira; Eftekhar, Fereshteh

    2015-01-01

    Background: Pseudomonas aeruginosa is an important nosocomial pathogen characterized by its innate resistance to multiple antimicrobial agents. Plasmid-mediated drug resistance also occurs by the production of extended-spectrum β-lactamases (ESBL), metallo β-lactamases (MBL), and AmpC β-lactamases. Another important factor for establishment of chronic infections by P. aeruginosa is biofilm formation mediated by the psl gene cluster. Objectives: The aim of this study was to evaluate biofilm formation and presence of the pslA gene in burn isolates of P. aeruginosa as well as the association of antibiotic resistance, MBL, ESBL and AmpC β-lactamase production with biofilm formation among the isolates. Materials and Methods: Sixty-two burn isolates of P. aeruginosa were obtained from Shahid Motahari Hospital in Tehran from August to October 2011. Antibiotic susceptibility was determined by the disc diffusion assay. MBL, AmpC and ESBL production were screened using the double disc synergy test, AmpC disc test and combined disc diffusion assay, respectively. The potential to form biofilm was measured using the microtiter plate assay and pslA gene was detected using specific primers and PCR. Results: Biofilm formation was observed in 43.5% of the isolates, of which 66.7% produced strong and 33.3% formed weak biofilms. All biofilm-positive and 14.2% of biofilm-negative isolates harbored the pslA gene. MBL, AmpC and ESBL production were significantly higher in the biofilm-positive isolates (70.3%, 62.9% and 33.3%, respectively) compared to the biofilm-negative strains (31.4%, 34.2% and 20%, respectively). Overall, 19 isolates (30.6%) co-produced MBL and AmpC, among which the majority were biofilm-positive (63.1%). Finally, four isolates (6.4%) had all three enzymes, of which 3 (75%) produced biofilm. Conclusions: Biofilm formation (both strong and weak) strongly correlated with pslA gene carriage. Biofilm formation also correlated with MBL and AmpC β-lactamase production. More importantly, multiple-β-lactamase phenotype was associated with formation of strong biofilms. PMID:25964848

  5. [Leiomyoma of the small bowel with hypercalcaemia: presence of a substance with parathormone activity (author's transl)].

    PubMed

    Rathaus, M; Bernheim, J L; Griffel, B; Bernheim, J; Taragan, R; Gutman, A

    1979-10-22

    A leiomyoma of the small bowel produced laboratory features of hyperparathyroidism which disappeared promptly after tumour resection. Hypercalcaemia, hypophosphatemia, hyperchloremia, elevated chloride/phosphorus ratio, increased urinary cyclic AMP, and blood levels of immunoreactive parathormone were present. Electron microscopy showed dense round granules in the tumour cells.

  6. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    ERIC Educational Resources Information Center

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  7. Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids

    USDA-ARS?s Scientific Manuscript database

    The features contributing to the differences in pathogenicity of the C. fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode type IV secretion system (T4SS) and fic-domain (filamentation induced by cyclic AMP) proteins. In the genomes of ...

  8. A Genomic Response to Trace Fear Conditioning in the Amygdala of Female Rats After Developmental Exposure to Manganese

    EPA Science Inventory

    Increases in brain-derived neurotrophic factor (Bdnf), Ca2+/calmodulin-dependent protein kinase II alpha (Camk2a), and cyclic adenosine monophosphate (cAMP) response element binding (Creb1) gene expression have been associated with learning in a variety of different rodent studie...

  9. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  10. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation

    DOE PAGES

    Campbell, James C.; VanSchouwen, Bryan; Lorenz, Robin; ...

    2016-12-23

    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. We determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a ‘gatekeeper’ for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalyticmore » subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. Our results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.« less

  11. Gotu Kola (Centella Asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide.

    PubMed

    Xu, Yanan; Cao, Zhiming; Khan, Ikhlas; Luo, Yuan

    2008-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that shows cognitive deficits and memory impairment. Extract from the leaves of Gotu Kola (Centella Asiatica) have been used as an alternative medicine for memory improvement in Indian Ayurvedic system of medicine for a long time. Although several studies have revealed its effect in ameliorating the cognitive impairment in rat models of AD and stimulating property on neuronal dendrites of hippocampal region, the molecular mechanism of Gotu Kola on neuroprotection still remains to be elucidated. In this study, we report that phosphorylation of cyclic AMP response element binding protein (CREB) is enhanced in both a neuroblastoma cell line expressing amyloid beta 1-42 (Abeta) and in rat embryonic cortical primary cell culture. In addition, the contribution of two major single components to the enhanced CREB phosphorylatioin was examined. Furthermore, inhibitors were applied in this study revealing that ERK/RSK signaling pathway might mediate this effect of Gotu Kola extract. Taken together, we provide a possible molecular mechanism for memory enhancing property of Gotu Kola extract for the first time.

  12. Structure-activity relationship studies and pharmacological characterization of N5-heteroarylalkyl-substituted-2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine-based derivatives as inverse agonists at human A2A adenosine receptor.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Vincenzi, Fabrizio; Falsini, Matteo; Pasquini, Silvia; Borea, Pier Andrea; Colotta, Vittoria; Varani, Katia

    2018-06-09

    This paper describes the synthesis and characterization of N 5 -(hetero)arylalkyl-substituted-thiazolo [5,4-d]pyrimidine-5,7-diamine derivatives (4-19) as novel human (h) A 2A adenosine receptor (AR) inverse agonists. Competition binding and cyclic AMP assays indicate that the examined compounds behave as hA 2A AR inverse agonists showing binding affinity values in the nanomolar or subnanomolar range. Notably, compounds 4, 5, 6 and 11 showed two affinity values for the hA 2A ARs with the highest (KH) falling in the femtomolar range and the lowest (KL) of the nanomolar order. In addition, in cyclic AMP assays, compounds 4, 5, 6 and 11 exhibited potency (IC 50 ) values in the picomolar range. This study has confirmed that 2-(2-furanyl)thiazolo [5,4-d]pyrimidine-5,7-diamine-based derivatives represent a unique new class of hA 2A AR inverse agonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    PubMed

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  14. Cyclic GMP-AMP Synthase Is Required for Cell Proliferation and Inflammatory Responses in Rheumatoid Arthritis Synoviocytes.

    PubMed

    Wang, Yan; Su, Guo-Hua; Zhang, Fang; Chu, Jing-Xue; Wang, Yun-Shan

    2015-01-01

    Rheumatoid arthritis (RA) is characterized by inflammatory cell infiltration, fibroblast-like synoviocytes (FLS) invasive proliferation, and joint destruction. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces immune activation. In this study, we examined whether cGAS plays a role in RA FLS. In this study, cGAS was overexpressed in RA-FLS compared with OA FLS. TNFα stimulation induced cGAS expression in RA FLS. Overexpression of cGAS promoted the proliferation and knockdown of cGAS inhibited the proliferation of RA FLS. cGAS overexpression enhanced the production of proinflammatory cytokines and matrix metalloproteinases (MMPs) as well as AKT and ERK phosphorylation in TNFα-stimulated FLS. In contrast, cGAS silencing inhibited production of proinflammatory cytokines and matrix metalloproteinases (MMPs) as well as AKT and ERK phosphorylation in TNFα-stimulated FLS. These results suggest that cGAS activates the AKT and ERK pathways to promote the inflammatory response of RA FLS, and the development of strategies targeting cGAS may have therapeutic potential for human RA.

  15. Binding of the cyclic AMP receptor protein of Escherichia coli and DNA bending at the P4 promoter of pBR322.

    PubMed

    Brierley, I; Hoggett, J G

    1992-07-01

    The binding of the Escherichia coli cyclic AMP receptor protein (CRP) to its specific site on the P4 promoter of pBR322 has been studied by gel electrophoresis. Binding to the P4 site was about 40-50-fold weaker than to the principal CRP site on the lactose promoter at both low (0.01 M) and high (0.1 M) ionic strengths. CRP-induced bending at the P4 site was investigated from the mobilities of CRP bound to circularly permuted P4 fragments. The estimated bending angle, based on comparison with Zinkel & Crothers [(1990) Biopolymers 29, 29-38] A-tract bending standards, was found to be approximately 96 degrees, similar to that found for binding to the lac site. These observations suggest that there is not a simple relationship between strength of CRP binding and the extent of induced bending for different CRP sites. The apparent centre of bending in P4 is displaced about 6-8 bp away from the conserved TGTGA sequence and the P4 transcription start site.

  16. Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3.

    PubMed

    Zhainazarov, A B; Spehr, M; Wetzel, C H; Hatt, H; Ache, B W

    2004-09-01

    Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.

  17. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  18. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice.

    PubMed

    Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-08-03

    We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation.

  20. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice

    PubMed Central

    Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-01-01

    We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation. PMID:27484958

Top