Sample records for cyclic gmp protects

  1. Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model

    PubMed Central

    Takuma, K; Lee, E; Enomoto, R; Mori, K; Baba, A; Matsuda, T

    2001-01-01

    We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 – 100 μM significantly attenuated the H2O2-induced decrease in cell viability. Ibudilast inhibited the H2O2-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3′,5′-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H2O2-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H2O2-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D4 antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H2O2-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H2O2-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. PMID:11454657

  2. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

    PubMed Central

    Galperin, Michael Y.; Gomelsky, Mark

    2013-01-01

    SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger. PMID:23471616

  3. Desensitization of atriopeptin stimulated accumulation and extrusion of cyclic GMP from a kidney epithelial cell line (MDCK).

    PubMed

    Woods, M; Houslay, M D

    1991-02-01

    Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.

  4. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    PubMed

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results

  5. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    PubMed Central

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-01-01

    Background Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM) or GEA-3162 (10 – 300 μM) in the presence or absence of BAY 41–2272 (1 μM), isobutylmethylxanthine (IBMX; 1 μM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  6. Enhanced Vascular Effects of Cyclic GMP in Septic Rat Aorta

    DTIC Science & Technology

    1988-01-01

    enzyme in turn catalyzes Integrative Comp. Physiol. 23): R436-R442, 1988--The mod- the synthesis of 3’,5’-cyclic monophosp#* (cGMP), ulation of... synthesis of endogenous cGMP or after aug- significant disparity in cGMP content of tissue from mentation of intracellular cGMP concentration by treat...and a proposal. J. Vascular reactivity in endotoxin shock: effect of lidocaine or in- Surg. Res. 29: 189-201, 1980. UNCLASSIFIED SECURITY CLASSIFICATION

  7. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II

    DOE PAGES

    Campbell, James C.; Kim, Jeong Joo; Li, Kevin Y.; ...

    2016-01-14

    Membrane-bound cGMP-dependent protein kinase (PKG) II is an important regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKGII binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415more » of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.« less

  8. Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea.

    PubMed

    Tian, F; Fessenden, J D; Schacht, J

    1999-05-01

    Recent studies have begun to characterize the nitric oxide/cyclic GMP/protein kinase G pathway in the mammalian cochlea by demonstrating the presence of both the enzyme that produces nitric oxide (NO), nitric oxide synthase, and the NO receptor, soluble guanylate cyclase. The present study investigated protein kinase G (cyclic GMP-dependent protein kinase-I, cGK-I), the downstream enzyme of this pathway that frequently mediates its physiological effects. A commercial antibody to a human cGK-I sequence recognized a protein of appropriate molecular weight in Western blots of guinea pig aorta. Immunostaining of guinea pig aorta was consistent with the expected distribution of cGK-I. In lateral wall tissues of the cochlea, pericytes lining the blood vessels of the spiral ligament were strongly immunoreactive. In the organ of Corti, cGK-I was detected in Hensen's, Deiters', and pillar cells, but not in inner and outer hair cells. This distribution coincides with the localization of soluble guanylate cyclase activity and suggests that cGK-I mediates the effects of the NO/cyclic GMP pathway in the cochlea. It reinforces the hypothesis that the NO/cyclic GMP/cGK-I pathway is involved in regulation of cochlear blood flow and supporting cell physiology.

  9. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less

  10. cGMP and cyclic nucleotide-gated channels participate in mouse sperm capacitation.

    PubMed

    Cisneros-Mejorado, Abraham; Sánchez Herrera, Daniel P

    2012-01-20

    During capacitation of mammalian sperm intracellular [Ca(2+)] and cyclic nucleotides increase, suggesting that CNG channels play a role in the physiology of sperm. Here we study the effect of capacitation, 8Br-cAMP (8-bromoadenosine 3',5'-cyclic monophosphate) and 8Br-cGMP (8-bromoguanosine 3',5'-cyclic monophosphate) on the macroscopic ionic currents of mouse sperm, finding the existence of different populations of sperm, in terms of the recorded current and its response to cyclic nucleotides. Our results show that capacitation and cyclic nucleotides increase the ionic current, having a differential sensitivity to cGMP (cyclic guanosine monophosphate) and cAMP (cyclic adenosine monophosphate). Using a specific inhibitor we determine the contribution of CNG channels to macroscopic current and capacitation. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants.

    PubMed

    Dow, J Maxwell; Fouhy, Yvonne; Lucey, Jean F; Ryan, Robert P

    2006-12-01

    Cyclic di-GMP is an almost ubiquitous second messenger in bacteria that was first described as an allosteric activator of cellulose synthase but is now known to regulate a range of functions, including virulence in human and animal pathogens. Two protein domains, GGDEF and EAL, are implicated in the synthesis and degradation, respectively, of cyclic di-GMP. These domains are widely distributed in bacteria, including plant pathogens. The majority of proteins with GGDEF and EAL domains contain additional signal input domains, suggesting that their activities are responsive to environmental cues. Recent studies have demonstrated that a third domain, HD-GYP, is also active in cyclic di-GMP degradation. In the plant pathogen Xanthomonas campestris pv. campestris, a two-component signal transduction system comprising the HD-GYP domain regulatory protein RpfG and cognate sensor RpfC positively controls virulence. The signals recognized by RpfC may include the cell-cell signal DSF, which also acts to regulate virulence in X. campestris pv. campestris. Here, we review these recent advances in our understanding of cyclic di-GMP signaling with particular reference to one or more roles in the bacterial pathogenesis of plants.

  12. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  13. Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective

    PubMed Central

    Agostoni, Marco; Koestler, Benjamin J.; Waters, Christopher M.; Williams, Barry L.; Montgomery, Beronda L.

    2013-01-01

    ABSTRACT Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored. In cyanobacteria, many putative c-di-GMP synthesis or degradation domains are found in genes that also harbor light-responsive signal input domains, suggesting that light is an important signal for altering c-di-GMP homeostasis. Indeed, c-di-GMP-associated domains are often the second most common output domain in photoreceptors—outnumbered only by a histidine kinase output domain. Cyanobacteria differ from other bacteria regarding the number and types of photoreceptor domains associated with c-di-GMP domains. Due to the widespread distribution of c-di-GMP domains in cyanobacteria, we investigated the evolutionary origin of a subset of genes. Phylogenetic analyses showed that c-di-GMP signaling systems were present early in cyanobacteria and c-di-GMP genes were both vertically and horizontally inherited during their evolution. Finally, we compared intracellular levels of c-di-GMP in two cyanobacterial species under different light qualities, confirming that light is an important factor for regulating this second messenger in vivo. PMID:23943760

  14. A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy.

    PubMed

    Miyabe, Hiroko; Hyodo, Mamoru; Nakamura, Takashi; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2014-06-28

    Cyclic dinucleotides are of importance in the field of microbiology and immunology. They function as second messengers and are thought to participate in the signal transduction of cytosolic DNA immune responses. One such dinucleotide, cyclic di-GMP (c-di-GMP), stimulates the immune system. It is thought that c-di-GMP is recognized by ATP dependent RNA helicase (DDX41) in the cytosol, forms a complex with the Stimulator of interferon genes protein (STING), triggers a signal via the tank binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway and induces the production of type I interferons. Therefore c-di-GMP can be thought of as a new class of adjuvant. However, because c-di-GMP contains two phosphate groups, this prevents its use as an adjuvant because it cannot pass through the cell membrane, even though the target molecule of c-di-GMP is located in the cytoplasm. Our group has been developing a series of liposomal drug delivery systems and recently investigated YSK05 which is a synthetic, pH sensitive lipid that has a high fusogenicity. We utilized this lipid as a carrier to transport c-di-GMP into the cytosol to then use c-di-GMP as an adjuvant. Based on screening experiments, YSK05/POPE/cholesterol=40/25/35 was found to induce IFN-β in Raw264.7 cells. The induction of IFN-β from c-di-GMP liposomes was inhibited by adding BX795, a TBK1 inhibitor, indicating that the production of IFN-β caused the activation of the STING-TBK1 pathway. C-di-GMP liposomes also showed significantly higher levels of expression of CD80, CD86 and MHC class I. The c-di-GMP/YSK05 liposome facilitated antigen specific cytotoxic T cell activity and the inhibition of tumor growth in a mouse model. These findings indicate that c-di-GMP/YSK05 liposomes could be used, not only to transfer c-di-GMP to the cytosol and induce an innate immune system but also as a platform for investigating the mechanism of immune sensing with cyclic dinucleotides in vitro and in vivo. Copyright

  15. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.

    PubMed

    Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M

    2013-05-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.

  16. Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora

    PubMed Central

    Edmunds, Adam C.; Castiblanco, Luisa F.; Sundin, George W.

    2013-01-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis. PMID:23475975

  17. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

    PubMed

    Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A

    2015-04-28

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

  18. In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload.

    PubMed

    Yeo, Jongchan; Dippel, Andrew B; Wang, Xin C; Hammond, Ming C

    2018-01-09

    Intracellular signaling enzymes drive critical changes in cellular physiology and gene expression, but their endogenous activities in vivo remain highly challenging to study in real time and for individual cells. Here we show that flow cytometry can be performed in complex media to monitor single-cell population distributions and dynamics of cyclic di-GMP signaling, which controls the bacterial colonization program. These in vivo biochemistry experiments are enabled by our second-generation RNA-based fluorescent (RBF) biosensors, which exhibit high fluorescence turn-on in response to cyclic di-GMP. Specifically, we demonstrate that intracellular levels of cyclic di-GMP in Escherichia coli are repressed with excess zinc, but not with other divalent metals. Furthermore, in both flow cytometry and fluorescence microscopy setups, we monitor the dynamic increase in cellular cyclic di-GMP levels upon zinc depletion and show that this response is due to de-repression of the endogenous diguanylate cyclase DgcZ. In the presence of zinc, cells exhibit enhanced cell motility and increased sensitivity to antibiotics due to inhibited biofilm formation. Taken together, these results showcase the application of RBF biosensors in visualizing single-cell dynamic changes in cyclic di-GMP signaling in direct response to environmental cues such as zinc and highlight our ability to assess whether observed phenotypes are related to specific signaling enzymes and pathways.

  19. Molecular mechanisms of gravity-dependent signaling in human melanocytic cells involve cyclic GMP

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Block, Ingrid; Bromeis, Birgit; Das, Pranab K.; Gerzer, Rupert

    2005-08-01

    Gravity alteration (micro- and hypergravity) is known to influence cell functions. As guanosine 3',5'-cyclic monophosphate (cGMP) is an important messenger in melanocyte signaling we have compared the regulation of cGMP levels in human melanocytes and melanoma cells with different metastatic potential under hypergravity conditions. We were able to demonstrate that long-term exposure to hypergravity stimulates cGMP efflux in cultured human melanocytes and non- metastatic melanoma cells, whereas highly metastatic melanoma cells appear to be insensitive to hypergravity, most probably, due to an up-regulated cGMP efflux at 1g. Here we report that these effects are associated with the expression of the multidrug resistance proteins 4 and 5 known to act as selective export pumps for amphiphilic anions like cGMP. Thus, an altered gravity vector may induce cGMP-dependent signaling events in melanocytic cells that could be important for malignant transformation.

  20. NMDA inhibits oxotremorine-induced acid secretion via the NO-dependent cyclic GMP system in rat stomach.

    PubMed

    Tsai, L H; Lee, Y J

    2001-12-31

    The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.

  1. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    PubMed

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  2. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  3. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.

    PubMed

    Kellenberger, Colleen A; Sales-Lee, Jade; Pan, Yuchen; Gassaway, Madalee M; Herr, Amy E; Hammond, Ming C

    2015-01-01

    Cyclic di-GMP (c-di-GMP) is a second messenger that is important in regulating bacterial physiology and behavior, including motility and virulence. Many questions remain about the role and regulation of this signaling molecule, but current methods of detection are limited by either modest sensitivity or requirements for extensive sample purification. We have taken advantage of a natural, high affinity receptor of c-di-GMP, the Vc2 riboswitch aptamer, to develop a sensitive and rapid electrophoretic mobility shift assay (EMSA) for c-di-GMP quantitation that required minimal engineering of the RNA.

  4. The crucial role of cyclic GMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses.

    PubMed

    Shibanaka, Y; Hayashi, H; Okada, N; Fujita, N

    1991-10-31

    The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.

  5. Comparative effects of vinpocetine and 8-Br-cyclic GMP on the contraction and /sup 45/Ca-fluxes in the rabbit aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, P.J.; Tetzloff, G.; Ahn, H.S.

    1988-07-01

    Vinpocetine is a highly specific inhibitor of calmodulin-dependent phosphodiesterase (CaM-PDE) with an IC50 of 19 microM and produces a significant accumulation of cyclic GMP but not cyclic AMP in rabbit aorta. In isolated rabbit aortic strips, vinpocetine (0.01 and 0.1 mM) inhibited the contraction and /sup 45/Ca uptake due to both phenylephrine (1 microM) and KCl (40 mM), whereas 8-Br-cyclic GMP (0.1-1mM) selectively impaired phenylephrine-induced responses. Furthermore, the KCl-stimulated /sup 45/Ca efflux in normal Ca2+ buffer, which reflects elevated cytosolic Ca2+, was greatly diminished by vinpocetine but not by 8-Br-cyclic GMP. However, phenylephrine-induced /sup 45/Ca efflux and contraction in Ca2+-freemore » buffer, which reflect Ca2+ release from intracellular sites, were similarly inhibited by both vinpocetine and 8-Br-cyclic GMP. The results suggest that vinpocetine may effect vasodilatation through blockade of the slow channel and selective inhibition of CaM-PDE in the vascular smooth muscle.« less

  6. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense.

    PubMed

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark; Alexandre, Gladys

    2017-09-15

    Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense , c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  7. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense

    PubMed Central

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark

    2017-01-01

    ABSTRACT Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  8. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development

    PubMed Central

    Rodesney, Christopher A.; Roman, Brian; Dhamani, Numa; Cooley, Benjamin J.; Katira, Parag; Touhami, Ahmed; Gordon, Vernita D.

    2017-01-01

    Biofilms are communities of sessile microbes that are phenotypically distinct from their genetically identical, free-swimming counterparts. Biofilms initiate when bacteria attach to a solid surface. Attachment triggers intracellular signaling to change gene expression from the planktonic to the biofilm phenotype. For Pseudomonas aeruginosa, it has long been known that intracellular levels of the signal cyclic-di-GMP increase upon surface adhesion and that this is required to begin biofilm development. However, what cue is sensed to notify bacteria that they are attached to the surface has not been known. Here, we show that mechanical shear acts as a cue for surface adhesion and activates cyclic-di-GMP signaling. The magnitude of the shear force, and thereby the corresponding activation of cyclic-di-GMP signaling, can be adjusted both by varying the strength of the adhesion that binds bacteria to the surface and by varying the rate of fluid flow over surface-bound bacteria. We show that the envelope protein PilY1 and functional type IV pili are required mechanosensory elements. An analytic model that accounts for the feedback between mechanosensors, cyclic-di-GMP signaling, and production of adhesive polysaccharides describes our data well. PMID:28533383

  9. Role of nitric oxide and cyclic GMP signaling in melanocyte response to hypergravity

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Tsiockas, Wasiliki; Block, Ingrid; Gerzer, Rupert

    Nitric oxide (NO) has a prominent role in many (patho)physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in NO signaling, catalyzes the formation of the second messenger guanosine 3´,5´-cyclic monophosphate (cyclic cGMP or cGMP). For human melanocytes, which are responsible for skin pigmentation by synthesizing the pigment melanin, it has been reported that the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals that may arise during metabolic stress. It may also act as a photosensitizer that generates active oxygen species upon UV irradiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. In addition, melanoma, a deadly skin cancer, which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we have shown that NO can induce perturbation of melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. Such NO effects appear to be modulated partly via cGMP. Moreover, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Normal human melanocytes and nonmetastatic melanoma cells predominantly express sGC, which appears to be associated with melanogenesis, whereas absence of NO-sensitive GC, but up-regulated activities of the natriuretic peptide-sensitive membrane guanylyl cyclase isoforms were found in highly metastatic phenotypes. Due to the growing interest in the regulation of signaling activities in normal and transformed cells under altered gravity conditions, we have further investigated whether the NO/cGMP signaling is involved in melanocyte response to gravitational stress. We found that normal human melanocytes and non-metastatic melanoma cell lines, but not highly metastatic cells

  10. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers

    PubMed Central

    Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2015-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany) brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i) c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology, with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  11. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

    PubMed Central

    Novak, Elizabeth A.; Sultan, Syed Z.; Motaleb, Md. A.

    2014-01-01

    In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease. PMID:24822172

  12. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine.

    PubMed Central

    Souness, J. E.; Brazdil, R.; Diocee, B. K.; Jordan, R.

    1989-01-01

    1. The mechanism by which M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine (MIMAX), which have been described as selective cyclic GMP phosphodiesterase (PDE) inhibitors, relax rat aorta was investigated. 2. Three cyclic nucleotide PDEs were identified in the soluble fraction of rat aorta; a Ca2+-insensitive form exhibiting substrate selectivity for cyclic GMP (cGMP PDE), a Ca2+/calmodulin-stimulated form which also preferentially hydrolyzed cyclic GMP (Ca2+ PDE), and a form demonstrating substrate selectivity for cyclic AMP (cAMP PDE). 3. M&B 22,948 and MIMAX inhibited cGMP PDE (Ki = 0.16 microM and 0.43 microM, respectively) and Ca2+ PDE (Ki = 9.9 microM and 0.55 microM, respectively), but exhibited weak activity against cAMP PDE (Ki = 249 microM and 42 microM, respectively). MY-5445 selectivity inhibited cGMP PDE (Ki = 1.3 microM) and vinpocetine selectively inhibited Ca2+ PDE (Ki = 14 microM). 4. M&B 22,948 and MIMAX induced dose-dependent increases in the accumulation of cyclic GMP, but not cyclic AMP, in rat aorta pieces. These effects were greatly reduced by endothelial denudation and by methylene blue (5 microM) which blocks the actions of endothelium-derived relaxant factor. MY-5445 and vinpocetine had no effect on rat aorta cyclic GMP or cyclic AMP accumulation. 5. All four compounds caused dose-related relaxation of 5-hydroxytryptamine (10 microM) contracted, endothelium-intact rat aorta, the effects of M&B 22,948 and MIMAX being greatly reduced by methylene blue (5 microM). Methylene blue also caused 10 fold and 100 fold rightward shifts in the dose-response curves of MY-5445 and vinpocetine, respectively. 6. The results are consistent with the smooth muscle relaxant actions of M&B 22,948 and MIMAX, but not vinpocetine and MY-5445, being mediated through a mechanism involving inhibition of cyclic GMP hydrolysis. PMID:2480168

  13. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  14. Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose

    PubMed Central

    Zorraquino, Violeta; García, Begoña; Latasa, Cristina; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione

    2013-01-01

    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition. PMID:23161026

  15. Effect of sodium nitroprusside and 8-bromo cyclic GMP on nerve-mediated and acetylcholine-evoked secretory responses in the rat pancreas

    PubMed Central

    Yago, Maria D; Tapia, Jose A; Salido, Gines M; Adeghate, Ernest; Juma, Lubna M O; Martinez-Victoria, Emilio; Mañas, Mariano; Singh, Jaipaul

    2002-01-01

    The effects of sodium nitroprusside (SNP) and 8-bromo-guanosine 3′5′ cyclic monophosphate (8-Br-cyclic GMP) on nerve-mediated and acetylcholine (ACh)-evoked amylase secretion, tritiated choline ([3H]-choline) release and on intracellular free calcium concentration ([Ca2+]i) in the isolated rat pancreas were investigated.Electrical field stimulation (EFS; 10 Hz) and ACh (1×10−5 M) caused large increases in amylase output from pancreatic segments. The response to ACh was blocked by atropine (1×10−5 M) whereas the EFS-evoked response was markedly reduced but not abolished. In contrast, pretreatment with tetrodotoxin (1×10−6 M) abolished the secretory effect of EFS.Either SNP (1×10−3 M) or 8-Br-cyclic GMP (1×10−4 M) inhibited amylase secretion compared to basal. Combining either SNP or 8-Br-cyclic GMP with EFS resulted in a marked decrease in amylase output compared to EFS alone. In contrast, either SNP or 8-Br-cyclic GMP had no significant effect on the amylase response to ACh. When extracellular Ca2+ concentration ([Ca2+]o) was elevated from 2.56 mM to 5.12 mM, SNP failed to inhibit the response to EFS.EFS stimulated the release of 3H from pancreatic segments preloaded with [3H]-choline. Either SNP or 8-Br-cyclic GMP had no effect on basal 3H release but significantly reduced the EFS-evoked response.In fura-2 loaded acinar cells, SNP elicited a small decrease in [Ca2+]i compared to basal and had no effect on the ACh-induced [Ca2+]i peak response.Nitric oxide may modulate the release of endogenous neural ACh in response to EFS in the rat pancreas. PMID:11976267

  16. Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasteva, P.; Fong, J; Shikuma, N

    2010-01-01

    Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerizationmore » on c-di-GMP binding.« less

  17. Inhibition of Cyclic GMP Export by Multidrug Resistance Protein 4: A New Strategy to Treat Erectile Dysfunction?

    PubMed

    Boydens, Charlotte; Pauwels, Bart; Vanden Daele, Laura; Van de Voorde, Johan

    2017-04-01

    Intracellular cyclic guanosine monophosphate (cGMP) concentrations are regulated by degradation enzymes (phosphodiesterases) and by active transport across the plasma membrane by multidrug resistance proteins (MRPs) 4 and 5. To evaluate the functional effect of MRP-4 inhibition and the role of MRP-4-mediated cGMP export in mouse corpora cavernosa. Isometric tension of mouse corpora cavernosa was measured after cumulative addition of MK-571, an inhibitor of MRP-4, or sildenafil, a phosphodiesterase type 5 inhibitor. In addition, the effect of MRP-4 inhibition on cGMP-independent and cGMP-dependent relaxations was studied. In vivo intracavernosal pressure and mean arterial pressure measurements were performed after intracavernosal injection of MK-571. The effect of MRP-4 inhibition on cGMP content was determined using an enzyme immunoassay kit. Measurement of the effect of MK-571 on cGMP content, relaxant responses of mouse corpora cavernosa to cGMP-independent and cGMP-dependent vasodilating substances, and determination of the ratio of intracavernosal pressure to mean arterial pressure after intracavernosal injection of MK-571. MK-571 and sildenafil relaxed the corpora cavernosa concentration dependently, with sildenafil being the more potent relaxing compound. Furthermore, MK-571 enhanced relaxing responses to cGMP-dependent substances, such as sodium nitroprusside, sildenafil, acetylcholine, and electrical field stimulation, with the latter even under in vitro diabetic conditions. In contrast, cGMP-independent relaxations were not altered by MRP-4 inhibition. Intracavernosal administration of MK-571 significantly increased intracavernosal pressure, with minimal effect on mean arterial pressure. The cGMP analysis showed that MRP-4 inhibition was accompanied by increased cGMP levels. MRP-4, at least when targeted locally in the penis or when combined with a phosphodiesterase type 5 inhibitor, might be a valuable alternative strategy for the treatment of

  18. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  19. Mangiferin Prevents Guinea Pig Tracheal Contraction via Activation of the Nitric Oxide-Cyclic GMP Pathway

    PubMed Central

    Vieira, Aline B.; Coelho, Luciana P.; Insuela, Daniella B. R.; Carvalho, Vinicius F.; dos Santos, Marcelo H.; Silva, Patricia MR.; Martins, Marco A.

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  20. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma.

    PubMed

    Nakamura, Takashi; Miyabe, Hiroko; Hyodo, Mamoru; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2015-10-28

    Malignant melanomas escape immunosurveillance via the loss/down-regulation of MHC-I expression. Natural killer (NK) cells have the potential to function as essential effector cells for eliminating melanomas. Cyclic di-GMP (c-di-GMP), a ligand of the stimulator of interferon genes (STING) signal pathway, can be thought of as a new class of adjuvant against cancer. However, it is yet to be tested, because technologies for delivering c-di-GMP to the cytosol are required. Herein, we report that c-di-GMP efficiently activates NK cells and induces antitumor effects against malignant melanomas when loaded in YSK05 lipid containing liposomes, by assisting in the efficient delivery of c-di-GMP to the cytosol. The intravenous administration of c-di-GMP encapsulated within YSK05-liposomes (c-di-GMP/YSK05-Lip) into mice efficiently induced the production of type I interferon (IFN) as well as the activation of NK cells, resulting in a significant antitumor effect in a lung metastasis mouse model using B16-F10. This antitumor effect was dominated by NK cells. The infiltration of NK cells was observed in the lungs with B16-F10 melanomas. These findings indicate that the c-di-GMP/YSK05-Lip induces MHC-I non-restricted antitumor immunity mediated by NK cells. Consequently, c-di-GMP/YSK05-Lip represents a potentially new adjuvant system for use in immunotherapy against malignant melanomas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.

    1986-01-01

    The objective of the present study was to ascertain whether cyanide shares the properties of methylene blue as a selective inhibitor of vascular smooth muscle relaxation elicited by agents that stimulate the formation of cyclic GMP. Experiments were performed with endothelium-intact rings prepared from bovine intrapulmonary artery. Methylene blue, a good inhibitor of soluble guanylate cyclase, antagonized both arterial relaxation and cyclic GMP accumulation in response to sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine and acetylcholine. In contrast, cyanide inhibited only the responses to sodium nitroprusside. Increasing concentrations of methylene blue depressed resting arterial levels of cyclic GMP and caused slowly developingmore » but marked contractions whereas cyanide was without effect. Contractile responses to phenylephrine, potassium and U46619 were potentiated by methylene blue but not by cyanide. Preincubation of dilute solutions of cyanide containing sodium nitroprusside in oxygenated Krebs' buffer at 37 degrees C for 15 min before addition to bath chambers depressed relaxation and cyclic GMP accumulation caused by sodium nitroprusside markedly. Similar treatment of glyceryl trinitrate, however, failed to alter its effects in arterial rings. A chemical inactivation of sodium nitroprusside by cyanide appears to account for the specific inhibitory action of cyanide on arterial responses to sodium nitroprusside. This study indicates clearly that cyanide does not share the properties of methylene blue as an inhibitor of arterial relaxation elicited by vasodilators that stimulate cyclic GMP formation.« less

  2. Purine 3':5'-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP.

    PubMed

    Řlepokura, Katarzyna Anna

    2016-06-01

    Purine 3':5'-cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid-state conformational details still require investigation. Five crystals containing purine 3':5'-cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3':5'-cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3':5'-cyclic phosphate 0.3-hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3':5'-cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H11N5O7P(-)·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H10N4O7P(-)·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP(-) in (IV) and cIMP(-) in (V)] are syn conformers about the N-glycosidic bond, and this nucleobase arrangement is accompanied by Crib-H...Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of syn-anti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter-nucleotide contacts in (I)-(V) have been systematized in terms of the chemical groups involved. All five structures display three-dimensional hydrogen-bonded networks.

  3. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    PubMed

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission.

    PubMed

    Chatterjee, Subhadeep; Killiny, Nabil; Almeida, Rodrigo P P; Lindow, Steven E

    2010-10-01

    Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.

  5. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact

  6. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  7. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    PubMed

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  8. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis

    PubMed Central

    Li, Weihui; He, Zheng-Guo

    2012-01-01

    In a bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP)/transcription factor binding screen, we identified Mycobacterium smegmatis Ms6479 as the first c-di-GMP-responsive transcriptional factor in mycobacteria. Ms6479 could specifically bind with c-di-GMP and recognize the promoters of 37 lipid transport and metabolism genes. c-di-GMP could enhance the ability of Ms6479 to bind to its target DNA. Furthermore, our results establish Ms6479 as a global activator that positively regulates the expression of diverse target genes. Overexpression of Ms6479 in M. smegmatis significantly reduced the permeability of the cell wall to crystal violet and increased mycobacterial resistance to anti-tuberculosis antibiotics. Interestingly, Ms6479 lacks the previously reported c-di-GMP binding motifs. Our findings introduce Ms6479 (here designated LtmA for lipid transport and metabolism activator) as a new c-di-GMP-responsive regulator. PMID:23047950

  9. c-di-GMP is an Effective Immunomodulator and Vaccine Adjuvant Against Pneumococcal Infection

    PubMed Central

    Ogunniyi, Abiodun D.; Paton, James C.; Kirby, Alun C.; McCullers, Jonathan A.; Cook, Jan; Hyodo, Mamoru; Hayakawa, Yoshihiro; Karaolis, David K. R.

    2009-01-01

    Cyclic diguanylate (c-di-GMP) is a unique bacterial intracellular signaling molecule capable of stimulating enhanced protective innate immunity against various bacterial infections. The effects of intranasal pretreatment with c-di-GMP, or intraperitoneal coadministration of c-di-GMP with the pneumolysin toxoid (PdB) or PspA before pneumococcal challenge, was investigated in mice. We found that c-di-GMP had no significant direct short-term effect on the growth rate of S. pneumoniae either in vitro or in vivo. However, intranasal pretreatment of mice with c-di-GMP resulted in significant decrease in bacterial load in lungs and blood after serotypes 2 and 3 challenge, and significant decrease in lung titers after serotype 4 challenge. Potential cellular mediators of these enhanced protective responses were identified in lungs and draining lymph nodes. Intraperitoneal coadministration of c-di-GMP with PdB or PspA before challenge resulted in significantly higher antigen-specific antibody titers and increased survival of mice, compared to that obtained with alum adjuvant. These findings demonstrate that local or systemic c-di-GMP administration stimulates innate and adaptive immunity against invasive pneumococcal disease. We propose that c-di-GMP can be used as an effective broad spectrum immunomodulator and vaccine adjuvant to prevent infectious diseases. PMID:18640167

  10. NO, nitrotyrosine, and cyclic GMP in signal transduction

    NASA Technical Reports Server (NTRS)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  11. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa.

    PubMed

    Paquet-Durand, François; Beck, Susanne; Michalakis, Stylianos; Goldmann, Tobias; Huber, Gesine; Mühlfriedel, Regine; Trifunović, Dragana; Fischer, M Dominik; Fahl, Edda; Duetsch, Gabriele; Becirovic, Elvir; Wolfrum, Uwe; van Veen, Theo; Biel, Martin; Tanimoto, Naoyuki; Seeliger, Mathias W

    2011-03-01

    The rd1 natural mutant is one of the first and probably the most commonly studied mouse model for retinitis pigmentosa (RP), a severe and frequently blinding human retinal degeneration. In several decades of research, the link between the increase in photoreceptor cGMP levels and the extremely rapid cell death gave rise to a number of hypotheses. Here, we provide clear evidence that the presence of cyclic nucleotide gated (CNG) channels in the outer segment membrane is the key to rod photoreceptor loss. In Cngb1(-/-) × rd1 double mutants devoid of regular CNG channels, cGMP levels are still pathologically high, but rod photoreceptor viability and outer segment morphology are greatly improved. Importantly, cone photoreceptors, the basis for high-resolution daylight and colour vision, survived and remained functional for extended periods of time. These findings strongly support the hypothesis of deleterious calcium (Ca(2+))-influx as the cause of rapid rod cell death and highlight the importance of CNG channels in this process. Furthermore, our findings suggest that targeting rod CNG channels, rather than general Ca(2+)-channel blockade, is a most promising symptomatic approach to treat otherwise incurable forms of cGMP-related RP.

  12. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation.

    PubMed

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel

    2016-05-03

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    DOE PAGES

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T.; ...

    2016-04-07

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Here, although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-raymore » scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.« less

  14. Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells

    PubMed Central

    Kissmehl, Roland; Krüger, Tim P.; Treptau, Tilman; Froissard, Marine; Plattner, Helmut

    2006-01-01

    In the ciliate Paramecium tetraurelia, 3′,5′-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation. PMID:16400170

  15. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.

    PubMed

    Lázaro-Ibáñez, G G; Torres-López, J E; Granados-Soto, V

    2001-08-24

    The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level.

  16. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons.

    PubMed

    Zhao, Zhen; Wang, Zheng; Gu, Ying; Feil, Robert; Hofmann, Franz; Ma, Le

    2009-02-04

    Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.

  17. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    PubMed

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.

  18. Phenotype Overlap in Xylella fastidiosa Is Controlled by the Cyclic Di-GMP Phosphodiesterase Eal in Response to Antibiotic Exposure and Diffusible Signal Factor-Mediated Cell-Cell Signaling

    PubMed Central

    de Souza, Alessandra A.; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M.

    2013-01-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3′-5′)-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates. PMID:23542613

  19. Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Van Damme, Thomas; Zhang, Yanhua; Lynen, Frédéric; Sandra, Pat

    2012-11-15

    3',5'-Cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are essential second messenger molecules. They are involved in signal transduction within cells, in physiological functions such as neurotransmission and in the modulation of cell growth and differentiation of organisms, respectively. A quantitative solid phase extraction method (SPE) based on hydrophilic interaction on silica was developed and applied to both plasma and tissue samples. The stable isotope-labeled internal standards ²D₁, ¹⁵N₃-3',5'-cGMP and ¹³C₁₀, ¹⁵N₅-3',5'-cAMP were added prior to the sample preparation to ensure high precision and accuracy. The samples were analyzed by reversed-phase liquid chromatography (RP-LC). Negative electrospray (ESI)-MS/MS was used to selectively monitor several transitions of each metabolite. The method for the analysis of 3',5'-cAMP and 3',5'-cGMP in plasma was validated in the range of 0.15-20 ng/mL (R²=0.9996 and 0.9994 for 3',5'-cAMP and 3',5'-cGMP, respectively). Basal plasma concentrations for fifteen healthy human patients determined with this method varied between 4.66-9.20 ng/mL for 3',5'-cAMP and between 0.30-1.20 ng/mL for 3',5'-cGMP, with precisions better than 9.1%. 3',5'-cGMP and 3',5'-cAMP together with their 2',3'-isomers were also determined in a semi quantitative way in animal tissues. The structures of the isomers were confirmed by analysis with LC-high resolution time-of-flight MS and subsequently by comparison of retention times with standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Light adaption of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, S.; Bownds, M.D.

    1981-05-01

    The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca/sup + +/, with 0.5 mM ATP and 0.5 mM GTP present, PDEmore » activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca/sup + +/ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.« less

  1. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion.

    PubMed

    Togashi, Kazunobu; von Schimmelmann, Melanie J; Nishiyama, Makoto; Lim, Chae-Seok; Yoshida, Norihiro; Yun, Bokyoung; Molday, Robert S; Goshima, Yoshio; Hong, Kyonsoo

    2008-06-12

    Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.

  2. Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation.

    PubMed

    Jung, Hae-In; Kim, Yun-Jung; Lee, Yun-Jung; Lee, Hee-Soo; Lee, Jung-Kee; Kim, Soo-Ki

    2017-10-01

    Burkholderia sp. is a gram-negative bacterium that commonly exists in the environment, and can cause diseases in plants, animals, and humans. Here, a transposon mutant library of a Burkholderia lata isolate from a pig with swine respiratory disease in Korea was screened for strains showing attenuated virulence in Caenorhabditis elegans. One such mutant was obtained, and the Tn5 insertion junction was mapped to rpfR, a gene encoding a cyclic di-GMP phosphodiesterase that functions as a receptor. Mutation of rpfR caused a reduction in growth on CPG agar and swimming motility as well as a rough colony morphology on Congo red agar. TLC analysis showed reduced AHL secretion, which was in agreement with the results from plate-based and bioluminescence assays. The mutant strain produced significantly more biofilm detected by crystal violet staining than the parent strain. SEM of the mutant strain clearly showed that the overproduced biofilm contained a filamentous structure. These results suggest that the cyclic di-GMP phosphodiesterase RpfR plays an important role in quorum sensing modulation of the bacterial virulence and biofilm formation.

  3. Bis-(3'-5')-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus.

    PubMed

    Trimble, Michael J; McCarter, Linda L

    2011-11-01

    Movement over and colonization of surfaces are important survival strategies for bacteria, and many find it advantageous to perform these activities as a group, using quorum sensing to sample population size and synchronize behavior. It is puzzling however, that swarming-proficient and virulent strains of Vibrio parahaemolyticus are silenced for the vibrio archetypal pathway of quorum sensing. Here we describe the S-signal, a pheromone that can be communicated between cells in coculture to regulate surface colonization. This signal was harvested in cell-free supernatants and demonstrated to stimulate swarming gene expression at low cell density. The S-signal was generated by the pyridoxal phosphate-dependent aminotransferase ScrA; signal reception required the periplasmic binding protein ScrB and the membrane-bound GGDEF-EAL domain-containing protein ScrC. ScrC is a bifunctional enzyme that has the ability to form and degrade the second messenger bis-(3'-5') cyclic dimeric GMP (c-di-GMP). ScrA in neighboring cells was able to alter the activity of ScrC in a ScrB-dependent manner, transforming ScrC's repressing ability to inducing activity with respect to swarming. Conversely, cell-cell signaling repressed capsule gene expression. In summary, we report that quorum sensing can stimulate swarming in V. parahaemolyticus; it does so via an alternative pathway capable of generating an autoinducing signal that influences c-di-GMP, thereby expanding the lexicon and language of cell-cell communication.

  4. cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.

    PubMed

    Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M

    1996-03-01

    The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.

  5. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri.

    PubMed

    Bassis, Christine M; Visick, Karen L

    2010-03-01

    Bacteria produce different types of biofilms under distinct environmental conditions. Vibrio fischeri has the capacity to produce at least two distinct types of biofilms, one that relies on the symbiosis polysaccharide Syp and another that depends upon cellulose. A key regulator of biofilm formation in bacteria is the intracellular signaling molecule cyclic diguanylate (c-di-GMP). In this study, we focused on a predicted c-di-GMP phosphodiesterase encoded by the gene binA, located directly downstream of syp, a cluster of 18 genes critical for biofilm formation and the initiation of symbiotic colonization of the squid Euprymna scolopes. Disruption or deletion of binA increased biofilm formation in culture and led to increased binding of Congo red and calcofluor, which are indicators of cellulose production. Using random transposon mutagenesis, we determined that the phenotypes of the DeltabinA mutant strain could be disrupted by insertions in genes in the bacterial cellulose biosynthesis cluster (bcs), suggesting that cellulose production is negatively regulated by BinA. Replacement of critical amino acids within the conserved EAL residues of the EAL domain disrupted BinA activity, and deletion of binA increased c-di-GMP levels in the cell. Together, these data support the hypotheses that BinA functions as a phosphodiesterase and that c-di-GMP activates cellulose biosynthesis. Finally, overexpression of the syp regulator sypG induced binA expression. Thus, this work reveals a mechanism by which V. fischeri inhibits cellulose-dependent biofilm formation and suggests that the production of two different polysaccharides may be coordinated through the action of the cellulose inhibitor BinA.

  6. Deciphering cGMP signatures and cGMP-dependent pathways in plant defence

    PubMed Central

    Meier, Stuart; Madeo, Laura; Ederli, Luisa; Donaldson, Lara; Gehring, Chris

    2009-01-01

    The second messenger, 3′,5′-cyclic monophosphate (cGMP), is a critical component of many different processes in plants while guanylyl cyclases that catalyse the formation of cGMP from GTP have remained somewhat elusive in higher plants. Consequently, two major aims are the discovery of novel GCs and the identification of cGMP mediated processes. Recently, we have reported temporal signatures of ozone (O3)-induced hydrogen peroxide (H2O2) and nitric oxide (NO) generation, their effect on cGMP generation, and consequent transcriptional changes of genes diagnostic for stress responses in tobacco. We demonstrated that O3 and NO induced early transcriptional activation of the scavenger encoding proteins, alternative oxidase (AOX1a), glutathione peroxidase (GPX) and the induction of ethylene production through aminocyclopropancarboxylic acid synthase (ACS2) are cGMP-independent. By contrast, the early response of the phenylalanine ammonia lyase gene (PALa) and the late response of the gene encoding the pathogenesis-related protein (PR1a) show critical dependence on cGMP. Here we show differential cGMP responses to virulent and avirulent Pseudomonas syringae strains and propose that host-pathogen recognition and/or down-stream processes are transduced by complex cGMP signatures. This is in accordance with the identification of a growing number of multi-domain molecules in Arabidopsis that are reported to contain putative functional GC catalytic centers. PMID:19794847

  7. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  8. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.

    PubMed

    Lovering, Andrew L; Capeness, Michael J; Lambert, Carey; Hobley, Laura; Sockett, R Elizabeth

    2011-01-01

    Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homologues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and available for complexation with binding partners, including GGDEF proteins. It is becoming apparent that many bacteria use the signaling molecule cyclic-di-GMP to regulate a variety of processes, most notably, transitions between motility and sessility. Importantly, this regulation is central to several traits implicated in chronic disease (adhesion, biofilm formation, and virulence gene expression). The mechanisms of cyclic-di-GMP synthesis via GGDEF enzymes and hydrolysis via EAL enzymes have been suggested by

  9. Gating by Cyclic Gmp and Voltage in the α Subunit of the Cyclic Gmp–Gated Channel from Rod Photoreceptors

    PubMed Central

    Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin

    1999-01-01

    Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels

  10. ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa

    PubMed Central

    Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.

    2014-01-01

    The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for Amr

  11. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction

    PubMed Central

    Steiner, Samuel; Lori, Christian; Boehm, Alex; Jenal, Urs

    2013-01-01

    In many bacterial pathogens, the second messenger c-di-GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c-di-GMP induces EPS biogenesis is largely unknown. Here, we show that c-di-GMP allosterically activates the synthesis of poly-β-1,6-N-acetylglucosamine (poly-GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C-di-GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly-GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c-di-GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c-di-GMP-mediated process that relies on protein–protein interaction. At low c-di-GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c-di-GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c-di-GMP signalling. These data uncover a mechanism of c-di-GMP-mediated EPS control and provide a frame for c-di-GMP signalling specificity in pathogenic bacteria. PMID:23202856

  12. Thymocyte cyclic AMP and cyclic GMP response to treatment with metabolites issued from the lipoxygenase pathway.

    PubMed

    Mexmain, S; Cook, J; Aldigier, J C; Gualde, N; Rigaud, M

    1985-08-01

    Evidence has been presented that cGMP is the second messenger for the lipoxygenase metabolites 15-HETE and LTB4 in the mouse splenocyte and thymocyte. Incubation of splenocytes with 10(-7) to 10(-9) M 15-HETE caused a slight decrease in cAMP levels and an increase in cGMP levels after 10 to 20 min. Mature PNA-, immature PNA+, and whole thymocytes treated with 10(-7) to 10(-10) M 15-HETE and 10(-11) M LTB4 showed an approximately 100% increase in cGMP production. In mixed lymphocyte reactions, 15-HETE- and LTB4-treated PNA+, PNA-, and whole thymocyte populations inhibited thymidine uptake by fresh allostimulated splenocytes. These results demonstrate that the eicosanoid-induced generation of suppressor cells follows a rise in lymphocyte cGMP levels.

  13. Analysis of the Borrelia burgdorferi Cyclic-di-GMP-Binding Protein PlzA Reveals a Role in Motility and Virulence ▿

    PubMed Central

    Pitzer, Joshua E.; Sultan, Syed Z.; Hayakawa, Yoshihiro; Hobbs, Gerry; Miller, Michael R.; Motaleb, Md A.

    2011-01-01

    The cyclic-dimeric-GMP (c-di-GMP)-binding protein PilZ has been implicated in bacterial motility and pathogenesis. Although BB0733 (PlzA), the only PilZ domain-containing protein in Borrelia burgdorferi, was reported to bind c-di-GMP, neither its role in motility or virulence nor it's affinity for c-di-GMP has been reported. We determined that PlzA specifically binds c-di-GMP with high affinity (dissociation constant [Kd], 1.25 μM), consistent with Kd values reported for c-di-GMP-binding proteins from other bacteria. Inactivation of the monocistronically transcribed plzA resulted in an opaque/solid colony morphology, whereas the wild-type colonies were translucent. While the swimming pattern of mutant cells appeared normal, on swarm plates, mutant cells exhibited a significantly reduced swarm diameter, demonstrating a role of plzA in motility. Furthermore, the plzA mutant cells were significantly less infectious in experimental mice (as determined by 50% infectious dose [ID50]) relative to wild-type spirochetes. The mutant also had survival rates in fed ticks lower than those of the wild type. Consequently, plzA mutant cells failed to complete the mouse-tick-mouse infection cycle, indicating plzA is essential for the enzootic life cycle of B. burgdorferi. All of these defects were corrected when the mutant was complemented in cis. We propose that failure of plzA mutant cells to infect mice was due to altered motility; however, the possibility that an unidentified factor(s) contributed to interruption of the B. burgdorferi enzootic life cycle cannot yet be excluded. PMID:21357718

  14. Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

    PubMed Central

    Chen, Li-Hong; Köseoğlu, Volkan K.; Güvener, Zehra T.; Myers-Morales, Tanya; Reed, Joseph M.; D'Orazio, Sarah E. F.; Miller, Kurt W.; Gomelsky, Mark

    2014-01-01

    We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. PMID:25101646

  15. c-di-GMP enhances protective innate immunity in a murine model of pertussis.

    PubMed

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.

  16. c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis

    PubMed Central

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720

  17. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: Insights for cGMP-dependent protein kinase agonist design

    DOE PAGES

    Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...

    2014-10-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less

  18. Luteinizing hormone signaling phosphorylates and activates the cyclic GMP phosphodiesterase PDE5 in mouse ovarian follicles, contributing an additional component to the hormonally induced decrease in cyclic GMP that reinitiates meiosis.

    PubMed

    Egbert, Jeremy R; Yee, Siu-Pok; Jaffe, Laurinda A

    2018-03-01

    Prior to birth, oocytes within mammalian ovarian follicles initiate meiosis, but then arrest in prophase until puberty, when with each reproductive cycle, one or more follicles are stimulated by luteinizing hormone (LH) to resume meiosis in preparation for fertilization. Within preovulatory follicles, granulosa cells produce high levels of cGMP, which diffuses into the oocyte to maintain meiotic arrest. LH signaling restarts meiosis by rapidly lowering the levels of cGMP in the follicle and oocyte. Part of this decrease is mediated by the dephosphorylation and inactivation the NPR2 guanylyl cyclase in response to LH, but the mechanism for the remainder of the cGMP decrease is unknown. At least one cGMP phosphodiesterase, PDE5, is activated by LH signaling, which would contribute to lowering cGMP. PDE5 exhibits increased cGMP-hydrolytic activity when phosphorylated on serine 92, and we recently demonstrated that LH signaling phosphorylates PDE5 on this serine and increases its activity in rat follicles. To test the extent to which this mechanism contributes to the cGMP decrease that restarts meiosis, we generated a mouse line in which serine 92 was mutated to alanine (Pde5-S92A), such that it cannot be phosphorylated. Here we show that PDE5 phosphorylation is required for the LH-induced increase in cGMP-hydrolytic activity, but that this increase has only a modest effect on the LH-induced cGMP decrease in mouse follicles, and does not affect the timing of meiotic resumption. Though we show that the activation of PDE5 is among the mechanisms contributing to the cGMP decrease, these results suggest that another cGMP phosphodiesterase is also activated by LH signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Partial reconstitution of photoreceptor cGMP phosphodiesterase characteristics in cGMP phosphodiesterase-5.

    PubMed

    Granovsky, A E; Artemyev, N O

    2001-06-15

    Photoreceptor cGMP phosphodiesterases (PDE6) are uniquely qualified to serve as effector enzymes in the vertebrate visual transduction cascade. In the dark-adapted photoreceptors, the activity of PDE6 is blocked via tight association with the inhibitory gamma-subunits (Pgamma). The Pgamma block is removed in the light-activated PDE6 by the visual G protein, transducin. Transducin-activated PDE6 exhibits an exceptionally high catalytic rate of cGMP hydrolysis ensuring high signal amplification. To identify the structural determinants for the inhibitory interaction with Pgamma and the remarkable cGMP hydrolytic ability, we sought to reproduce the PDE6 characteristics by mutagenesis of PDE5, a related cyclic GMP-specific, cGMP-binding PDE. PDE5 is insensitive to Pgamma and has a more than 100-fold lower k(cat) for cGMP hydrolysis. Our mutational analysis of chimeric PDE5/PDE6alpha' enzymes revealed that the inhibitory interaction of cone PDE6 catalytic subunits (PDE6alpha') with Pgamma is mediated primarily by three hydrophobic residues at the entry to the catalytic pocket, Met(758), Phe(777), and Phe(781). The maximal catalytic rate of PDE5 was enhanced by at least 10-fold with substitutions of PDE6alpha'-specific glycine residues for the corresponding PDE5 alanine residues, Ala(608) and Ala(612). The Gly residues are adjacent to the highly conserved metal binding motif His-Asn-X-X-His, which is essential for cGMP hydrolysis. Our results suggest that the unique Gly residues allow the PDE6 metal binding site to adopt a more favorable conformation for cGMP hydrolysis.

  20. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    PubMed Central

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  1. Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I

    PubMed Central

    Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela

    2013-01-01

    Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120

  2. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains

    PubMed Central

    Povolotsky, Tatyana L.

    2015-01-01

    ABSTRACT The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive “degenerate” proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be

  3. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains.

    PubMed

    Povolotsky, Tatyana L; Hengge, Regine

    2016-01-01

    The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive "degenerate" proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be counteracted by the c-di-GMP

  4. Npom-Protected NONOate Enables Light-Triggered NO/cGMP Signalling in Primary Vascular Smooth Muscle Cells.

    PubMed

    Stroppel, Anna S; Paolillo, Michael; Ziegler, Thomas; Feil, Robert; Stafforst, Thorsten

    2018-06-18

    Diazeniumdiolates (NONOates) are a class of nitric-oxide-releasing substances widely used in studies of NO/cGMP signalling. Because spatiotemporal control is highly desirable for such purposes, we have synthesised a new Npom-caged pyrrolidine NONOate. A kinetic analysis together with a Griess assay showed the photodependent release of NO with high quantum yield (UV light). In primary vascular smooth muscle cells (VSMCs), our compound was reliably able to induce fast increases in cGMP, as measured with a genetically encoded FRET-based cGMP sensor and further validated by the phosphorylation of the downstream target vasodilator-stimulated phosphoprotein (VASP). Thanks to their facile synthesis, good decaging kinetics and capability to activate cGMP signalling in a fast and efficient manner, Npom-protected NONOates allow for improved spatiotemporal control of NO/cGMP signalling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation

    DOE PAGES

    Campbell, James C.; VanSchouwen, Bryan; Lorenz, Robin; ...

    2016-12-23

    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. We determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a ‘gatekeeper’ for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalyticmore » subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. Our results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.« less

  6. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.

    PubMed

    Ramírez-Mata, Alberto; López-Lara, Lilia I; Xiqui-Vázquez, Ma Luisa; Jijón-Moreno, Saúl; Romero-Osorio, Angelica; Baca, Beatriz E

    2016-04-01

    In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Role of the nitric oxide/cyclic GMP/Ca2+ signaling pathway in the pyrogenic effect of interleukin-1beta.

    PubMed

    Palmi, Mitri; Meini, Antonella

    2002-04-01

    Interleukin-1beta (IL-1beta) has a wide spectrum of inflammatory, metabolic, haemopoietic, and immunological properties. Because it produces fever when injected into animals and humans, it is considered an endogenous pyrogen. There is evidence to suggest that Ca2+ plays a critical role in the central mechanisms of thermoregulation, and in the intracellular signaling pathways controlling fever induced by IL-1beta and other pyrogens. Data from different labs indicate that Ca2+ and Na+ determine the temperature set point in the posterior hypothalamus (PH) of various mammals and that changes in Ca2+ and PGE2 concentrations in the cerebrospinal fluid (CSF) of these animals are associated with IL-1beta-induced fever. Antipyretic drugs such as acetylsalicylic acid, dexamethasone, and lipocortin 5-(204-212) peptide counteract IL-1beta-induced fever and abolish changes in Ca2+ and PGE2 concentrations in CSF. In vitro studies have established that activation of the nitric oxide (NO)/cyclic GMP (cGMP) pathway is part of the signaling cascade transducing Ca2+ mobilization in response to IL-1beta and that the ryanodine (RY)- and inositol-(1,4,5)-trisphosphate (IP3)-sensitive pools are the main source of the mobilized Ca2+. It is concluded that the NO/cGMP/Ca2+ pathway is part of the signaling cascade subserving some of the multiple functions of IL-1beta.

  8. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP

    PubMed Central

    Wang, Xin C.; Wilson, Stephen C.; Hammond, Ming C.

    2016-01-01

    Bacteria occupy a diverse set of environmental niches with differing oxygen availability. Anaerobic environments such as mammalian digestive tracts and industrial reactors harbor an abundance of both obligate and facultative anaerobes, many of which play significant roles in human health and biomanufacturing. Studying bacterial function under partial or fully anaerobic conditions, however, is challenging given the paucity of suitable live-cell imaging tools. Here, we introduce a series of RNA-based fluorescent biosensors that respond selectively to cyclic di-GMP, an intracellular bacterial second messenger that controls cellular motility and biofilm formation. We demonstrate the utility of these biosensors in vivo under both aerobic and anaerobic conditions, and we show that biosensor expression does not interfere with the native motility phenotype. Together, our results attest to the effectiveness and versatility of RNA-based fluorescent biosensors, priming further development and application of these and other analogous sensors to study host–microbial and microbial–microbial interactions through small molecule signals. PMID:27382070

  9. Modulation of cGMP in Heart Failure

    PubMed Central

    Boerrigter, Guido; Lapp, Harald; Burnett, John C.

    2009-01-01

    Heart failure (HF) is a common disease that continues to be associated with high morbidity and mortality warranting novel therapeutic strategies. Cyclic guanosine monophosphate (cGMP) is the second messenger of several important signaling pathways based on distinct guanylate cyclases (GCs) in the cardiovascular system. Both the nitric oxide/soluble GC (NO/sGC) as well as the natriuretic peptide/GC-A (NP/GC-A) systems are disordered in HF, providing a rationale for their therapeutic augmentation. Soluble GC activation with conventional nitrovasodilators has been used for more than a century but is associated with cGMP-independent actions and the development of tolerance, actions which novel NO-independent sGC activators now in clinical development lack. Activation of GC-A by administration of naturally occurring or designer natriuretic peptides is an emerging field, as is the inhibition of enzymes that degrade endogenous NPs. Finally, inhibition of cGMP-degrading phosphodiesterases, particularly phosphodiesterase 5 provides an additional strategy to augment cGMP-signaling. PMID:19089342

  10. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing

    PubMed Central

    Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O

    2016-01-01

    Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943

  11. Structural Insight into the Mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchigvintsev, A.; Xu, X.; Singer, A.

    2010-08-01

    Cyclic diguanylate (or bis-(3'-5') cyclic dimeric guanosine monophosphate; c-di-GMP) is a ubiquitous second messenger that regulates diverse cellular functions, including motility, biofilm formation, cell cycle progression, and virulence in bacteria. In the cell, degradation of c-di-GMP is catalyzed by highly specific EAL domain phosphodiesterases whose catalytic mechanism is still unclear. Here, we purified 13 EAL domain proteins from various organisms and demonstrated that their catalytic activity is associated with the presence of 10 conserved EAL domain residues. The crystal structure of the TBD1265 EAL domain was determined in free state (1.8 {angstrom}) and in complex with c-di-GMP (2.35 {angstrom}), andmore » unveiled the role of conserved residues in substrate binding and catalysis. The structure revealed the presence of two metal ions directly coordinated by six conserved residues, two oxygens of c-di-GMP phosphate, and potential catalytic water molecule. Our results support a two-metal-ion catalytic mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.« less

  12. Selective phosphodiesterase 5 inhibition does not reduce propofol sedation requirements but affects speed of recovery and plasma cyclic guanosine 3',5'-monophosphate concentrations in healthy volunteers.

    PubMed

    Engelhardt, Thomas; MacDonald, Jamie; Galley, Helen F; Webster, Nigel R

    2005-10-01

    Cyclic guanosine 3',5'-monophosphate (cyclic GMP) has been implicated in modulating the effects of anesthesia. We hypothesized that limiting the breakdown of cyclic GMP through selective phosphodiesterase inhibition would influence propofol sedation requirements and plasma cyclic GMP concentrations. Ten volunteers received 100 mg of sildenafil or placebo orally in this placebo-controlled, double-blind, randomized crossover pilot study. Propofol sedation was achieved using a target-controlled infusion system until loss of verbal contact (LVC). Plasma cyclic GMP concentrations were determined at baseline, LVC, and 30 min after LVC. There was no difference in the amount of propofol used, predicted plasma concentration, or duration of sedation in volunteers after sildenafil compared with placebo treatment. Return of spontaneous verbal contact was faster after sildenafil (4 [3-8] min versus 6 [3-5] min, median [range], P = 0.019). Cyclic GMP concentrations were reduced during propofol sedation in the placebo group compared with baseline (P < 0.004). The plasma cyclic GMP concentrations were larger (P = 0.004) at LVC in the sildenafil group compared with placebo. We have shown that selective phosphodiesterase 5 inhibition decreases recovery time from propofol sedation without affecting propofol requirements. The decrease of plasma cyclic GMP concentrations during propofol sedation in the placebo group indicates a potential role of cyclic GMP in propofol anesthesia in humans. Plasma cyclic guanosine 3',5'-monophosphate (cyclic GMP) concentrations are reduced during propofol sedation. Selective phosphodiesterase 5 inhibition, however, does not reduce propofol sedation requirements or plasma cyclic GMP concentrations but affects speed of recovery in healthy volunteers.

  13. The role of cGMP signalling in regulating life cycle progression of Plasmodium.

    PubMed

    Hopp, Christine S; Bowyer, Paul W; Baker, David A

    2012-08-01

    The 3'-5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Lipchock, S; Ames, T

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structuralmore » data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.« less

  15. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  16. An atypical CNG channel activated by a single cGMP molecule controls sperm chemotaxis.

    PubMed

    Bönigk, Wolfgang; Loogen, Astrid; Seifert, Reinhard; Kashikar, Nachiket; Klemm, Clementine; Krause, Eberhard; Hagen, Volker; Kremmer, Elisabeth; Strünker, Timo; Kaupp, U Benjamin

    2009-10-27

    Sperm of the sea urchin Arbacia punctulata can respond to a single molecule of chemoattractant released by an egg. The mechanism underlying this extreme sensitivity is unknown. Crucial signaling events in the response of A. punctulata sperm to chemoattractant include the rapid synthesis of the intracellular messenger guanosine 3',5'-monophosphate (cGMP) and the ensuing membrane hyperpolarization that results from the opening of potassium-selective cyclic nucleotide-gated (CNGK) channels. Here, we use calibrated photolysis of caged cGMP to show that approximately 45 cGMP molecules are generated during the response to a single molecule of chemoattractant. The CNGK channel can respond to such small cGMP changes because it is exquisitely sensitive to cGMP and activated in a noncooperative fashion. Like voltage-activated Ca(v) and Na(v) channels, the CNGK polypeptide consists of four homologous repeat sequences. Disabling each of the four cyclic nucleotide-binding sites through mutagenesis revealed that binding of a single cGMP molecule to repeat 3 is necessary and sufficient to activate the CNGK channel. Thus, CNGK has developed a mechanism of activation that is different from the activation of other CNG channels, which requires the cooperative binding of several ligands and operates in the micromolar rather than the nanomolar range.

  17. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  18. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  19. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  20. Low Temperature Extends the Lifespan of Bursaphelenchus xylophilus through the cGMP Pathway

    PubMed Central

    Wang, Bowen; Ma, Ling; Wang, Feng; Wang, Buyong; Hao, Xin; Xu, Jiayao; Ma, Yan

    2017-01-01

    The causal agent of pine wilt disease, pine wood nematode (PWN) (Bursaphelenchus xylophilus), revealed extended lifespan at low temperature. To discover the molecular mechanism of this phenomenon, we attempted to study the molecular characterization, transcript abundance, and functions of three genes of the cyclic guanosine monophosphate (cGMP) pathway from B. xylophilus. Three cGMP pathway genes were identified from B. xylophilus. Bioinformatic software was utilized to analyze the characteristics of the three putative proteins. Function of the three genes in cold tolerance was studied with RNA interference (RNAi). The results showed that the deduced protein of Bx-DAF-11 has an adenylate and guanylate cyclase catalytic domain, indicating an ability to bind to extracellular ligands and synthesizing cGMP. Both Bx-TAX-2 and Bx-TAX-4 have cyclic nucleotide-binding domains and ion transport protein domains, illustrating that they are cGMP-gated ion channels. The transcript level of Bx-daf-11, Bx-tax-2, and Bx-tax-4 increased at low temperature. The survival rates of three gene silenced B. xylophilus revealed a significant decrease at low temperature. This study illustrated that the cGMP pathway plays a key role in low-temperature-induced lifespan extension in B. xylophilus. PMID:29099744

  1. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression.

    PubMed

    Hesse, Raphael; Lausser, Ludwig; Gummert, Pauline; Schmid, Florian; Wahler, Anke; Schnack, Cathrin; Kroker, Katja S; Otto, Markus; Tumani, Hayrettin; Kestler, Hans A; Rosenbrock, Holger; von Arnim, Christine A F

    2017-03-09

    Alzheimer's disease (AD) is a neurodegenerative disorder, primarily affecting memory. That disorder is thought to be a consequence of neuronal network disturbances and synapse loss. Decline in cognitive function is associated with a high burden of neuropsychiatric symptoms (NPSs) such as depression. The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are essential second messengers that play a crucial role in memory processing as well as synaptic plasticity and are potential therapeutic targets. Biomarkers that are able to monitor potential treatment effects and that reflect the underlying pathology are of crucial interest. In this study, we measured cGMP and cAMP in cerebrospinal fluid (CSF) in a cohort of 133 subjects including 68 AD patients and 65 control subjects. To address the association with disease progression we correlated cognitive status with cyclic nucleotide levels. Because a high burden of NPSs is associated with decrease in cognitive function, we performed an exhaustive evaluation of AD-relevant marker combinations in a depressive subgroup. We show that cGMP, but not cAMP, levels in the CSF of AD patients are significantly reduced compared with the control group. Reduced cGMP levels in AD patients correlate with memory impairment based on Mini-Mental State Examination score (r = 0.17, p = 0.048) and tau as a marker of neurodegeneration (r = -0.28, p = 0.001). Moreover, we were able to show that AD patients suffering from current depression show reduced cGMP levels (p = 0.07) and exhibit a higher degree of cognitive impairment than non-depressed AD patients. These results provide further evidence for an involvement of cGMP in AD pathogenesis and accompanying co-morbidities, and may contribute to elucidating synaptic plasticity alterations during disease progression.

  2. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation.

    PubMed

    Moon, Thomas M; Sheehe, Jessica L; Nukareddy, Praveena; Nausch, Lydia W; Wohlfahrt, Jessica; Matthews, Dwight E; Blumenthal, Donald K; Dostmann, Wolfgang R

    2018-05-25

    The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    PubMed

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory. SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  4. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    PubMed Central

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  5. Development and validation of an LC-MS/MS method for quantification of cyclic guanosine 3',5'-monophosphate (cGMP) in clinical applications: a comparison with a EIA method.

    PubMed

    Zhang, Yanhua; Dufield, Dawn; Klover, Jon; Li, Wenlin; Szekely-Klepser, Gabriella; Lepsy, Christopher; Sadagopan, Nalini

    2009-02-15

    An LC-MS/MS method was developed and validated to quantify endogenous cyclic guanosine 3',5'-monophosphate (cGMP) in human plasma. The LC-MS/MS and competitive enzyme immunoassay (EIA) assays were compared. cGMP concentrations of 20 human plasma samples were measured by both methods. For the MS-based assay, plasma samples were subjected to a simple protein precipitation procedure by acetonitrile prior to analysis by electrospray ionization LC-MS/MS. De-protonated analytes generated in negative ionization mode were monitored through multiple reaction monitoring (MRM). A stable isotope-labeled internal standard, (13)C(10),(15)N(5)-cGMP, which was biosynthesized in-house, was used in the LC-MS/MS method. The competitive EIA was validated using a commercially available cGMP fluorescence assay kit. The intra-assay accuracy and precision for MS-based assay for cGMP were 6-10.1% CV and -3.6% to 7.3% relative error (RE), respectively, while inter-assay precision and accuracy were 5.6-8.1% CV and -2.1% to 6.3% RE, respectively. The intra-assay accuracy and precision for EIA were 17.9-27.1% CV and -4.9% to 24.5% RE, respectively, while inter-assay precision and accuracy were 15.1-39.5% CV and -30.8% to 4.37% RE, respectively. Near the lower limits of detection, there was little correlation between the cGMP concentration values in human plasma generated by these two methods (R(2)=0.197, P=0.05). Overall, the MS-based assay offered better selectivity, recovery, precision and accuracy over a linear range of 0.5-20ng/mL. The LC-MS/MS method provides an effective tool for the quantitation of cGMP to support clinical mechanistic studies of curative pharmaceuticals.

  6. Effects of fenspiride on human bronchial cyclic nucleotide phosphodiesterase isoenzymes: functional and biochemical study.

    PubMed

    Cortijo, J; Naline, E; Ortiz, J L; Berto, L; Girard, V; Malbezin, M; Advenier, C; Morcillo, E J

    1998-01-02

    We have investigated the role of human bronchial cyclic nucleotide phosphodiesterases in the effects of fenspiride, a drug endowed with bronchodilator and anti-inflammatory properties. Functional studies on human isolated bronchi showed that fenspiride (10(-6)-3 x 10(-3) M, 30 min) induced a shift to the left of the concentration-response curves for isoprenaline and sodium nitroprusside with -logEC50 values of 4.1+/-0.1 (n = 7) and 3.5+/-0.2 (n = 8), respectively. Biochemical studies were carried out on three human bronchi in which separation of cyclic nucleotide phosphodiesterase isoenzymes was performed by ion exchange chromatography followed by determination of phosphodiesterase activity with a radioisotopic method. Phosphodiesterase 4 (cyclic AMP-specific) and phosphodiesterase 5 (cyclic GMP-specific) were the major phosphodiesterase isoforms present in the human bronchial tissue. The presence of phosphodiesterase 1 (Ca2+/calmodulin-stimulated), phosphodiesterase 2 (cyclic GMP-stimulated) and, in two cases, phosphodiesterase 3 (cyclic GMP-inhibited) was also identified. Fenspiride inhibited phosphodiesterase 4 and phosphodiesterase 3 activities with -logIC50 values of 4.16+/-0.09 and 3.44+/-0.12, respectively. Phosphodiesterase 5 activity was also inhibited with a -logIC50 value of approximately 3.8. Fenspiride (< or = 10(-3) M) produced less than 25% inhibition of phosphodiesterase 1 and phosphodiesterase 2 activities. In conclusion, fenspiride is an effective inhibitor of both cyclic AMP and cyclic GMP hydrolytic activity in human bronchial tissues and this action may contribute to its airway effects.

  7. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Thapa, Arjun; Ma, Hongwei; Michalakis, Stylianos; Biel, Martin; Baehr, Wolfgang; Peshenko, Igor V; Dizhoor, Alexander M; Ding, Xi-Qin

    2013-09-11

    Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.

  8. Cyclic nucleotide content of tobacco BY-2 cells.

    PubMed

    Richards, Helen; Das, Swadipa; Smith, Christopher J; Pereira, Louisa; Geisbrecht, Alan; Devitt, Nicola J; Games, David E; van Geyschem, Jan; Gareth Brenton, A; Newton, Russell P

    2002-11-01

    The cyclic nucleotide content of cultured tobacco bright yellow-2 (BY-2) cells was determined, after freeze-killing, perchlorate extraction and sequential chromatography, by radioimmunoassay. The identities of the putative cyclic nucleotides, adenosine 3',5'-cyclic monophosphate (cyclic AMP), guanosine 3',5'-cyclic monophosphate (cyclic GMP) and cytidine 3',5'-cyclic monophosphate (cyclic CMP) were unambiguously confirmed by tandem mass spectrometry. The potential of BY-2 cell cultures as a model system for future investigations of cyclic nucleotide function in higher plants is discussed.

  9. Nitric oxide synthesis leads to vascular endothelial growth factor synthesis via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway in human corpus cavernosal smooth muscle cells.

    PubMed

    Komori, Kazuhiko; Tsujimura, Akira; Takao, Tetsuya; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko

    2008-07-01

    Vascular smooth muscle cells express endothelial nitric oxide synthase (eNOS) and produce nitric oxide (NO). Recently, increased NO production has been reported to induce the synthesis and secretion of vascular endothelial growth factor (VEGF) via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. L-arginine (L-arg), the precursor of NO, and selective phosphodiesterase type 5 (PDE-5) inhibitors that increase levels of intracellular cGMP may complementarily enhance VEGF synthesis in corpus cavernosal smooth muscle cells (CCSMCs), and may consequently restore impaired endothelial function. Expression of eNOS in corpus cavernosal smooth muscle has also been reported. However, it is unclear whether CCSMCs can generate NO. To elucidate whether CCSMCs can synthesize NO and whether NO synthesis enhances VEGF synthesis via the NO/cGMP pathway. Corpus cavernosal cells were cultured and characterized by immunocytochemistry and immunoblotting. CCSMCs were treated with L-arg. CCSMCs were also incubated with L-arg and with vardenafil, an inhibitor of PDE-5. Release of NO from cells was confirmed by assay of NO metabolites (NOx). Intracellular cGMP concentration and VEGF concentration in the medium were measured. Isolated cells were determined to be CCSMCs. The expression of eNOS by CCSMCs was also identified. NOx and cGMP levels in the L-arg-treated group were significantly greater than those in the control group. VEGF and cGMP levels in the L-arg-treated group were also significantly greater than those in the control group. VEGF and cGMP levels in the L-arg + vardenafil-treated group were significantly greater than those in the L-arg-treated group and the control group. CCSMCs express eNOS and synthesize NO. NO synthesis leads to enhancement of VEGF synthesis via the NO/cGMP pathway. Combined L-arg and vardenafil treatment, which can enhance VEGF production, may provide a novel therapeutic strategy for the treatment of erectile dysfunction as well as endothelial

  10. Necrotic enteritis locus 1 diguanylate cyclase and phosphodiesterase (cyclic-di-GMP) gene mutation attenuates virulence in an avian necrotic enteritis isolate of Clostridium perfringens.

    PubMed

    Parreira, Valeria R; Ojha, Shivani; Lepp, Dion; Mehdizadeh Gohari, Iman; Zhou, Hongzhuan; Susta, Leonardo; Gong, Jianhua; Prescott, John F

    2017-09-01

    Necrotic enteritis (NE) caused by netB-positive strains of Clostridium perfringens is an important disease of intensively-reared broiler chickens. It is widely controlled by antibiotic use, but this practice that has come under increasing scrutiny and alternative approaches are required. As part of the search for alternative approaches over the last decade, advances have been made in understanding its pathogenesis but much remains to be understood and applied to the control of NE. The objective of this work was to assess the effect on virulence of mutation of the cyclic-di-GMP signaling genes present on the large pathogenicity locus (NELoc-1) in the tcp-encoding conjugative virulence plasmid, pNetB. For this purpose, the diguanylate cyclase (dgc) and phosphodiesterase (pde) genes were individually insertionally inactivated and the two mutants were subsequently complemented with their respective genes. Southern blotting showed that a single gene insertion was present. Mutation of either gene resulted in almost total attenuation of the mutants to cause NE in experimentally-infected broiler chickens, which was fully restored in each case by complementation of the respective mutated gene. Production of NetB-associated cytotoxicity for Leghorn male hepatoma (LMH) cells was unaffected in mutants. We conclude that the cyclic-di-GMP signaling system is important in controlling virulence in a NE C. perfringens strain and might be a target for control of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Structure of an Unconventional HD-GYP Protein from Bdellovibrio Reveals the Roles of Conserved Residues in this Class of Cyclic-di-GMP Phosphodiesterases

    PubMed Central

    Lovering, Andrew L.; Capeness, Michael J.; Lambert, Carey; Hobley, Laura; Sockett, R. Elizabeth

    2011-01-01

    ABSTRACT Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.28 Å), obtained using the unusual Bd1817 HD-GYP protein from the predatory bacterium Bdellovibrio bacteriovorus. Bd1817 lacks the active-site tyrosine present in most HD-GYP family members yet remains an excellent model of their features, sharing 48% sequence similarity with the archetype RpfG. The protein structure is highly modular and thus provides a basis for delineating domain boundaries in other stimulus-dependent homologues. Conserved residues in the HD-GYP family cluster around a binuclear metal center, which is observed complexed to a molecule of phosphate, providing information on the mode of hydroxide ion attack on substrate. The fold and active site of the HD-GYP domain are different from those of EAL proteins, and restricted access to the active-site cleft is indicative of a different mode of activity regulation. The region encompassing the GYP motif has a novel conformation and is surface exposed and available for complexation with binding partners, including GGDEF proteins. PMID:21990613

  12. Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: Purification of a distinct cGMP-stimulated isoenzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murashima, Seiko; Tanaka, Takayuki; Hockman, S.

    1990-06-05

    In the absence of detergent, {approx}80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; {approx}85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity {approx}100% and calmodulin-stimulated {approx}400-500%. Although 1% Lubrol readily solubilized these PDE activities, {approx}75% of the cAMP PDE activity (0.5 {mu}M ({sup 3}H)cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide.more » Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. The brain enzyme exhibited a slightly greater subunit M{sub r} than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V{sub 8} protease produced several peptides of similar size, as well as at least two distinct fragments of {approx}27 kDa from the brain and {approx}23 kDa from the liver enzyme. After photolabeling in the presence of ({sup 32}P)cGMP and digestion with V{sub 8} protease, ({sup 32}P)cGMP in each PDE was predominantly recovered with a peptide of {approx}14 kDa. All of these observations are consistent with the existence of at least two discrete forms (isoenzymes) of cGMP-stimulated PDE.« less

  13. Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, M.; De, N; Bae, N

    2009-01-01

    Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data andmore » crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.« less

  14. Cyclic GMP-AMP Synthase Is Required for Cell Proliferation and Inflammatory Responses in Rheumatoid Arthritis Synoviocytes.

    PubMed

    Wang, Yan; Su, Guo-Hua; Zhang, Fang; Chu, Jing-Xue; Wang, Yun-Shan

    2015-01-01

    Rheumatoid arthritis (RA) is characterized by inflammatory cell infiltration, fibroblast-like synoviocytes (FLS) invasive proliferation, and joint destruction. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces immune activation. In this study, we examined whether cGAS plays a role in RA FLS. In this study, cGAS was overexpressed in RA-FLS compared with OA FLS. TNFα stimulation induced cGAS expression in RA FLS. Overexpression of cGAS promoted the proliferation and knockdown of cGAS inhibited the proliferation of RA FLS. cGAS overexpression enhanced the production of proinflammatory cytokines and matrix metalloproteinases (MMPs) as well as AKT and ERK phosphorylation in TNFα-stimulated FLS. In contrast, cGAS silencing inhibited production of proinflammatory cytokines and matrix metalloproteinases (MMPs) as well as AKT and ERK phosphorylation in TNFα-stimulated FLS. These results suggest that cGAS activates the AKT and ERK pathways to promote the inflammatory response of RA FLS, and the development of strategies targeting cGAS may have therapeutic potential for human RA.

  15. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  16. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  17. cGMP in ozone and NO dependent responses

    PubMed Central

    Ederli, Luisa; Meier, Stuart; Borgogni, Andrea; Reale, Lara; Ferranti, Francesco; Gehring, Chris

    2008-01-01

    We have recently reported that ozone (O3) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O3 causes mitochondrial H2O2, early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O3. AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3′, 5′-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O3 and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not. PMID:19704720

  18. Release of prostaglandins from the isolated frog ventricle and associated changes in endogenous cyclic nucleotide levels.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of the decline in contractility and some associated metabolic changes which occur in the isolated frog ventricle during the development of hypodynamic depression. 2. The release of two identified prostaglandins (PG), E1 and E2, together with several as yet unknown prostaglandin-related substances (PRS), accompanies the development of hypodynamic depression. There is a close correlation between the extent to which the isometric twitch is depressed and the quantity of prostaglandin released into the superfusate. 3. Fractionation of extracts of 'used' superfusates, using preparative-scale thin-layer chromatography, revealed the presence of six major components, four of which (PGE1 and PGE2 and two unidentified components) were found to be cardioactive and potentiated contraction when tested subsequently on hypodynamic preparations. 4. Two agents which influence prostaglandin biosynthesis, arachidonic acid and indomethacin, are found to affect both the rate at which the hypodynamic state develops and the extent to which the 'steady-state' twitch tension is depressed, in a dose-dependent manner. Indomethacin, a PG-synthetase inhibitor, accelerates the decay and depresses the final 'steady-state' tension attained, whereas arachidonic acid, the principal precursor for prostaglandin biosynthesis, has the converse effects. 5. Measurements of endogenous 3'5'-cyclic nucleotide levels reveal a time-dependent decrease in intracellular adenosine 3'5'-cyclic monophosphate (3'5'-cyclic AMP) and a concomitant increase in guanosine 3'5' cyclic monophosphate (3'5'-cyclic GMP). The decline in isometric twitch tension is paralleled almost exactly by an equivalent reduction in the ratio 3'5'-cyclic AMP: 3'5'-cyclic GMP. 6. Superfusion of isolated ventricles with Ringer solution containing exogenous, lipid-soluble derivatives of 3'5'-cyclic AMP and 3'5'-cyclic GMP affects both the rate of decline of the isometric twitch and the steady-state tension ultimately

  19. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  20. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix

    PubMed Central

    Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R

    2010-01-01

    Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural

  1. Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels

    PubMed Central

    Nache, Vasilica; Kusch, Jana; Biskup, Christoph; Schulz, Eckhard; Zimmer, Thomas; Hagen, Volker; Benndorf, Klaus

    2008-01-01

    Olfactory-type cyclic nucleotide-gated (CNG) ion channels open by the binding of cyclic nucleotides to a binding domain in the C-terminus. Employing the Eyring rate theory, we performed a thermodynamic analysis of the activation gating in homotetrameric CNGA2 channels. Lowering the temperature shifted the concentration-response relationship to lower concentrations, resulting in a decrease of both the enthalpy ΔH and entropy ΔS upon channel opening, suggesting that the order of an open CNGA2 channel plus its environment is higher than that of the closed channel. Activation time courses induced by cGMP concentration jumps were used to study thermodynamics of the transition state. The activation enthalpies ΔH‡ were positive at all cGMP concentrations. In contrast, the activation entropy ΔS‡ was positive at low cGMP concentrations and became then negative at increasing cGMP concentrations. The enthalpic and entropic parts of the activation energies approximately balance each other at all cGMP concentrations, leaving the free enthalpy of activation in the range between 19 and 21 kcal/mol. We conclude that channel activation proceeds through different pathways at different cGMP concentrations. Compared to the unliganded channel, low cGMP concentrations generate a transitional state of lower order whereas high cGMP concentrations generate a transitional state of higher order. PMID:18567637

  2. Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract.

    PubMed

    Raterman, Erica L; Shapiro, Daniel D; Stevens, Daniel J; Schwartz, Kevin J; Welch, Rodney A

    2013-09-01

    During urinary tract infections (UTIs), uropathogenic Escherichia coli must maintain a delicate balance between sessility and motility to achieve successful infection of both the bladder and kidneys. Previous studies showed that cyclic dimeric GMP (c-di-GMP) levels aid in the control of the transition between motile and nonmotile states in E. coli. The yfiRNB locus in E. coli CFT073 contains genes for YfiN, a diguanylate cyclase, and its activity regulators, YfiR and YfiB. Deletion of yfiR yielded a mutant that was attenuated in both the bladder and the kidneys when tested in competition with the wild-type strain in the murine model of UTI. A double yfiRN mutant was not attenuated in the mouse model, suggesting that unregulated YfiN activity and likely increased cytoplasmic c-di-GMP levels cause a survival defect. Curli fimbriae and cellulose production were increased in the yfiR mutant. Expression of yhjH, a gene encoding a proven phosphodiesterase, in CFT073 ΔyfiR suppressed the overproduction of curli fimbriae and cellulose and further verified that deletion of yfiR results in c-di-GMP accumulation. Additional deletion of csgD and bcsA, genes necessary for curli fimbriae and cellulose production, respectively, returned colonization levels of the yfiR deletion mutant to wild-type levels. Peroxide sensitivity assays and iron acquisition assays displayed no significant differences between the yfiR mutant and the wild-type strain. These results indicate that dysregulation of c-di-GMP production results in pleiotropic effects that disable E. coli in the urinary tract and implicate the c-di-GMP regulatory system as an important factor in the persistence of uropathogenic E. coli in vivo.

  3. Cyclic GMP-dependent but G-kinase-independent inhibition of Ca2+-dependent Cl− currents by NO donors in cat tracheal smooth muscle

    PubMed Central

    Waniishi, Yoshiki; Inoue, Ryuji; Morita, Hiromitsu; Teramoto, Noriyoshi; Abe, Kihachiro; Ito, Yushi

    1998-01-01

    effects of SNAP or db-cGMP. Another G-kinase-specific inhibitor Rp-8-(para-chlorophenylthio)guanosine-3′,5′-cyclic monophosphorothioate (Rp-8-pCPT-cGMPS; 1 μm) itself caused a marked reduction in ICCh. SNAP (100 μm) or db-cGMP (100 μm) exhibited no inhibitory actions, when caffeine (10 mM) or photolytically released IP3 were used instead of CCh to activate the inward current. These results suggest that inhibition of ICCh by NO donors involves a cGMP-dependent but G-kinase-independent mechanism, which may operate at a site(s) between the muscarinic (M3) and IP3 receptors. PMID:9714855

  4. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  5. Saxagliptin and Tadalafil Differentially Alter Cyclic Guanosine Monophosphate (cGMP) Signaling and Left Ventricular Function in Aortic-Banded Mini-Swine.

    PubMed

    Hiemstra, Jessica A; Lee, Dong I; Chakir, Khalid; Gutiérrez-Aguilar, Manuel; Marshall, Kurt D; Zgoda, Pamela J; Cruz Rivera, Noelany; Dozier, Daniel G; Ferguson, Brian S; Heublein, Denise M; Burnett, John C; Scherf, Carolin; Ivey, Jan R; Minervini, Gianmaria; McDonald, Kerry S; Baines, Christopher P; Krenz, Maike; Domeier, Timothy L; Emter, Craig A

    2016-04-20

    Cyclic guanosine monophosphate-protein kinase G-phosphodiesterase 5 signaling may be disturbed in heart failure (HF) with preserved ejection fraction, contributing to cardiac remodeling and dysfunction. The purpose of this study was to manipulate cyclic guanosine monophosphate signaling using the dipeptidyl-peptidase 4 inhibitor saxagliptin and phosphodiesterase 5 inhibitor tadalafil. We hypothesized that preservation of cyclic guanosine monophosphate cGMP signaling would attenuate pathological cardiac remodeling and improve left ventricular (LV) function. We assessed LV hypertrophy and function at the organ and cellular level in aortic-banded pigs. Concentric hypertrophy was equal in all groups, but LV collagen deposition was increased in only HF animals. Prevention of fibrotic remodeling by saxagliptin and tadalafil was correlated with neuropeptide Y plasma levels. Saxagliptin better preserved integrated LV systolic and diastolic function by maintaining normal LV chamber volumes and contractility (end-systolic pressure-volume relationship, preload recruitable SW) while preventing changes to early/late diastolic longitudinal strain rate. Function was similar to the HF group in tadalafil-treated animals including increased LV contractility, reduced chamber volume, and decreased longitudinal, circumferential, and radial mechanics. Saxagliptin and tadalafil prevented a negative cardiomyocyte shortening-frequency relationship observed in HF animals. Saxagliptin increased phosphodiesterase 5 activity while tadalafil increased cyclic guanosine monophosphate levels; however, neither drug increased downstream PKG activity. Early mitochondrial dysfunction, evident as decreased calcium-retention capacity and Complex II-dependent respiratory control, was present in both HF and tadalafil-treated animals. Both saxagliptin and tadalafil prevented increased LV collagen deposition in a manner related to the attenuation of increased plasma neuropeptide Y levels. Saxagliptin

  6. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells.

    PubMed

    Stumpf, Ina; Mühlbauer, Eckhard; Peschke, Elmar

    2008-10-01

    Recent investigations have demonstrated an influence of melatonin on insulin secretion in pancreatic beta-cells. The effects are receptor-mediated via two parallel signaling pathways. The aim of this study was to examine the relevance of a second melatonin receptor (MT2) as well as the involvement of a third signaling cascade in mediating melatonin effects, i.e. the cyclic guanosine monophosphate (cGMP) pathway. Our results demonstrate that the insulin-inhibiting effect of melatonin could be partly reversed by preincubation with the unspecific melatonin receptor antagonist luzindole as well as by the MT2-receptor-specific antagonist 4P-PDOT (4-phenyl-2-propionamidotetraline). As melatonin is known to modulate cGMP concentration via the MT2 receptor, these data indicate transmission of the melatonin effects via the cGMP transduction cascade. Molecular investigations established the presence of different types of guanylate cyclases, cGMP-specific phosphodiesterases and cyclic nucleotide-gated channels in rat insulinoma beta-cells (INS1). Moreover, variations in mRNA expression were found when comparing day and night values as well as different states of glucose metabolism. Incubation experiments provided evidence that 3-isobutyl-1-methylxanthine (IBMX)-stimulated cGMP concentrations were significantly decreased in INS1 cells exposed to melatonin for 1 hr in a dose- and time-dependent manner. This effect could also be reversed by application of luzindole and 4P-PDOT. Stimulation with 8-Br-cGMP resulted in significantly increased insulin production. In conclusion, it could be demonstrated that the melatonin receptor subtype MT2 as well as the cGMP signaling pathway are involved in mediating the insulin-inhibiting effect of melatonin.

  7. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest

  8. Cyclic diguanylate signaling in Gram-positive bacteria

    PubMed Central

    Purcell, Erin B.; Tamayo, Rita

    2016-01-01

    The nucleotide second messenger 3′-5′ cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  9. Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol.

    PubMed

    Werner, Claudia; Raivich, Gennadij; Cowen, Michael; Strekalova, Tatyana; Sillaber, Inge; Buters, Jeroen T; Spanagel, Rainer; Hofmann, Franz

    2004-12-01

    Cyclic GMP is a second messenger for nitric oxide (NO) that acts as a mediator for many different physiological functions. The cGMP-dependent protein kinases (cGKs) mediate cellular signalling induced by NO and cGMP. Here, we explored the localization of cGMP-dependent protein kinase type II (cGKII) in the mouse brain. In situ hybridization revealed high levels of cGKII mRNA in cerebral cortex, thalamic nuclei, hypothalamic nuclei, and in several basal forebrain regions including medial septum, striatum and amygdala. The close link to NO and the distribution pattern of cGKII suggested that this enzyme might be involved in emotional reactions and responses to drugs of abuse. Therefore, cGKII knockout animals (cGKII-/-) were compared with littermate controls in behavioural tests (i) for emotion-linked and (ii) for acute and chronic ethanol responses. Deletion of cGKII did not influence aggressive behaviour but led to enhanced anxiety-like behaviour. In terms of acute responses to ethanol, cGKII-/- mice were hyposensitive to hypnotic doses of ethanol as measured by the loss of righting reflex, without an alteration in their blood alcohol elimination. In a two-bottle free choice test, cGKII-/- mice showed elevated alcohol consumption. No taste differences to sweet solutions were observed compared to control animals. In summary, our data show that cGKII activity modulates anxiety-like behaviour and neurobehavioural effects of alcohol.

  10. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nygaard, Gyrid; Department of Biomedicine, University of Bergen, Bergen; Herfindal, Lars

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigatedmore » whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.« less

  11. Prolonged treatment of porcine pulmonary artery with nitric oxide decreases cGMP sensitivity and cGMP-dependent protein kinase specific activity

    PubMed Central

    Perkins, William J.; Warner, David O.; Jones, Keith A.

    2009-01-01

    A cultured porcine pulmonary artery (PA) model was used to examine the effects of prolonged nitric oxide (NO) treatment on the response to acutely applied NO, cGMP analog, or atrial natriuretic peptide (ANP). Twenty-four-hour treatment with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) resulted in >10-fold decrease in the response to acutely applied DETA-NO. In parallel with this, the relaxant response to acutely applied cGMP analog, β-phenyl-1,N2-etheno-8-bromoguanosine-3′,5′-cyclic monophosphorothioate, Sp isomer (Sp-8-Br-PET-cGMPS), and ANP decreased. The reduction in ANP responsiveness in PA was not associated with a reduction in cGMP levels evoked by 10−6 M ANP. Twenty-four hours in culture and treatment with DETA-NO decreased total cGMP-dependent protein kinase (cGKI) mRNA level compared with that in freshly prepared PA (1.05 ± 0.12, 0.42 ± 0.08, and 0.11 ± 0.01 amol/μg, respectively). Total cGKI protein levels were decreased to a lesser extent by 24 h in culture and further decreased by 24-h DETA-NO treatment compared with that in freshly prepared PA (361 ± 33, 272 ± 20, and 238 ± 25 ng/mg total protein, respectively). Maximal cGMP-stimulated phosphotransferase activity was reduced in 24-h cultured and DETA-NO-treated PA (986 ± 84, 815 ± 81, and 549 ± 78 pmol Pi·min−1·mg soluble protein−1), but the cGMP concentration resulting in 50% of maximal phosphotransferase activity was not. cGKI specific activity (maximal cGMP-activated phosphotransferase activity/ng cGKI) was significantly reduced in PA treated with DETA-NO for 24 h compared with freshly prepared and 24-h cultured PA (1.95 ± 0.22, 2.64 ± 0.25, and 2.85 ± 0.28 pmol Pi·min−1·ng cGKI−1, respectively). We conclude that prolonged NO treatment induces decreased acute NO responsiveness in PA in part by decreasing cGMP sensitivity. It does so by decreasing both cGKI expression and cGKI specific activity. PMID:18952758

  12. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels.

    PubMed

    Chua, Song Lin; Ding, Yichen; Liu, Yang; Cai, Zhao; Zhou, Jianuan; Swarup, Sanjay; Drautz-Moses, Daniela I; Schuster, Stephan Christoph; Kjelleberg, Staffan; Givskov, Michael; Yang, Liang

    2016-11-01

    The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H 2 O 2 ) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections. © 2016 The Authors.

  13. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  14. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    USDA-ARS?s Scientific Manuscript database

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  15. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  16. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  17. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    PubMed

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila

    PubMed Central

    2017-01-01

    Increasing evidence indicates that the white (w) gene in Drosophila possesses extra-retinal functions in addition to its classical role in eye pigmentation. We have previously shown that w+ promotes fast and consistent locomotor recovery from anoxia, but how w+ modulates locomotor recovery is largely unknown. Here we show that in the absence of w+, several PDE mutants, especially cyclic guanosine monophosphate (cGMP)-specific PDE mutants, display wildtype-like fast locomotor recovery from anoxia, and that during the night time, locomotor recovery was light-sensitive in white-eyed mutant w1118, and light-insensitive in PDE mutants under w1118 background. Data indicate the involvement of cGMP in the modulation of recovery timing and presumably, light-evoked cGMP fluctuation is associated with light sensitivity of locomotor recovery. This was further supported by the observations that w-RNAi-induced delay of locomotor recovery was completely eliminated by upregulation of cGMP through multiple approaches, including PDE mutation, simultaneous overexpression of an atypical soluble guanylyl cyclase Gyc88E, or sildenafil feeding. Lastly, prolonged sildenafil feeding promoted fast locomotor recovery from anoxia in w1118. Taken together, these data suggest that a White-cGMP interaction modulates the timing of locomotor recovery from anoxia. PMID:28060942

  19. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.

    PubMed

    Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin

    2018-03-07

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  20. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    PubMed Central

    Biel, Martin

    2018-01-01

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895

  1. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2018-01-01

    Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Congo Red Stain Identifies Matrix Overproduction and Is an Indirect Measurement for c-di-GMP in Many Species of Bacteria.

    PubMed

    Jones, Christopher J; Wozniak, Daniel J

    2017-01-01

    Congo red is a diazo textile dye that has been used to visualize the production of amyloid fibers for nearly a century. Microbiological applications were later developed, especially in identifying strains that produce amyloid appendages called curli and overexpressing polysaccharides in the biofilm matrix. The second messenger cyclic diguanylate (c-di-GMP) regulates the production of biofilm matrix polysaccharides, and therefore Congo red staining of samples can be utilized as an indirect measurement of elevated c-di-GMP production in bacteria. Congo red allows the identification of strains producing high c-di-GMP in an inexpensive, quantitative, and high-throughput manner.

  3. Biofilm Formation by the Acidophile Bacterium Acidithiobacillus thiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide.

    PubMed

    Díaz, Mauricio; Castro, Matias; Copaja, Sylvia; Guiliani, Nicolas

    2018-02-21

    Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillus thiooxidans . We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At . thiooxidans biofilm cells compared to planktonic ones. By developing an At . thiooxidans Δ pelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.

  4. Involvement of DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP Pathways in Human Tissue Kallikrein 1 Protecting Erectile Function in Aged Rats

    PubMed Central

    Tang, Zhe; Rao, Ke; Wang, Tao; Chen, Zhong; Wang, Shaogang; Liu, Jihong; Wang, Daowen

    2017-01-01

    Our previous studies had reported that Human Tissue Kallikrein 1 (hKLK1) preserved erectile function in aged transgenic rats, while the detailed mechanism of hKLK1 protecting erectile function in aged rats through activation of cGMP and cAMP was not mentioned. To explore the latent mechanism, male wild-type Sprague-Dawley rats (WTR) and transgenic rats harboring the hKLK1 gene (TGR) were fed to 4 and 18 months old and divided into four groups: young WTR (yWTR) as the control, aged WTR (aWTR), aged TGR (aTGR) and aged TGRs with HOE140 (aTGRH). Erectile function of all rats was evaluated by cavernous nerve electrostimulation method and measured by the ratio of intracavernous pressure/ mean arterial pressure (ICP/MAP) in rats. Expression levels of cAMP and cGMP were assessed, and related signaling pathways were detected by western blot, immunohistochemistry and RT-PCR. Our experiment results showed erectile function of the aWTR group and aTGRH group was lower compared with those of other two groups. Also, expression levels of cAMP and cGMP were significantly lower than those of other two groups. Moreover, expressions of related signaling pathways including DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP were also downregulated in the corpus cavernosum of rats in aWTR group. Our finding revealed hKLK1 played a protective role in age-related ED. The DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP pathways that were linked to the mechanism hKLK1 could increase the levels of cGMP and cAMP, which might provide novel therapy targets for age-related ED. PMID:28103290

  5. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    PubMed

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  6. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells.

    PubMed

    Wilson, Lindsay S; Guo, Manhong; Umana, M Bibiana; Maurice, Donald H

    2017-08-01

    Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO · ) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP 3 R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP 3 -mediated release of ER Ca 2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca 2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells. Copyright © 2017. Published by Elsevier Inc.

  7. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    PubMed Central

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  8. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.

    PubMed Central

    Brown, R L; Snow, S D; Haley, T L

    1998-01-01

    In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the

  9. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta.

    PubMed Central

    Bossaller, C; Habib, G B; Yamamoto, H; Williams, C; Wells, S; Henry, P D

    1987-01-01

    The dependence of vascular relaxation on an intact endothelium and the relationship between relaxation and cyclic GMP accumulation were determined in coronary arteries isolated from cardiac transplantation patients with or without coronary atherosclerosis. In nonatherosclerotic arteries, the endothelium-dependent agent acetylcholine produced concentration-related relaxations. In atherosclerotic arteries, endothelium-dependent relaxations were abolished with acetylcholine, partly suppressed with substance P and histamine, and completely preserved with the ionophore A23187. In these arteries, the endothelium-independent agent nitroglycerin remained fully active. Accumulation of cyclic GMP in atherosclerotic strips was suppressed with acetylcholine but unattenuated with A23187 and nitroglycerin. In aortas from rabbits with diet-induced atherosclerosis, there was likewise an impaired cholinergic relaxation and cyclic GMP accumulation in the presence of preserved responses to A23187 and nitroglycerin. The results demonstrate that impaired cholinergic responses in atherosclerotic arteries reflect a muscarinic defect and not an inability of endothelium to release endothelial factor or smooth muscle to respond to it. PMID:2432088

  10. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  11. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  12. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  13. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    PubMed

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  14. In vivo effects of phosphodiesterase inhibition on basal cyclic guanosine monophosphate levels in the prefrontal cortex, hippocampus and cerebellum of freely moving rats.

    PubMed

    Marte, Antonella; Pepicelli, Olimpia; Cavallero, Anna; Raiteri, Maurizio; Fedele, Ernesto

    2008-11-15

    We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.

  15. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  16. Defining Specificity Determinants of cGMP Mediated Gustatory Sensory Transduction in Caenorhabditis elegans

    PubMed Central

    Smith, Heidi K.; Luo, Linjiao; O’Halloran, Damien; Guo, Dagang; Huang, Xin-Yun; Samuel, Aravinthan D. T.; Hobert, Oliver

    2013-01-01

    Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion channel subunits, encoded by the tax-2 and tax-4 genes, are essential for ASE-mediated gustatory behavior. We describe here specific mechanistic features of cGMP-mediated signal transduction in the ASE neurons. First, we assess the specificity of the sensory functions of individual rGC proteins. We have previously shown that multiple rGC proteins are expressed in a left/right asymmetric manner in the functionally lateralized ASE neurons and are required to sense distinct salt cues. Through domain swap experiments among three different rGC proteins, we show here that the specificity of individual rGC proteins lies in their extracellular domains and not in their intracellular, signal-transducing domains. Furthermore, we find that rGC proteins are also sufficient to confer salt sensory responses to other neurons. Both findings support the hypothesis that rGC proteins are salt receptor proteins. Second, we identify a novel, likely downstream effector of the rGC proteins in gustatory signal transduction, a previously uncharacterized cyclic nucleotide-gated (CNG) ion channel, encoded by the che-6 locus. che-6 mutants show defects in gustatory sensory transduction that are similar to defects observed in animals lacking the tax-2 and tax-4 CNG channels. In contrast, thermosensory signal transduction, which also requires tax-2 and tax-4, does not require che-6, but requires another CNG, cng-3. We propose that CHE-6 may form together with two other CNG subunits, TAX-2 and TAX-4, a gustatory neuron-specific heteromeric CNG channel complex. PMID:23695300

  17. Cooperative DNA binding of heterologous proteins: Evidence for contact between the cyclic AMP receptor protein and RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Y.L.; Garges, S.; Adhya, S.

    1988-06-01

    Four cAMP-independent receptor protein mutants (designated CRP* mutants) isolated previously are able to activate in vivo gene transcription in the absence of cAMP and their activity can be enhanced by cAMP or cGMP. One of the four mutant proteins, CRP*598 (Arg-142 to His, Ala-144 to Thr), has been characterized with regard to its conformational properties and ability to bind to and support abortive initiation from the lac promoter. Binding of wild-type CRP to its site on the lac promoter and activation of abortive initiation by RNA polymerase on this promoter are effected by cAMP but not by cGMP. CRP*598 canmore » activate lacP{sup +}-directed abortive initiation in the presence of cAMP and less efficiently in the presence of cGMP or in the absence of cyclic nucleotide. DNase I protection (footprinting) indicates that cAMP-CRP* binds to its site on the lac promoter whereas unliganded CRP* and cGMP-CRP* form a stable complex with the ({sup 32}P)lacP{sup +} fragment only in the presence of RNA polymerase, showing cooperative binding of two heterologous proteins. This cooperative binding provides strong evidence for a contact between CRP and RNA polymerase for activation of transcription. Although cGMP binds to CRP, it cannot replace cAMP in effecting the requisite conformational transition necessary for site-specific promoter binding.« less

  18. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production

    PubMed Central

    Schäper, Simon; Steinchen, Wieland; Krol, Elizaveta; Altegoer, Florian; Skotnicka, Dorota; Bange, Gert; Becker, Anke

    2017-01-01

    Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal “RxxxR” motif and a β-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP–responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP–responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins. PMID:28559336

  19. Biochemical activity and multiple locations of particulate guanylate cyclase in Rhyacophila dorsalis acutidens (Insecta: Trichoptera) provide insights into the cGMP signalling pathway in Malpighian tubules.

    PubMed

    Secca, T; Sciaccaluga, M; Marra, A; Barberini, L; Bicchierai, M C

    2011-04-01

    In insect renal physiology, cGMP and cAMP have important regulatory roles. In Drosophila melanogaster, considered a good model for molecular physiology studies, and in other insects, cGMP and cAMP act as signalling molecules in the Malpighian tubules (MTs). However, many questions related to cyclic nucleotide functions are unsolved in principal cells (PC) and stellate cells (SC), the two cell types that compose the MT. In PC, despite the large body of information available on soluble guanylate cyclase (sGC) in the cGMP pathway, the functional circuit of particulate guanylate cyclase (pGC) remains obscure. In SC, on the other side, the synthesis and physiological role of the cGMP are still unknown. Our biochemical data regarding the presence of cyclic nucleotides in the MTs of Rhyacophila dorsalis acutidens revealed a cGMP level above the 50%, in comparison with the cAMP. The specific activity values for the membrane-bound guanylate cyclase were also recorded, implying that, besides the sGC, pGC is a physiologically relevant source of cGMP in MTs. Cytochemical studies showed ultrastructurally that there was a great deal of pGC on the basolateral membranes of both the principal and stellate cells. In addition, pGC was also detected in the contact zone between the two cell types and in the apical microvillar region of the stellate cells bordering the tubule lumen. The pGC signal is so well represented in PC and, unexpectedly in SC of MTs, that it is possible to hypothesize the existence of still uncharacterized physiological processes regulated by the pGC-cGMP system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain.

    PubMed

    Chen, Jie; Tabatabaei, Ali; Zook, Doug; Wang, Yan; Danks, Anne; Stauber, Kathe

    2017-11-30

    A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine- 13 C 5 monophosphate ( 13 C 5 -cAMP) and 3',5'-cyclic guanosine- 13 C, 15 N 2 monophosphate ( 13 C 15 N 2 -cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r 2 >0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    PubMed

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  2. The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3'5'-monophosphate.

    PubMed

    Wie, Jinhong; Jeong, SeungJoo; Kwak, Misun; Myeong, Jongyun; Chae, MeeRee; Park, Jong Kwan; Lee, Sung Won; So, Insuk

    2017-06-01

    The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.

  3. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation

    PubMed Central

    Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs

    2017-01-01

    ABSTRACT The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli. This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. PMID:28928205

  4. Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.

    PubMed

    Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R

    2013-10-23

    Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.

  5. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.

    PubMed

    Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G

    2018-04-24

    Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.

  6. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy

    PubMed Central

    Miller, Clint L.; Oikawa, Masayoshi; Cai, Yujun; Wojtovich, Andrew P.; Nagel, David J.; Xu, Xiangbin; Xu, Haodong; Florio, Vince; Rybalkin, Sergei D.; Beavo, Joseph A.; Chen, Yiu-Fai; Li, Jian-Dong; Blaxall, Burns C.; Abe, Jun-ichi; Yan, Chen

    2009-01-01

    Rationale Cyclic nucleotide phosphodiesterases (PDE) through the degradation of second messenger cyclic guanosine monophosphate (cGMP) play critical roles in maintaining cardiomyocyte homeostasis. Ca2+/CaM-activated cGMP-hydrolyzing PDE1 family may play a pivotal role in balancing intracellular Ca2+/CaM and cGMP signaling, however its function in cardiomyocytes is unknown. Objective Herein we investigate the role of Ca2+/CaM-stimulated PDE1 in regulating pathological cardiomyocyte hypertrophy in neonatal and adult rat ventricular myocytes (NRVM and ARVM) and in the heart in vivo. Methods and Results Inhibition of PDE1 activity using a PDE1 selective inhibitor IC86340 or downregulation of PDE1A using siRNA prevented phenylephrine (PE) induced pathological myocyte hypertrophy and hypertrophic marker expression in neonatal (NRVM) and adult (ARVM) rat ventricular myocytes. Importantly, administration of the PDE1 inhibitor IC86340 attenuated cardiac hypertrophy induced by chronic ISO infusion in vivo. Both PDE1A and PDE1C mRNA and protein were detected in human hearts, however PDE1A expression was conserved in rodent hearts. Moreover, PDE1A expression was significantly upregulated in vivo in the heart and myocytes from various pathological hypertrophy animal models and in vitro in isolated NRVM and ARVM treated with neurohumoral stimuli such as angiotensin II (Ang II) and ISO. Further, PDE1A plays a critical role in PE-induced reduction of intracellular cGMP and PKG activity, and thereby cardiomyocyte hypertrophy in vitro. Conclusions These results elucidate a novel role for Ca2+/CaM-stimulated PDE1, particularly PDE1A, in regulating pathological cardiomyocyte hypertrophy via a cGMP/PKG-dependent mechanism, thereby demonstrating Ca2+ and cGMP signaling cross-talk during cardiac hypertrophy. PMID:19797176

  7. Structure of a eukaryotic cyclic nucleotide-gated channel

    PubMed Central

    Li, Minghui; Zhou, Xiaoyuan; Wang, Shu; Michailidis, Ioannis; Gong, Ye; Su, Deyuan; Li, Huan; Li, Xueming; Yang, Jian

    2018-01-01

    Summary Cyclic nucleotide-gated (CNG) channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5 Å-resolution single-particle electron cryomicroscopy structure of a CNG channel from C. elegans in the cGMP-bound open state. The channel has an unusual voltage-sensor-like domain (VSLD), accounting for its deficient voltage dependence. A C-terminal linker connecting S6 and the cyclic nucleotide-binding domain interacts directly with both the VSLD and pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of CNG channels and cyclic nucleotide modulation of related channels. PMID:28099415

  8. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine

    PubMed Central

    García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  9. Periodic GMP Matrices

    NASA Astrophysics Data System (ADS)

    Eichinger, Benjamin

    2016-07-01

    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.

  10. [The effect of vestibuloprotectors on the cyclic nucleotide system in experimental motion sickness].

    PubMed

    Leshchiniuk, I I; Konovalova, E O; Kvitchataia, A I; Shamraĭ, V G; Bobkov, Iu G

    1989-01-01

    Changes in the blood plasma cyclic nucleotide (cAMP and cGMP) level under the effect of vestibuloprotectors: bemytil and etoxibemytil were studied in rats with experimental motion sickness. It is established that rotation causes increase in the cAMP level and decrease in the cGMP level. The effect of the vestibuloprotectors is determined by the dose of the drug and is aimed first of all at maintaining a stable cAMP level in vestibular exertion. Under conditions of this experiment etoxibemytil was more effective than bemytil.

  11. ASEAN GMP and pharmaceutical industries in Indonesia.

    PubMed

    Soesilo, S; Sitorus, U

    1995-01-01

    Indonesia was appointed by the ASEAN Technical Cooperation in Pharmaceutical as a focal point and to coordinate the development of practical guidelines for the implementation of GMP. The ASEAN GMP Guidelines were endorsed by the ASEAN Technical Cooperation in Pharmaceutical in 1988, which among others required separation of Beta-Lactam dedicated facilities and three degrees of cleanliness for production areas. As it was realised that drug manufacturers in developing countries need more detailed guidelines to be able to implement the GMP, an Operational Manual for GMP was also prepared for providing examples of SOPs lay-outs, documentation etc. It was agreed by the technical cooperation group to leave the implementation of GMP to each member country. However, the ASEAN Manual for Inspection of GMP was drafted and endorsed by the group and training of ASEAN Drug Inspectors was organized to support the implementation. The ASEAN GMP is being implemented in Indonesia through a five-year, stepwise implementation plan, starting in 1989.

  12. Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic Diguanylate Signaling

    PubMed Central

    Flynn, Kenneth M.; Dowell, Gabrielle; Johnson, Thomas M.; Koestler, Benjamin J.; Waters, Christopher M.

    2016-01-01

    ABSTRACT The ecological and evolutionary forces that promote and maintain diversity in biofilms are not well understood. To quantify these forces, three Pseudomonas aeruginosa populations were experimentally evolved from strain PA14 in a daily cycle of attachment, assembly, and dispersal for 600 generations. Each biofilm population evolved diverse colony morphologies and mutator genotypes defective in DNA mismatch repair. This diversity enhanced population fitness and biofilm output, owing partly to rare, early colonizing mutants that enhanced attachment of others. Evolved mutants exhibited various levels of the intracellular signal cyclic-di-GMP, which associated with their timing of adherence. Manipulating cyclic-di-GMP levels within individual mutants revealed a network of interactions in the population that depended on various attachment strategies related to this signal. Diversification in biofilms may therefore arise and be reinforced by initial colonists that enable community assembly. IMPORTANCE How biofilm diversity assembles, evolves, and contributes to community function is largely unknown. This presents a major challenge for understanding evolution during chronic infections and during the growth of all surface-associated microbes. We used experimental evolution to probe these dynamics and found that diversity, partly related to altered cyclic-di-GMP levels, arose and persisted due to the emergence of ecological interdependencies related to attachment patterns. Clonal isolates failed to capture population attributes, which points to the need to account for diversity in infections. More broadly, this study offers an experimental framework for linking phenotypic variation to distinct ecological strategies in biofilms and for studying eco-evolutionary interactions. PMID:27021563

  13. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases.

    PubMed

    Grigorenko, Bella L; Knyazeva, Marina A; Nemukhin, Alexander V

    2016-11-01

    We report for the first time a hydrolysis mechanism of the cyclic dimeric guanosine monophosphate (c-di-GMP) by the EAL domain phosphodiesterases as revealed by molecular simulations. A model system for the enzyme-substrate complex was prepared on the base of the crystal structure of the EAL domain from the BlrP1 protein complexed with c-di-GMP. The nucleophilic hydroxide generated from the bridging water molecule appeared in a favorable position for attack on the phosphorus atom of c-di-GMP. The most difficult task was to find a pathway for a proton transfer to the O3' atom of c-di-GMP to promote the O3'P bond cleavage. We show that the hydrogen bond network extended over the chain of water molecules in the enzyme active site and the Glu359 and Asp303 side chains provides the relevant proton wires. The suggested mechanism is consistent with the structural, mutagenesis, and kinetic experimental studies on the EAL domain phosphodiesterases. Proteins 2016; 84:1670-1680. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Involvement of NO-cGMP pathway in anti-hyperalgesic effect of PDE5 inhibitor tadalafil in experimental hyperalgesia.

    PubMed

    Otari, K V; Upasani, C D

    2015-08-01

    The association of elevated level of cyclic guanosine monophosphate (cGMP) with inhibition of hyperalgesia and involvement of nitric oxide (NO)-cGMP pathway in the modulation of pain perception was previously reported. Phosphodiesterases 5 (PDE5) inhibitors, sildenafil and tadalafil (TAD) used in erectile dysfunction, are known to act via the NO-cGMP pathway. TAD exerts its action by increasing the levels of intracellular cGMP. Hence, the present study investigated the effect of TAD 5, 10, or 20 mg/kg, per os (p.o.) or L-NAME 20 mg/kg, intraperitoneally (i.p.) and TAD (20 mg/kg, p.o.) in carrageenan- and diabetes-induced hyperalgesia in rats using hot plate test at 55 ± 2 °C. In carrageenan- and diabetes-induced hyperalgesia, TAD (10 and 20 mg/kg, p.o.) significantly increased paw withdrawal latencies (PWLs) as compared to the control group. L-NAME significantly decreased PWLs as compared to the normal group and aggravated the hyperalgesia. Moreover, significant difference in PWLs of L-NAME and TAD 20 was evident. Co-administration of L-NAME (20 mg/kg) with TAD (20 mg/kg) showed significant difference in PWLs as compared to the TAD (20 mg/kg), indicating L-NAME reversed and antagonized TAD-induced anti-hyperalgesia. This suggested an important role of NO-cGMP pathway in TAD-induced anti-hyperalgesic effect.

  15. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation.

    PubMed

    Khromov, A S; Wang, H; Choudhury, N; McDuffie, M; Herring, B P; Nakamoto, R; Owens, G K; Somlyo, A P; Somlyo, A V

    2006-02-14

    Cyclic nucleotides can relax smooth muscle without a change in [Ca2+]i, a phenomenon termed Ca2+ desensitization, contributing to vasodilation, gastrointestinal motility, and airway resistance. The physiological importance of telokin, a 17-kDa smooth muscle-specific protein and target for cyclic nucleotide-induced Ca2+ desensitization, was determined in telokin null mice bred to a congenic background. Telokin null ileal smooth muscle homogenates compared to wild type exhibited an approximately 30% decrease in myosin light-chain phosphatase (MLCP) activity, which was reflected in a significant leftward shift (up to 2-fold at pCa 6.3) of the Ca2+ force relationship accompanied by an increase in myosin light-chain phosphorylation. No difference in the Ca2+ force relationship occurred in telokin WT and knockout (KO) aortas, presumably reflecting the normally approximately 5-fold lower telokin content in aorta vs. ileum smooth muscle. Ca2+ desensitization of contractile force by 8-Br-cGMP was attenuated by 50% in telokin KO intestinal smooth muscle. The rate of force relaxation reflecting MLCP activity, in the presence of 50 microM 8-Br-cGMP, was also significantly slowed in telokin KO vs. WT ileum and was rescued by recombinant telokin. Normal thick filaments in telokin KO smooth muscles indicate that telokin is not required for filament formation or stability. Results indicate that a primary role of telokin is to modulate force through increasing MLCP activity and that this effect is further potentiated through phosphorylation by cGMP in telokin-rich smooth tissues.

  16. Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis.

    PubMed

    Zaki, Mohammad Hasan; Fujii, Shigemoto; Okamoto, Tatsuya; Islam, Sabrina; Khan, Shahzada; Ahmed, Khandaker Ahtesham; Sawa, Tomohiro; Akaike, Takaaki

    2009-03-15

    Signaling mechanisms of NO-mediated host defense are yet to be elucidated. In this study, we report a unique signal pathway for cytoprotection during Salmonella infection that involves heme oxygenase 1 (HO-1) induced by a nitrated cyclic nucleotide, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP). Wild-type C57BL/6 mice and C57BL/6 mice lacking inducible NO synthase (iNOS) were infected with Salmonella enterica serovar Typhimurium LT2. HO-1 was markedly up-regulated during the infection, the level being significantly higher in wild-type mice than in iNOS-deficient mice. HO-1 up-regulation was associated with 8-nitro-cGMP formation detected immunohistochemically in Salmonella-infected mouse liver and peritoneal macrophages. 8-Nitro-cGMP either exogenously added or formed endogenously induced HO-1 in cultured macrophages infected with Salmonella. HO-1 inhibition by polyethylene glycol-conjugated zinc-protoporphyrin IX impaired intracellular killing of bacteria in mouse liver and in both RAW 264 cells and peritoneal macrophages. Infection-associated apoptosis was also markedly increased in polyethylene glycol-conjugated zinc-protoporphyrin IX-treated mouse liver cells and cultured macrophages. This effect of HO-1 inhibition was further confirmed by using HO-1 short interfering RNA in peritoneal macrophages. Our results suggest that HO-1 induced by NO-mediated 8-nitro-cGMP formation contributes, via its potent cytoprotective function, to host defense during murine salmonellosis.

  17. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella

    PubMed Central

    Solano, Cristina; García, Begoña; Latasa, Cristina; Toledo-Arana, Alejandro; Zorraquino, Violeta; Valle, Jaione; Casals, Joan; Pedroso, Enrique; Lasa, Iñigo

    2009-01-01

    Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3′-5′-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP–dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable. PMID:19416883

  18. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  19. Structural Basis of Differential Ligand Recognition by Two Classes of bis-(3-5)-cyclic Dimeric Guanosine Monophosphate-binding Riboswitches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Smith; C Shanahan; E Moore

    2011-12-31

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbonemore » is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.« less

  20. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger.

    PubMed

    Fujii, Shigemoto; Akaike, Takaaki

    2013-10-10

    Emerging evidence has revealed that nitric oxide (NO)- and reactive oxygen species (ROS)-derived electrophiles formed in cells mediate signal transduction for responses to oxidative stress. The cyclic nucleotide with a nitrated guanine moiety-8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP)-first identified in 2007 as a second messenger for NO and ROS-has certain unique properties that its parental cGMP lacks. For example, it can react with particular protein Cys thiols because of its electrophilicity and can cause unique post-translational modifications of redox-sensor proteins such as Keap1 and H-Ras. Site-specific S-guanylation of Keap1 at Cys434 induced NO- and ROS-mediated adaptive responses to oxidative stress. H-Ras Cys184 S-guanylation was recently found to be involved in activation of mitogen-activated protein kinase cascades as manifested by cellular senescence and heart failure in mouse cardiac hypertrophy models. The latest finding related to the concept of electrophile-based redox signaling is a potent regulatory function of endogenously produced hydrogen sulfide for redox signaling via 8-nitro-cGMP. Electrophile modification of 8-nitro-cGMP, as a second messenger for NO and ROS, by hydrogen sulfide (i.e., electrophile sulfhydration) can most likely effect physiological regulation of cellular redox signaling. Continued investigation of the precise function of cellular hydrogen sulfide that may control electrophile-dependent redox cellular signaling, most typically via 8-nitro-cGMP formation, may provide novel insights into the molecular mechanisms of oxidative stress responses, oxidative stress-related pathology and disease control, and development of therapeutics for various diseases.

  1. Transcutaneous Electrical Stimulation Increased Nitric Oxide-Cyclic GMP Release Biocaptured Over Skin Surface of Pericardium Meridian and Acupuncture Points in Humans

    PubMed Central

    Ma, Sheng-Xing; Mayer, Emeran; Lee, Paul; Li, Xi-yan; Gao, Ellen Z.

    2015-01-01

    Objectives The purpose of this study was to consecutively capture and quantify nitric oxide (NO) and cGMP, the second messenger of NO, over the skin surface of acupuncture points (acupoints), meridian line without acupoint, and non-meridian control regions of the Pericardium meridian (PC) in humans, and investigate their response to transcutaneous electrical nerve stimulation (TENS). Design, setting, and main outcome measures Adhesive biocapture tubes were attached to the skin surface along PC regions and injected with 2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl solution, an NO-scavenging compound, contacting the skin surface for 20 minutes each during 4 consecutive biocapture intervals. TENS (1.0 mA, 6 Hz, 1.0 msec duration) was applied over acupoints PC 8 and PC 3 during the 2nd biocapture for 20 min. Total nitrite and nitrate (NOx-), the stable metabolic products of NO, and cGMP in biocaptured samples were quantified using chemiluminescence and ELISA. Results NOx- levels in the 1st biocapture over PC regions are almost two fold higher compared to subsequent biocaptures and are higher over PC acupoints versus non-meridian control region. Following TENS, NOx- concentrations over PC regions were significantly increased, and cGMP is predominantly released from the skin surface of PC acupoints. Conclusions TENS induces elevations of NO-cGMP concentrations over local skin region with a high level at acupoints. The enhanced signal molecules improve local circulation, which contributes to beneficial effects of the therapy. PMID:26369251

  2. Cyclic nucleotides in tissues during long-term hypokinesia

    NASA Technical Reports Server (NTRS)

    Makeyeva, V. F.; Komolova, G. S.; Yegorov, I. A.; Serova, L. V.; Chelnaya, N. A.

    1981-01-01

    Male Wistar rates were kept hypokinetic by placing them in small containers for 22 days. Blood plasma cAMP content was subsequently found increased, and cGMP content decreased, in the experimental animals. Liver and thymus cAMP content was similar in the control and experimental animals. There was a 20 and 38% decrease of cAMP content in the kidneys and spleen, respectively. Hypokinesia's reduction of cyclic nucleotides seems to inhibit RNA and protein synthesis.

  3. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed

    Flitney, F W; Singh, J

    1980-07-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  4. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.

    PubMed

    Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs

    2017-11-01

    The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus , which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.

  5. Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia)

    PubMed Central

    Bishop, Cory D.; Pires, Anthony; Norby, Shong-Wan; Boudko, Dmitri; Moroz, Leonid L.; Hadfield, Michael G.

    2014-01-01

    SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae. Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology. PMID:18460091

  6. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    PubMed Central

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  7. Effects of drugs affecting endogenous amines or cyclic nucleotides on ethanol withdrawal head twitches in mice.

    PubMed Central

    Collier, H O; Hammond, M D; Schneider, C

    1976-01-01

    1 Twenty-four hours after ethanol withdrawal, dependent mice exhibited frequent head twitching. Naive mice exhibited similar twitching 15 min after treatment with 5-hydroxytryptophan (5-HTP) or 6 h after alpha-methyl-p-tyrosine (AMPT). Ethanol lessened the incidence of head twitches induced by any of these treatments. 5-HTP and AMPT each increased the incidence of head twitches induced by withdrawal of ethanol from dependent mice. 2 Drugs that affect the amount or activity of endogenous amines or cyclic nucleotides modified the incidence of head twitches. Nearly all drugs acted in the same direction on twitching elicited by any of these three treatments. 3 The incidence was lessened by: (a) methysergide, methergoline, MA 1420, p-chlorophenylalanine and p-chloroamphetamine; (b) dopamine, noradrenaline, L-DOPA, amphetamine and apomorphine; (c) hyoscine and nicotine; and (d) adenosine triphosphate, dibutyryl cyclic adenosine-3',5'-monophosphate (db cyclic AMP) and prostaglandins E1 and E2. 4 The incidence was increased by: (a) acetylcholine, carbachol and physostigmine; and (b) guanosine triphosphate, dibutyryl cyclic guanosine monophosphate (db cyclic GMP), theophylline and 3-isobutyl-1-methyl-xanthine. 5 These findings suggest that head twitching induced by these three treatments arises from a common biochemical mechanism, which may ultimately be a change in favour of cyclic GMP of the balance between this nucleotide and cyclic AMP within appropriate neurones. This imbalance appears to be elicited or increased by 5-hydroxytryptamine and acetylcholine and to be decreased by dopamine, noradrenaline and E prostaglandins. 6 Neither actinomycin D nor cycloheximide, given during the induction of ethanol dependence, altered the incidence of head twitches after ethanol withdrawal. PMID:987821

  8. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    PubMed

    Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell

  9. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  10. Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation.

    PubMed

    Yu, Li-Ming; Di, Wen-Cheng; Dong, Xue; Li, Zhi; Zhang, Yong; Xue, Xiao-Dong; Xu, Yin-Li; Zhang, Jian; Xiao, Xiong; Han, Jin-Song; Liu, Yu; Yang, Yang; Wang, Hui-Shan

    2018-02-01

    It has been demonstrated that the anti-oxidative and cardioprotective effects of melatonin are, at least in part, mediated by its membrane receptors. However, the direct downstream signaling remains unknown. We previously found that melatonin ameliorated myocardial ischemia-reperfusion (MI/R) injury in diabetic animals, although the underlying mechanisms are also incompletely understood. This study was designed to determine the role of melatonin membrane receptors in melatonin's cardioprotective actions against diabetic MI/R injury with a focus on cGMP and its downstream effector PKG. Streptozotocin-induced diabetic Sprague-Dawley rats and high-glucose medium-incubated H9c2 cardiomyoblasts were utilized to determine the effects of melatonin against MI/R injury. Melatonin treatment preserved cardiac function and reduced oxidative damage and apoptosis. Additionally, melatonin increased intracellular cGMP level, PKGIα expression, p-VASP/VASP ratio and further modulated myocardial Nrf-2-HO-1 and MAPK signaling. However, these effects were blunted by KT5823 (a selective inhibitor of PKG) or PKGIα siRNA except that intracellular cGMP level did not changed significantly. Additionally, our in vitro study showed that luzindole (a nonselective melatonin membrane receptor antagonist) or 4P-PDOT (a selective MT 2 receptor antagonist) not only blocked the cytoprotective effect of melatonin, but also attenuated the stimulatory effect of melatonin on cGMP-PKGIα signaling and its modulatory effect on Nrf-2-HO-1 and MAPK signaling. This study showed that melatonin ameliorated diabetic MI/R injury by modulating Nrf-2-HO-1 and MAPK signaling, thus reducing myocardial apoptosis and oxidative stress and preserving cardiac function. Importantly, melatonin membrane receptors (especially MT 2 receptor)-dependent cGMP-PKGIα signaling played a critical role in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Role of Cyclic Nucleotide-Gated Channels in the Modulation of Mouse Hippocampal Neurogenesis

    PubMed Central

    Podda, Maria Vittoria; Piacentini, Roberto; Barbati, Saviana Antonella; Mastrodonato, Alessia; Puzzo, Daniela; D’Ascenzo, Marcello; Leone, Lucia; Grassi, Claudio

    2013-01-01

    Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage. PMID:23991183

  12. The role of cGMP as a mediator of lipolysis in bovine oocytes and its effects on embryo development and cryopreservation.

    PubMed

    Schwarz, Kátia R L; de Castro, Fernanda C; Schefer, Letícia; Botigelli, Ramon C; Paschoal, Daniela M; Fernandes, Hugo; Leal, Cláudia L V

    2018-01-01

    This study aimed to determine the influence of cyclic guanosine 3'5'-monophosphate (cGMP) and cGMP-dependent kinase (PKG) during in vitro maturation (IVM) on lipolysis-related parameters in bovine cumulus-oocyte complexes (COCs), and on embryo development and cryosurvival. COCs were matured with cGMP/PKG modulators and assessed for metaphase II rates (MII), cGMP levels, lipid content in oocytes (OO), transcript abundance for genes involved in lipolysis (ATGL) and lipid droplets (PLIN2) in cumulus cells (CC) and OO, and presence of phosphorylated (active) hormone sensitive lipase (HSLser563) in OO. Embryo development, lipid contents and survival to vitrification were also assessed. Phosphodiesterase 5 inhibition (PDE5; cGMP-hydrolyzing enzyme) with 10-5M sildenafil (SDF) during 24 h IVM increased cGMP in COCs (56.9 vs 9.5 fMol/COC in untreated controls, p<0.05) and did not affect on maturation rate (84.3±6.4% MII). Fetal calf serum (FCS) in IVM medium decreased cGMP in COCs compared to bovine serum albumin (BSA) + SDF (19.6 vs 66.5 fMol/COC, respectively, p<0.05). FCS increased lipid content in OO (40.1 FI, p<0.05) compared to BSA (34.6 FI), while SDF decreased (29.8 and 29.6 FI, with BSA or FCS, respectively p<0.05). PKG inhibitor (KT5823) reversed this effect (38.9 FI, p<0.05). ATGL and PLIN2 transcripts were detected in CC and OO, but were affected by cGMP and PKG only in CC. HSLser563 was detected in OO matured with or without modulators. Reduced lipid content in embryos were observed only when SDF was added during IVM and IVC (27.6 FI) compared to its use in either or none of the culture periods (34.2 FI, p<0.05). Survival to vitrification was unaffected by SDF. In conclusion, cGMP and PKG are involved in lipolysis in OO and possibly in CC and embryos; serum negatively affects this pathway, contributing to lipid accumulation, and cGMP modulation may reduce lipid contents in oocytes and embryos, but without improving embryo cryotolerance.

  13. Melanocyte response to gravitational stress: an overview with a focus on the role of cyclic nucleotides

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Tsiockas, Wasiliki; Eiermann, Peter; Hauslage, Jens; Hemmersbach, Ruth; Block, Ingrid; Gerzer, Rupert

    Human melanocytes are responsible for skin pigmentation by synthesizing the pigment melanin. A well known modulator of melanogenesis is the second messenger adenosine 3',5'-cyclic monophos-phate (cAMP). It has also been reported that the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/guanosine 3',5'-cyclic monophosphate (cGMP) pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals during oxidative stress, but it may additionally act as a photosensitizer that generates active oxygen species upon UV radiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. Melanoma, a deadly skin cancer which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we were able to show that hu-man melanocytic cells differentially respond to gravitational stress. Hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured human melanocytes and non-metastatic melanoma cells, but not in metastatic phenotypes under the conditions of limited degradation [e.g., in the presence of phosphodiesterase (PDE) inhibitors] or stimulated synthesis of cGMP [e.g., by NO donors, but not natriuretic peptides], whereas cellular proliferation and morphology were not altered. Interestingly, long-term exposure to hypergravity stimulated an increase in both intra-cellular as well as extracellular cAMP levels as well as melanogenesis in pigmented melanocytes and non-metastatic melanoma cells. As some cAMP-PDEs are regulated by cGMP, it seems that the hypergravity-induced alteration of melanocyte pigmentation could be a result of a cross-talk between these two cyclic nucleotides. Hypergravity induced further an increase in the mRNA and protein levels of the selective cGMP and cAMP exporters, the multidrug resistance proteins (MRP) 4 and 5 -but not 8 -, whereas simulated microgravity (up to 1.21x10-2 g for 24 h) -provided by a fast-rotating clinostat

  14. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    PubMed

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several

  15. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.

  16. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Kumar, Sanjiv; Datar, Sanjeev; Oishi, Peter; Kalka, Gokhan; Schreiber, Christian; Fratz, Sohrab; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO−) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO− donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24h (with exogenous activation of cGMP) revealed increased ONOO− levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO− and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity. PMID:21351102

  17. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current.

    PubMed

    Cummings, T A; Daniels, C; Kinnamon, S C

    1996-03-01

    1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.

  18. Atrial natriuretic peptide provokes a dramatic increase in cyclic GMP formation and markedly inhibits muscarinic-stimulated Ca2+ mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells.

    PubMed

    Ding, K H; Ali, N; Abdel-Latif, A A

    1999-02-01

    We investigated the effects of cGMP-elevating agents, including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and sodium nitroprusside (SNP), on cGMP accumulation and on carbachol (CCh)-stimulated intracellular calcium ([Ca2+]i) mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells and in primary cultured cat iris sphincter smooth muscle (CISM) cells. The stimulatory effects of the natriuretic peptides on cGMP production correlated well with their inhibitory effects on CCh-induced [Ca+1]i mobilisation, and these effects were significantly more pronounced in the SV-CISM-2 cells than in the CISM cells. Thus, ANP (1 microM) increased cGMP production in the SV-CISM-2 cells and CISM cells by 487- and 1.7-fold, respectively, and inhibited CCh-induced [Ca2+]i mobilisation by 95 and 3%, respectively. In the SV-CISM-2 cells, ANP and CNP dose dependently inhibited CCh-induced [Ca2+]i mobilisation with IC50 values of 156 and 412 nM, respectively, and dose dependently stimulated cGMP formation with EC50 values of 24 and 88 nM, respectively, suggesting that the inhibitory actions of the peptides are mediated through cGMP. Both ANP and CNP stimulated cGMP accumulation in a time-dependent manner. The potency of the cGMP-elevating agents were in the following order: ANP>CNP>SNP; these agents had no effect on cAMP accumulation. The inhibitory effects of the natriuretic peptides were mimicked by 8-Br-cGMP, a selective activator of cGMP-dependent protein kinase. LY83583, a soluble guanylyl cyclase inhibitor, significantly inhibited SNP-induced cGMP formation but had no effect on those of ANP and CNP. The basal activities of the guanylyl cyclase and the dissociation constant (Kd) and total receptor density (Bmax) values of the natriuretic peptide receptor for [125I]ANP binding were not significantly different between the two cell types. The cGMP system, as with the cAMP system, has a major inhibitory influence on the muscarinic

  19. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels.

    PubMed

    Podda, Maria Vittoria; Grassi, Claudio

    2014-07-01

    Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.

  20. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    PubMed

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  1. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    PubMed

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  2. Enzymatic Production of c-di-GMP Using a Thermophilic Diguanylate Cyclase.

    PubMed

    Venkataramani, Prabhadevi; Liang, Zhao-Xun

    2017-01-01

    C-di-GMP has emerged as a prevalent bacterial messenger that controls a multitude of bacterial behaviors. Having access to milligram or gram quantities of c-di-GMP is essential for the biochemical and structural characterization of enzymes and effectors involved in c-di-GMP signaling. Although c-di-GMP can be synthesized using chemical methods, diguanylate cyclases (DGC)-based enzymatic synthesis is the most efficient method of preparing c-di-GMP today. Many DGCs are not suitable for c-di-GMP production because of poor protein stability and the presence of a c-di-GMP-binding inhibitory site (I-site) in most DGCs. We have identified and engineered a thermophilic DGC for efficient production of c-di-GMP for characterizing c-di-GMP signaling proteins and riboswitches. Importantly, residue replacement in the inhibitory I-site of the thermophilic DGC drastically relieved product inhibition to enable the production of hundreds of milligrams of c-di-GMP using 5-10 mg of this robust biocatalyst.

  3. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism

    PubMed Central

    Inserte, Javier; Garcia-Dorado, David

    2015-01-01

    Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations in cytosolic Ca2+ handling, sarcoplasmic reticulum-mediated Ca2+ oscillations and hypercontracture, proteolysis secondary to calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular pH, but has also direct effect on Ca2+ oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice. Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target in the context of myocardial infarction. PMID:25297462

  4. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

    PubMed

    Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J

    2012-05-01

    Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.

  5. Convergence of Ca2+-desensitizing mechanisms activated by forskolin and phenylephrine pretreatment, but not 8-bromo-cGMP.

    PubMed

    Porter, Melissa; Evans, Melissa C; Miner, Amy S; Berg, Krystina M; Ward, Kevin R; Ratz, Paul H

    2006-06-01

    Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.

  6. Dephosphorylation and inactivation of NPR2 guanylyl cyclase in granulosa cells contributes to the LH-induced decrease in cGMP that causes resumption of meiosis in rat oocytes

    PubMed Central

    Egbert, Jeremy R.; Shuhaibar, Leia C.; Edmund, Aaron B.; Van Helden, Dusty A.; Robinson, Jerid W.; Uliasz, Tracy F.; Baena, Valentina; Geerts, Andreas; Wunder, Frank; Potter, Lincoln R.; Jaffe, Laurinda A.

    2014-01-01

    In mammals, the meiotic cell cycle of oocytes starts during embryogenesis and then pauses. Much later, in preparation for fertilization, oocytes within preovulatory follicles resume meiosis in response to luteinizing hormone (LH). Before LH stimulation, the arrest is maintained by diffusion of cyclic (c)GMP into the oocyte from the surrounding granulosa cells, where it is produced by the guanylyl cyclase natriuretic peptide receptor 2 (NPR2). LH rapidly reduces the production of cGMP, but how this occurs is unknown. Here, using rat follicles, we show that within 10 min, LH signaling causes dephosphorylation and inactivation of NPR2 through a process that requires the activity of phosphoprotein phosphatase (PPP)-family members. The rapid dephosphorylation of NPR2 is accompanied by a rapid phosphorylation of the cGMP phosphodiesterase PDE5, an enzyme whose activity is increased upon phosphorylation. Later, levels of the NPR2 agonist C-type natriuretic peptide decrease in the follicle, and these sequential events contribute to the decrease in cGMP that causes meiosis to resume in the oocyte. PMID:25183874

  7. Short-term dehydroepiandrosterone treatment increases platelet cGMP production in elderly male subjects.

    PubMed

    Martina, Valentino; Benso, Andrea; Gigliardi, Valentina Ramella; Masha, Andi; Origlia, Carla; Granata, Riccarda; Ghigo, Ezio

    2006-03-01

    Several clinical and population-based studies suggest that dehydroepiandrosterone (DHEA) and its sulphate (DHEA-S) play a protective role against atherosclerosis and coronary artery disease in human. However, the mechanisms underlying this action are still unknown. It has recently been suggested that DHEA-S could delay atheroma formation through an increase in nitric oxide (NO) production. Twenty-four aged male subjects [age (mean +/- SEM): 65.4 +/- 0.7 year; range: 58.2-67.6 years] underwent a blinded placebo controlled study receiving DHEA (50 mg p.o. daily at bedtime) or placebo for 2 months. Platelet cyclic guanosine-monophosphate (cGMP) concentration (as marker of NO production) and serum levels of DHEA-S, DHEA, IGF-I, insulin, glucose, oestradiol (E(2)), testosterone, plasminogen activator inhibitor (PAI)-1 antigen (PAI-1 Ag), homocysteine and lipid profile were evaluated before and after the 2-month treatment with DHEA or placebo. At the baseline, all variables in the two groups were overlapping. All parameters were unchanged after treatment with placebo. Conversely, treatment with DHEA (a) increased (P < 0.001 vs. baseline) platelet cGMP (111.9 +/- 7.1 vs. 50.1 +/- 4.1 fmol/10(6) plts), DHEA-S (13.6 +/- 0.8 vs. 3.0 +/- 0.3 micromol/l), DHEA (23.6 +/- 1.7 vs. 15.3 +/- 1.4 nmol/l), testosterone (23.6 +/- 1.0 vs. 17.7 +/- 1.0 nmol/l) and E(2) (72.0 +/- 5.0 vs. 60.0 +/- 4.0 pmol/l); and (b) decreased (P < 0.05 vs. baseline) PAI-1 Ag (27.4 +/- 3.8 vs. 21.5 +/- 2.5 ng/ml) and low-density lipoprotein (LDL) cholesterol (3.4 +/- 0.2 vs. 3.0 +/- 0.2 mmol/l). IGF-I, insulin, glucose, triglycerides, total cholesterol, HDL cholesterol, HDL2 cholesterol, HDL3 cholesterol, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB) and homocysteine levels were not modified by DHEA treatment. This study shows that short-term treatment with DHEA increased platelet cGMP production, a marker of NO production, in healthy elderly subjects. This effect is coupled with a decrease in PAI-1

  8. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4.

    PubMed

    Richter, Anja M; Povolotsky, Tatyana L; Wieler, Lothar H; Hengge, Regine

    2014-12-01

    In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)--producing the biofilm-promoting second messenger c-di-GMP--that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Coexpression of alpha and beta subunits of the rod cyclic GMP-gated channel restores native sensitivity to cyclic AMP: role of D604/N1201.

    PubMed Central

    Pagès, F; Ildefonse, M; Ragno, M; Crouzy, S; Bennett, N

    2000-01-01

    Coexpression of the betawt and alphawt subunits of the bovine rod channel restores two characteristics of the native channels: higher sensitivity to cAMP and potentiation of cGMP-induced currents by low cAMP concentrations. To test whether the increased sensitivity to cAMP is due to the uncharged nature of the asparagine residue (N1201) situated in place of aspartate D604 in the beta subunit as previously suggested (, Neuron. 15:619-625), we compared currents from wild-type (alphawt and alphawt/betawt) and from mutated channels (alphaD604N, alphaD604N/betawt, and alphawt/betaN1201D). The results show that the sensitivity to cAMP and cAMP potentiation is partly but not entirely determined by the charge of residue 1201 in the beta subunit. The D604N mutation in the alpha subunit and, to a lesser extent, coexpression of the betawt subunit with the alphawt subunit reduce the open probability for cGMP compared to that of the alphawt channel. Interpretation of the data with the MWC allosteric model (model of Monod, Wyman, Changeux;, J. Mol. Biol. 12:88-118) suggests that the D604N mutation in the alpha subunits and coassembly of alpha and beta subunits alter the free energy of gating by cAMP more than that of cAMP binding. PMID:10692312

  10. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    PubMed

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  11. Decreased levels of guanosine 3', 5'-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease.

    PubMed

    Ugarte, Ana; Gil-Bea, Francisco; García-Barroso, Carolina; Cedazo-Minguez, Ángel; Ramírez, M Javier; Franco, Rafael; García-Osta, Ana; Oyarzabal, Julen; Cuadrado-Tejedor, Mar

    2015-06-01

    Levels of the cyclic nucleotides guanosine 3', 5'-monophosphate (cGMP) or adenosine 3', 5'-monophosphate (cAMP) that play important roles in memory processes are not characterized in Alzheimer's disease (AD). The aim of this study was to analyse the levels of these nucleotides in cerebrospinal fluid (CSF) samples from patients diagnosed with clinical and prodromal stages of AD and study the expression level of the enzymes that hydrolyzed them [phosphodiesterases (PDEs)] in the brain of AD patients vs. For cGMP and cAMP CSF analysis, the cohort (n = 79) included cognitively normal participants (subjective cognitive impairment), individuals with stable mild cognitive impairment or AD converters (sMCI and cMCI), and mild AD patients. A high throughput liquid chromatography-tandem mass spectrometry method was used. Interactions between CSF cGMP or cAMP with mini-mental state examination (MMSE) score, CSF Aβ(1-42) and CSF p-tau were analysed. For PDE4, 5, 9 and 10 expression analysis, brains of AD patients vs. controls (n = 7 and n = 8) were used. cGMP, and not cAMP levels, were significantly lower in the CSF of patients diagnosed with mild AD when compared with nondemented controls. CSF levels of cGMP showed a significant association with MMSE-diagnosed clinical dementia and with CSF biomarker Aβ42 in AD patients. Significant increase in PDE5 expression was detected in temporal cortex of AD patients compared with that of age-matched healthy control subjects. No changes in the expression of others PDEs were detected. These results support the potential involvement of cGMP in the pathological and clinical development of AD. The cGMP reduction in early stages of AD might participate in the aggravation of amyloid pathology and cognitive decline. © 2014 British Neuropathological Society.

  12. Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway.

    PubMed

    Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub

    2011-01-27

    The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Electron-shuttling antibiotics structure bacterial communities by modulating cellular levels of c-di-GMP

    PubMed Central

    Okegbe, Chinweike; Fields, Blanche L.; Cole, Stephanie J.; Beierschmitt, Christopher; Morgan, Chase J.; Price-Whelan, Alexa; Stewart, Richard C.; Lee, Vincent T.; Dietrich, Lars E. P.

    2017-01-01

    Diverse organisms secrete redox-active antibiotics, which can be used as extracellular electron shuttles by resistant microbes. Shuttle-mediated metabolism can support survival when substrates are available not locally but rather at a distance. Such conditions arise in multicellular communities, where the formation of chemical gradients leads to resource limitation for cells at depth. In the pathogenic bacterium Pseudomonas aeruginosa PA14, antibiotics called phenazines act as oxidants to balance the intracellular redox state of cells in anoxic biofilm subzones. PA14 colony biofilms show a profound morphogenic response to phenazines resulting from electron acceptor-dependent inhibition of ECM production. This effect is reminiscent of the developmental responses of some eukaryotic systems to redox control, but for bacterial systems its mechanistic basis has not been well defined. Here, we identify the regulatory protein RmcA and show that it links redox conditions to PA14 colony morphogenesis by modulating levels of bis-(3′,5′)-cyclic-dimeric-guanosine (c-di-GMP), a second messenger that stimulates matrix production, in response to phenazine availability. RmcA contains four Per-Arnt-Sim (PAS) domains and domains with the potential to catalyze the synthesis and degradation of c-di-GMP. Our results suggest that phenazine production modulates RmcA activity such that the protein degrades c-di-GMP and thereby inhibits matrix production during oxidizing conditions. RmcA thus forms a mechanistic link between cellular redox sensing and community morphogenesis analogous to the functions performed by PAS-domain–containing regulatory proteins found in complex eukaryotes. PMID:28607054

  14. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  15. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  16. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  17. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    PubMed

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  18. Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides.

    PubMed

    Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Ihara, Hideshi; Ida, Tomoaki; Motohashi, Hozumi; Akaike, Takaaki

    2016-04-01

    Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic

  20. Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation.

    PubMed

    Enomoto, Gen; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko

    2015-06-30

    Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.

  1. The GDP-switched GAF domain of DcpA modulates the concerted synthesis/hydrolysis of c-di-GMP in Mycobacterium smegmatis.

    PubMed

    Chen, Hui-Jie; Li, Na; Luo, Ye; Jiang, Yong-Liang; Zhou, Cong-Zhao; Chen, Yuxing; Li, Qiong

    2018-04-09

    The second messenger c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] plays a key role in bacterial growth, survival and pathogenesis, and thus its intracellular homeostasis should be finely maintained. Mycobacterium smegmatis encodes a GAF (mammalian c G MP-regulated phosphodiesterases, Anabaena a denylyl cyclases and Escherichia coli transcription activator F hlA) domain containing bifunctional enzyme DcpA ( d iguanylate c yclase and p hosphodiesterase A ) that catalyzes the synthesis and hydrolysis of c-di-GMP . Here, we found that M. smegmatis DcpA catalyzes the hydrolysis of c-di-GMP at a higher velocity, compared with synthetic activity, resulting in a sum reaction from the ultimate substrate GTP to the final product pGpG [5'-phosphoguanylyl-(3'-5')-guanosine]. Fusion with the N-terminal GAF domain enables the GGDEF (Gly-Gly-Asp-Glu-Phe) domain of DcpA to dimerize and accordingly gain synthetic activity. Screening of putative metabolites revealed that GDP is the ligand of the GAF domain. Binding of GDP to the GAF domain down-regulates synthetic activity, but up-regulates hydrolytic activity, which, in consequence, might enable a timely response to the transient accumulation of c-di-GMP at the stationary phase or under stresses. Combined with the crystal structure of the EAL (Glu-Ala-Leu) domain and the small-angle X-ray scattering data, we propose a putative regulatory model of the GAF domain finely tuned by the intracellular GTP/GDP ratio. These findings help us to better understand the concerted control of the synthesis and hydrolysis of c-di-GMP in M. smegmatis in various microenvironments. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. CHBPR: Decreased cGMP level contributes to increased contraction in arteries from hypertensive rats: role of PDE1

    PubMed Central

    Giachini, Fernanda R.; Lima, Victor V.; Carneiro, Fernando S.; Tostes, Rita C.; Webb, R. Clinton

    2011-01-01

    Recent evidence suggests that angiotensin II (Ang II) upregulates phosphodiesterase (PDE)-1A expression. We hypothesized that Ang II augmented PDE1 activation, decreasing the bioavailability of cyclic cyclic guanosine 3', 5'-monophosphate (cGMP), contributing to increased vascular contractility. Male Sprague-Dawley rats received mini-osmotic pumps with Ang II (60 ng.min−1) or saline for 14 days. PE-induced contractions were increased in aorta (Emax168±8 vs. 136±4%) and small-mesenteric arteries [(SMA), Emax170±6 vs. 143±3%] from Ang II infused rats compared to control. PDE1 inhibition with vinpocetine (10µM) reduced PE-induced contraction in aortas from Ang II rats (Emax94±12%) but not in control (154±7%). Vinpocetine decreased the sensitivity to PE in SMA from Ang II rats compared to vehicle (pD2 5.1±0.1 vs. 5.9±0.06), but not in control (6.0±0.03 vs. 6.1±0.04). Sildenafil (10µM), a PDE5 inhibitor reduced PE-induced maximal contraction similarly in Ang II and control rats. Arteries were contracted with PE (1µM) and concentration-dependent relaxation to vinpocetine and sildenafil was evaluated. Aortas from Ang II rats displayed increased relaxation to vinpocetine compared to control (Emax82±12 vs. 44±5%). SMA from Ang II rats showed greater sensitivity during vinpocetine-induced relaxation, compared to control (pD2 6.1±0.3 vs. 5.3±0.1). No differences in sildenafil-induced relaxation were observed. PDE1A and PDE1C expressions in aorta and PDE1A expression in SMA were increased in Ang II rats. cGMP production, which is decreased in arteries from Ang II rats, was restored after PDE1 blockade. We conclude that PDE1 activation reduces cGMP bioavailability in arteries from ANG II, contributing to increased contractile responsiveness. PMID:21282562

  3. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain.

    PubMed

    Kosakai, Kumiko; Tsujiuchi, Yuuki; Yoshino, Masami

    2015-07-01

    Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. CNG-Modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels

    PubMed Central

    Rebrik, Tatiana I.; Botchkina, Inna; Arshavsky, Vadim Y.; Craft, Cheryl M.; Korenbrot, Juan I.

    2012-01-01

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide gated ion channels (CNG channels). The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 amino acid protein that interacts with the N-terminus of the β-subunit of the cGMP-gated channel, and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxitilis). Immunohistochemistry and single cell PCR demonstrate that CNG-modulin is expressed in cone, but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP-dependence from ~91 μM in the absence of Ca2+ to ~332 μM in the presence of 20 μM Ca2+. At a fixed cGMP concentration, the midpoint of the Ca2+ dependence is ~857 nM Ca2+. These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca2+ with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca2+-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium and the inner ear and may modulate the function of ion channels in those tissues as well. PMID:22378887

  5. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels.

    PubMed

    Rebrik, Tatiana I; Botchkina, Inna; Arshavsky, Vadim Y; Craft, Cheryl M; Korenbrot, Juan I

    2012-02-29

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well.

  6. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGES

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; ...

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a K M of 110 μM and a k cat of 16.9 s⁻¹ for cAMP and a K M of 105 μM and a k cat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (k cat/K McAMP)/(k cat/K M cGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMPmore » at 1.31 Å resolution reveal a new structural folding that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  7. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  8. Down-regulation of angiotensin II receptor subtypes and desensitization of cyclic GMP production in neuroblastoma N1E-115 cells.

    PubMed

    Reagan, L P; Ye, X; Maretzski, C H; Fluharty, S J

    1993-01-01

    Murine neuroblastoma N1E-115 cells possess membranous receptors for the octapeptide angiotensin II (AngII) whose density is substantially increased by in vitro differentiation. Incubation of differentiated N1E-115 cells with AngII produced a rapid decrease in receptor density, but did not alter the affinity of these receptors for either 125I-AngII or the high-affinity antagonist 125I-[Sarc1,Ile8]-AngII. This apparent down-regulation was dose related with an ED50 of 1 nM, and maximal decreases of approximately 90% were obtained with 100 nM AngII. Receptor loss from differentiated cell membranes was unaffected by incubations of membranes obtained from agonist-exposed cells with non-hydrolyzable analogues of GTP for 60 min at 37 degrees C to ensure dissociation of the ligand. Partial loss of AngII receptors was apparent within 5 min of agonist exposure, whereas maximal declines were not observed until 30 min. This temporal pattern resulted from a preferential decrease in the AT1 receptor subtype during the first 5 min, followed by a decline in both AT1 and AT2 receptors with longer periods of agonist exposure. The loss of membranous receptors was reversible with partial recovery observed after 4 h, and with nearly full recovery observed 18 h after exposure of the cells to AngII. However, the long-term recovery of receptor density was blocked by the protein synthesis inhibitor, cycloheximide. The heptapeptide angiotensin III produced a similar down-regulation of receptors, and the high-affinity antagonist [Sarc1,Thr8]-AngII blocked agonist-induced down-regulation. Finally, the apparent loss of cell surface AngII receptors decreased the ability of AngII to stimulate cyclic GMP production within intact N1E-115 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Role of cyclic diguanylate in affecting microbial community shifts at different pH during the operation of simultaneous partial nitrification, anammox and denitrification process.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Guo, Yongzhao; Yang, Fenglin; Wang, Dong

    2018-05-08

    The intracellular cyclic diguanylate acid (c-di-GMP) has emerged as a prominent second signal molecule that coordinates sessile-motile transition and biofilm formation in many bacteria. Herein, we study the role of c-di-GMP in affecting microbial community shifts at different pH levels during simultaneous partial nitrification, anammox and denitrification process (SNAD) in integrated fixed film activated sludge (IFAS) reactor. The results demonstrated that the contents of c-di-GMP notably decreased in suspended sludge, whereas the contents of c-di-GMP in biofilm had no significant change as pH gradually increased from 7.5 to 8.5. Most of the bacteria (Blastocatella, Brevundimonas) with flagella that have been reported to be regulated by c-di-GMP were present in suspended sludge, and the microbial community structure of suspended sludge had obvious change than biofilm. The increased alkaline pH reduced intracellular c-di-GMP content for increasing the motility of bacteria to be washed out from the reactor, causing the microbial community shifts in suspended sludge. This change would lead to the increase of nitrite-oxidizing bacteria which would inhibit anammox activity. Overall, this study provided more comprehensive information regarding the shifts of microbial community induced by c-di-GMP in SNAD-IFAS reactor. Copyright © 2018. Published by Elsevier B.V.

  10. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2015-12-28

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. Copyright © 2016 Green et al.

  11. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Thomas, Ludivine; Irving, Helen; Gehring, Chris

    2017-01-01

    Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.

  12. 8-Nitro-cGMP Attenuates the Interaction between SNARE Complex and Complexin through S-Guanylation of SNAP-25.

    PubMed

    Kishimoto, Yusuke; Kunieda, Kohei; Kitamura, Atsushi; Kakihana, Yuki; Akaike, Takaaki; Ihara, Hideshi

    2018-02-21

    8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is the second messenger in nitric oxide/reactive oxygen species redox signaling. This molecule covalently binds to protein thiol groups, called S-guanylation, and exerts various biological functions. Recently, we have identified synaptosomal-associated protein 25 (SNAP-25) as a target of S-guanylation, and demonstrated that S-guanylation of SNAP25 enhanced SNARE complex formation. In this study, we have examined the effects of S-guanylation of SNAP-25 on the interaction between the SNARE complex and complexin (cplx), which binds to the SNARE complex with a high affinity. Pull-down assays and coimmunoprecipitation experiments have revealed that S-guanylation of Cys90 in SNAP-25 attenuates the interaction between the SNARE complex and cplx. In addition, blue native-PAGE followed by Western blot analysis revealed that the amount of cplx detected at a high molecular weight decreased upon 8-nitro-cGMP treatment in SH-SY5Y cells. These results demonstrated for the first time that S-guanylation of SNAP-25 attenuates the interaction between the SNARE complex and cplx.

  13. Isosorbide 5 mononitrate administration increases nitric oxide blood levels and reduces proteinuria in IgA glomerulonephritis patients with abnormal urinary endothelin/cyclic GMP ratio.

    PubMed

    Roccatello, D; Mengozzi, G; Ferro, M; Cesano, G; Polloni, R; Mosso, R; Bonetti, G; Inconis, T; Paradisi, L; Sena, L M

    1995-09-01

    An endothelin urinary hyperexcretion, which is not counterbalanced by an adequate increase in cGMP biosynthesis, was previously detected in some patients with IgA Nephropathy (IgAN). Since this imbalance might potentiate local ET1-mediated hemodynamics effects, 9 IgAN patients with an increased (> or = 0.1) urinary ET1/cGMP ratio (group 1) and 5 IgAN patients with comparable renal function and reduced ET1/cGMP ratio (group 2) were given standard doses of isosorbide 5 mononitrate (as a nitric oxide source). Blood nitric oxide (NO) levels, as detected by electron paramagnetic resonance, significantly increased after isosorbide administration (p < 0.01) and decreased after drug discontinuation in both groups. Nitric oxide levels were significantly related with those of the effective renal plasma flow (p < 0.02), but not with the glomerular filtration rate. Proteinuria levels significantly decreased after drug administration (p < 0.009) in group 1 and returned to baseline levels thereafter, except two cases showing persisting low levels. Values of filtration fraction in the same group decreased after iso5M administration (p < 0.02 compared to basal levels). These results may possibly be related to the counterbalancing effects of nitric oxide on endothelin-mediated mesangial contraction.

  14. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    PubMed Central

    Nyberg, Michael; Piil, Peter; Egelund, Jon; Sprague, Randy S; Mortensen, Stefan P; Hellsten, Ylva

    2015-01-01

    Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. Sildenafil increased leg O2 delivery (6–9%) and leg O2 uptake (10–12%) at all three exercise intensities in older but not young subjects. The increase in leg O2 delivery with sildenafil in the older subjects correlated with the increase in leg O2 uptake (r2 = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age. PMID:26272735

  15. Increased cavernosal relaxation by Phoneutria nigriventer toxin, PnTx2-6, via activation at NO/cGMP signaling.

    PubMed

    Nunes, K P; Wynne, B M; Cordeiro, M N; Borges, M H; Richardson, M; Leite, R; DeLima, M E; Webb, R C

    2012-01-01

    Erectile dysfunction (ED) mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cyclic guanosine monophosphate (cGMP). This effect is neuronal nitric oxide synthase (nNOS) dependent. Cavernosal strips were contracted with phenylephrine (10(-5) M) and relaxed by electrical field stimulation (20 V, 1-32 Hz) in the presence or absence of PnTx2-6 (10(-8) M). Cavernosal strips from nNOS- and endothelial nitric oxide synthase (eNOS)-knockout (KO) mice, besides nNOS inhibitor (10(-5) M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) and ω-conotoxin GVIA (10(-6) M), an N-type calcium channel inhibitor. Results showed that PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however, L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude that PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing nitric oxide/cGMP production.

  16. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  17. Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP.

    PubMed

    Schwede, Frank; Rentsch, Andreas; Genieser, Hans-Gottfried

    2017-01-01

    After decades of intensive research on adenosine-3',5'-cyclic monophosphate (cAMP)- and guanosine-3',5'-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3',5'-monophosphate (cCMP) and cyclic uridine-3',5'-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5'-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.

  18. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c

    PubMed Central

    Rotcheewaphan, Suwatchareeporn; Belisle, John T.; Webb, Kristofor J.; Kim, Hee-Jin; Spencer, John S.

    2016-01-01

    The second messenger, bis-(3′,5′)-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host–pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography–mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae. PMID:27450520

  19. Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c.

    PubMed

    Rotcheewaphan, Suwatchareeporn; Belisle, John T; Webb, Kristofor J; Kim, Hee-Jin; Spencer, John S; Borlee, Bradley R

    2016-09-01

    The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.

  20. Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulus-oocyte complexes.

    PubMed

    Blaha, Milan; Nemcova, Lucie; Prochazka, Radek

    2015-01-07

    Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1). The COCs were isolated from ovaries of slaughtered gilts and cultured in vitro in M199 supplemented with 5% fetal calf serum. The expression levels of the C-type natriuretic peptide (CNP) precursor (NPPC) and its receptor (NPR2) mRNAs during the culture of COCs were determined by real-time RT-PCR. To control the intracellular concentration of cGMP in the COCs, the culture medium was further supplemented with CNP or various concentrations of synthetic cGMP analogues; the concentration of cGMP in COCs was then assessed by ELISA. The effect of the drugs on oocyte maturation was assessed after 24 and 44 h of culture by determining nuclear maturation. The expansion of cumulus cells was assessed by light microscopy and the expression of cumulus expansion-related genes by real-time RT-PCR. A possible effect of cGMP on FSH-induced activation of MAPK3/1 was assessed by immunoblotting the COC proteins with phospho-specific and total anti-Erk1/2 antibodies. The COCs expressed NPPC and NPR2, the key components of cGMP synthesis, and produced a large amount of cGMP upon stimulation with exogenous CNP, which lead to a significant (P < 0.05) delay in oocyte meiotic resumption. The COCs also responded to cGMP analogues by inhibiting the resumption of oocyte meiosis. The inhibitory effect of cGMP on meiotic resumption was reversed by stimulating the COCs with FSH. However, high concentration of intracellular cGMP was not able to suppress FSH-induced activation of MAPK3/1 in cumulus cells, cumulus

  1. Immune response elicited by two rBCG strains devoid of genes involved in c-di-GMP metabolism affect protection versus challenge with M. tuberculosis strains of different virulence.

    PubMed

    Segura-Cerda, Cristian Alfredo; Aceves-Sánchez, Michel de Jesús; Marquina-Castillo, Brenda; Mata-Espinoza, Dulce; Barrios-Payán, Jorge; Vega-Domínguez, Perla Jazmín; Pedroza-Roldán, César; Bravo-Madrigal, Jorge; Vallejo-Cardona, Alba Adriana; Hernández-Pando, Rogelio; Flores-Valdez, Mario Alberto

    2018-04-12

    Pellicles, a type of biofilm, have gathered a renewed interest in the field of tuberculosis as a structure that mimics some characteristics occurring during M. tuberculosis infection, such as antibiotic recalcitrance and chronicity of infection, and as a source of antigens for humoral response in infected guinea pigs. In other bacteria, it has been well documented that the second messenger c-di-GMP modulates the transition from planktonic cells to biofilm formation. In this work, we used the live vaccine Mycobacterium bovis BCG to determine whether deletion of genes involved in c-di-GMP metabolism would affect interaction with macrophages, capacity to induce immune response in a murine cell line and mice, and how the protein profile was modified when grown as surface pellicles. We found that deletion of the BCG1419c (Delta c-di-GMP phosphodiesterase, ΔPDE) gene, or deletion of the BCG1416c (Delta c-di-GMP diguanylate cyclase, ΔDGC) gene, altered production of TNF-α, IL-6, and IL-1β, in murine macrophages, and resulted in attenuation in intra-macrophage replication. Moreover, in addition to the improved immunogenicity of the BCGΔBCG1419c mutant already reported, deletion of the BCG1416c gene leads to increased T CD4 + and T CD8 + activation. This correlated with protection versus lethality in mice infected with the highly virulent M. tuberculosis 5186 afforded by vaccination with all the tested BCG strains, and controlled the growth of the mildly virulent M. tuberculosis H37Rv in lungs by vaccination with BCGΔBCG1419c during chronic late infection from 4 to 6 months after challenge. Furthermore, when grown as surface pellicles, a condition used to manufacture BCG vaccine, in comparison to BCG wild type, both rBCGs changed expression of antigenic proteins such as DnaK, HbhA, PstS2, 35KDa antigen, GroEL2, as well as AcpM, a protein involved in synthesis of mycolic acids, molecules relevant to modulate inflammatory responses. Copyright © 2018 Elsevier Ltd. All

  2. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds.

    PubMed

    Broillet, M C; Firestein, S

    1996-02-01

    The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.

  3. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis.

    PubMed

    Kalia, Dimpy; Merey, Gökçe; Nakayama, Shizuka; Zheng, Yue; Zhou, Jie; Luo, Yiling; Guo, Min; Roembke, Benjamin T; Sintim, Herman O

    2013-01-07

    For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.

  4. 40 CFR 721.2120 - Cyclic amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  5. Nebivolol potentiates the efficacy of PDE5 inhibitors to relax corpus cavernosum and penile arteries from diabetic patients by enhancing the NO/cGMP pathway.

    PubMed

    Martínez-Salamanca, Juan I; La Fuente, José M; Cardoso, José; Fernández, Argentina; Cuevas, Pedro; Wright, Harold M; Angulo, Javier

    2014-05-01

    The efficacy of oral pharmacotherapy for erectile dysfunction (ED) (i.e., type 5 phosphodiesterase[PDE5] inhibitors) is significantly reduced in diabetic patients. Nebivolol is a selective β1-blocker used for treatinghy pertension that has been shown to increase the efficacy of sildenafil to reverse ED in diabetic rats. To evaluate the effects of nebivolol on the efficacy of the PDE5 inhibitors, sildenafil, tadalafil, and vardenafil to relax human corpus cavernosum (HCC) and vasodilate human penile resistance arteries (HPRA) from diabetic patients with ED (DMED). The influence of nebivolol on the capacity of these three PDE5 inhibitors to stimulate cyclic guanosine monophosphate (cGMP) production in HCC was also evaluated. HCC and HPRA were obtained from organ donors without ED (NEND; n = 18) or patients with diabetes undergoing penile prosthesis implantation (DMED; n = 19). Relaxations of HCC strips and HPRA to sildenafil,tadalafil, and vardenafil were evaluated in organ chambers and wire myographs. cGMP content in HCC was determined by ether extraction and quantification by ELISA. Effects of nebivolol on PDE5 inhibitor-induced relaxation of HCC, vasodilation ofHPRA and cGMP accumulation in HCC. Treatment with nebivolol (1 μM) significantly potentiated sildenafil-, tadalafil- and vardenafil-induced relaxations of HCC and vasodilations of HPRA from both NEND and DMED. Enhancement of relaxant capacity by nebivolol resulted in reversion of the impairment of PDE5 inhibition-induced responses in DMED and it was accompanied by enhancing the ability of PDE5 inhibitors to increase cGMP in HCC restoring reduced cGMP levelsin HCC from DMED. Nebivolol potentiated the capacity of PDE5 inhibitors to relax vascular structures of erectile tissue from diabetic patients by enhancing the nitric oxide (NO)/cGMP pathway in these tissues. These effects suggest a potential therapeutic utility of nebivolol as an adjunct to PDE5 inhibitors for the treatment of ED associated with

  6. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, O.; Weber, B.; Hayden, M.R.

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less

  7. Integration of the Second Messenger c-di-GMP into the Chemotactic Signaling Pathway

    PubMed Central

    Russell, Matthew H.; Bible, Amber N.; Fang, Xin; Gooding, Jessica R.; Campagna, Shawn R.; Gomelsky, Mark; Alexandre, Gladys

    2013-01-01

    ABSTRACT Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP. Azospirillum brasilense’s preferred metabolism is adapted to microaerophily, and these motile cells quickly navigate to zones of low oxygen concentration by aerotaxis. We observed that changes in oxygen concentration result in rapid changes in intracellular c-di-GMP levels. The aerotaxis and chemotaxis receptor, Tlp1, binds c-di-GMP via its C-terminal PilZ domain and promotes persistent motility by increasing swimming velocity and decreasing swimming reversal frequency, which helps A. brasilense reach low-oxygen zones. If c-di-GMP levels remain high for extended periods, A. brasilense forms nonmotile clumps or biofilms on abiotic surfaces. These results suggest that association of increased c-di-GMP levels with sessility is correct on a long-term scale, while in the short-term c-di-GMP may actually promote, as opposed to suppress, motility. Our data suggest that sensing c-di-GMP by Tlp1 functions similar to methylation-based adaptation. Numerous chemotaxis receptors contain C-terminal PilZ domains or other sensory domains, suggesting that intracellular c-di-GMP as well as additional stimuli can be used to modulate adaptation of bacterial chemotaxis receptors. PMID:23512960

  8. Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration.

    PubMed

    Limmer, Franziska; Schinner, Elisabeth; Castrop, Hayo; Vitzthum, Helga; Hofmann, Franz; Schlossmann, Jens

    2015-10-01

    Sodium chloride reabsorption in the thick ascending limb of the loop of Henle is mediated by the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). The loop diuretic furosemide is a potent inhibitor of NKCC2. However, less is known about the mechanism regulating the electrolyte transporter. Considering the well-established effects of nitric oxide on NKCC2 activity, cGMP is likely involved in this regulation. cGMP-dependent protein kinase I (cGKI; PKGI) is a cGMP target protein that phosphorylates different substrates after activation through cGMP. We investigated the potential correlation between the cGMP/cGKI pathway and NKCC2 regulation. We treated wild-type (wt) and cGKIα-rescue mice with furosemide. cGKIα-rescue mice expressed cGKIα only under the control of the smooth muscle-specific transgelin (SM22) promoter in a cGKI deficient background. Furosemide treatment increased the urine excretion of sodium and chloride in cGKIα-rescue mice compared to that in wt mice. We analyzed the phosphorylation of NKCC2 by western blotting and immunostaining using the phosphospecific antibody R5. The administration of furosemide significantly increased the phosphorylated NKCC2 signal in wt but not in cGKIα-rescue mice. NKCC2 activation led to its phosphorylation and membrane translocation. To examine whether cGKI was involved in this process, we analyzed vasodilator-stimulated phosphoprotein, which is phosphorylated by cGKI. Furosemide injection resulted in increased vasodilator-stimulated phosphoprotein phosphorylation in wt mice. We hypothesize that furosemide administration activated cGKI, leading to NKCC2 phosphorylation and membrane translocation. This cGKI-mediated pathway could be a mechanism to compensate for the inhibitory effect of furosemide on NKCC2. © 2015 FEBS.

  9. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  10. Bioreactor expansion of human mesenchymal stem cells according to GMP requirements.

    PubMed

    Elseberg, Christiane L; Salzig, Denise; Czermak, Peter

    2015-01-01

    In cell therapy, the use of autologous and allogenic human mesenchymal stem cells is rising. Accordingly, the supply of cells for clinical applications in highest quality is required. As hMSCs are considered as an advanced therapy medicinal products (ATMP), they underlie the requirements of GMP and PAT according to the authorities (FDA and EMA). The production process of these cells must therefore be documented according to GMP, which is usually performed via a GMP protocol based on standard operating procedures. This chapter provides an example of such a GMP protocol for hMSC, here a genetically modified allogenic cell line, based on a production process in a microcarrier-based stirred tank reactor including process monitoring according to PAT and final product quality assurance.

  11. Preservation of nitric oxide-induced relaxation of porcine coronary artery: roles of the dimers of soluble guanylyl cyclase, phosphodiesterase type 5, and cGMP-dependent protein kinase.

    PubMed

    Liu, Juan; Chen, Zhengju; Ye, Liping; Liu, Huixia; Dou, Dou; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng

    2014-10-01

    Soluble guanylyl cyclase (sGC), phosphodiesterase type 5 (PDE5), and guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) are all dimeric. The present study was to determine the role of their dimeric status in nitric oxide-induced vasodilatation. In isolated porcine coronary arteries, after 20 h incubation with serum-free medium, serum-containing medium, or phosphate-buffered saline solution, the protein levels of the dimers of sGC, PDE5, and PKG were diminished while the monomer levels remained unchanged, associated with reduced cGMP elevation in response to DETA NONOate and decreased PDE5 activity; the activity of PKG was not significantly altered. DETA NONOate caused a greater relaxation in arteries incubated for 20 vs. 2 h. The relaxant response was largely abolished by 1H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, an sGC inhibitor. Zaprinast, a PDE5 inhibitor, had no effect on relaxation caused by DETA NONOate of arteries incubated for 20 h but augmented the response incubated for 2 h. A greater relaxation to 8-bromo-guanosine 3'5'-cyclic monophosphate occurred in arteries incubated for 20 than for 2 h. The protein level of the dimers but not monomers of PDE5 was reduced by dithiothreitol and unaffected by hydrogen peroxide, accompanied with decreased PDE5 activity and reduced response to DETA NONOate. These results demonstrate that the dimeric but not monomeric status of sGC and PDE5 of coronary arteries are closely related to their activities. The preserved vasodilator response after 20 h incubation may result in part from a synchronous reduction of the dimer levels of sGC and PDE5 as well as an augmented response to cGMP.

  12. [Effect of twirling-reinforcing-reducing needling manipulations on contents of serum acetylcholine and arterial NOS and cGMP in stress-induced hypertension rats].

    PubMed

    Liu, Wei; Zhu, Ling-Qun; Chen, Si-Si; Lu, Shu-Chao; Tang, Jie; Liu, Qing-Guo

    2015-04-01

    To observe the effect of twirling-reinforcing or reducing needling manipulations on plasma acetylcholine (Ach) content and expression of nitric oxide synthetase (NOS) and cyclic guanosine monophosphate (cGMP) in thoracic artery tissue in stress-induced hypertension rats. A total of 60 male rats were randomly divided into blank control, model, acupuncture (no-needle-manipulation) , twirling-reinforcing needling and twirling-reducing needling groups (n = 12 in each group). The stress hypertension model was established by giving the animals with noise and electric shock stimulation (paw), twice a day for 15 days. Acupuncture stimulation was applied to bilateral "Taichong" (LR 3) for 1 min, followed by retaining the needles for 20 min. The treatment was conducted once daily for 7 days. Systolic blood pressure of the rat's tail was detected with non-invasive method and plasma Ach, and NOS and cGMP contents in the thoracic artery tissue were measured using ELISA method. Compared with the control group, the systolic blood pressure was significantly higher in the model group after 15 days' stress stimulation (P < 0.01), while the contents of plasma Ach, arterial NOS and cGMP were markedly down-regulated (P < 0.01). Following 7 days' acupuncture interventions, the increased blood pressure was down-regulated in the no-needle-manipulation, twirling-reinforcing needling and twirling-reducing needling groups (P < 0.05, P < 0.01); and the decreased Ach and NOS in the 3 treatment groups, and cGMP levels in the twirling-reinforcing and twirling-reducing needling groups were remarkably up-regulated (P < 0.01, P < 0.05). No significant change of arterial cGMP content was found in the no-needle-manipulation group (P > 0.05). The effect of the twirling-reducing needling was superior to that of no-needle-manipulation and twirling-reinforcing needling in lowering blood pressure and raising plasma Ach content (P < 0.05, P < 0.01). The twirling-reducing needling of acupuncture has a

  13. High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP.

    PubMed

    Petrova, Olga E; Sauer, Karin

    2017-01-01

    The modulation of c-di-GMP levels plays a vital role in the regulation of various processes in a wide array of bacterial species. Thus, investigation of c-di-GMP regulation requires reliable methods for the assessment of c-di-GMP levels and turnover. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis has become a commonly used approach to accomplish these goals. The following describes the extraction and HPLC-based detection and quantification of c-di-GMP from Pseudomonas aeruginosa samples, a procedure that is amenable to modifications for the analysis of c-di-GMP in other bacterial species.

  14. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    1. The effect of the putative neural messenger carbon monoxide (CO) and the role of the cGMP second-messenger system for olfactory signal generation was examined in isolated olfactory receptor neurons (ORNs) of the tiger salamander. 2. With the use of whole cell voltage-clamp recordings in combination with a series of ionic and pharmological tests, it is demonstrated that exogenously applied CO is a potent activator (K1/2 = 2.9 microM) of cyclic nucleotide-gated (CNG) channels previously described to mediate odor transduction. 3. Several lines of evidence suggest that CO mediates its effect through stimulation of a soluble guanylyl cyclase (sGC) leading to formation of the second-messenger cGMP. This conclusion is based on the findings that CO responses show an absolute requirement for guanosine 5'-triphosphate (GTP) in the internal solution, that no direct effect of CO on CNG currents in the absence of GTP is detectable, and that a blocker of sGC activation, LY85383 (10 microM), completely inhibits the CO response. 4. The dose-response curve for cGMP at CNG channels is used as a calibration to provide a quantitative estimate of the CO-stimulated cGMP formation. This analysis implies that CO is a potent activator of olfactory sGC. 5. Perforated patch recordings using amphotericin B demonstrate that low micromolar doses of CO effectively depolarize the membrane potential of ORNs through tonic activation of CNG channels. This effect in turn regulates excitable and adaptive properties of ORNs and modulates neuronal responsiveness. 6. These data argue for an important role of the cGMP pathway in olfactory signaling and support the idea that CO may function as a diffusible messenger in the olfactory system.

  15. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective.

    PubMed

    Krishnan, Shalini M; Kraehling, Jan R; Eitner, Frank; Bénardeau, Agnès; Sandner, Peter

    2018-06-09

    Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators.

  16. Nobiletin, a citrus flavonoid, activates vasodilator-stimulated phosphoprotein in human platelets through non-cyclic nucleotide-related mechanisms.

    PubMed

    Jayakumar, Thanasekaran; Lin, Kao-Chang; Lu, Wan-Jung; Lin, Chia-Ying; Pitchairaj, Geraldine; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-01-01

    Nobiletin, a bioactive polymethoxylated flavone, has been described to possess a diversity of biological effects through its antioxidant and anti-inflammatory properties. Vasodilator-stimulated phosphoprotein (VASP) is a common substrate for cyclic AMP and cyclic GMP-regulated protein kinases [i.e., cyclic AMP-dependent protein kinase (PKA; also known as protein kinase A) and cyclic GMP-dependent protein kinase (PKG; also known as protein kinase G)] and it has been shown to be directly phosphorylated by protein kinase C (PKC). In the present study, we demonstrate that VASP is phosphorylated by nobiletin in human platelets via a non-cyclic nucleotide-related mechanism. This was confirmed by the use of inhibitors of adenylate cyclase (SQ22536) and guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], since they prevented VASP phosphorylation induced by nobiletin. Furthormore, this event was also not affected by specific inhibitors of PKA (H-89), PKG (KT5823) and PKC (Ro318220), representing cyclic nucleotide-dependent pathways upon nobiletin-induced VASP phosphorylation. Similarly, inhibitors of p38 mitogen-activated protein kinase (MAPK; SB203580), extracellular signal-regulated kinase 2 (ERK2; PD98059), c-Jun N-terminal kinase 1 (JNK1; SP600125), Akt (LY294002) and nuclear factor-κB (NF-κB; Bay11-7082) did not affect nobiletin‑induced VASP phosphorylation. Moreover, electron spin resonance, dichlorofluorescein fluorescence and western blotting techniques revealed that nobiletin did not affect hydroxyl radicals (OH•), intracellular reactive oxygen species (ROS) and on protein carbonylation, respectively. Furthermore, the nobiletin‑induced VASP phosphorylation was surprisingly reversed by the intracellular antioxidant, N-acetylcysteine (NAC), but not by the inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI). It was surprising to observe the differential effects of nobiletin and NAC on VASP

  17. Nitric Oxide Mediates Glutamate-Linked Enhancement of cGMP Levels in the Cerebellum

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Snyder, Solomon H.

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. Nω-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of Nω-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  18. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.

    PubMed

    Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S

    2001-03-01

    Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.

  19. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  20. Molecular Mechanisms of Gonadotropin-Releasing Hormone Signaling: Integrating Cyclic Nucleotides into the Network

    PubMed Central

    Perrett, Rebecca M.; McArdle, Craig A.

    2013-01-01

    Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling. PMID:24312080

  1. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4

    PubMed Central

    Richter, Anja M; Povolotsky, Tatyana L; Wieler, Lothar H; Hengge, Regine

    2014-01-01

    In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)—producing the biofilm-promoting second messenger c-di-GMP—that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS. PMID:25361688

  2. From bedside to bench--meeting report of the 7th International Conference on cGMP "cGMP: generators, effectors and therapeutic implications" in Trier, Germany, from June 19th to 21st 2015.

    PubMed

    Friebe, Andreas; Sandner, Peter; Seifert, Roland

    2015-12-01

    During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.

  3. Establishment of pancreatic microenvironment model of ER stress: Quercetin attenuates β-cell apoptosis by invoking nitric oxide-cGMP signaling in endothelial cells.

    PubMed

    Suganya, Natarajan; Mani, Krishna Priya; Sireesh, Dornadula; Rajaguru, Palanisamy; Vairamani, Mariappanadar; Suresh, Thiruppathi; Suzuki, Takayoshi; Chatterjee, Suvro; Ramkumar, Kunka Mohanram

    2018-05-01

    The involvement of endoplasmic reticulum (ER) stress in endothelial dysfunction and diabetes-associated complications has been well documented. Inhibition of ER stress represents a promising therapeutic strategy to attenuate endothelial dysfunction in diabetes. Recent attention has focused on the development of small molecule inhibitors of ER stress to maintain endothelial homeostasis in diabetes. Here we have developed a reliable, robust co-culture system that allows a study on the endothelial cells and pancreatic β-cells crosstalk under ER stress and validated using a known ER stress modulator, quercetin. Furthermore, sensitizing of endothelial cells by quercetin (25 μM) confers protection of pancreatic β-cells against ER stress through nitric oxide (NO ∙ ) signaling. In addition, increased intracellular insulin and NO ∙ -mediated cyclic 3',5'-guanosine monophosphate (cGMP) levels in pancreatic β-cells further confirmed the mechanism of protection under co-culture system. In addition, the potential protein targets of quercetin against ER stress in the endothelial cells were investigated through proteomic profiling and its phosphoprotein targets through Bioplex analysis. On the whole, the developed in vitro co-culture set up can serve as a platform to study the signaling network between the endothelial and pancreatic β-cells as well as provides a mechanistic insight for the validation of novel ER stress modulators. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  5. Inhibitors of cyclic nucleotide phosphodiesterase 3 and 5 as therapeutic agents in heart failure.

    PubMed

    Stehlik, Josef; Movsesian, Matthew A

    2006-07-01

    Cyclic nucleotide phosphodiesterases (PDE) 3 and 5 regulate cAMP and cGMP signalling in cardiac and smooth muscle myocytes. Important advances in the understanding of the roles of these enzymes have recently been made. PDE3 inhibitors have inotropic and vasodilatory properties, and although they acutely improve haemodynamics in patients with heart failure, they do not improve long-term morbidity and mortality. Although combination therapy with beta-adrenergic receptor antagonists or selective inhibition of specific PDE3 isoforms might result in a more favourable long-term outcome, more clinical data are needed to test this proposition. The role of PDE5 inhibitors in the treatment of cardiac disease is evolving. PDE5 inhibitors cause pulmonary and systemic vasodilation. How these drugs will compare with other vasodilators in terms of long-term outcomes in patients with heart failure is unknown. Recent studies also suggest that PDE5 inhibitors may have antihypertropic effects, exerted through increased myocardial cGMP signalling, that could be of additional benefit in patients with heart failure.

  6. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  7. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage.

    PubMed

    Hoshino, Marie; Kaneko, Kotaro; Miyamoto, Yoichi; Yoshimura, Kentaro; Suzuki, Dai; Akaike, Takaaki; Sawa, Tomohiro; Ida, Tomoaki; Fujii, Shigemoto; Ihara, Hideshi; Tanaka, Junichi; Tsukuura, Risa; Chikazu, Daichi; Mishima, Kenji; Baba, Kazuyoshi; Kamijo, Ryutaro

    2017-09-01

    In endochondral ossification, growth of bones occurs at their growth plate cartilage. While it is known that nitric oxide (NO) synthases are required for proliferation of chondrocytes in growth plate cartilage and growth of bones, the precise mechanism by which NO facilitates these process has not been clarified yet. C-type natriuretic peptide (CNP) also positively regulate elongation of bones through expansion of the growth plate cartilage. Both NO and CNP are known to use cGMP as the second messenger. Recently, 8-nitro-cGMP was identified as a signaling molecule produced in the presence of NO in various types of cells. Here, we found that 8-nitro-cGMP is produced in proliferating chondrocytes in the growth plates, which was enhanced by CNP, in bones cultured ex vivo. In addition, 8-nitro-cGMP promoted bone growth with expansion of the proliferating zone as well as increase in the number of proliferating cells in the growth plates. 8-Nitro-cGMP also promoted the proliferation of chondrocytes in vitro. On the other hand, 8-bromo-cGMP enhanced the growth of bones with expansion of hypertrophic zone of the growth plates without affecting either the width of proliferating zone or proliferation of chondrocytes. These results indicate that 8-nitro-cGMP formed in growth plate cartilage accelerates chondrocyte proliferation and bone growth as a downstream molecule of NO. Copyright © 2017. Published by Elsevier Inc.

  8. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K+ channels pathway and serotoninergic system.

    PubMed

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K + channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT 1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT 1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT 1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT 5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT 1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K + channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  9. 76 FR 51395 - Draft Environmental Impact Statement for the General Management Plan (DEIS/GMP), Canaveral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Statement for the General Management Plan (DEIS/GMP), Canaveral National Seashore, FL AGENCY: National Park... General Management Plan (DEIS/GMP), Canaveral National Seashore (Seashore). SUMMARY: Pursuant to 42 U.S.C... DEIS/GMP for Canaveral National Seashore, Florida. The document provides a framework for management...

  10. Structural and Biochemical Determinants of Ligand Binding by the c-di-GMP Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Lipchock, S; Livingston,

    2010-01-01

    The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that themore » most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high-resolution (2.3 {angstrom}) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3{prime}-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation.« less

  11. Synergistic Interaction of a Gabapentin- Mangiferin Combination in Formalin-Induced Secondary Mechanical Allodynia and Hyperalgesia in Rats Is Mediated by Activation of NO-Cyclic GMP-ATP-Sensitive K+ Channel Pathway.

    PubMed

    Godínez-Chaparro, Beatriz; Quiñonez-Bastidas, Geovanna Nallely; Rojas-Hernández, Isabel Rocío; Austrich-Olivares, Amaya Montserrat; Mata-Bermudez, Alfonso

    2017-12-01

    Preclinical Research Gabapentin is an anticonvulsant used to treat neuropathic pain. Mangiferin is an antioxidant that has antinociceptive and antiallodynic effects in inflammatory and neuropathic pain models. The purpose of this study was to determine the interaction between mangiferin and gabapentin in the development and maintenance of formalin-induced secondary allodynia and hyperalgesia in rats. Gabapentin, mangiferin, or their fixed-dose ratio combination were administrated peripherally. Isobolographic analyses was used to define the nature of the interaction of antiallodynic and/or antihyperalgesic effects of the two compounds. Theoretical ED 50 values for the combination were 74.31 µg/paw and 95.20 µg/paw for pre- and post-treatment, respectively. These values were higher than the experimental ED 50 values, 29.45 µg/paw and 37.73 µg/paw respectively, indicating a synergistic interaction in formalin-induced secondary allodynia and hyperalgesia. The antiallodynic and antihyperalgesic effect induced by the gabapentin/mangiferin combination was blocked by administration of L-NAME, the soluble guanylyl cyclase inhibitor, ODQ and glibenclamide. These data suggest that the gabapentin- mangiferin combination produces a synergistic interaction at the peripheral level. Moreover, the antiallodynic and hyperalgesic effect induced by the combination is mediated via the activation of an NO-cyclic GMP-ATP-sensitive K + channel pathway. Drug Dev Res 78 : 390-402, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    PubMed Central

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879

  13. Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain*

    PubMed Central

    Wang, Huanchen; Robinson, Howard; Ke, Hengming

    2010-01-01

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010

  14. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    PubMed

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2018-02-01

    A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  15. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  16. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels

    NASA Astrophysics Data System (ADS)

    Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung

    2016-05-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.

  17. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease.

    PubMed

    Yamamoto, Shinji; Yamashina, Kota; Ishikawa, Masaki; Gotoh, Mari; Yagishita, Sosuke; Iwasa, Kensuke; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke

    2017-07-21

    Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. We demonstrated that 2ccPA suppressed the CoCl 2 -induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE

  18. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    PubMed

    Chen, Annie I; Dolben, Emily F; Okegbe, Chinweike; Harty, Colleen E; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D; O'Toole, George A; Harwood, Caroline S; Dietrich, Lars E P; Hogan, Deborah A

    2014-10-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  19. Candida albicans Ethanol Stimulates Pseudomonas aeruginosa WspR-Controlled Biofilm Formation as Part of a Cyclic Relationship Involving Phenazines

    PubMed Central

    Okegbe, Chinweike; Harty, Colleen E.; Golub, Yuriy; Thao, Sandy; Ha, Dae Gon; Willger, Sven D.; O'Toole, George A.; Harwood, Caroline S.; Dietrich, Lars E. P.; Hogan, Deborah A.

    2014-01-01

    In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis. PMID:25340349

  20. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    NASA Astrophysics Data System (ADS)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  1. Cyclic Nucleotides Differentially Regulate Cx43 Gap Junction Function in Uterine Artery Endothelial Cells From Pregnant Ewes

    PubMed Central

    Ampey, Bryan C.; Ampey, Amanda C.; Lopez, Gladys E.; Bird, Ian M.

    2017-01-01

    Cell–cell communication is dependent on GJ (gap junction) proteins such as Cx43 (connexin 43). We previously demonstrated the importance of Cx43 function in establishing the enhanced pregnancy vasodilatory phenotype during pregnancy in uterine artery endothelial cells from pregnant (P-UAEC) ewes. Cx43 is regulated by elevating cAMP and PKA (protein kinase A)–dependent Cx43 S365 phosphorylation–associated trafficking and GJ open gating, which is opposed by PKC (protein kinase C)–dependent S368 phosphorylation-mediated GJ turnover and closed gating. However, the role of cyclic nucleotide-mediated signaling mechanisms that control Cx43 and GJ function in P-UAECs is unknown. We hypothesize that cAMP will mediate increases in S365 phosphorylation, thereby, enhancing GJ trafficking and open gating, while cGMP will stimulate S368, but not S365, phosphorylation to enhance GJ turnover and closed gating in P-UAECs. Treatment with 8-Bromo (8-Br)-cAMP signal significantly (P<0.05) increased nonphosphorylated S365 signal and total Cx43 phosphorylation, but not S368 phosphorylation, while 8-Br-cGMP significantly (P<0.05) increased Cx43 C-terminus-S365 signal, S368, and total Cx43 phosphorylation. Inhibition of PKA, but not PKG (protein kinase G), abrogated the 8-Br-cAMP–stimulated increase in nonphosphorylated S365 and total Cx43 phosphorylation and inhibited S368 below basal levels, whereas inhibition of PKG blocked (P<0.05) the 8-bromo-cGMP-stimulated rises in nonphosphorylated S365, total Cx43, and S368 phosphorylation levels in P-UAECs. Functional studies showed that 8-Br-cAMP increased dye transfer and sustained calcium bursts, while 8-Br-cGMP decreased both. Thus, in P-UAECs, only 8-Br-cAMP and not 8-Br-cGMP effectively enhances nonphosphorylated S365 and total Cx43 expression that correspondingly reduces S368 phosphorylation, allowing increased GJ communication. This provides new insights into the regulatory mechanisms behind Cx43 function and GJ communication

  2. 75 FR 17756 - Availability of the Final General Management Plan and Environmental Impact Statement (GMP/EIS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... and Environmental Impact Statement (GMP/EIS) for Chattahoochee River National Recreation Area (CRNRA...) announces the availability of a Final GMP/EIS for the CRNRA, Georgia. Consistent with NPS laws, regulations, and policies, and the purpose of the CRNRA, the Final GMP/EIS describes Alternative F at the NPS...

  3. Relevance of an academic GMP Pan-European vector infra-structure (PEVI).

    PubMed

    Cohen-Haguenauer, O; Creff, N; Cruz, P; Tunc, C; Aïuti, A; Baum, C; Bosch, F; Blomberg, P; Cichutek, K; Collins, M; Danos, O; Dehaut, F; Federspiel, M; Galun, E; Garritsen, H; Hauser, H; Hildebrandt, M; Klatzmann, D; Merten, O W; Montini, E; O'Brien, T; Panet, A; Rasooly, L; Scherman, D; Schmidt, M; Schweitzer, M; Tiberghien, P; Vandendriessche, T; Ziehr, H; Ylä-Herttuala, S; von Kalle, C; Gahrton, G; Carrondo, M

    2010-12-01

    In the past 5 years, European investigators have played a major role in the development of clinical gene therapy. The provision of substantial funds by some individual member states to construct GMP facilities makes it an opportune time to network available gene therapy GMP facilities at an EU level. The integrated coordination of GMP production facilities and human skills for advanced gene and genetically-modified (GM) cell therapy, can dramatically enhance academic-led "First-in-man" gene therapy trials. Once proof of efficacy is gathered, technology can be transferred to the private sector which will take over further development taking advantage of knowledge and know-how. Complex technical challenges require existing production facilities to adapt to emerging technologies in a coordinated manner. These include a mandatory requirement for the highest quality of production translating gene-transfer technologies with pharmaceutical-grade GMP processes to the clinic. A consensus has emerged on the directions and priorities to adopt, applying to advanced technologies with improved efficacy and safety profiles, in particular AAV, lentivirus-based and oncolytic vectors. Translating cutting-edge research into "First-in-man" trials require that pre-normative research is conducted which aims to develop standard assays, processes and candidate reference materials. This research will help harmonise practices and quality in the production of GMP vector lots and GM-cells. In gathering critical expertise in Europe and establish conditions for interoperability, the PEVI infrastructure will contribute to the demands of the advanced therapy medicinal products* regulation and to both health and quality of life of EU-citizens.

  4. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    PubMed

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cross regulation between cGMP-dependent protein kinase and Akt in vasodilatation of porcine pulmonary artery.

    PubMed

    Liu, Juan; Liu, Huixia; Li, Yanjing; Xu, Xiaojian; Chen, Zhengju; Liu, Limei; Yu, Xiaoxing; Gao, Yuansheng; Dou, Dou

    2014-11-01

    cGMP-dependent protein kinase (PKG) plays a crucial role in vasodilatation induced by cGMP-elevating agents. Akt has been demonstrated to be involved in modulating vasoreactivity. The present study was to determine the interaction between PKG and Akt and their influences on nitric oxide (NO)-induced vasodilatation. Isolated fourth-generation porcine pulmonary arteries were dissected from the lung and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The relaxant responses of vessels were determined by organ chamber technique, cGMP was assayed by using enzyme-linked immunosorbent assay kit, the protein levels of phosphorylated Akt were examined by Western blotting, and the activity of phosphodiesterase type 5 (PDE5) was assayed by measuring the rate of cGMP degradation. Incubation with DETA NONOate (a stable NO donor) and 8-Br-cGMP (a cell membrane permeable analog of cGMP) attenuated Akt phosphorylation at Ser-473, which was prevented by Rp-8-Br-PET-cGMPS (a specific inhibitor of PKG) and calyculin A (an inhibitor of protein phosphatase 1 and 2A) but not by okadaic acid (a selective inhibitor of protein phosphatase 2A). Inhibition of Akt enhanced the relaxation and cGMP elevation of porcine pulmonary arteries induced by DETA NONOate or sodium nitroprusside, which was prevented by zaprinast, a specific inhibitor of PDE5. Incubation with LY294002 or Akt inhibitor reduced PDE5 activity in porcine pulmonary arteries. The present study indicates that PKG may attenuate Akt phosphorylation through protein phosphatase 1, which leads to an augmented cGMP elevation by inhibition of PDE5. The increased cGMP in turn activates PKG. Such a positive feedback may play an important role in NO-induced pulmonary vasodilatation.

  6. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    PubMed

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  7. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Wei-Jan; Wang, Su-Jane

    2012-03-01

    Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway. Copyright © 2011 Wiley Periodicals, Inc.

  8. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging

    PubMed Central

    Bhargava, Yogesh; Hampden-Smith, Kathryn; Chachlaki, Konstantina; Wood, Katherine C.; Vernon, Jeffrey; Allerston, Charles K.; Batchelor, Andrew M.; Garthwaite, John

    2013-01-01

    Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca2+ biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 μM) than reported for the original FlincG (0.17 μM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations. PMID:24068983

  9. The permeability of the cGMP-activated channel to organic cations in retinal rods of the tiger salamander.

    PubMed Central

    Picco, C; Menini, A

    1993-01-01

    1. The permeability of the channel activated by guanosine 3',5'-cyclic monophosphate (cGMP) to many organic monovalent cations was determined by recording macroscopic currents in excised inside-out patches of plasma membrane from isolated retinal rod outer segments of the tiger salamander. 2. Current-voltage relations were measured when the NaCl of the bathing medium was replaced by salts of organic cations. Permeability ratios relative to Na+ ions were calculated with the Goldman-Hodgkin-Katz potential equation from the measured changes of reversal potentials. 3. Hydroxylammonium+, hydrazinium+ and methylammonium+, which are molecules of very similar shape and size, permeate the channel with very different permeability ratios: 5.92, 1.99 and 0.60 respectively. 4. Methylated and ethylated ammonium+ compounds were investigated. It was found that, not only methylammonium+, but also dimethylammonium+ and ethylammonium+ were permeant with permeability ratios of 0.6, 0.14 and 0.16 respectively. Trimethylammonium+, tetramethylammonium+, diethylammonium+, triethylammonium+, and tetraethylammonium+ were not permeant. 5. Guanidinium+ and its derivatives formamidinium+, aminoguanidinium+, acetamidinium+ and methylguanidinium+ were all permeant with permeability ratios 1.12, 1.00, 0.63, 0.36 and 0.33 respectively. 6. The cGMP-activated channel was found to be permeable to at least thirteen organic cations. Molecular models of the permeant cations indicate that the cross-section of the narrowest part of the pore must be at least as large as a rectangle of 0.38 x 0.5 nm dimensions. PMID:7683718

  10. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis.

    PubMed

    Collins, Angela C; Cai, Haocheng; Li, Tuo; Franco, Luis H; Li, Xiao-Dong; Nair, Vidhya R; Scharn, Caitlyn R; Stamm, Chelsea E; Levine, Beth; Chen, Zhijian J; Shiloh, Michael U

    2015-06-10

    Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. 75 FR 17761 - Termination of an Environmental Impact Statement (EIS) for the General Management Plan (GMP) for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... (EIS) for the General Management Plan (GMP) for Kings Mountain National Military Park (Park), South... Service (NPS) is terminating preparation of an EIS for the GMP for the Park, South Carolina. A Notice of Intent to prepare an EIS for the Park GMP was published in the Federal Register on October 10, 2006 (71...

  12. [The Contribution of GMP-grade Hospital Preparation to Translational Research].

    PubMed

    Yonezawa, Atsushi; Kajiwara, Moto; Minami, Ikuko; Omura, Tomohiro; Nakagawa, Shunsaku; Matsubara, Kazuo

    2015-01-01

    Translational research is important for applying the outcomes of basic research studies to practical medical treatments. In exploratory early-phase clinical trials for an innovative therapy, researchers should generally manufacture investigational agents by themselves. To provide investigational agents with safety and high quality in clinical studies, appropriate production management and quality control are essential. In the Department of Pharmacy of Kyoto University Hospital, a manufacturing facility for sterile drugs was established, independent of existing manufacturing facilities. Manuals on production management and quality control were developed according to Good Manufacturing Practices (GMP) for Investigational New Drugs (INDs). Advanced clinical research has been carried out using investigational agents manufactured in our facility. These achievements contribute to both the safety of patients and the reliability of clinical studies. In addition, we are able to do licensing-out of our technique for the manufacture of investigational drugs. In this symposium, we will introduce our GMP grade manufacturing facility for sterile drugs and discuss the role of GMP grade hospital preparation in translational research.

  13. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence.

    PubMed

    Davies, Bryan W; Bogard, Ryan W; Young, Travis S; Mekalanos, John J

    2012-04-13

    The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  15. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans.

    PubMed

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2009-08-01

    G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.

  16. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    PubMed

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A C-di-GMP-proflavine-hemin supramolecular complex has peroxidase activity--implication for a simple colorimetric detection.

    PubMed

    Nakayama, Shizuka; Roelofs, Kevin; Lee, Vincent T; Sintim, Herman O

    2012-03-01

    Herein, we demonstrate that the bacterial signaling molecule, c-di-GMP, can enhance the peroxidation of hemin when proflavine is present. The c-di-GMP-proflavine-hemin nucleotidezyme can oxidize the colorless compound 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, to the colored radical cation ABTS˙(+) and hence provides simple colorimetric detection of c-di-GMP at low micromolar concentrations.

  18. Quality Risk Management: Putting GMP Controls First.

    PubMed

    O'Donnell, Kevin; Greene, Anne; Zwitkovits, Michael; Calnan, Nuala

    2012-01-01

    This paper presents a practical way in which current approaches to quality risk management (QRM) may be improved, such that they better support qualification, validation programs, and change control proposals at manufacturing sites. The paper is focused on the treatment of good manufacturing practice (GMP) controls during QRM exercises. It specifically addresses why it is important to evaluate and classify such controls in terms of how they affect the severity, probability of occurrence, and detection ratings that may be assigned to potential failure modes or negative events. It also presents a QRM process that is designed to directly link the outputs of risk assessments and risk control activities with qualification and validation protocols in the GMP environment. This paper concerns the need for improvement in the use of risk-based principles and tools when working to ensure that the manufacturing processes used to produce medicines, and their related equipment, are appropriate. Manufacturing processes need to be validated (or proven) to demonstrate that they can produce a medicine of the required quality. The items of equipment used in such processes need to be qualified, in order to prove that they are fit for their intended use. Quality risk management (QRM) tools can be used to support such qualification and validation activities, but their use should be science-based and subject to as little subjectivity and uncertainty as possible. When changes are proposed to manufacturing processes, equipment, or related activities, they also need careful evaluation to ensure that any risks present are managed effectively. This paper presents a practical approach to how QRM may be improved so that it better supports qualification, validation programs, and change control proposals in a more scientific way. This improved approach is based on the treatment of what are called good manufacturing process (GMP) controls during those QRM exercises. A GMP control can be considered

  19. Penile Erection Induced by Scoparone from Artemisia capillaris through the Nitric Oxide-Cyclic Guanosine Monophosphate Signaling Pathway.

    PubMed

    Choi, Bo Ram; Kim, Hye Kyung; Park, Jong Kwan

    2017-12-01

    The objective of this study was to evaluate the relaxant effect of scoparone from Artemisia capillaris on rabbit penile corpus cavernosum smooth muscle (PCCSM) and to elucidate the mechanism of action of scoparone for the treatment of erectile dysfunction (ED). PCCSM that had been precontracted with phenylephrine was treated with 3 Artemisia herbs (A. princeps, A. capillaris, and A. iwayomogi) and 3 fractions (n-hexane, ethyl acetate, and n-butanol) with different concentrations (0.1, 0.5, 1.0, and 2.0 mg/mL). Four components (esculetin, scopoletin, capillarisin, and scoparone) isolated from A. capillaris were also evaluated. The PCCSM was preincubated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). Cyclic nucleotides in the perfusate were measured by a radioimmunoassay. The interactions of scoparone with udenafil and rolipram were also evaluated. A. capillaris extract relaxed PCCSM in a concentration-dependent manner. Scoparone had the highest relaxant effect on PCCSM among the 4 components (esculetin, scopoletin, capillarisin, and scoparone) isolated from the ethyl acetate fraction. The application of scoparone on PCCSM pretreated with L-NAME and ODQ led to significantly less relaxation. Scoparone also increased the cyclic guanosine monophosphate (cGMP) levels in the perfusate in a concentration-dependent manner. Furthermore, scoparone enhanced udenafil- and rolipram-induced relaxation of the PCCSM. Scoparone relaxed the PCCSM mainly by activating the nitric oxide-cGMP signaling pathway, and it may be a new promising treatment for ED patients who do not completely respond to udenafil. Copyright © 2017 Korean Society for Sexual Medicine and Andrology

  20. Penile Erection Induced by Scoparone from Artemisia capillaris through the Nitric Oxide-Cyclic Guanosine Monophosphate Signaling Pathway

    PubMed Central

    2017-01-01

    Purpose The objective of this study was to evaluate the relaxant effect of scoparone from Artemisia capillaris on rabbit penile corpus cavernosum smooth muscle (PCCSM) and to elucidate the mechanism of action of scoparone for the treatment of erectile dysfunction (ED). Materials and Methods PCCSM that had been precontracted with phenylephrine was treated with 3 Artemisia herbs (A. princeps, A. capillaris, and A. iwayomogi) and 3 fractions (n-hexane, ethyl acetate, and n-butanol) with different concentrations (0.1, 0.5, 1.0, and 2.0 mg/mL). Four components (esculetin, scopoletin, capillarisin, and scoparone) isolated from A. capillaris were also evaluated. The PCCSM was preincubated with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). Cyclic nucleotides in the perfusate were measured by a radioimmunoassay. The interactions of scoparone with udenafil and rolipram were also evaluated. Results A. capillaris extract relaxed PCCSM in a concentration-dependent manner. Scoparone had the highest relaxant effect on PCCSM among the 4 components (esculetin, scopoletin, capillarisin, and scoparone) isolated from the ethyl acetate fraction. The application of scoparone on PCCSM pretreated with L-NAME and ODQ led to significantly less relaxation. Scoparone also increased the cyclic guanosine monophosphate (cGMP) levels in the perfusate in a concentration-dependent manner. Furthermore, scoparone enhanced udenafil- and rolipram-induced relaxation of the PCCSM. Conclusions Scoparone relaxed the PCCSM mainly by activating the nitric oxide-cGMP signaling pathway, and it may be a new promising treatment for ED patients who do not completely respond to udenafil. PMID:29164835

  1. Activation of cGMP/Protein Kinase G Pathway in Postconditioned Myocardium Depends on Reduced Oxidative Stress and Preserved Endothelial Nitric Oxide Synthase Coupling

    PubMed Central

    Inserte, Javier; Hernando, Victor; Vilardosa, Úrsula; Abad, Elena; Poncelas‐Nozal, Marcos; Garcia‐Dorado, David

    2013-01-01

    Background The cGMP/protein kinase G (PKG) pathway is involved in the cardioprotective effects of postconditioning (PoCo). Although PKG signaling in PoCo has been proposed to depend on the activation of the phosphatidylinositol 3‐kinase (PI3K)/Akt cascade, recent data bring into question a causal role of reperfusion injury signaling kinase (RISK) in PoCo protection. We hypothesized that PoCo increases PKG activity by reducing oxidative stress–induced endothelial nitric oxide synthase (NOS) uncoupling at the onset of reperfusion. Methods and Results Isolated rat hearts were submitted to 40 minutes of ischemia and reperfusion with and without a PoCo protocol. PoCo reduced infarct size by 48% and cGMP depletion. Blockade of cGMP synthesis (1H‐[1,2,4]oxadiazolo[4,3‐a]quinoxalin‐1‐one) and inhibition of PKG (KT5823) or NOS (l‐NAME) abolished protection, but inhibition of PI3K/Akt cascade (LY294002) did not (n=5 to 7 per group). Phosphorylation of the RISK pathway was higher in PoCo hearts. However, this difference is due to increased cell death in control hearts because in hearts reperfused with the contractile inhibitor blebbistatin, a drug effective in preventing cell death at the onset of reperfusion, RISK phosphorylation increased during reperfusion without differences between control and PoCo groups. In these hearts, PoCo reduced the production of superoxide (O2−) and protein nitrotyrosylation and increased nitrate/nitrite levels in parallel with a significant decrease in the oxidation of tetrahydrobiopterin (BH4) and in the monomeric form of endothelial NOS. Conclusions These results demonstrate that PoCo activates the cGMP/PKG pathway via a mechanism independent of the PI3K/Akt cascade and dependent on the reduction of O2− production at the onset of reperfusion, resulting in attenuated oxidation of BH4 and reduced NOS uncoupling. PMID:23525447

  2. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat.

    PubMed

    Zhang, Ruilan; Wang, Lei; Zhang, Li; Chen, Jieli; Zhu, Zhenping; Zhang, Zhenggang; Chopp, Michael

    2003-02-21

    We investigated the effects of NO on angiogenesis and the synthesis of vascular endothelial growth factor (VEGF) in a model of focal embolic cerebral ischemia in the rat. Compared with control rats, systemic administration of an NO donor, DETANONOate, to rats 24 hours after stroke significantly enlarged vascular perimeters and increased the number of proliferated cerebral endothelial cells and the numbers of newly generated vessels in the ischemic boundary regions, as evaluated by 3-dimensional laser scanning confocal microscopy. Treatment with DETANONOate significantly increased VEGF levels in the ischemic boundary regions as measured by ELISA. A capillary-like tube formation assay was used to investigate whether DETANONOate increases angiogenesis in ischemic brain via activation of soluble guanylate cyclase. DETANONOate-induced capillary-like tube formation was completely inhibited by a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Blocking VEGF activity by a neutralized antibody against VEGF receptor 2 significantly attenuated DETANONOate-induced capillary-like tube formation. Moreover, systemic administration of a phosphodiesterase type 5 inhibitor (Sildenafil) to rats 24 hours after stroke significantly increased angiogenesis in the ischemic boundary regions. Sildenafil and an analog of cyclic guanosine monophosphate (cGMP) also induced capillary-like tube formation. These findings suggest that exogenous NO enhances angiogenesis in ischemic brain, which is mediated by the NO/cGMP pathway. Furthermore, our data suggest that NO, in part via VEGF, may enhance angiogenesis in ischemic brain.

  3. The Cyclic Di-GMP Phosphodiesterase Gene Rv1357c/BCG1419c Affects BCG Pellicle Production and In Vivo Maintenance.

    PubMed

    Flores-Valdez, Mario Alberto; Aceves-Sánchez, Michel de Jesús; Pedroza-Roldán, César; Vega-Domínguez, Perla Jazmín; Prado-Montes de Oca, Ernesto; Bravo-Madrigal, Jorge; Laval, Françoise; Daffé, Mamadou; Koestler, Ben; Waters, Christopher M

    2015-02-01

    Bacteria living in a surface-attached community that contains a heterogeneous population, coated with an extracellular matrix, and showing drug tolerance (biofilms) are often linked to chronic infections. In mycobacteria, the pellicle mode of growth has been equated to an in vitro biofilm and meets several of the criteria mentioned above, while tuberculosis infection presents a chronic (latent) phase of infection. As mycobacteria lack most genes required to control biofilm production by other microorganisms, we deleted or expressed from the hsp60 strong promoter the only known c-di-GMP phosphodiesterase (PDE) gene in Mycobacterium bovis BCG. We found changes in pellicle production, cellular protein profiles, lipid production, resistance to nitrosative stress and maintenance in lungs and spleens of immunocompetent BALB/mice. Our results show that pellicle production and capacity to remain within the host are linked in BCG. © 2015 International Union of Biochemistry and Molecular Biology.

  4. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals.

    PubMed

    Zhu, Yanna; Xia, Min; Yang, Yan; Liu, Fengqiong; Li, Zhongxia; Hao, Yuantao; Mi, Mantian; Jin, Tianru; Ling, Wenhua

    2011-11-01

    Anthocyanins have been shown to improve endothelial function in animal models. However, whether these compounds have similar beneficial effects in humans is largely unknown. In a short-term crossover study, 12 hypercholesterolemic individuals were given oral anthocyanins (320 mg) isolated from berries or placebo. Brachial artery flow-mediated dilation (FMD) was assessed before and after the intervention. In a long-term intervention trial (12 weeks), 150 hypercholesterolemic individuals were given anthocyanins (320 mg/day, n = 75) or placebo (n = 75), after which we measured FMD, plasma cGMP, and other serum biomarkers. Another short-term intervention was conducted in the presence of NO-cGMP inhibitors in 6 people and in a rat aortic ring model (n = 8). Significant increases of FMD from 8.3% (0.6%) at baseline to 11.0% (0.8%) at 1 h and 10.1% (0.9%) at 2 h were observed after short-term anthocyanin consumption, concomitantly with increases of plasma anthocyanin concentrations (P < 0.05). In the study participants who received long-term anthocyanin intervention, compared with the control group, we observed significant increases in the FMD (28.4% vs 2.2%), cGMP (12.6% vs -1.2%), and HDL-cholesterol concentrations, but decreases in the serum soluble vascular adhesion molecule-1 and LDL cholesterol concentrations (P < 0.05). The changes in the cGMP and HDL cholesterol concentrations positively correlated with FMD in the anthocyanin group (P < 0.05). In the presence of NO-cGMP inhibitors, the effects of anthocyanin on endothelial function were abolished in human participants and in a rat aortic ring model. Anthocyanin supplementation improves endothelium-dependent vasodilation in hypercholesterolemic individuals. This effect involves activation of the NO-cGMP signaling pathway, improvements in the serum lipid profile, and decreased inflammation.

  5. Probing the Reactivity of Cyclic "N,O"-Acetals versus Cyclic "O,O"-Acetals with NaBH[subscript 4] and CH[subscript 3]MgI

    ERIC Educational Resources Information Center

    Ciaccio, James A.; Saba, Shahrokh; Bruno, Samantha M.; Bruppacher, John H.; McKnight, Alexa G.

    2018-01-01

    An operationally straightforward, project-like laboratory experiment has been developed in which students directly compare the reactivity of two heterocycles, a cyclic "O,O"-acetal (standard C-O protecting group) and a cyclic "N,O"-acetal (oxazolidine), toward sodium borohydride and methylmagnesium iodide. Students synthesize a…

  6. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  7. A single, low dose of a cGMP recombinant BCG vaccine elicits protective T cell immunity against the human respiratory syncytial virus infection and prevents lung pathology in mice.

    PubMed

    Céspedes, Pablo F; Rey-Jurado, Emma; Espinoza, Janyra A; Rivera, Claudia A; Canedo-Marroquín, Gisela; Bueno, Susan M; Kalergis, Alexis M

    2017-02-01

    Human respiratory syncytial virus (hRSV) is a major health burden worldwide, causing the majority of hospitalizations in children under two years old due to bronchiolitis and pneumonia. HRSV causes year-to-year outbreaks of disease, which also affects the elderly and immunocompromised adults. Furthermore, both hRSV morbidity and epidemics are explained by a consistently high rate of re-infections that take place throughout the patient life. Although significant efforts have been invested worldwide, currently there are no licensed vaccines to prevent hRSV infection. Here, we describe that a recombinant Bacillus Calmette-Guerin (BCG) vaccine expressing the nucleoprotein (N) of hRSV formulated under current good manufacture practices (cGMP rBCG-N-hRSV) confers protective immunity to the virus in mice. Our results show that a single dose of the GMP rBCG-N-hRSV vaccine retains its capacity to protect mice against a challenge with a disease-causing infection of 1×10 7 plaque-forming units (PFUs) of the hRSV A2 clinical strain 13018-8. Compared to unimmunized infected controls, vaccinated mice displayed reduced weight loss and less infiltration of neutrophils within the airways, as well as reduced viral loads in bronchoalveolar lavages, parameters that are characteristic of hRSV infection in mice. Also, ex vivo re-stimulation of splenic T cells at 28days post-immunization activated a repertoire of T cells secreting IFN-γ and IL-17, which further suggest that the rBCG-N-hRSV vaccine induced a mixed, CD8 + and CD4 + T cell response capable of both restraining viral spread and preventing damage of the lungs. All these features support the notion that rBCG-N-hRSV is a promising candidate vaccine to be used in humans to prevent the disease caused by hRSV in the susceptible population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG)*♦

    PubMed Central

    VanSchouwen, Bryan; Selvaratnam, Rajeevan; Giri, Rajanish; Lorenz, Robin; Herberg, Friedrich W.; Kim, Choel; Melacini, Giuseppe

    2015-01-01

    Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state. PMID:26370085

  9. Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site

    NASA Astrophysics Data System (ADS)

    Fossa, Paola; Boggia, Raffaella; Mosti, Luisa

    1998-07-01

    Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.

  10. High glucose inhibits the aspirin-induced activation of the nitric oxide/cGMP/cGMP-dependent protein kinase pathway and does not affect the aspirin-induced inhibition of thromboxane synthesis in human platelets.

    PubMed

    Russo, Isabella; Viretto, Michela; Barale, Cristina; Mattiello, Luigi; Doronzo, Gabriella; Pagliarino, Andrea; Cavalot, Franco; Trovati, Mariella; Anfossi, Giovanni

    2012-11-01

    Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmol/L d-glucose or iso-osmolar mannitol, we evaluated the influence of a 30-min incubation with lysine acetylsalicylate (L-ASA; 1-300 μmol/L) on 1) platelet function under shear stress; 2) aggregation induced by sodium arachidonate or ADP; 3) agonist-induced thromboxane production; and 4) NO production, cGMP synthesis, and PKG-induced vasodilator-stimulated phosphoprotein phosphorylation. Experiments were repeated in the presence of the antioxidant agent amifostine. We observed that platelet exposure to 25 mmol/L d-glucose, but not to iso-osmolar mannitol, 1) reduced the ability of L-ASA to inhibit platelet responses to agonists; 2) did not modify the L-ASA-induced inhibition of thromboxane synthesis; and 3) prevented the L-ASA-induced activation of the NO/cGMP/PKG pathway. Preincubation with amifostine reversed the high-glucose effects. Thus, high glucose acutely reduces the antiaggregating effect of aspirin, does not modify the aspirin-induced inhibition of thromboxane synthesis, and inhibits the aspirin-induced activation of the NO/cGMP/PKG pathway. These results identify a mechanism by which high glucose interferes with the aspirin action.

  11. Heat shock factor-1 intertwines insulin/IGF-1, TGF-β and cGMP signaling to control development and aging.

    PubMed

    Barna, János; Princz, Andrea; Kosztelnik, Mónika; Hargitai, Balázs; Takács-Vellai, Krisztina; Vellai, Tibor

    2012-11-01

    Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-β (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-β and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-β pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.

  12. Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway

    PubMed Central

    Staurengo-Ferrari, Larissa; Zarpelon, Ana C.; Longhi-Balbinot, Daniela T.; Marchesi, Mario; Cunha, Thiago M.; Alves-Filho, José C.; Cunha, Fernando Q.; Ferreira, Sergio H.; Casagrande, Rubia; Miranda, Katrina M.; Verri, Waldiceu A.

    2014-01-01

    Background Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angeli’s salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. Methods The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. Results PBQ and acetic acid induced significant writhing responses over 20 min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. Conclusion The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K+) signaling pathway. PMID:24948073

  13. N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

    PubMed Central

    Pou, S; Pou, W S; Rosen, G M; el-Fakahany, E E

    1991-01-01

    This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP formation in intact cells. This response was not dependent on Ca2+. In cytosol preparations the activation of guanylate cyclase by L-arginine was dose-dependent and required Ca2+ and NADPH. In contrast, NH2OH itself did not activate cytosolic guanylate cyclase but it inhibited the basal activity of this enzyme in a concentration-dependent manner. The formation of cyclic GMP in the cytosolic fractions in response to NH2OH required the addition of catalase and H2O2. On the other hand, catalase and/or H2O2 lead to a decrease in L-arginine-induced cyclic GMP formation. Furthermore, NH2OH inhibited L-arginine- and sodium nitroprusside-induced cyclic GMP formation in the cytosol. The inhibition of L-arginine-induced cyclic GMP formation in the cytosol by NH2OH was not reversed by the addition of superoxide dismutase. These data strongly suggest that NH2OH is not a putative intermediate in the metabolism of L-arginine to an activator of guanylate cyclase. PMID:1671745

  14. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    PubMed

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  15. Automated GMP-production of α-[11 C]Methyl-L-tryptophan using a tracer production system (TPS).

    PubMed

    Nordeman, Patrik; Yngve, Ulrika; Wilking, Helena; Gustavsson, Sven Åke; Eriksson, Jonas; Antoni, Gunnar

    2018-06-14

    The radiosynthesis and GMP validation of [ 11 C] AMT for human use is described. Three consecutive batches were produced giving 940-3790 MBq (4-17% RCY, decay corrected, based on [ 11 C]CO 2 ). The molar activity at the end of synthesis was 19-35 GBq/μmol, the radiochemical purity was ≥98% and the enantiomeric purity was >99%. While the synthesis method was automated using a new generation of synthesis equipment, Tracer Production System (TPS) developed in house, the method should be readily applicable to other synthesis platforms with minor modifications. This article is protected by copyright. All rights reserved.

  16. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.).

    PubMed

    Garabagi, Freydoun; Wade French, B; Schaafsma, Arthur W; Peter Pauls, K

    2008-07-01

    A new 'variant' behavior in western corn rootworm (WCR) has resulted in egg-laying into non-cornfields, compared to 'normal' deposition of eggs in cornfields, allowing these insects to circumvent crop rotation. No morphological or genetic characteristics have been defined to differentiate between the normal and variant biotypes. Cyclic GMP-dependent protein kinases (PKG) have been implicated in the regulation of behaviors in vertebrates, insects, and nematodes, including foraging behavior in Drosophila. A cDNA with homology to the Drosophila melanogaster foraging gene (called Dvfor1) was cloned from WCR. The deduced DvFOR1 protein is approximately 70% similar to FOR proteins in Drosophila, silkworm (Bombyx mori) and honeybee (Apis mellifera). It contains a coiled-coil region, two tandem cyclic nucleotide-binding domains, a serine/threonine kinase catalytic domain, and a serine/threonine kinase catalytic domain extension, which are all characteristically found in PKG proteins. Real-time PCR assays of foraging transcript levels in heads of normal and rotation adapted females of WCR obtained from lab-reared insect colonies indicated that the variants had higher levels (25%) of PKG expression than normals. The magnitude of this increase is similar to that observed in Drosophila rover phenotypes compared to sitter phenotypes. However, Diabrotica contains at least two different foraging gene transcripts, which complicates establishing a direct link between the level of gene expression and insect behavior.

  17. Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex

    NASA Astrophysics Data System (ADS)

    Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.

    2004-08-01

    The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of

  18. c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators.

    PubMed

    Nakayama, Shizuka; Kelsey, Ilana; Wang, Jingxin; Sintim, Herman O

    2011-04-28

    The ubiquitous bacterial biofilm regulator, c-di-GMP can form G-quadruplexes at physiological conditions in the presence of some aromatic compounds, such as acriflavine and proflavine. The fluorescence of these compounds is quenched upon c-di-GMP binding and some of the formed c-di-GMP G-quadruplexes are stable even at 75 °C. © The Royal Society of Chemistry 2011

  19. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  20. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.

    PubMed

    Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M

    2009-11-01

    Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.

  1. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway

    PubMed Central

    Sandoval, Alejandro; Duran, Paz; Gandini, María A.; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2018-01-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. PMID:28807144

  2. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    PubMed

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Potentiation of the NO-cGMP pathway and blood flow responses during dynamic exercise in healthy humans

    PubMed Central

    Limberg, Jacqueline K.; Malterer, Katherine R.; Kellawan, J. Mikhail; Schrage, William G.; Wilkins, Brad W.; Nicholson, Wayne T.; Eisenach, John H.; Joyner, Michael J.; Curry, Timothy B.

    2017-01-01

    Purpose Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). Methods FBF (Doppler ultrasound) was assessed at rest and during 5 minutes of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: 1) oral SDF (n=10), 2) intra-arterial L-NMMA (n=20), 3) SDF and L-NMMA (n=10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. Results FBF increased with exercise (p<0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17±1 to 15±1 mL/dL/min, p<0.01). Although the hyperemic response to NTP was augmented by SDF (Area under the curve: 41±7 vs 61±11 AU, p<0.01), there was no effect of SDF on exercise hyperemia (p=0.33). Conclusions Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans. PMID:28013386

  4. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Ameli, Sanaz; Akhlaghipour, Golnoosh; Dehpour, AhmadReza

    2016-04-01

    Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.

  5. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  6. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    PubMed

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  7. Increasing plasma fibrinogen, but unchanged levels of intraplatelet cyclic nucleotides, plasma endothelin-1, factor VII, and neopterin during cholesterol lowering with fluvastatin.

    PubMed

    Gottsäter, A; Anwaar, I; Lind, P; Mattiasson, I; Lindgärde, F

    1999-04-01

    Lipid-lowering statin treatment reduces cardiovascular morbidity and mortality and improves endothelial function in patients with hypercholesterolemia. The aim of the present study was to evaluate plasma levels of fibrinogen, factor VII, and the macrophage-derived inflammatory mediator neopterin during lipid lowering. In addition, the endothelial production of platelet antiaggregatory and vasodilatory factors such as nitric oxide and prostacyclin, and vasoconstrictive factors such as endothelin-1, was assessed. Plasma fibrinogen, factor VII, endothelin-1, and the neopterin and intraplatelet nitric oxide and prostacyclin mediators cyclic 3'-5'guanosine monophosphate (cGMP) and cyclic 3'-5'adenosine monophosphate (cAMP) were measured before and 6 months after the institution of treatment with fluvastatin in 17 patients (eight men and nine women, median age 60 years) with vascular disease and previously untreated hypercholesterolemia. After 6 months, a decrease of 1.62 mmol/l [1.26-2.18 (19%); P < 0.01] was noted in levels of total cholesterol, and a decrease of 1.70 mmol/l [1.52-2.30 (28%); P < 0.01] in levels of low-density lipoprotein cholesterol. Plasma levels of fibrinogen had increased [from 4.81 g/l (4.26-5.27) to 5.17 g/l (4.81-5.67); P < 0.05], whereas no significant changes had occurred in intraplatelet levels of cGMP [decrease by 0.05 pmol/10(9) platelets (-0.17 to 0.24); NS], cAMP [decrease by 0.13 pmol/10(9) platelets (-0.37 to 0.86); NS], plasma endothelin-1 [decrease by 0.05 pg/ml (-0.60 to 0.70); NS], plasma factor VII [from 1.14 IE/ml (0.58-1.38) to 1.22 IE/ml (0.96-1.46); NS], or plasma neopterin [from 8.6 nmol/l (7.1-11.5) to 8.7 nmol/l (7.9-11.3); NS]. In conclusion, during cholesterol-lowering treatment with fluvastatin, plasma levels of fibrinogen increased whereas intraplatelet cyclic nucleotide levels and plasma endothelin-1, factor VII and neopterin levels were unchanged.

  8. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response

    PubMed Central

    He, Chunmei; Yu, Zhenming; Teixeira da Silva, Jaime A.; Zhang, Jianxia; Liu, Xuncheng; Wang, Xiaojuan; Zhang, Xinhua; Zeng, Songjun; Wu, Kunlin; Tan, Jianwen; Ma, Guohua; Luo, Jianping; Duan, Jun

    2017-01-01

    GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth. PMID:28176760

  10. Sources of Water to Wells for Transient Cyclic Systems

    USGS Publications Warehouse

    Reilly, T.E.; Pollock, D.W.

    1996-01-01

    Many state agencies are currently (1995) developing wellhead protection programs. The thrust of some of these programs is to protect water supplies by determining the areas contributing recharge to water-supply wells and by specifying regulations to minimize the opportunity for contamination of the recharge water by activities at the land surface. The area contributing recharge to a discharging well is the surface area at the water table through which the water flowing to the well entered the ground-water system. In the analyses of ground-water flow systems, steady-state average conditions are commonly used to simplify the problem and make a solution tractable. However, recharge is usually cyclic in nature, with seasonal cycles and longer term climatic cycles. The effect of these cyclic stresses on the area contributing recharge to wells is quantitatively analyzed for a hypothetical alluvial valley aquifer system that is representative of a large class of ground-water systems that are extensively developed for water supply. The analysis shows that, in many cases, these cyclic changes in the recharge rates do not significantly affect the location and size of the areas contributing recharge to wells. The ratio of the mean travel time to the length of the cyclic stress period appears to be an indicator of whether the transient effects of the cyclic stress must be explicitly represented in the analysis of contributing areas to wells. For the cases examined, if the ratio of the mean travel time to the period of the cyclic stress was much greater than one, then the transient area contributing recharge to wells was similar to the area calculated using an average steady-state condition. However, cyclic stresses on systems with ratios less than one do have an effect on the location and size of the areas contributing recharge to wells.

  11. Cyclic Oxidation Modeling Program Rewritten for MS Windows

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.

  12. Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn

    PubMed Central

    Lakshminrusimha, Satyan; Wedgwood, Stephen; Czech, Lyubov; Gugino, Sylvia F.; Russell, James A.; Farrow, Kathryn N.; Steinhorn, Robin H.

    2012-01-01

    In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hydrocortisone on pulmonary vascular function, ROS, and cGMP in the ovine ductal ligation model of PPHN. PPHN lambs were ventilated with 100% O2 for 24 h. Six lambs received 5 mg/kg hydrocortisone every 8 h times three doses (PPHN-hiHC), five lambs received 3 mg/kg hydrocortisone followed by 1 mg·kg−1·dose−1 times two doses (PPHN-loHC), and six lambs were ventilated with O2 alone (PPHN). All groups were compared with healthy 1-day spontaneously breathing lambs (1DSB). O2 ventilation of PPHN lambs decreased sGC activity, increased PDE5 activity, and increased ROS vs. 1DSB lambs. Both hydrocortisone doses significantly improved arterial-to-alveolar ratios relative to PPHN lambs, decreased PDE5 activity, and increased cGMP relative to PPHN lambs. High-dose hydrocortisone also increased sGC activity, decreased PDE5 expression, decreased ROS, and increased total vascular SOD activity vs. PPHN lambs. These data suggest that hydrocortisone treatment in clinically relevant doses improves oxygenation and decreases hyperoxia-induced changes in sGC and PDE5 activity, increasing cGMP levels. Hydrocortisone reduces ROS levels in part by increasing SOD activity in PPHN lambs ventilated with 100% O2. We speculate that hydrocortisone increases cGMP by direct effects on sGC and PDE5 expression and by attenuating abnormalities induced by oxidant stress. PMID:22198909

  13. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca 2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated Ca V 1.3L-type Ca 2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant Ca V 1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the Ca V α 1 ion-conducting subunit of the Ca V 1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca 2+ macroscopic currents and impair insulin release stimulated with high K + . In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for Ca V 1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the Ca V α 1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate Ca V 1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of a GMP training of milkers in dairy goat farms in São Paulo, Brazil.

    PubMed

    Tavolaro, Paula; Oliveira, Carlos A F

    2006-02-01

    A good manufacturing practices (GMP) training course was applied for goat milkers and evaluated using microbiological analysis in milk before and after training. Milkers from three dairy goat farms located in São Paulo, Brazil, were submitted to a one-hour course on GMP and recommended guidelines for milking. Samples of raw milk were collected before and one to two months after training, and analysed for aerobic mesophilic, psychrotrophic, coliform, Staphylococcus aureus and Salmonella spp counts. Only mesophilic counts decreased (p < 0.05) after training in two of three farms studied. Although important to assess the overall quality of milk, microbiological parameters should not be used alone for the evaluation of GMP effectiveness for goat milkers.

  15. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis.

    PubMed

    Emmanouil, Mary; Tseveleki, Vivian; Triantafyllakou, Iro; Nteli, Agathi; Tselios, Theodore; Probert, Lesley

    2018-01-31

    In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP 87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP 72-85 -induced EAE in Lewis rats. The Lys 91 and Pro 96 of MBP 87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala 96 ]MBP 87-99 , cyclo(87-99)[Ala 91,96 ]MBP 87-99 and cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 , but not wild-type linear MBP 87-99 , strongly inhibited MBP 72-85 -induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.

  16. Cloning and expression of cDNA for a human low-K sub m , rolipram-sensitive cyclic AMP phosphodiesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livi, G.P.; McHale, M.J.; Sathe, G.M.

    1990-06-01

    The authors have isolated cDNA clones representing cyclic AMP (cAMP)-specific phosphodiesterases (PDEases) from a human monocyte cDNA library. One cDNA clone (hPDE-1) defines a large open reading frame of ca. 2.1 kilobases, predicting a 686-amino-acid, ca. 77-kilodalton protein which contains significant homology to both rat brain and {ital Drosophila} cAMP PDEases, especially within an internal conserved domain of ca. 270 residues. Amino acid sequence divergence exists at the NH{sub 2} terminus and also within a 40- to 100-residue domain near the COOH-terminal end. hPDE-1 hybridizes to a major 4.8-kilobase mRNA transcript from both human monocytes and placenta. The coding regionmore » of hPDE-1 was engineered for expression in COS-1 cells, resulting in the overproduction of cAMP PDEase activity. The hPDE-1 recombinant gene product was identified as a low-{ital K{sub m}} cAMP phosphodiesterase on the basis of several biochemical properties including selective inhibition by the antidepressant drug rolipram. Known inhibitors of other PDEases (cGMP-specific PDEase, cGMP-inhibited PDEase) had little or no effect on the hPDE-1 recombinant gene product.« less

  17. cGMP signalling in pre- and post-conditioning: the role of mitochondria.

    PubMed

    Costa, Alexandre D T; Pierre, Sandrine V; Cohen, Michael V; Downey, James M; Garlid, Keith D

    2008-01-15

    Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.

  18. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  19. Hypergravity differentially modulates cGMP efflux in human melanocytic cells stimulated by nitric oxide and natriuretic peptides

    NASA Astrophysics Data System (ADS)

    Ivanova, K.; Stieber, C.; Lambers, B.; Block, I.; Krieg, R.; Wellmann, A.; Gerzer, R.

    Nitric oxide NO plays a key role in many patho physiologic processes including inflammation and skin cancer The diverse cellular effects of NO are mainly mediated by activation of the soluble guanylyl cyclase sGC isoform that leads to increases in intracellular cGMP levels whereas the membrane-bound isoforms serve as receptors for natriuretic peptides e g ANP In human skin epidermal melanocytes represent the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress as a result of potentially harmful effects of the environment In previous studies we found that long-term exposure to hypergravity stimulated cGMP efflux in normal human melanocytes NHMs and non-metastatic melanoma cells at least partly by an enhanced expression of the multidrug resistance proteins MRP and cGMP transporters MRP4 5 The present study investigated whether hypergravity generated by centrifugal acceleration may modulate the cGMP efflux in NO-stimulated NHMs and melanoma cells MCs with different metastatic potential The NONOates PAPA-NO and DETA-NO were used as direct NO donors for cell stimulation In the presence of 0 1 mM DETA-NO t 1 2 sim 20 h long-term application of hypergravity up to 5 g for 24 h reduced intracellular cGMP levels by stimulating cGMP efflux in NHMs and non-metastatic MCs in comparison to 1 g whereas exposure to 5 g for 6 h in the presence of 0 1 mM PAPA-NO t 1 2 sim 30 min was not effective The hypergravity-stimulated

  20. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  1. Now that you want to take your HIV/AIDS vaccine/biological product research concept into the clinic: what are the "cGMP"?

    PubMed

    Sheets, Rebecca L; Rangavajhula, Vijaya; Pullen, Jeffrey K; Butler, Chris; Mehra, Vijay; Shapiro, Stuart; Pensiero, Michael

    2015-04-08

    The Division of AIDS Vaccine Research Program funds the discovery and development of HIV/AIDS vaccine candidates. Basic researchers, having discovered a potential vaccine in the laboratory, next want to take that candidate into the clinic to test the concept in humans, to see if it translates. Many of them have heard of "cGMP" and know that they are supposed to make a "GMP product" to take into the clinic, but often they are not very familiar with what "cGMP" means and why these good practices are so important. As members of the Vaccine Translational Research Branch, we frequently get asked "can't we use the material we made in the lab in the clinic?" or "aren't Phase 1 studies exempt from cGMP?" Over the years, we have had many experiences where researchers or their selected contract manufacturing organizations have not applied an appropriate degree of compliance with cGMP suitable for the clinical phase of development. We share some of these experiences and the lessons learned, along with explaining the importance of cGMP, just what cGMP means, and what they can assure, in an effort to de-mystify this subject and facilitate the rapid and safe translational development of HIV vaccines. Published by Elsevier Ltd.

  2. Identification of the gamma subunit-interacting residues on photoreceptor cGMP phosphodiesterase, PDE6alpha '.

    PubMed

    Granovsky, A E; Artemyev, N O

    2000-12-29

    Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the G protein-mediated visual transduction cascade. In the dark, the activity of PDE6 is shut off by the inhibitory gamma subunit (Pgamma). Chimeric proteins between cone PDE6alpha' and cGMP-binding and cGMP-specific PDE (PDE5) have been constructed and expressed in Sf9 cells to study the mechanism of inhibition of PDE6 catalytic activity by Pgamma. Substitution of the segment PDE5-(773-820) by the corresponding PDE6alpha'-(737-784) sequence in the wild-type PDE5 or in a PDE5/PDE6alpha' chimera containing the catalytic domain of PDE5 results in chimeric enzymes capable of inhibitory interaction with Pgamma. The catalytic properties of the chimeric PDEs remained similar to those of PDE5. Ala-scanning mutational analysis of the Pgamma-binding region, PDE6alpha'-(750-760), revealed PDE6alpha' residues essential for the interaction. The M758A mutation markedly impaired and the Q752A mutation moderately impaired the inhibition of chimeric PDE by Pgamma. The analysis of the catalytic properties of mutant PDEs and a model of the PDE6 catalytic domain suggest that residues Met(758) and Gln(752) directly bind Pgamma. A model of the PDE6 catalytic site shows that PDE6alpha'-(750-760) forms a loop at the entrance to the cGMP-binding pocket. Binding of Pgamma to Met(758) would effectively block access of cGMP to the catalytic cavity, providing a structural basis for the mechanism of PDE6 inhibition.

  3. Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP.

    PubMed Central

    Barsony, J; Marx, S J

    1990-01-01

    We developed a method for cAMP and cGMP immunocytology based upon fixation by microwave irradiation. Fixation by microwave irradiation prevented three problems found with other fixation methods: nucleotide loss from cells, nucleotide diffusion within cells, and chemical modification of immunologic epitopes. Six agonists (four that stimulate adenylate cyclase and two that stimulate guanylate cyclase) produced cAMP or cGMP accumulation patterns that were agonist-specific, dose-dependent, detectable at physiologic concentrations of hormone, and time-dependent within 15 sec to 30 min. cAMP accumulation after 1 mM forskolin was greatest in the nucleus. Isoproterenol, prostaglandin E2, or calcitonin caused initial accumulation of cAMP along the plasma membrane, but later accumulation was greater in the cytoplasm. With calcitonin the later accumulation of cAMP was selectively perinuclear and along the nuclear membrane. Sodium nitroprusside stimulated cGMP accumulation diffusely throughout the cytoplasm. Atrial natriuretic peptide initiated cGMP accumulation near the plasma membrane, and cGMP accumulation moved from there into the cytoplasm. In conclusion, microwave irradiation preserved cell structure and allowed visualization of expected as well as unsuspected changes in intracellular accumulation patterns of cAMP and cGMP. Images PMID:2153973

  4. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    PubMed Central

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  5. Role of MrkJ, a Phosphodiesterase, in Type 3 Fimbrial Expression and Biofilm Formation in Klebsiella pneumoniae▿

    PubMed Central

    Johnson, Jeremiah G.; Clegg, Steven

    2010-01-01

    Klebsiella pneumoniae is an opportunistic pathogen that has been shown to adhere to human extracellular matrices using the type 3 fimbriae. Introduction of plasmids carrying genes known to alter intracellular cyclic-di-GMP pools in Vibrio parahaemolyticus revealed that these genes also altered type 3 fimbrial surface expression in K. pneumoniae. Immediately adjacent to the type 3 fimbrial gene cluster is a gene, mrkJ, that is related to a family of bacterial genes encoding phosphodiesterases. We identify here a role for MrkJ, a functional phosphodiesterase exhibiting homology to EAL domain-containing proteins, in controlling type 3 fimbria production and biofilm formation in K. pneumoniae. Deletion of mrkJ resulted in an increase in type 3 fimbria production and biofilm formation as a result of the accumulation of intracellular cyclic-di-GMP. This gene was shown to encode a functional phosphodiesterase via restoration of motility in a V. parahaemolyticus strain previously shown to accumulate cyclic-di-GMP and in vitro using phosphodiesterase activity assays. The effect of the mrkJ mutation on type 3 fimbrial expression was shown to be at the level of mrkA gene transcription by using quantitative reverse transcription-PCR. These results reveal a previously unknown role for cyclic-di-GMP in type 3 fimbrial production. PMID:20511505

  6. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Gordon, Sarah; Dent, Paul

    2017-01-01

    Phosphodiesterase 5 (PDE5) inhibitors prevent the breakdown of cGMP that results in prolonged protein kinase G activation and the generation of nitric oxide. PDE5 inhibitors enhanced the anti-NSCLC cell effects of the NSCLC therapeutic pemetrexed. [Pemetrexed + sildenafil] activated an eIF2α – ATF4 – CHOP – Beclin1 pathway causing formation of toxic autophagosomes; activated a protective IRE1 – XBP-1 – chaperone induction pathway; and activated a toxic eIF2α – CHOP – DR4 / DR5 / CD95 induction pathway. [Pemetrexed + sildenafil] reduced the expression of c-FLIP-s, MCL-1 and BCL-XL that was blocked in a cell-type -dependent fashion by either over-expression of HSP90 / GRP78 / HSP70 / HSP27 or by blockade of eIF2α-CHOP signaling. Knock down of PKGI/II abolished the ability of sildenafil to enhance pemetrexed toxicity whereas pan-inhibition of NOS using L-NAME or knock down of [iNOS + eNOS] only partially reduced the lethal drug interaction. Pemetrexed reduced the ATPase activities of HSP90 and HSP70 in an ATM-AMPK-dependent fashion that was enhanced by sildenafil signaling via PKGI/II. The drug combination activated an ATM-AMPK-TSC2 pathway that was associated with reduced mTOR S2448 and ULK-1 S757 phosphorylation and increased ULK-1 S317 and ATG13 S318 phosphorylation. These effects were prevented by chaperone over-expression or by expression of an activated form of mTOR that prevented autophagosome formation and reduced cell killing. In two models of NSCLC, sildenafil enhanced the ability of pemetrexed to suppress tumor growth. Collectively we argue that the combination of [pemetrexed + PDE5 inhibitor] should be explored in a new NSCLC phase I trial. PMID:27903966

  7. Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease.

    PubMed

    Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H

    2012-10-01

    Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.

  8. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.

    PubMed

    Inuzuka, Saki; Kakizawa, Hitoshi; Nishimura, Kei-Ichiro; Naito, Takuto; Miyazaki, Katsushi; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2018-06-01

    The riboswitch is a class of RNA-based gene regulatory machinery that is dependent on recognition of its target ligand by RNA tertiary structures. Ligand recognition is achieved by the aptamer domain, and ligand-dependent structural changes of the expression platform then usually mediate termination of transcription or translational initiation. Ligand-dependent structural changes of the aptamer domain and expression platform have been reported for several riboswitches with short (<40 nucleotides) expression platforms. In this study, we characterized structural changes of the Vc2 c-di-GMP riboswitch that represses translation of downstream open reading frames in a ligand-dependent manner. The Vc2 riboswitch has a long (97 nucleotides) expression platform, but its structure and function are largely unknown. Through mutational analysis and chemical probing, we identified its secondary structures that are possibly responsible for switch-OFF and switch-ON states of translational initiation. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  9. Protection of Neuroblastoma Neuro2A Cells from Hypoxia-Induced Apoptosis by Cyclic Phosphatidic Acid (cPA)

    PubMed Central

    Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl2) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA1, LPA2, and LPA6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA1 and LPA2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA1 and LPA2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA1 and LPA3 antagonist, was adopted to know the LPA1 function and siRNA was used to knockdown the expression of LPA2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl2-induced hypoxia damage is mediated via LPA2. PMID:23251428

  10. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA).

    PubMed

    Gotoh, Mari; Sano-Maeda, Katsura; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).

  11. The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals.

    PubMed

    Ruiz, L M; Castro, M; Barriga, A; Jerez, C A; Guiliani, N

    2012-02-01

      The primary goal of this study was to characterize the existence of a functional c-di-GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans.   A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c-di-GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c-di-GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c-di-GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells.   At. ferrooxidans possesses a functional c-di-GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes.   This is the first global study about the c-di-GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro-organisms during the bioleaching process. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. The Golgi apparatus regulates cGMP-dependent protein kinase I compartmentation and proteolysis.

    PubMed

    Kato, Shin; Chen, Jingsi; Cornog, Katherine H; Zhang, Huili; Roberts, Jesse D

    2015-06-01

    cGMP-dependent protein kinase I (PKGI) is an important effector of cGMP signaling that regulates vascular smooth muscle cell (SMC) phenotype and proliferation. PKGI has been detected in the perinuclear region of cells, and recent data indicate that proprotein convertases (PCs) typically resident in the Golgi apparatus (GA) can stimulate PKGI proteolysis and generate a kinase fragment that localizes to the nucleus and regulates gene expression. However, the role of the endomembrane system in PKGI compartmentation and processing is unknown. Here, we demonstrate that PKGI colocalizes with endoplasmic reticulum (ER), ER-Golgi intermediate compartment, GA cisterna, and trans-Golgi network proteins in pulmonary artery SMC and cell lines. Moreover, PKGI localizes with furin, a trans-Golgi network-resident PC known to cleave PKGI. ER protein transport influences PKGI localization because overexpression of a constitutively inactive Sar1 transgene caused PKGI retention in the ER. Additionally, PKGI appears to reside within the GA because PKGI immunoreactivity was determined to be resistant to cytosolic proteinase K treatment in live cells. The GA appears to play a role in PKGI proteolysis because overexpression of inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate, not only tethered heterologous PKGI-β to the ER and decreased its localization to the GA, but also diminished PKGI proteolysis and nuclear translocation. Also, inhibiting intra-GA protein transport with monensin was observed to decrease PKGI cleavage. These studies detail a role for the endomembrane system in regulating PKGI compartmentation and proteolysis. Moreover, they support the investigation of mechanisms regulating PKGI-dependent nuclear cGMP signaling in the pulmonary vasculature with Golgi dysfunction. Copyright © 2015 the American Physiological Society.

  13. Interaction between macrocyclic nickel complexes and the nucleotides GMP, AMP and ApG.

    PubMed

    Liu, Yangzhong; Sletten, Einar

    2003-01-15

    Reactions between the nucleotides GMP, AMP and ApG and the complexes Ni(tren), Ni(cyclam) and NiCR in aqueous solution have been monitored by (1)H, (15)N NMR and UV spectroscopy. The three nickel complexes display different properties in reactions with nucleotides. Ni(tren) which has a pseudo-octahedral coordination geometry was shown to bind to all three nucleotides. Ni(cyclam) and NiCR, both with four nitrogen atoms in a square planar arrangement are not able to bind to nucleotides efficiently because of steric hindrance. Oxidation of Ni(cyclam) by KHSO(5) to produce trivalent Ni(III)(cyclam) improves the coordination capacity, while oxidation of NiCR does not produce a similar effect. The nucleotides interact with trivalent nickel complexes to different extent. Ni(III)CR is seen to oxidize GMP gradually but does not affect AMP significantly. Ni(III)(cyclam), on the other hand, does not oxidize either GMP or AMP at the 1:1 concentration of oxidant used. This result is probably due to the lower redox potential of Ni(cyclam). ApG binds less efficiently to the Ni complexes but is easier oxidized than the mononucleotides.

  14. GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans*

    PubMed Central

    Chitty, Jessica L.; Tatzenko, Tayla L.; Williams, Simon J.; Koh, Y. Q. Andre E.; Corfield, Elizabeth C.; Butler, Mark S.; Robertson, Avril A. B.; Cooper, Matthew A.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.

    2017-01-01

    Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans. Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections. PMID:28062578

  15. Importance and globalization status of good manufacturing practice (GMP) requirements for pharmaceutical excipients

    PubMed Central

    Abdellah, Abubaker; Noordin, Mohamed Ibrahim; Wan Ismail, Wan Azman

    2013-01-01

    Pharmaceutical excipients are no longer inert materials but it is effective and able to improve the characteristics of the products’ quality, stability, functionality, safety, solubility and acceptance of patients. It can interact with the active ingredients and alter the medicament characteristics. The globalization of medicines’ supply enhances the importance of globalized good manufacturing practice (GMP) requirements for pharmaceutical excipients. This review was intended to assess the globalization status of good manufacturing practice (GMP) requirements for pharmaceutical excipients. The review outcomes demonstrate that there is a lack of accurately defined methods to evaluate and measure excipients’ safety. Furthermore good manufacturing practice requirements for excipients are not effectively globalized. PMID:25685037

  16. Studies on the production of endogenous pyrogen by rabbit monocytes: the role of calcium and cyclic nucleotides.

    PubMed

    Sigal, S L; Duff, G W; Atkins, E

    1985-01-01

    Rabbit monocytes stimulated with endotoxin produced endogenous pyrogen, even under conditions of high or low extracellular calcium concentrations. Maximal production occurred when the concentration was in the near-physiological range. Prolonged incubation of cells with a calcium chelator prevented subsequent activation with endotoxin, an effect which was rapidly reversible by re-addition of calcium but not other cations. Addition of small amounts of lanthanum, which acts as a calcium channel blocker, prevented the restoration of pyrogen production, indicating that entry of the added calcium into the monocyte was required. Incorporation of a calcium ionophore into the cell membrane did not stimulate pyrogen production, and no measurable influx or efflux of calcium occurred during stimulation with endotoxin. These observations suggest that a slowly exchangeable calcium pool is necessary for the production of endogenous pyrogen, but that a rise in intracellular calcium is not by itself a necessary or sufficient stimulus. This stands in contrast to other biological systems in which Ca2+ directly couples stimulus and hormone secretion. Incubation of cells with agents shown to increase cyclic 3',5' AMP or cyclic 3',5' GMP levels in monocytes similarly did not stimulate pyrogen production or modulate its production by endotoxin stimulation. Thus, cyclic nucleotides also did not play a detectable role as intracellular messengers in this system. Future work is required to define more clearly the mechanism for the production of endogenous pyrogen, given its marked effects on the immune system through lymphocyte activation and temperature regulation.

  17. cGMP-Phosphodiesterase Inhibition Enhances Photic Responses and Synchronization of the Biological Circadian Clock in Rodents

    PubMed Central

    Plano, Santiago A.; Agostino, Patricia V.; de la Iglesia, Horacio O.; Golombek, Diego A.

    2012-01-01

    The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions. PMID:22590651

  18. Good manufacturing practice (GMP) compliance in the biologics sector: plasma fractionation.

    PubMed

    Ways, J P; Preston, M S; Baker, D; Huxsoll, J; Bablak, J

    1999-12-01

    The U.S. blood supply is the safest it has ever been. Due to blood safety and the introduction of viral inactivation/clearance technologies, protein therapies derived from human blood have also in recent years had a history of product safety. Nevertheless, since 1995, the plasma-fractionation industry has experienced increased compliance-related actions by the Food and Drug Administration (FDA), as shown by a substantive increase in the number of FDA 483 inspectional observations, FDA warning letters and other FDA regulatory action. An evaluation of these trends shows that they reflect the implementation by the FDA of increased inspectional interest in the plasma-fractionation industry and an evolution of inspectional practices and standards of current good manufacturing practice (cGMP). Plasma fractionators have responded to FDA actions by carefully evaluating and addressing each inspectional observation, assessing impact to product and taking appropriate actions, including corrective actions to prevent future occurrence. They have made major investments in facilities, quality systems, personnel and training to meet the evolving standards of cGMP and in an effort to implement these standards systemically. Through industry associations, manufacturers have further enhanced product safety by adopting additional voluntary standards for plasma to prevent the entry of potentially unsuitable plasma into the production process. The industry remains committed to application of cGMP and to working with the FDA in further evolution of these standards while striving to assure a continued supply of safe, pure and effective plasma-derived therapies.

  19. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  20. The Status of Implementation of Good Manufacturing Practices (GMP) Shredded Fish Production in UMKM Az-Zahrah, Makassar

    NASA Astrophysics Data System (ADS)

    Latif, Rindam; Dirpan, Andi; Indriani, Sylvia

    2017-12-01

    Good manufacturing practices (GMP) describes the requirements that an industry should follow throughout the production process starting from sorting raw materials to handling final products. The purpose of this research is to disclose each phase of GMP in making shredded fish and to assess the status of the practices implemented by the UMKM Az-zahrah in producing its product. This descriptive study is conducted by doing interview with owner followed by observation and documentation of all activities related to the production process in order to assess the status of GMP applied by the UMKM Az-zahrah. In assessing the status, we referred to Permenperin RI No.75 / M-Ind / Per / 7/2010 and KBPOM regulation no. HK 03.1.23.04.12.22007 Year 2012. The findings indicate some deviation occurred when UMKM Az-zahrah implemented it, those are (1) there is a pet in production room (2) production employees are not yet wearing work uniform (3) production room has directly access to toilet (4) there is no health label about health and nutritional claims. The status of applied GMP in the UMKM Az-zahrah is at D level (less good) with rating IV.

  1. c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases

    PubMed Central

    Bordeleau, Eric; Fortier, Louis-Charles; Malouin, François; Burrus, Vincent

    2011-01-01

    Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen. PMID:21483756

  2. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    PubMed

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  3. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    PubMed Central

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  4. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    PubMed Central

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  5. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology.

    PubMed

    Hofmann, Franz

    2018-06-22

    The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.

  6. GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans.

    PubMed

    Chitty, Jessica L; Tatzenko, Tayla L; Williams, Simon J; Koh, Y Q Andre E; Corfield, Elizabeth C; Butler, Mark S; Robertson, Avril A B; Cooper, Matthew A; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A

    2017-02-17

    Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The paradigm of postconditioning to protect the heart

    PubMed Central

    Penna, C; Mancardi, D; Raimondo, S; Geuna, S; Pagliaro, P

    2008-01-01

    Abstract Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10–30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including A t and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5′ -triphosphate (ATP)-sensitive K+ and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3β (GSK-3β). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering

  8. Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Auping, J. V.

    2004-01-01

    Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms. COSP is a computer program that models the growth and spallation processes of cyclic oxidation on the basis of a few elementary assumptions that were discussed in COSP: A Computer Model of Cyclic Oxidation, Oxidation of Metals, vol. 36, numbers 1 and 2, 1991, pages 81-112. Inputs to the model include the selection of an oxidation-growth law and a spalling geometry, plus oxide-phase, growth-rate, cycle-duration, and spall-constant parameters. (The spalling fraction is often shown to be a constant factor times the existing amount of scale.) The output of COSP includes the net change in weight, the amounts of retained and spalled oxide, the total amounts of oxygen and metal

  9. GMP-based CD133+ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy

    PubMed Central

    Gaipa, Giuseppe; Tilenni, Manuela; Straino, Stefania; Burba, Ilaria; Zaccagnini, Germana; Belotti, Daniela; Biagi, Ettore; Valentini, Marco; Perseghin, Paolo; Parma, Matteo; Campli, Cristiana Di; Biondi, Andrea; Capogrossi, Maurizio C; Pompilio, Giulio; Pesce, Maurizio

    2010-01-01

    Abstract The aim of the present study was to develop and validate a good manufacturing practice (GMP) compliant procedure for the preparation of bone marrow (BM) derived CD133+ cells for cardiovascular repair. Starting from available laboratory protocols to purify CD133+ cells from human cord blood, we implemented these procedures in a GMP facility and applied quality control conditions defining purity, microbiological safety and vitality of CD133+ cells. Validation of CD133+ cells isolation and release process were performed according to a two-step experimental program comprising release quality checking (step 1) as well as ‘proofs of principle’ of their phenotypic integrity and biological function (step 2). This testing program was accomplished using in vitro culture assays and in vivo testing in an immunosuppressed mouse model of hindlimb ischemia. These criteria and procedures were successfully applied to GMP production of CD133+ cells from the BM for an ongoing clinical trial of autologous stem cells administration into patients with ischemic cardiomyopathy. Our results show that GMP implementation of currently available protocols for CD133+ cells selection is feasible and reproducible, and enables the production of cells having a full biological potential according to the most recent quality requirements by European Regulatory Agencies. PMID:19627397

  10. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission.

    PubMed

    Baker, David A; Stewart, Lindsay B; Large, Jonathan M; Bowyer, Paul W; Ansell, Keith H; Jiménez-Díaz, María B; El Bakkouri, Majida; Birchall, Kristian; Dechering, Koen J; Bouloc, Nathalie S; Coombs, Peter J; Whalley, David; Harding, Denise J; Smiljanic-Hurley, Ela; Wheldon, Mary C; Walker, Eloise M; Dessens, Johannes T; Lafuente, María José; Sanz, Laura M; Gamo, Francisco-Javier; Ferrer, Santiago B; Hui, Raymond; Bousema, Teun; Angulo-Barturén, Iñigo; Merritt, Andy T; Croft, Simon L; Gutteridge, Winston E; Kettleborough, Catherine A; Osborne, Simon A

    2017-09-05

    To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC 50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC 50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.

  11. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  12. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.

    PubMed

    Meighan, Peter C; Meighan, Starla E; Rich, Elizabeth D; Brown, R Lane; Varnum, Michael D

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.

  13. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Meighan, Starla E.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels. PMID:22699690

  14. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen in mouse force swimming test.

    PubMed

    Khan, Muhammad Imran; Ostadhadi, Sattar; Zolfaghari, Samira; Ejtemaei Mehr, Shahram; Hassanzadeh, Gholamreza; Dehpour, Ahmad-Reza

    2016-01-26

    In the current study, the involvement of N-methyl-d-aspartate receptor (NMDAR) and nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system in the antidepressant-like effects of baclofen was evaluated by using animal model in forced swimming test. Followed by an open field test for the evaluation of locomotor activity, the immobility time for mice in force swimming test was recorded. Only the last four min was analyzed. Administration of Baclofen (0.5 and 1mg/kg, i.p.) reduced the immobility interval in the FST. Prior administration of l-arginine (750mg/kg, i.p.,) a nitric oxide synthase substrate or sildenafil (5mg/kg, i.p.) a phosphodiesterase 5 into mice suppressed the antidepressant-like activity of baclofen (1mg/kg, i.p.).Co-treatment of 7-nitroindazole (50mg/kg, i.p.,) an inhibitor of neuronal nitric oxide synthase, L-NAME (10mg/kg, i.p.,) a non-specific inhibitor of nitric oxide synthase or MK-801 (0.05mg/kg, i.p.) an NMDA receptor antagonist with subeffective dose of baclofen (0.1mg/kg, i.p.), reduced the immobility time in the FST as compared to the drugs when used alone. Co-administrated of lower doses of MK-801 (0.01mg/kg) or l-NAME (1mg/kg) failed to effect immobility time however, simultaneous administration of these two agents in same dose with subeffective dose of baclofen (0.1mg/kg, i.p.), minimized the immobility time in the FST. Thus, our results support the role of NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant-like action of baclofen. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Cost benefit of investment on quality in pharmaceutical manufacturing: WHO GMP pre- and post-certification of a Nigerian pharmaceutical manufacturer.

    PubMed

    Anyakora, Chimezie; Ekwunife, Obinna; Alozie, Faith; Esuga, Mopa; Ukwuru, Jonathan; Onya, Steve; Nwokike, Jude

    2017-09-18

    Pharmaceutical companies in Africa need to invest in both facilities and quality management systems to achieve good manufacturing practice (GMP) compliance. Compliance to international GMP standards is important to the attainment of World Health Organization (WHO) prequalification. However, most of the local pharmaceutical manufacturing companies may be deterred from investing in quality because of many reasons, ranging from financial constraints to technical capacity. This paper primarily evaluates benefits against the cost of investing in GMP, using a Nigerian pharmaceutical company, Chi Pharmaceuticals Limited, as a case study. This paper also discusses how to drive more local manufacturers to invest in quality to attain GMP compliance; and proffers practical recommendations for local manufacturers who would want to invest in quality to meet ethical and regulatory obligations. The cost benefit of improving the quality of Chi Pharmaceuticals Limited's facilities and system to attain WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was calculated by dividing the annual benefits derived from quality improvement interventions by the annual costs of implementing quality improvement interventions, referred to as a benefit-cost ratio (BCR). Cost benefit of obtaining WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was 5.3 (95% confidence interval of 5.0-5.5). Investment in quality improvement intervention is cost-beneficial for local manufacturing companies. Governments and regulators in African countries should support pharmaceutical companies striving to invest in quality. Collaboration of local manufacturing companies with global companies will further improve quality. Local pharmaceutical companies should be encouraged to key into development opportunities available for pharmaceutical companies in Africa.

  16. A novel synthetic phosphodiesterase 5 inhibitor, KJH-1002, ameliorates scopolamine-induced cognitive impairments in mice by activating the cGMP/CREB signaling pathway and attenuating oxidative damage.

    PubMed

    Zhang, Lijun; Seo, Jae Hong; Li, Huan; Nam, Ghilsoo; Yang, Hyun Ok

    2018-05-30

    Inhibition of PDE5 has been demonstrated to improve synaptic plasticity and memory via enhancing of cGMP expression, thus activating the cGMP/CREB signaling pathway. This study aimed to investigate the ameliorating effect of PDE5 inhibitor on scopolamine-induced cognitive dysfunction using memory-related behavioral tests and biochemical assays. After the mice were pretreated with PDE5 inhibitor, amnesia was induced by scopolamine administration. The learning and memory abilities of mice were tested using the Morris water maze test, the Y-maze test, the passive avoidance test and the novel object recognition test in sequence. Expression of memory-related bio-molecules and oxidative stress parameters in brain tissue were measured using western blot and spectrophotometry, respectively. KJH-1002, a novel inhibitor of phosphodiesterase 5 (PDE5), was synthesized (IC 50 of 0.059 ±0.04 nmol·L -1 ), and it markedly improved the memory performance impaired by scopolamine in the behavioral tests, indicating a restoration of cognitive function in the mice. Moreover, KJH-1002 increased the cGMP level in the cortex, the scopolamine-reduced expression of phosphorylated cAMP response element binding protein (CREB), extracellular-regulated kinase 1/2 (ERK 1/2), protein kinase B (Akt) and brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus were reversed by KJH-1002 treatment. In addition, KJH-1002 administration increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR), and decreased the level of malondialdehyde (MDA). KJH-1002 restored cognitive function in scopolamine-induced amnesia mice by activating the cGMP/CREB signaling pathway and attenuating oxidative stress. The beneficial effect of KJH-1002 on cognition suggests its potential as a therapeutic candidate for Alzheimer's disease. This article is protected by copyright. All rights reserved.

  17. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  18. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  19. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  20. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    PubMed

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  1. Establishing a cGMP pancreatic islet processing facility: the first experience in Iran.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Amoli, Mahsa M; Ao, Ziliang; Jafarian, Ali; Mahdavi-Mazdah, Mitra; Ghanaati, Hossein; Baradar-Jalili, Reza; Sharghi, Sasan; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease. In recent years, significant progress has occurred in beta-cell replacement therapies with a progressive improvement of short-term and long term outcomes. In year 2005, considering the impact of the disease in Iran and the promising results of the Edmonton protocol, the funding for establishing a current Good Manufacturing Practice (cGMP) islet processing facility by Endocrinology and Metabolism Research Center was approved by Tehran University of Medical Sciences. Several islet isolations were performed following establishment of cGMP facility and recruitment of all required equipments for process validation and experimental purpose. Finally the first successful clinical islet isolation and transplantation was performed in September 2010. In spite of a high cost of the procedure it is considered beneficial and may prevent long term complications and the costs associated with secondary cares. In this article we will briefly describe our experience in setting up a cGMP islet processing facility which can provide valuable information for regional countries interested to establish similar facilities.

  2. Capacitation and Ca(2+) influx in spermatozoa: role of CNG channels and protein kinase G.

    PubMed

    Cisneros-Mejorado, A; Hernández-Soberanis, L; Islas-Carbajal, M C; Sánchez, D

    2014-01-01

    Cyclic guanosine monophosphate (cGMP) has been recently shown to modulate in vitro capacitation of mammalian spermatozoa, but the mechanisms through which it influences sperm functions have not been clarified. There are at least two targets of cGMP, cyclic nucleotide-gated (CNG) channels and cGMP-dependent protein kinase (PKG), involved in several physiological events in mammalian spermatozoa. It has been suggested that CNG channels allow the influx of Ca(2+) to cytoplasm during capacitation, whereas PKG could trigger a phosphorylation pathway which might also, indirectly, mediate calcium entry. Using the patch-clamp technique in whole-cell configuration, we showed how l-cis-Diltiazem (a CNG-channel inhibitor) and KT5823 (a PKG inhibitor) decreased significantly the amplitude of macroscopic ion currents in a dose-response manner, and decreased in vitro capacitation. The inhibition of CNG channels completely abolishes the Ca(2+) influx induced by cyclic nucleotides in mouse spermatozoa. This work suggests that the downstream cGMP pathway is required in mammalian sperm capacitation and the mechanisms involved include CNG channels and PKG, highlighting these molecules as important therapeutic targets for infertility treatments or to develop new male contraceptives. © 2013 American Society of Andrology and European Academy of Andrology.

  3. Mechanism of Action of the Presynaptic Neurotoxin Tetanus Toxin

    DTIC Science & Technology

    1994-01-31

    E, J. G. Scammell , S. J. Strada, and W. J. Thompson. 1991. Phosphodiesterase II, the cGMP-actIvatable cyclic nucleotide phosphodlesterase, regulates cyclic AMP metabolism In PC12 cells. Mot Pharmacol 39:711-717. 39

  4. The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.

    PubMed

    Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza

    2012-12-01

    Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.

  5. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  6. Refractoriness of the gravid rat uterus to tocolytic and biochemical effects of atrial natriuretic peptide.

    PubMed Central

    Potvin, W.; Varma, D. R.

    1990-01-01

    1. Effects of atrial natriuretic peptide (ANP) on tension development, particulate guanylate cyclase activity and guanosine 3':5'-cyclic monophosphate (cyclic GMP) concentrations of uteri from oestrogen-treated, progesterone-treated, ovariectomized and pregnant rats were determined in vitro. 2. ANP inhibited the tension development by myometrial tissues from oestrogen-treated virgin rats and the sterile horn of 10 to 14 day pregnant rats but not of the uterus from pregnant and progesterone-treated rats. 3. Inhibition of cyclo-oxygenase and lipoxygenase activities did not restore the tocolytic activity of ANP on gravid uterus. ANP exerted a tocolytic effect on nongravid uterus submaximally stimulated by prostaglandin F2 alpha (PGF2 alpha), oxytocin, vasopressin, angiotensin II or 5-hydroxytryptamine (5-HT). 4. Ovariectomy decreased the tocolytic effects of ANP, which could be restored by oestrogen treatment. 5. The refractoriness to the tocolytic effect of ANP in pregnant rats was not accompanied by a decrease in its relaxant effects on isolated aortic strips. 6. Tocolytic effects of isoprenaline, isobutylmethyl xanthine and hydroxylamine were not influenced by pregnancy or progesterone treatment. Up to a concentration of 3 mM, sodium nitroprusside did not affect myometrial tension development. 7. Pregnancy and progesterone treatment markedly inhibited ANP-induced increases in myometrial particulate guanylate cyclase activity and cyclic GMP concentrations but did not influence the effects of ANP on aortic cyclic GMP concentrations. 8. It is concluded that exposure of the myometrium to circulating and placentally-produced progesterone is responsible for the pregnancy-induced decrease in the effects of ANP on myometrial particulate guanylate cyclase activity and cyclic GMP concentrations and in turn on myometrial tension development. PMID:1974161

  7. Cyclic nucleotides induce long-term augmentation of glutamate-activated chloride current in molluscan neurons.

    PubMed

    Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G

    2005-12-01

    1. Literature data indicate that serotonin induces the long-term potentiation of glutamate (Glu) response in molluscan neurons. The aim of present work was to elucidate whether cyclic nucleotides can cause the same effect. 2. Experiments were carried out on isolated neurons of the edible snail (Helix pomatia) using a two-microelectrode voltage-clamp method. 3. In the majority of the cells examined, the application of Glu elicited a Cl- -current. The reversal potential (Er) of this current lied between -35 and -55 mV in different cells. 4. Picrotoxin, a blocker of Cl- -channels, suppressed this current equally on both sides of Er. Furosemide, an antagonist of both Cl- -channels and the Na+/K+/Cl- -cotransporter, had a dual effect on Glu-response: decrease in conductance, and shift of Er to negative potentials. 5. A short-term (2 min) cell treatment with 8-Br-cAMP or 8-Br-cGMP caused long-term (up to 30 min) change in Glu-response. At a holding potential of -60 mV, which was close to the resting level, an increase in Glu-activated inward current was observed. This potentiation seems to be related to the right shift of Er of Glu-activated Cl- -current rather than to the increase in conductance of Cl- -channels. The blocking effect of picrotoxin rested after 8-Br-cAMP treatment. 6. The change in the Cl- -homeostasis as a possible mechanism for the observed effect of cyclic nucleotides is discussed.

  8. Coatings for directional eutectics. [cyclic furnace oxidation tests

    NASA Technical Reports Server (NTRS)

    Jackson, M. R.; Rairden, J. R.; Hampton, L. V.

    1974-01-01

    Coating compositions were evaluated for oxidation protection of directionally solidified composite alloy NiTaC-13. These coatings included three NiCrAlY compositions (30-5-1, 25-10-1 and 20-15-1), two FeCrAlY compositions (30-5-1 and 25-10-1), a CoCrAlY composition (25-10-1), and one duplex coating, Ni-35Cr + Al. Duplicate pin samples of each composition were evaluated using two cyclic furnace oxidation tests of 100 hours at 871 C and 500 hours at 1093 C. The two best coatings were Ni-20Cr-15Al-lY and Ni-35Cr + Al. The two preferred coatings were deposited on pins and were evaluated in detail in .05 Mach cyclic burner rig oxidation to 1093 C. The NiCrAlY coating was protective after 830 hours of cycling, while the duplex coating withstood 630 hours. Test bars were coated and cycled for up to 500 hours. Tensile tests indicated no effect of coatings on strength. In 871 C air stress rupture, a degradation was observed for coated relative to bare material. The cycled NiCrAlY coating offered excellent protection with properties superior to the bare cycled NiTaC-13 in 1093 C air stress rupture.

  9. Direct interaction of the inhibitory gamma-subunit of Rod cGMP phosphodiesterase (PDE6) with the PDE6 GAFa domains.

    PubMed

    Muradov, Khakim G; Granovsky, Alexey E; Schey, Kevin L; Artemyev, Nikolai O

    2002-03-26

    Retinal rod and cone cGMP phosphodiesterases (PDE6 family) function as the effector enzyme in the vertebrate visual transduction cascade. The activity of PDE6 catalytic subunits is controlled by the Pgamma-subunits. In addition to the inhibition of cGMP hydrolysis at the catalytic sites, Pgamma is known to stimulate a noncatalytic binding of cGMP to the regulatory GAFa-GAFb domains of PDE6. The latter role of Pgamma has been attributed to its polycationic region. To elucidate the structural basis for the regulation of cGMP binding to the GAF domains of PDE6, a photoexcitable peptide probe corresponding to the polycationic region of Pgamma, Pgamma-21-45, was specifically cross-linked to rod PDE6alphabeta. The site of Pgamma-21-45 cross-linking was localized to Met138Gly139 within the PDE6alpha GAFa domain using mass spectrometric analysis. Chimeras between PDE5 and cone PDE6alpha', containing GAFa and/or GAFb domains of PDE6alpha' have been generated to probe a potential role of the GAFb domains in binding to Pgamma. Analysis of the inhibition of the PDE5/PDE6alpha' chimeras by Pgamma supported the role of PDE6 GAFa but not GAFb domains in the interaction with Pgamma. Our results suggest that a direct binding of the polycationic region of Pgamma to the GAFa domains of PDE6 may lead to a stabilization of the noncatalytic cGMP-binding sites.

  10. Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-κB activity.

    PubMed

    Siednienko, Jakub; Nowak, Joanna; Moynagh, Paul N; Gorczyca, Wojciech A

    2011-06-01

    Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway.

    PubMed

    Kalra, D; Baumgarten, G; Dibbs, Z; Seta, Y; Sivasubramanian, N; Mann, D L

    2000-09-12

    The mechanism(s) responsible for the persistent coexpression of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the failing heart is unknown. To determine whether NO was sufficient to provoke TNF-alpha biosynthesis, we examined the effects of an NO donor, S-nitroso-N-acetyl penicillamine (SNAP), in buffer-perfused Langendorff hearts. SNAP (1 micromol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF-alpha mRNA and protein biosynthesis in adult cat hearts. The effects of SNAP were completely abrogated by a NO quenching agent, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), and mimicked by sodium nitroprusside. Electrophoretic mobility shift assays demonstrated that SNAP treatment led to the rapid induction of nuclear factor kappa-beta (NF-kappaB) but not AP-1. The importance of the cGMP pathway in terms of mediating NO-induced TNF-alpha biosynthesis was shown by studies that demonstrated that 8-bromo-cGMP mimicked the effects of SNAP and that the effects of SNAP could be completely abrogated using a cGMP antagonist, 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or protein kinase G antagonist (Rp-8-Br-cGMPS). SNAP and 8-Br-cGMP were both sufficient to lead to the site-specific phosphorylation (serine 32) and degradation of IkappaBalpha in isolated cardiac myocytes. Finally, protein kinase G was sufficient to directly phosphorylate IkappaBalpha on serine 32, a critical step in the activation of NF-kappaB. These studies show that NO provokes TNF-alpha biosynthesis through a cGMP-dependent pathway, which suggests that the coincident expression of TNF-alpha and NO may foster self-sustaining positive autocrine/paracrine feedback inflammatory circuits within the failing heart.

  12. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  13. Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats.

    PubMed

    Tremblay, J; Huot, C; Willenbrock, R C; Bayard, F; Gossard, F; Fujio, N; Koch, C; Kuchel, O; Debinski, W; Hamet, P

    1993-11-01

    Atrial natriuretic peptide (ANP) specifically stimulates particulate guanylate cyclase, and cyclic guanosine monophosphate (cGMP) has been recognized as its second messenger. Spontaneously hypertensive rats (SHR) have elevated plasma ANP levels, but manifest an exaggerated natriuretic and diuretic response to exogenous ANP when compared to normotensive strains. In isolated glomeruli, the maximal cGMP response to ANP corresponds to a 12- to 14-fold increase over basal levels in normotensive strains (Wistar 13 +/- 2; Wistar-Kyoto 12 +/- 2; Sprague-Dawley 14 +/- 2) while a maximal 33 +/- 3-fold elevation occurs in SHR (P < 0.001). This hyperresponsiveness of cGMP is reproducible in intact glomeruli from SHR from various commercial sources. Furthermore, this abnormality develops early in life, even before hypertension is clearly established, and persists despite pharmacological modulation of blood pressure, indicating that it is a primary event in hypertension. In vitro studies have revealed a higher particulate guanylate cyclase activity in membranes from glomeruli and other tissues from SHR. This increase is not accounted for by different patterns of ANP binding to its receptor subtypes between normotensive and hypertensive strains, as assessed by competitive displacement with C-ANP102-121, an analog which selectively binds to one ANP receptor subtype. The hyperactivity of particulate guanylate cyclase in SHR and its behavior under basal, ligand (ANP), and detergent-enhanced conditions could be attributed either to increased expression or augmented sensitivity of the enzyme. Radiation-inactivation analysis does not evoke a disturbance in the size of regulatory elements normally repressing enzymatic activity, while the expression of particulate guanylate cyclase gene using mutated standard of A- and B-receptors partial cDNAs, quantified by polymerase chain reaction (PCR) transcript titration assay, manifests a selective increase of one guanylate cyclase subtype. Our

  14. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response.

    PubMed

    Lim, Dong-Mee; Park, Keun-Young; Hwang, Won-Min; Kim, Ju-Young; Kim, Byung-Joon

    2017-05-01

    Receptors for glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are present in vascular endothelial cells. Previous studies investigating euglycemic status have demonstrated that GIP is directly involved in the physiology of blood vessels by controlling the blood flow rate of portal veins and that GLP-1 has a protective effect on blood vessels by acting on endothelial cells. However, to the best of our knowledge, the effects of GIP and GLP-1 on endothelial cells in patients with hyperglycemia remain unknown. Therefore, the present study investigated whether the effect of the incretin hormones GLP-1 and GIP differed with regards to the reversal of endothelial cell dysfunction caused by hyperglycemia. The production of nitric oxide (NO) was measured using the Griess reagent system kit and the expression of cyclic adenosine monophosphate (cAMP) in the cell was measured at a wavelength of 405 nm with the ELISA reader using the cyclic AMP EIA kit. Exposure of human umbilical vein endothelial cells (HUVEC) to a high glucose concentration decreased NO and endothelial nitric oxide synthase (eNOS) levels but increased inducible NOS (iNOS) levels. However, when HUVECs were pretreated with GLP-1, a reduction of iNOS expression was observed and the expression of eNOS and NO were increased, as opposed to pretreatment with GIP. The results differed according to the response of cAMP, the second messenger of incretin hormones: The GIP pretreatment group did not exhibit an increase in cAMP levels while the GLP-1 pretreatment group did. The results of the present study provide evidence that GLP-1, but not GIP, has a protective effect on endothelial function associated with cardiovascular disease, as it is associated with increased eNOS expression and the levels of NO. This effect may be due to an increase in the cAMP concentration during hyperglycemic events.

  15. Direct α-C-H bond functionalization of unprotected cyclic amines

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  16. Ab Initio QM/MM Study Shows a Highly Dissociated SN2 Hydrolysis Mechanism for the cGMP-Specific Phosphodiesterase-5.

    PubMed

    Li, Zhe; Wu, Yinuo; Feng, Ling-Jun; Wu, Ruibo; Luo, Hai-Bin

    2014-12-09

    Phosphodiesterases (PDEs) are the sole enzymes hydrolyzing the important second messengers cGMP and cAMP and have been identified as therapeutic targets for several diseases. The most successful examples are PDE5 inhibitors (i.e., sildenafil and tadalafil), which have been approved for the treatment of male erectile dysfunction and pulmonary hypertension. However, the side effects mostly due to nonselective inhibition toward other PDE isoforms, set back the clinical usage of PDE5 inhibitors. Until now, the exact catalytic mechanism of the substrate cGMP by PDE5 is still unclear. Herein, the first computational study on the catalytic hydrolysis mechanism of cGMP for PDE5 (catalytic domain) is performed by employing the state-of-the-art ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. Our simulations show a SN2 type reaction procedure via a highly dissociated transition state with a reaction barrier of 8.88 kcal/mol, which is quite different from the previously suggested hydrolysis mechanism of cAMP for PDE4. Furthermore, the subsequent ligand exchange and the release of the product GMP have also been investigated by binding energy analysis and MD simulations. It is deduced that ligand exchange would be the rate-determining step of the whole reaction, which is consistent with many previous experimental results. The obtained mechanistic insights should be valuable for not only the rational design of more specific inhibitors toward PDE5 but also understanding the general hydrolysis mechanism of cGMP-specific PDEs.

  17. Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture

    PubMed Central

    Chimenti, Isotta; Gaetani, Roberto; Forte, Elvira; Angelini, Francesco; De Falco, Elena; Zoccai, Giuseppe Biondi; Messina, Elisa; Frati, Giacomo; Giacomello, Alessandro

    2014-01-01

    Cardiac progenitor cells (CPCs) isolated as cardiospheres (CSs) and CS-derived cells (CDCs) are a promising tool for cardiac cell therapy in heart failure patients, having CDCs already been used in a phase I/II clinical trial. Culture standardization according to Good Manufacturing Practices (GMPs) is a mandatory step for clinical translation. One of the main issues raised is the use of xenogenic additives (e.g. FBS, foetal bovine serum) in cell culture media, which carries the risk of contamination with infectious viral/prion agents, and the possible induction of immunizing effects in the final recipient. In this study, B27 supplement and sera requirements to comply with European GMPs were investigated in CSs and CDCs cultures, in terms of process yield/efficiency and final cell product gene expression levels, as well as phenotype. B27− free CS cultures produced a significantly reduced yield and a 10-fold drop in c-kit expression levels versus B27+ media. Moreover, autologous human serum (aHS) and two different commercially available GMP AB HSs were compared with standard research-grade FBS. CPCs from all HSs explants had reduced growth rate, assumed a senescent-like morphology with time in culture, and/or displayed a significant shift towards the endothelial phenotype. Among three different GMP gamma-irradiated FBSs (giFBSs) tested, two provided unsatisfactory cell yields, while one performed optimally, in terms of CPCs yield/phenotype. In conclusion, the use of HSs for the isolation and expansion of CSs/CDCs has to be excluded because of altered proliferation and/or commitment, while media supplemented with B27 and the selected giFBS allows successful EU GMP-complying CPCs culture. PMID:24444305

  18. The effects of nitric oxide-cGMP pathway stimulation on dopamine in the medial preoptic area and copulation in DHT-treated castrated male rats

    PubMed Central

    Sato, Satoru M.; Wersinger, Scott R.; Hull, Elaine M.

    2007-01-01

    Dopamine (DA) in the medial preoptic area (MPOA) provides important facilitative influence on male rat copulation. We have shown that the nitric oxide-cGMP (NO-cGMP) pathway modulates MPOA DA levels and copulation. We have also shown that systemic estradiol (E2) maintains neuronal NO synthase (nNOS) immunoreactivity in the MPOA of castrates, as well as relatively normal DA levels. This effect of E2 on nNOS probably accounts for at least some of the previously demonstrated behavioral facilitation by intra-MPOA E2 administration in castrates. Therefore, we hypothesized that stimulation of the MPOA NO-cGMP pathway in dihydrotestosterone (DHT)-treated castrates should restore DA levels and copulatory behaviors. Reverse-dialysis of a NO donor, sodium nitroprusside (SNP), increased extracellular DA in the MPOA of DHT-treated castrates and restored the ability to copulate to ejaculation in half of the animals. A cGMP analog, 8-Br-cGMP, also increased extracellular DA, though not as robustly, but did not restore copulatory ability. The effectiveness of the NO donor in restoring copulation and MPOA DA levels is consistent with our hypothesis. However, the lack of behavioral effects of 8-Br-cGMP, despite its increase in MPOA DA, suggests that NO may have additional mediators in the MPOA in the regulation of copulation. Furthermore, the suboptimal copulation seen in the NO donor-treated animals suggests the importance of extra-MPOA systems in the regulation of copulation. PMID:17467707

  19. GMP-compliant automated synthesis of [(18)F]AV-45 (Florbetapir F 18) for imaging beta-amyloid plaques in human brain.

    PubMed

    Yao, Cheng-Hsiang; Lin, Kun-Ju; Weng, Chi-Chang; Hsiao, Ing-Tsung; Ting, Yi-Shu; Yen, Tzu-Chen; Jan, Tong-Rong; Skovronsky, Daniel; Kung, Mei-Ping; Wey, Shiaw-Pyng

    2010-12-01

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of (18)F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of beta-amyloid (Abeta) plaques in the brain of Alzheimer's disease patients. [(18)F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4+/-7.7% with a final radiochemical purity of 95.3+/-2.2% (n=19). The specific activity of [(18)F]AV-45 reached as high as 470+/-135 TBq/mmol (n=19). The present studies show that [(18)F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Ross, P.; Weinhouse, H.

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less

  1. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    PubMed

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  2. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells.

    PubMed

    Wuchter, Patrick; Vetter, Marcel; Saffrich, Rainer; Diehlmann, Anke; Bieback, Karen; Ho, Anthony D; Horn, Patrick

    2016-06-01

    Mesenchymal stromal cells (MSCs) from human bone marrow serve as a resource for cell-based therapies in regenerative medicine. Clinical applications require standardized protocols according to good manufacturing practice (GMP) guidelines. Donor variability as well as the intrinsic heterogeneity of MSC populations must be taken into consideration. The composition of the culture medium is a key factor in successful MSC expansion. The aim of this study was to comparatively assess the efficiency of xeno-free human platelet lysate (HPL)-based cell expansion with two commercially available media-StemPro MSC SFM CTS (for human ex vivo tissue and cell culture processing applications) and MSCGM (non-GMP-compliant, for research only)-in an academic setting as the first optimization step toward GMP-compliant manufacturing. We report the feasibility of MSC expansion up to the yielded cell number with all three media. MSCs exhibited the typical fibroblastoid morphology, with distinct differences in cell size depending on the medium. The differentiation capacity and characteristic immunophenotype were confirmed for all MSC populations. Proliferation was highest using StemPro MSC SFM CTS, whereas HPL medium was more cost-effective and its composition could be adjusted individually according to the respective needs. In summary, we present a comprehensive evaluation of GMP-compatible culture media for MSC expansion. Both StemPro and HPL medium proved to be suitable for clinical application and allowed sufficient cell proliferation. Specific differences were observed and should be considered according to the intended use. This study provides a detailed cost analysis and tools that may be helpful for the establishment of GMP-compliant MSC expansion. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  3. GMP-Compliant Expansion of Clinical-Grade Human Mesenchymal Stromal/Stem Cells Using a Closed Hollow Fiber Bioreactor.

    PubMed

    Barckhausen, Christina; Rice, Brent; Baila, Stefano; Sensebé, Luc; Schrezenmeier, Hubert; Nold, Philipp; Hackstein, Holger; Rojewski, Markus Thomas

    2016-01-01

    This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.

  4. Inactivation of Pde8b enhances memory, motor performance, and protects against age-induced motor coordination decay

    PubMed Central

    Tsai, Li-Chun Lisa; Chan, Guy Chiu-Kai; Nangle, Shannon N.; Shimizu-Albergine, Masami; Jones, Graham; Storm, Daniel R.; Beavo, Joseph A.; Zweifel, Larry S.

    2012-01-01

    Phosphodiesterases (PDEs) are critical regulatory enzymes in cyclic nucleotide signaling. PDEs have diverse expression patterns within the central nervous system (CNS), show differing affinities for cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and regulate a vast array of behaviors. Here, we investigated the expression profile of the PDE8 gene family members Pde8a and Pde8b in the mouse brain. We find that Pde8a expression is largely absent in the CNS; by contrast, Pde8b is expressed in select regions of the hippocampus, ventral striatum, and cerebellum. Behavioral analysis of mice with Pde8b gene inactivation (PDE8B KO) demonstrate an enhancement in contextual fear, spatial memory, performance in an appetitive instrumental conditioning task, motor-coordination, and have an attenuation of age-induced motor coordination decline. In addition to improvements observed in select behaviors, we find basal anxiety levels to be increased in PDE8B KO mice. These findings indicate that selective antagonism of PDE8B may be an attractive target for enhancement of cognitive and motor functions; however, possible alterations in affective state will need to be weighed against potential therapeutic value. PMID:22925203

  5. The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins

    PubMed Central

    Jonas, Kristina; Edwards, Adrianne N.; Simm, Roger; Romeo, Tony; Römling, Ute; Melefors, Öjar

    2009-01-01

    Summary The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobility shift assays confirmed the direct and specific binding of CsrA to the mRNA leaders of ydeH and ycdT. Overexpression of ycdT and ydeH resulted in a more than 20-fold increase in the cellular concentration of the second messenger c-di-GMP, implying that both proteins possess diguanylate cyclase activity. Phenotypic characterization revealed that both proteins are involved in the regulation of motility in a c-di-GMP dependent manner. CsrA was also found to regulate the expression of five additional GGDEF/EAL proteins and a csrA mutation led to modestly increased cellular levels of c-di-GMP. All together, these data demonstrate a global role for CsrA in the regulation of c-di-GMP metabolism by regulating the expression of GGDEF proteins at the post-transcriptional level. PMID:18713317

  6. Computer search for binary cyclic UEP codes of odd length up to 65

    NASA Technical Reports Server (NTRS)

    Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu

    1990-01-01

    Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.

  7. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents

    PubMed Central

    Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke

    2017-01-01

    Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research. PMID:29113064

  8. Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products.

    PubMed

    Tulina, M A; Pyatigorskaya, N V

    2018-03-01

    The article describes special aspects of Good Manufacturing Practice (GMP) for biomedical cell products (BMCP) that imply high standards of aseptics throughout the entire productio process, strict requirements to donors and to the procedure of biomaterial isolation, guaranty of tracing BMCP products, defining processing procedures which allow to identify BMCP as minimally manipulated; continuous quality control and automation of the control process at all stages of manufacturing, which will ensure product release simultaneously with completion of technological operations.

  9. Working draft of the FDA GMP final rule (Part I).

    PubMed

    Donawa, M E

    1995-10-01

    On 24 July 1995, the US Food and Drug Administration (FDA) published a notice of availability of a working draft of a final rule for new good manufacturing practice (GMP) regulations for medical devices. The new regulations could be in force by late 1996. This is the first of a two-part series of articles discussing key provisions of the working draft and their importance to companies marketing or planning to market devices in the US.

  10. Bacterial nucleotide-based second messengers.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  11. Hyperactivity and memory/learning deficits evoked by developmental exposure to nicotine and/or ethanol are mitigated by cAMP and cGMP signaling cascades activation.

    PubMed

    Abreu-Villaça, Yael; Carvalho-Graça, Anna C; Skinner, Gabriela; Lotufo, Bruna M; Duarte-Pinheiro, Vitor H S; Ribeiro-Carvalho, Anderson; Manhães, Alex C; Filgueiras, Claudio C

    2018-05-01

    Pregnant smoking women are frequently episodic drinkers. Here, we investigated whether ethanol exposure restricted to the brain growth spurt period when combined with chronic developmental exposure to nicotine aggravates memory/learning deficits and hyperactivity, and associated cAMP and cGMP signaling disruption. To further investigate the role of these signaling cascades, we verified whether vinpocetine (a phosphodiesterase inhibitor) ameliorates the neurochemical and behavioral outcomes. Swiss mice had free access to nicotine (NIC, 50 μg/ml) or water to drink during gestation and until the 8th postnatal day (PN8). Ethanol (ETOH, 5 g/kg, i.p.) or saline were injected in the pups every other day from PN2 to PN8. At PN30, animals either received vinpocetine (20 mg/kg, i.p.) or vehicle before being tested in the step-down passive avoidance or open field. Memory/learning was impaired in NIC, ETOH and NIC + ETOH mice, and vinpocetine mitigated ETOH- and NIC + ETOH-induced deficits. Locomotor hyperactivity identified in ETOH and NIC + ETOH mice was ameliorated by vinpocetine. While cyclic nucleotides levels in cerebral cortex and hippocampus were reduced by NIC, ETOH and NIC + ETOH, this outcome was more consistent in the latter group. As observed for behavior, vinpocetine normalized NIC + ETOH nucleotides levels. pCREB levels were also increased in response to vinpocetine, with stronger effects in the NIC + ETOH group. Exposure to both drugs of abuse worsens behavioral and neurochemical disruption. These findings and the amelioration of deleterious effects by vinpocetine support the idea that cAMP and cGMP signaling contribute to nicotine- and ethanol-induced hyperactivity and memory/learning deficits. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Disulfide Bonding System Suppresses CsgD-Independent Cellulose Production in Escherichia coli

    PubMed Central

    Hufnagel, David A.; DePas, William H.

    2014-01-01

    The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultures were grown under reducing conditions or when the disulfide bonding system (DSB) was compromised. The CsgD-independent cellulose activation pathway was dependent on a second diguanylate cyclase, called YfiN. c-di-GMP production by YfiN was repressed by the periplasmic protein YfiR, and deletion of yfiR promoted CsgD-independent cellulose production. Conversely, when YfiR was overexpressed, cellulose production was decreased. Finally, we found that YfiR was oxidized by DsbA and that intraprotein YfiR disulfide bonds stabilized YfiR in the periplasm. Altogether, we showed that reducing conditions and mutations in the DSB system caused hyperactivation of YfiN and subsequent CsgD-independent cellulose production. PMID:25112475

  13. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  14. cGMP signaling as a target for the prevention and treatment of breast cancer.

    PubMed

    Windham, Perrin F; Tinsley, Heather N

    2015-04-01

    One in eight women in the United States will be diagnosed with invasive breast cancer in her lifetime. Advances in therapeutic strategies, diagnosis, and improved awareness have resulted in a significant reduction in breast cancer related mortality. However, there is a continued need for more effective and less toxic drugs for both the prevention and the treatment of breast cancer in order to see a continued decline in the morbidity and mortality associated with this disease. Recent studies suggest that the cGMP signaling pathway may be aberrantly regulated in breast cancer. As such, this pathway may serve as a source of novel targets for future breast cancer drug discovery efforts. This review provides an overview of cGMP signaling in normal physiology and in breast cancer as well as current strategies being investigated for targeting this pathway in breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels.

    PubMed

    Boone-Villa, Daniel; Aguilera-Méndez, Asdrubal; Miranda-Cervantes, Adriana; Fernandez-Mejia, Cristina

    2015-10-01

    Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.

  17. Cardioprotective cGMP favors exogenous fatty acid incorporation into tyiglycerides over direct beta-oxidation

    USDA-ARS?s Scientific Manuscript database

    While cardiac hypertrophy has been associated with a shift in substrate selection for energy production from fatty acids (FA) to carbohydrates (CHO), it remains controversial whether this shift is adaptive or maladaptive. Since enhanced cGMP signalling can prevent hypertrophy, we hypothesized that t...

  18. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.

    PubMed

    Shikanai, Toshiharu; Yamamoto, Hiroshi

    2017-01-09

    Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b 6 f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the

  19. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats.

    PubMed

    Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G

    2012-03-31

    Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cyclic control stick

    DOEpatents

    Whitaker, Charles N.; Zimmermann, Richard E.

    1989-01-01

    A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.

  1. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.

    PubMed

    Graeff, R M; Walseth, T F; Fryxell, K; Branton, W D; Lee, H C

    1994-12-02

    Cyclic nucleotides such as cAMP and cGMP are second messengers subserving various signaling pathways. Cyclic ADP-ribose (cADPR), a recently discovered member of the family, is derived from NAD+ and is a mediator of Ca2+ mobilization in various cellular systems. The synthesis and degradation of cADPR are, respectively, catalyzed by ADP-ribosyl cyclase and cADPR hydrolase. CD38, a differentiation antigen of B lymphocytes, has recently been shown to be a bifunctional enzyme catalyzing both the formation and hydrolysis of cADPR. The overall reaction catalyzed by CD38 is the formation of ADP-ribose and nicotinamide from NAD+, identical to that catalyzed by NADase. The difficulties in detecting the formation of cADPR have led to frequent identification of CD38 as a classical NADase. In this study, we show that both ADP-ribosyl cyclase and CD38, but not NADase, can cyclize nicotinamide guanine dinucleotide (NGD+) producing a new nucleotide. Analyses by high performance liquid chromatography and mass spectroscopy indicate the product is cyclic GDP-ribose (cGDPR) with a structure similar to cADPR except with guanine replacing adenine. Compared to cADPR, cGDPR is a more stable compound showing 2.8 times more resistance to heat-induced hydrolysis. These results are consistent with a catalytic scheme for CD38 where the cyclization of the substrate precedes the hydrolytic reaction. Spectroscopic analyses show that cGDPR is fluorescent and has an absorption spectrum different from both NGD+ and GDPR, providing a very convenient way for monitoring its enzymatic formation. The use of NGD+ as substrate for assaying the cyclization reaction was found to be applicable to pure enzymes as well as crude tissue extracts making it a useful diagnostic tool for distinguishing CD38-like enzymes from degradative NADases.

  2. [Effects of nitric oxide on peritoneal lymphatic stomata and lymph drainage via NO-cGMP-Ca2+ pathway].

    PubMed

    Li, Yan-Yuan; Li, Ji-Cheng

    2005-02-25

    To study the cell signal transduction mechanism of nitric oxide (NO) on the peritoneal lymphatic stomata and lymph drainage in the rat, cGMP content were measured by a commercially available radioimmunoassay kit, and the [Ca(2+)](i) were observed by a confocal laser scanning microscope in the cultured peritoneal mesothelial cell. Animal experiment was practiced to study the effect of NO-cGMP-Ca(2+) pathway on the lymphatic stomata and lymph absorption. The results showed that: (1) Sper/NO increased cGMP of the rat peritoneal mesothelial cell (RPMC) in a dose-dependent manner (P<0.01) compared to the control group. This effect was blocked by 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ) (P<0.05), a specific inhibitor of soluble guanylyl cyclase (sGC). The level of [Ca(2+)](i) in single RPMC decreased by adding Sper/NO (P<0.05). Pretreatment with ODQ for 10 min blocked the Sper/NO-induced decrease in [Ca(2+)](i). L-typed calcium channel blocker nifedipine induced an immediate and marked decrease in [Ca(2+)](i) (P<0.05).. After [Ca(2+)](i) reached a balance again, adding Sper/NO could not change [Ca(2+)](i) (P>0.05). (2) Sper/NO increased the area of the stomata (P<0.01) and the quantity of the tracer in a dose-dependent manner (P<0.05) compared to the control group. Pretreatment with ODQ significantly inhibited Sper/NO-induced change of lymphatic stomata and lymph drainage (P<0.01). Nifedipine increased the opening area of the lymphatic stomata (P< 0.01) and the concentration of absorbed trypan blue of the diaphragm (P<0.05). Sper/NO could not make a further change in the samples pretreated by nifedipine (P> 0.05). The results indicate that NO can decrease [Ca(2+)](i) in the RPMC through the NO-cGMP pathway. This procession is related with the L- type voltage-gated Ca(2+) channel. NO enlarges the opening area of the lymphatic stomata and enhances the lymph drainage of tracer by NO-cGMP-[Ca(2+)](i) pathway.

  3. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    NASA Astrophysics Data System (ADS)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  4. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system

    PubMed Central

    Prysyazhna, Oleksandra; Eaton, Philip

    2015-01-01

    Elevated levels of oxidants in biological systems have been historically referred to as “oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables “redox signaling.” In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered. PMID:26236235

  5. Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C

    NASA Technical Reports Server (NTRS)

    Lee, K. N.; Barrett, C. A.; Smith, J.

    2000-01-01

    Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and In-939 without a protective coating began to show a rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and In-939. The VPA and CODEP on Re-108 and all three coatings on In-939 showed excellent cyclic oxidation resistance out to 10,000 h. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10,000 h of cyclic exposure. The oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.

  6. Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C

    NASA Technical Reports Server (NTRS)

    Lee, K. N.; Barrett, C. A.; Smith, J.

    1999-01-01

    Very long-term cyclic oxidation behavior of Re-108 and ln-939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and ln-939 without a protective coating began to show rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and ln-939. VPA and CODEP on Re-108 and all three coatings on ln-939 showed excellent cyclic oxidation resistance out to 10000 hr. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10000 h of cyclic exposure. Oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.

  7. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  8. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair

    PubMed Central

    Knott, Eric P.; Assi, Mazen; Rao, Sudheendra N. R.; Ghosh, Mousumi; Pearse, Damien D.

    2017-01-01

    A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. PMID:28338622

  9. About ATMPs, SOPs and GMP: The Hurdles to Produce Novel Skin Grafts for Clinical Use

    PubMed Central

    Hartmann-Fritsch, Fabienne; Marino, Daniela; Reichmann, Ernst

    2016-01-01

    Background The treatment of severe full-thickness skin defects represents a significant and common clinical problem worldwide. A bio-engineered autologous skin substitute would significantly reduce the problems observed with today's gold standard. Methods Within 15 years of research, the Tissue Biology Research Unit of the University Children's Hospital Zurich has developed autologous tissue-engineered skin grafts based on collagen type I hydrogels. Those products are considered as advanced therapy medicinal products (ATMPs) and are routinely produced for clinical trials in a clean room facility following the guidelines for good manufacturing practice (GMP). This article focuses on hurdles observed for the translation of ATMPs from research into the GMP environment and clinical application. Results and Conclusion Personalized medicine in the field of rare diseases has great potential. However, ATMPs are mainly developed and promoted by academia, hospitals, and small companies, which face many obstacles such as high financial burdens. PMID:27781022

  10. 40 CFR 721.2140 - Carbo-poly-cycli-col azo-alkyl-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbo-poly-cycli-col azo-alkyl-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt. 721.2140 Section 721.2140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specifi...

  11. Genetics Home Reference: cyclic neutropenia

    MedlinePlus

    ... Facebook Twitter Home Health Conditions Cyclic neutropenia Cyclic neutropenia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Cyclic neutropenia is a disorder that causes frequent infections and ...

  12. Methods and materials relating to IMPDH and GMP production

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    1997-01-01

    Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.

  13. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  14. Measurement of protection factor of respiratory protective devices toward nanoparticles.

    PubMed

    Brochot, C; Michielsen, N; Chazelet, S; Thomas, D

    2012-07-01

    The use of nanoparticles in industry has increased spectacularly over the past few years. Additionally, nanoscale particles seem to be the cause of new professional exposure situations. Due to their size, these particles may build up within the respiratory tract and may even reach the nervous system via the nasal passages; for this reason, it is generally recommended to wear respiratory protective devices (RPDs) in situations where collective protection is impossible to implement or inadequate. Here, we present the test bench ETNA designed to study the efficiency of RPDs in the presence of nanoparticles. The results of the efficiency measurement of two RPDs for two positions (sealed and unsealed) on a Sheffield head, for two inhalation configurations (constant flow and cyclic flow), and for two different particle size distributions of NaCl aerosol (one centered on 13 nm and the other on 59 nm) are presented below. The measurements indicate that when the leaks are negligible at the interface mask/head, the efficiency of RPD is greater for nanoparticles. For major leaks, the device's protection factor changes independently of the size of the particles. Furthermore, no trends with respect to the effect of the respiration type (constant-flow and cyclic-flow tests) have been shown on the device's protection factor.

  15. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control

    PubMed Central

    Lindenberg, Sandra; Klauck, Gisela; Pesavento, Christina; Klauck, Eberhard; Hengge, Regine

    2013-01-01

    C-di-GMP—which is produced by diguanylate cyclases (DGC) and degraded by specific phosphodiesterases (PDEs)—is a ubiquitous second messenger in bacterial biofilm formation. In Escherichia coli, several DGCs (YegE, YdaM) and PDEs (YhjH, YciR) and the MerR-like transcription factor MlrA regulate the transcription of csgD, which encodes a biofilm regulator essential for producing amyloid curli fibres of the biofilm matrix. Here, we demonstrate that this system operates as a signalling cascade, in which c-di-GMP controlled by the DGC/PDE pair YegE/YhjH (module I) regulates the activity of the YdaM/YciR pair (module II). Via multiple direct interactions, the two module II proteins form a signalling complex with MlrA. YciR acts as a connector between modules I and II and functions as a trigger enzyme: its direct inhibition of the DGC YdaM is relieved when it binds and degrades c-di-GMP generated by module I. As a consequence, YdaM then generates c-di-GMP and—by direct and specific interaction—activates MlrA to stimulate csgD transcription. Trigger enzymes may represent a general principle in local c-di-GMP signalling. PMID:23708798

  16. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.

    2013-01-01

    Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711

  17. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  18. A xanthine-based epithelium-dependent airway relaxant KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) increases respiratory performance and protects against tumor necrosis factor-alpha-induced tracheal contraction, involving nitric oxide release and expression of cGMP and protein kinase G.

    PubMed

    Lin, Rong-Jyh; Wu, Bin-Nan; Lo, Yi-Ching; An, Li-Mei; Dai, Zen-Kong; Lin, Young-Tso; Tang, Chao-Shun; Chen, Ing-Jun

    2006-02-01

    KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri). On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.

  19. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy.

    PubMed

    Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cells, which can be derived from different sources, demonstrate promising therapeutic evidences for cellular therapies. Among various types of stem cell, mesenchymal stem cells are one of the most common stem cells that are used in cellular therapy. Human subcutaneous adipose tissue provides an easy accessible source of mesenchymal stem cells with some considerable advantages. Accordingly, various preclinical and clinical investigations have shown enormous potential of adipose-derived stromal cells in regenerative medicine. Consequently, increasing clinical applications of these cells has elucidated the importance of safety concerns regarding clinical transplantation. Therefore, clinical-grade preparation of adipose-derived stromal cells in accordance with current good manufacturing practice guidelines is an essential part of their clinical applications to ensure the safety, quality, characteristics, and identity of cell products. Additionally, GMP-compliant cell manufacturing involves several issues to provide a quality assurance system during translation from the basic stem cell sciences into clinical investigations and applications. On the other hand, advanced cellular therapy requires extensive validation, process control, and documentation. It also evidently elucidates the critical importance of production methods and probable risks. Therefore, implementation of a quality management and assurance system in accordance with GMP guidelines can greatly reduce these risks particularly in the higher-risk category or "more than minimally manipulated" products.

  20. Finite element analysis of the cyclic indentation of bilayer enamel

    NASA Astrophysics Data System (ADS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  1. Comparison of the relaxing actions of acetylcholine and substance P in smooth muscle of the guinea-pig aorta.

    PubMed

    Hozumi, T; Fukuta, H; Suzuki, H

    1997-04-01

    The relationship between relaxation produced by acetylcholine (ACh) or substance P (SP) and tissue cyclic GMP content was investigated in the isolated guinea-pig aorta. ACh and SP relaxed aortic rings precontracted with noradrenaline (NA) or high-K solution ([K+]o = 38.8 mM), in an endothelium-dependent manner. The amplitude of relaxation was larger for SP than for ACh. Nitroarginine inhibited ACh-induced but not SP-induced relaxation in NA-contraction, while this chemical inhibited both ACh- and SP-induced relaxations in high-K contraction. The tissue cyclic GMP content was not changed by nitroarginine or by removal of endothelial cells, but was elevated by stimulation with NA, ACh or SP by a factor of about 3, 5 or 11 times, respectively. These actions of ACh or SP were endothelium-dependent, and were inhibited by nitroarginine and remained unaltered by high-K solution. Thus, ACh and SP relax muscles indirectly by releasing endothelial factors, and the former by releasing mainly an endothelium-derived relaxing factor (EDRF), and the latter by releasing EDRF and other unidentified factors. As the relaxing actions of the latter factors are inhibited by high-K solution with no relation to the production of cyclic GMP, an involvement of hyperpolarizing factor, possibly EDHF, is suggested.

  2. Clinical and Molecular Genetics of the Phosphodiesterases (PDEs)

    PubMed Central

    Azevedo, Monalisa F.; Faucz, Fabio R.; Bimpaki, Eirini; Horvath, Anelia; Levy, Isaac; de Alexandre, Rodrigo B.; Ahmad, Faiyaz; Manganiello, Vincent

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases. PMID:24311737

  3. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    PubMed

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  4. Developing a tool for the preparation of GMP audit of pharmaceutical contract manufacturer.

    PubMed

    Linna, Anu; Korhonen, Mirka; Mannermaa, Jukka-Pekka; Airaksinen, Marja; Juppo, Anne Mari

    2008-06-01

    Outsourcing is rapidly growing in the pharmaceutical industry. When the manufacturing activities are outsourced, control of the product's quality has to be maintained. One way to confirm contract manufacturer's GMP (Good Manufacturing Practice) compliance is auditing. Audits can be supported for instance by using GMP questionnaires. The objective of this study was to develop a tool for the audit preparation of pharmaceutical contract manufacturers and to validate its contents by using Delphi method. At this phase of the study the tool was developed for non-sterile finished product contract manufacturers. A modified Delphi method was used with expert panel consisting of 14 experts from pharmaceutical industry, authorities and university. The content validity of the developed tool was assessed by a Delphi questionnaire round. The response rate in Delphi questionnaire round was 86%. The tool consisted of 103 quality items, from which 90 (87%) achieved the pre-defined agreement rate level (75%). Thirteen quality items which did not achieve the pre-defined agreement rate were excluded from the tool. The expert panel suggested only minor changes to the tool. The results show that the content validity of the developed audit preparation tool was good.

  5. Cyclic guanosine monophosphate responses to atrial natriuretic factor, brain natriuretic peptide, but not C-type natriuretic peptide, and the characterization of their receptors in rat medullary thick ascending limb.

    PubMed

    Luk, J K; Wong, E F; Sun, A; Wong, N L

    1994-12-01

    The effects of atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) on renal medullary thick ascending limb (mTAL) have not been fully understood. The aim of this study is to examine the second-messenger responses of rat mTAL to ANF, BNP, and CNP. Characterizations of the ANF, BNP, and CNP receptors in mTAL were also performed by radioligand studies. Results showed that ANF and BNP were both capable of eliciting cyclic guanosine monophosphate (cGMP) responses in mTAL. Conversely, no cGMP response was observed upon stimulation by CNP in mTAL. The presence of ANF receptors was demonstrated by radioligand studies. One receptor site was found, and the Kd and maximum binding capacity were 4.0 +/- 0.45 nmol/L and 277.8 +/- 47.7 fmol/mg protein, respectively. BNP receptors were also found in mTAL, and ANF and BNP were sharing the same receptor. On the contrary, no CNP receptor could be shown by radioligand studies. These results suggest that guanylyl cyclase-coupled receptors (atrial natriuretic peptide receptor-A [ANPR-A]) specific for ANF and BNP are present in rat mTAL, while those for CNP (ANPR-B) are absent. ANF and BNP but not CNP act on mTAL to control water excretion.

  6. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE PAGES

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    2017-10-26

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  7. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  8. The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli.

    PubMed

    Hufnagel, David A; DePas, William H; Chapman, Matthew R

    2014-11-01

    The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultures were grown under reducing conditions or when the disulfide bonding system (DSB) was compromised. The CsgD-independent cellulose activation pathway was dependent on a second diguanylate cyclase, called YfiN. c-di-GMP production by YfiN was repressed by the periplasmic protein YfiR, and deletion of yfiR promoted CsgD-independent cellulose production. Conversely, when YfiR was overexpressed, cellulose production was decreased. Finally, we found that YfiR was oxidized by DsbA and that intraprotein YfiR disulfide bonds stabilized YfiR in the periplasm. Altogether, we showed that reducing conditions and mutations in the DSB system caused hyperactivation of YfiN and subsequent CsgD-independent cellulose production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Effects of ANP receptor antagonists on ANP secretion from adult rat cultured atrial myocytes.

    PubMed

    Nachshon, S; Zamir, O; Matsuda, Y; Zamir, N

    1995-03-01

    Atrial natriuretic peptide (ANP) is a hormone-secreted predominantly by atrial myocytes. ANP exerts many of its actions via activation of the particulate guanylyl cyclase receptor ANPR-A and the formation of guanosine 3',5'-cyclic monophosphate (cGMP), which serves as a second messenger in the target cells. Using membrane-permeable cGMP analogues (8-bromo-cGMP and dibutyryl- cGMP), we first tested the hypothesis that ANP secretion by adult rat cultured atrial myocytes can be modulated through the second messenger cGMP. Second, we examined the effects of two competitive ANPR-A receptor antagonists, namely HS-142-1 and anantin, on cGMP formation and ANP secretion from cultured atrial myocytes. Cultured atrial myocytes secreted large quantities of immunoreactive (ir) ANP under basal conditions. We found that cGMP analogues inhibited basal irANP secretion from cultured atrial myocytes, whereas HS-142-1 and anantin had stimulating effects. HS-142-1 and anantin reduced cGMP formation in cultured atrial myocytes at basal conditions. These results suggest an autoregulatory mechanism of ANP secretion by atrial myocytes in an autocrine/paracrine fashion.

  10. Visual search of cyclic spatio-temporal events

    NASA Astrophysics Data System (ADS)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  11. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network

    PubMed Central

    Krzyzanowski, Michelle C.; Wood, Jordan F.; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L’Etoile, Noelle D.; Ferkey, Denise M.

    2016-01-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal’s life history and its present internal state. Based on the integration of these variables, an animal’s needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal’s internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit. PMID:27459302

  12. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network.

    PubMed

    Krzyzanowski, Michelle C; Woldemariam, Sarah; Wood, Jordan F; Chaubey, Aditi H; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L'Etoile, Noelle D; Ferkey, Denise M

    2016-07-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.

  13. Mechanisms underlying chemoreceptor inhibition induced by atrial natriuretic peptide in rabbit carotid body.

    PubMed Central

    Wang, W J; He, L; Chen, J; Dinger, B; Fidone, S

    1993-01-01

    1. Previous studies in our laboratory revealed the presence of atrial natriuretic peptide (ANP) in preneural chemosensory type I cells of the cat carotid body, and demonstrated that submicromolar concentrations of the peptide inhibited carotid sinus nerve (CSN) activity evoked by hypoxia. In the present study, we have evaluated the role of the cyclic nucleotide second messenger, cyclic GMP (cGMP), and the involvement of type I cells in rabbit chemosensory inhibition. 2. Submicromolar concentrations of the potent ANP analogue, APIII, greatly elevated both the content and release of cGMP from the carotid body. Denervation experiments confirmed earlier immunocytochemical studies which suggested that APIII-induced cGMP production occurs almost exclusively in type I cells; these experiments also indicate that both the sympathetic and sensory innervation to the carotid body exert a trophic influence on the metabolism of this second messenger. 3. Submicromolar concentrations of APIII inhibited the CSN activity evoked by hypoxia (79.8 +/- 3.2% (mean +/- S.E.M.) inhibition with 100 nM APIII) and nicotine (74.5 +/- 3.6% inhibition with 100 nM APIII), but did not affect basal CSN activity established in 100% O2-equilibrated superfusion solutions. 4. The biologically inactive analogue of ANP, C-ANP, failed to produce CSN inhibition; however, the inhibitory effects of APIII were mimicked by cell-permeant analogues of cGMP (dibutyryl-cGMP and 8-bromo-cGMP, 2 mM), which likewise did not alter basal CSN activity. Because we found that unmodified cGMP was an ineffective inhibitor of CSN activity, our data suggest that APIII inhibition is mediated intracellularly by cGMP produced within the type I cells. 5. APIII does not inhibit the CSN activity produced by 20 mM K+ (in zero Ca2+ media), which very probably results from direct depolarization of the sensory nerve terminals. 6. Catecholamine release from the carotid body evoked by hypoxia is likewise not altered by APIII (100 nM). 7

  14. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj

    Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significantmore » changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is

  15. Measurements of GEp/GMp to high Q2 and search for 2{gamma} contribution in elastic ep at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vina Punjabi, Charles Perdrisat

    2010-05-01

    The ratio, μpGEp/GMp, where μp is the proton magnetic moment, has been measured extensively over the last decade at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of transverse to longitudinal polarizations components of the recoiling proton in elastic electron-proton scattering. The polarization transfer results are of unprecedented high precision and accuracy, due in large part to the small systematic uncertainties associated with the experimental technique. Prior to these measurements, the form factors were empirically observed to exhibit dipole forms, such that μpGEp/GMp ≈ 1 over all regions of momentum transfermore » studied. With the Hall A results confirming that the ratio μpGEp/GMp shows a steady decrease below unity as a function of Q2, beginning around Q2 ≈ 1 GeV2, discussions revolving around the implication of this deviation from dipole behavior for the structure of the proton have been accompanied by renewed experimental interest in these elastic form factors. Starting in the fall of 2007, two new experiments, GEp-III and GEp-2γ in Hall C at JLab, measured the form factor ratio, GEp/GMp; the GEp-III experiment pushed the highest Q2 limit from 5.6 to 8.49 GeV2, with intermediate points at 5.2 and 6.8 GeV2, and the GEp-2γ experiment measured the ratio in three different kinematics at the constant value Q2=2.5 GeV2, by changing beam energy and detector angles. Preliminary results from both experiments are reported.« less

  16. Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases.

    PubMed

    ter Heine, Rob; Lange, Rogier; Breukels, Oscar B; Bloemendal, Haiko J; Rummenie, Rob G; Wakker, Antoinette M; de Graaf, Hilly; Beekman, Freek J; van der Westerlaken, Monique M L; Malingré, Mirte M; Wielders, Jos P M; van den Berg, Leo; Hendrikse, N Harry; de Klerk, John M H

    2014-04-25

    Bone-targeting therapeutic radiopharmaceuticals are effective agents for treatment of painful bone metastases. Rhenium-188-HEDP is such a therapeutic radiopharmaceutical and has advantages over commercially available alternatives in terms of efficacy, safety and the ability to be produced on-site, allowing rapid treatment upon presentation of patients with pain. Unlike many other radiopharmaceuticals, there are no standardized preparation methods for Rhenium-188-HEDP. It is known, however, that drug composition may not only affect stability of the final drug product, but it may also influence bone affinity and, thus, efficacy. Furthermore, for support of clinical studies with Rhenium-188-HEDP as an investigational medicinal product, preparation of this radiopharmaceutical has to be performed under GMP conditions. To our knowledge, no group has reported on the preparation of Rhenium-188-HEDP under GMP conditions or on stock production of sterile non-radioactive starting materials. We present the production of GMP grade Rhenium-188-HEDP for application of this therapeutic radiopharmaceutical in routine clinical practice and for support of clinical studies. In addition, bio-distribution data of Rhenium-188-HEDP in mice and in patients with bone metastases originating from prostate cancer are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria.

    PubMed

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-05-15

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60-120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80-108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures.

  18. Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA Reductase.

    PubMed

    Chakraborty, Subrata; Lin, Shih-Hung; Shiuan, David; Tai, Dar-Fu

    2015-08-01

    α-Cyclic tripeptides (CtPs) are the most rigid members of the cyclic peptide family. However, due to their synthetic difficulty, biological activity has remained undisclosed. The incorporation of side-chain-protected natural amino acids into functional CtPs was performed to explore the potential biological functions. Several novel CtPs that consist of protected serine (S(Bn)) and/or glutamate (E(OBn)) were prepared from corresponding linear tripeptides by chemical synthesis. There is a strong possibility for CtPs that contain 3 phenyl groups to correlate with atorvastatin structure. The binding effects in human HMG-CoA reductase (hHMGR) activities were first evaluated by molecular docking. High docking scores were received with these CtPs for enzyme. Therefore, enzymatic assays were carried out and the compound cyclo(S(Bn))3 was indeed able to moderately inhibit hHMGR (IC50 = 110 μM).

  19. Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    PubMed

    O'Halloran, Damien M; Altshuler-Keylin, Svetlana; Zhang, Xiao-Dong; He, Chao; Morales-Phan, Christopher; Yu, Yawei; Kaye, Julia A; Brueggemann, Chantal; Chen, Tsung-Yu; L'Etoile, Noelle D

    2017-03-13

    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations.

  20. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Cheung, Ho Yee; Chan, Chun Wai

    2015-01-01

    This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine. PMID:26246843

  1. Di-Adenosine Tetraphosphate (Ap4A) Metabolism Impacts Biofilm Formation by Pseudomonas fluorescens via Modulation of c-di-GMP-Dependent Pathways▿

    PubMed Central

    Monds, Russell D.; Newell, Peter D.; Wagner, Jeffrey C.; Schwartzman, Julia A.; Lu, Wenyun; Rabinowitz, Joshua D.; O'Toole, George A.

    2010-01-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (Pi) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In Pi-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation. PMID:20154123

  2. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways.

    PubMed

    Monds, Russell D; Newell, Peter D; Wagner, Jeffrey C; Schwartzman, Julia A; Lu, Wenyun; Rabinowitz, Joshua D; O'Toole, George A

    2010-06-01

    Dinucleoside tetraphosphates are common constituents of the cell and are thought to play diverse biological roles in organisms ranging from bacteria to humans. In this study we characterized two independent mechanisms by which di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens. Null mutations in apaH, the gene encoding nucleoside tetraphosphate hydrolase, resulted in a marked increase in the cellular level of Ap4A. Concomitant with this increase, Pho regulon activation in low-inorganic-phosphate (P(i)) conditions was severely compromised. As a consequence, an apaH mutant was not sensitive to Pho regulon-dependent inhibition of biofilm formation. In addition, we characterized a Pho-independent role for Ap4A metabolism in regulation of biofilm formation. In P(i)-replete conditions Ap4A metabolism was found to impact expression and localization of LapA, the major adhesin regulating surface commitment by P. fluorescens. Increases in the level of c-di-GMP in the apaH mutant provided a likely explanation for increased localization of LapA to the outer membrane in response to elevated Ap4A concentrations. Increased levels of c-di-GMP in the apaH mutant were associated with increases in the level of GTP, suggesting that elevated levels of Ap4A may promote de novo purine biosynthesis. In support of this suggestion, supplementation with adenine could partially suppress the biofilm and c-di-GMP phenotypes of the apaH mutant. We hypothesize that changes in the substrate (GTP) concentration mediated by altered flux through nucleotide biosynthetic pathways may be a significant point of regulation for c-di-GMP biosynthesis and regulation of biofilm formation.

  3. PPARα autocrine regulation of Ca²⁺-regulated exocytosis in guinea pig antral mucous cells: NO and cGMP accumulation.

    PubMed

    Tanaka, Saori; Sugiyama, Nanae; Takahashi, Yuko; Mantoku, Daiki; Sawabe, Yukinori; Kuwabara, Hiroko; Nakano, Takashi; Shimamoto, Chikao; Matsumura, Hitoshi; Marunaka, Yoshinori; Nakahari, Takashi

    2014-12-15

    In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells. Copyright © 2014 the American Physiological Society.

  4. Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria

    PubMed Central

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-01-01

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures. PMID:25988520

  5. Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia.

    PubMed

    Saeed Dar, M

    2014-01-01

    We have previously shown that brain adenosine A1 receptors and nitric oxide (NO) play an important role in ethanol (EtOH)-induced cerebellar ataxia (EICA) through glutamate/NO/cGMP pathway. I now report possible modulation of EICA by the cerebellar NO/cGMP/K(ATP) pathway. EICA was evaluated by Rotorod in CD-1 male mice. All drugs (K(ATP) activators pinacidil, 0.05, 0.1, 0.5 nmol; minoxidil, 0.01, 0.1, 1.0 pmol; antagonists glipizide/glibenclamide, 0.01, 0.05, 0.1 nmol; NO donor l-arginine, 20 nmol; NOS inhibitors [iNOS] inhibitor L-NAME, 50 nmol; glutamate, 1.5 nmol; adenosine A1 receptor agonist N(6) -cyclohexyladenosine [CHA], 6, 12 pmol; antagonist DPCPX, 0.1 or 0.4 nmol) were given by direct intracerebellar microinfusion via stereotaxically implanted guide cannulas, except EtOH (2 g/kg, i.p.). Pinacidil and minoxidil dose-dependently accentuated, whereas glipizide and glibenclamide markedly attenuated EICA, indicating tonic participation of K(ATP) channels. Glipizide abolished the pinacidil potentiation of EICA, which confirmed both drugs acted via K(ATP) channels. A possible link between K(ATP) channels and glutamate/NO pathway was suggested when (i) CHA (12 pmol) totally abolished l-arginine-induced attenuation of EICA; (ii) L-NAME abolished l-arginine-induced attenuation of EICA associated with further increase in EICA; and (iii) the combined l-arginine and glutamate infusion virtually abolished EICA. Also, whereas CHA abolished glibenclamide-induced attenuation and potentiated pinacidil/minoxidil-induced accentuation of EICA, the effects of DPCPX were just the opposite to those of CHA. The results with CHA therefore suggest a functional link between K(ATP) and A1 receptors and between K(ATP) and glutamate/NO and as an extension may involve participation of NO/cGMP/K(ATP) pathway in EICA. Copyright © 2013 by the Research Society on Alcoholism.

  6. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  7. A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis.

    PubMed

    Hu, Yidan; Wu, Yichao; Mukherjee, Manisha; Cao, Bin

    2017-01-31

    A novel, biofilm-based AND logic gate was constructed in Shewanella oneidensis through a near-infrared (NIR) light responsive c-di-GMP module. The logic gate was demonstrated in microbial fuel cells with isopropyl β-d-thiogalactoside (IPTG) and NIR light as the inputs and electrical signals as the output.

  8. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  9. Structural basis for modulation and agonist specificity of HCN pacemaker channels.

    PubMed

    Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric

    2003-09-11

    The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.

  10. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  11. Comparative analysis of nitric oxide and SALMFamide neuropeptides as general muscle relaxants in starfish.

    PubMed

    Melarange, Richard; Elphick, Maurice R

    2003-03-01

    Previous studies have established that the gaseous signalling molecule nitric oxide (NO) and the SALMFamide neuropeptides S1 and S2 cause cardiac stomach relaxation in the starfish Asterias rubens. Here we show that S1, S2 and the NO donor SNAP also cause relaxation of two other preparations from Asterias - tube feet and the apical muscle of the body wall. The rank order of effectiveness as muscle relaxants when tested at a concentration of 10 micro mol l(-1) was SNAP>S2>S1 for both tube feet and apical muscle whereas for cardiac stomach it was S2>S1>SNAP. Significantly, these data indicate that NO and SALMFamide neuropeptides function as general muscle relaxants in starfish but vary in their relative importance in different organ systems. The molecular mechanisms by which NO and SALMFamides cause muscle relaxation in starfish are not known, but previous pharmacological studies on the cardiac stomach using the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazol[4,3-a]quinoxalin-1-one (ODQ) indicate that the cyclic nucleotide second messenger cGMP may mediate effects of NO. Consistent with this hypothesis, here we report that ODQ also causes partial inhibition of the relaxing effect of SNAP on tube foot and apical muscle preparations. To further investigate the involvement of cyclic nucleotides as mediators of the effects of NO and SALMFamides on starfish muscle, we have measured both cGMP and cAMP in cardiac stomach and in apical muscle after treatment with S1, S2 or SNAP. However, no significant changes in cyclic nucleotide content were observed compared with controls. Further experiments were performed on apical muscle tissue in the presence of the cyclic-nucleotide-phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), a drug that also causes cardiac stomach relaxation in starfish. Treatment with IBMX caused a 2-3-fold increase above basal levels for cGMP and cAMP, but co-treatment with IBMX and S1 or S2 or SNAP resulted in no significant further

  12. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial α2-adrenoceptor activation

    PubMed Central

    Figueroa, Xavier F; Poblete, M Inés; Boric, Mauricio P; Mendizábal, Victoria E; Adler-Graschinsky, Edda; Huidobro-Toro, J Pablo

    2001-01-01

    To assess the involvement of endothelial α2-adrenoceptors in the clonidine-induced vasodilatation, the mesenteric artery of Sprague Dawley rats was cannulated and perfused with Tyrode solution (2 ml min−1). We measured perfusion pressure, nitric oxide (NO) in the perfusate using chemiluminescence, and tissue cyclic GMP by RIA.In phenylephrine-precontracted mesenteries, clonidine elicited concentration-dependent vasodilatations associated to a rise in luminal NO. One hundred nM rauwolscine or 100 μM Lω-nitro-L-arginine antagonized the clonidine-induced vasodilatation. Guanabenz, guanfacine, and oxymetazoline mimicked the clonidine-induced vasorelaxation.In non-contracted mesenteries, 100 nM clonidine elicited a maximal rise of NO (123±13 pmol); associated to a peak in tissue cyclic GMP. Endothelium removal, Lω-nitro-L-arginine, or rauwolscine ablated the rise in NO. One hundred nM aminoclonidine, guanfacine, guanabenz, UK14,304 and oxymetazoline mimicked the clonidine-induced surge of NO. Ten μM ODQ obliterated the clonidine-induced vasorelaxation and the associated tissue cyclic GMP accumulation; 10 – 100 nM sildenafil increased tissue cyclic GMP accumulation without altering the clonidine-induced NO release.α2-Adrenergic blockers antagonized the clonidine-induced rise in NO. Consistent with a preferential α2D-adrenoceptor activation, the KBs for yohimbine, rauwolscine, phentolamine, WB-4101, and prazosin were: 6.8, 24, 19, 165, and 1489 nM, respectively.Rat pretreatment with 100 mg kg−1 6-hydroxydopamine reduced 95% tissue noradrenaline and 60% neuropeptide Y. In these preparations, 100 nM clonidine elicited a rise of 91.9±15.5 pmol NO. Perfusion with 1 μM guanethidine or 1 μM guanethidine plus 1 μM atropine did not modify the NO surge evoked by 100 nM clonidine.Clonidine and congeners activate endothelial α2D-adrenoceptors coupled to the L-arginine pathway, suggesting that the antihypertensive action of

  13. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  14. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms.

    PubMed

    Martínez-Ruiz, Antonio; Cadenas, Susana; Lamas, Santiago

    2011-07-01

    Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Are Math Grades Cyclical?

    ERIC Educational Resources Information Center

    Adams, Gerald J.; Dial, Micah

    1998-01-01

    The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)

  16. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.

  17. Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2015-01-01

    Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121

  18. Experiences of using the GMP audit preparation tool in pharmaceutical contract manufacturer audits.

    PubMed

    Linna, Anu; Korhonen, Mirka; Airaksinen, Marja; Juppo, Anne Mari

    2010-06-01

    Use of external contractors is nowadays inevitable in the pharmaceutical industry. Therefore the amount of current good manufacturing practice audits has been increasing. During the audit, a large amount of items should be covered in a limited amount of time. Consequently, pharmaceutical companies should have systematic and effective ways to manage and prepare for the audits. This study is a continuation to the earlier study, where a tool for the preparation of cGMP audit was developed and its content was validated. The objective of this study was to evaluate the usefulness of the developed tool in audit preparation and during the actual cGMP audit. Three qualitative research methods were used in this study (observation, interviews, and opinion survey). First, the validity of the information given through the tool was examined by comparing the responses to the actual conditions observed during the contract manufacturer audits (n = 15). Additionally the opinions of the contract manufacturers of the tool were gathered (n = 10) and the auditors were interviewed (n = 2). The developed tool was proven to be useful in audit preparation phase from both the auditor's and the contract manufacturers' point of view. Furthermore, using the tool can also save some time when performing the audit. The results show that using the tool can give significant support in audit preparation phase and also during the actual audit.

  19. Cyclic completion of the anamorphic universe

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna

    2018-04-01

    Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the best known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.

  20. cGMP may have trophic effects on beta cell function comparable to those of cAMP, implying a role for high-dose biotin in prevention/treatment of diabetes.

    PubMed

    McCarty, Mark F

    2006-01-01

    Incretin hormones have trophic effects on beta cell function that can aid prevention and treatment of diabetes. cAMP is the primary mediator of these effects, and has been shown to potentiate glucose-stimulated insulin secretion, promote proper beta cells differentiation by increasing expression of the crucial transcription factor PDX-1, and prevent beta cell apoptosis. cGMP's role in beta cell function has received far less scrutiny, but there is emerging evidence that it may have a trophic impact on beta cell function analogous to that of cAMP. An increase in plasma glucose boosts beta cell production of cGMP, which acts as a feed-forward mediator to enhance glucose-stimulated insulin secretion. cGMP also has an anti-apoptotic effect in beta cells, and there is now indirect evidence that it promotes expression of PDX-1. Supraphysiological concentrations of biotin can directly activate guanylate cyclase, and there is limited evidence that high intakes of this vitamin can be therapeutically beneficial in diabetics and in rodent models of diabetes. Beneficial effects of cGMP on muscle insulin sensitivity and on control of hepatic glucose output may contribute to biotin's utility in diabetes. The fact that nitric oxide/cGMP exert a range of favorable effects on vascular health should further encourage exploration of biotin's preventive and therapeutic potential. If an appropriate high-dose biotin regimen could achieve a modest systemic increase in guanylate cyclase activity, without entailing unacceptable side effects or risks, such a regimen might have considerable potential for promoting vascular health and preventing or managing diabetes.

  1. A calcium channel blocker, benidipine, improves cell membrane fluidity in human subjects via a nitric oxide-dependent mechanism. An electron paramagnetic resonance investigation.

    PubMed

    Tsuda, Kazushi; Nishio, Ichiro

    2004-12-01

    Recent studies have revealed that benidipine, a long-acting dihydropyridine-type of calcium (Ca) channel blocker, may exert its protective effect against vascular disorders by increasing nitric oxide (NO) production. The purpose of the present study was to investigate the effects of benidipine and NO on the membrane function in human subjects. We measured the membrane fluidity of erythrocytes by using an electron paramagnetic resonance (EPR) and spin-labeling method. Benidipine decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (h(o)/h(-1)) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in normotensive volunteers. The finding indicated that benidipine increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of benidipine was significantly potentiated by the NO donor, S-nitroso-n-acetylpenicillamine, and by the cyclic guanosine 3', 5'-monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by benidipine was counteracted by the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester and asymmetric dimethyl-L-arginine. These results demonstrated that benidipine increased the membrane fluidity of erythrocytes, at least in part, via the NO- and cGMP-dependent mechanism. Furthermore, the data strongly suggest that benidipine might have a beneficial effect on the rheologic behavior of erythrocytes and the improvement of the microcirculation in humans.

  2. Biochemical Changes and their Regulation during Spore Formation and Germination.

    DTIC Science & Technology

    1980-04-09

    r contain a very low level of cyclic GNP (cGMP), but cGMP Is not found in spores and it appears unlikely to be a modulator of sporulation, gemination...obtained that the regulation of this enzyme in vivo is accomplished at leas in part by regulation of levels of free Mn". 8TTatabolism during spore g...and germination, especially with regard to the following questions: 1) what are the levels and oxidation states of these compounds; 2) what are the

  3. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network.

    PubMed

    Ramírez, Carlos; Mendoza, Luis

    2018-04-01

    Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.

  4. History-independent cyclic response of nanotwinned metals

    NASA Astrophysics Data System (ADS)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  5. A cup product structure for cyclic cohomology

    NASA Astrophysics Data System (ADS)

    Espinosa Tintos, Jose Eduardo

    In this work we construct a cup product structure for cyclic cohomology of a cyclic set X. introduced by Comics. We make use of a categorical construction of cyclic homology by Fiedorowicz and Loday to define our cup product structure by using a large resolution of the cyclic category. We also provide a way to construct a chain map from a smaller resolution where the action of the finite groups is clear. and in the process of constructing this map we learn the large complex can be viewed as all factorizations in the category DeltaC using the cyclic structure of X.

  6. 75 FR 47826 - Final General Management Plan/Environmental Impact Statement, Cumberland Gap National Historical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ..., regulations, and policies and the purpose of the Cumberland Gap National Historical Park, the Final GMP/EIS... prescriptions to ensure protection, access and enjoyment of the park's resources. The Final GMP/EIS describes... Final GMP/EIS contains NPS responses to public comments on the Draft GMP/EIS, and copies of agency...

  7. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases.

    PubMed

    Lieberman, Ori J; Orr, Mona W; Wang, Yan; Lee, Vincent T

    2014-01-17

    The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains.

  8. Toward structure prediction of cyclic peptides.

    PubMed

    Yu, Hongtao; Lin, Yu-Shan

    2015-02-14

    Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.

  9. GMP reverses the facilitatory effect of glutamate on inhibitory avoidance task in rats.

    PubMed

    Rubin, M A; Jurach, A; da Costa Júnior, E M; Lima, T T; Jiménez-Bernal, R E; Begnini, J; Souza, D O; de Mello, C F

    1996-09-02

    Previous studies have demonstrated that post-training intrahippocampal glutamate administration improves inhibitory avoidance task performance in rats. Antagonism of the agonist actions of glutamate by guanine nucleotides has been shown at the molecular and behavioural level. In the present investigation we demonstrate that intrahippocampal co-administration of GMP (guanosine 5'-monophosphate) reverses the facilitatory effect of glutamate on the inhibitory avoidance learning paradigm and inhibits [3H]glutamate binding in hippocampal synaptic plasma membranes. These results suggest that guanine nucleotides may modulate glutamate actions.

  10. Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa.

    PubMed

    Zamir, N; Barkan, D; Keynan, N; Naor, Z; Breitbart, H

    1995-08-01

    The induction of acrosomal exocytosis in capacitated bull spermatozoa by atrial natriuretic peptide (ANP) was studied in vitro. ANP markedly stimulated acrosomal exocytosis in a calcium-dependent manner. Typically, ANP exerts its action via activation of the ANP receptor (ANPR-A), a particulate guanylyl cyclase-linked receptor, and subsequent formation of guanosine 3',5'-cyclic monophosphate (cGMP). We found that the ANP-induced acrosome reaction was inhibited by the competitive ANPR-A receptor antagonist-anantin, indicating a receptor-mediated effect. We could mimic the effect of ANP on the acrosome reaction by using 8-bromo-cGMP, suggesting that cGMP may serve as a signal transducer mediating the acrosome reaction. Indeed, the ANP-induced acrosome reaction was associated with elevation of cGMP levels. cGMP can also be formed by activation of the soluble form of guanylyl cyclase. Sodium nitroprusside (SNP) stimulated cGMP accumulation and acrosome reaction of capacitated spermatozoa. Thus ANP and the nitric oxide-releasing compound SNP, via activation of guanylyl cyclase (the former activating the particulate and the latter activating the soluble form of the enzyme), may play a significant role in the induction of the acrosome reaction.

  11. Cyclic furnace oxidation of clad WI-52 systems at 1040 C and 1090 C

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1972-01-01

    Cyclic furnace oxidation studies were conducted on the cobalt alloy WI-52 clad with Ni-30Cr, Fe-25Cr-4A1, and Ni-20Cr-4A1 foils (0.051 to 0.254 mm thick). Tests as long as 400 hours using 1- and 20-hour cycles showed that the Ni-Cr- and Fe-Cr-A1 claddings were about equally protective at both temperatures. The protective ability of these alloys was influenced by exposure temperature and cladding thickness. At both temperatures, they protected WI-52 about as well as, or better than, a widely used commercial aluminide coating. The Ni-Cr-Al claddings did not protect WI-52 nearly as well. Interdiffusion generally influenced the oxidation behavior of all clad WI-52 systems.

  12. Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase

    PubMed Central

    Deenadayalu, Viju; Puttabyatappa, Yashoda; Liu, Alexander T.; Stallone, John N.

    2012-01-01

    Androgens are reported to have both beneficial and detrimental effects on human cardiovascular health. The aim of this study was to characterize nongenomic signaling mechanisms in coronary artery smooth muscle (CASM) and define the ionic basis of testosterone (TES) action. TES-induced relaxation of endothelium-denuded porcine coronary arteries was nearly abolished by 20 nM iberiotoxin, a highly specific inhibitor of large-conductance, calcium-activated potassium (BKCa) channels. Molecular patch-clamp studies confirmed that nanomolar concentrations of TES stimulated BKCa channel activity by ∼100-fold and that inhibition of nitric oxide synthase (NOS) activity by NG-monomethyl-l-arginine nearly abolished this effect. Inhibition of nitric oxide (NO) synthesis or guanylyl cyclase activity also attenuated TES-induced coronary artery relaxation but did not alter relaxation due to 8-bromo-cGMP. Furthermore, we detected TES-stimulated NO production in porcine coronary arteries and in human CASM cells via stimulation of the type 1 neuronal NOS isoform. Inhibition of the cGMP-dependent protein kinase (PKG) attenuated TES-stimulated BKCa channel activity, and direct assay determined that TES increased activity of PKG in a concentration-dependent fashion. Last, the stimulatory effect of TES on BKCa channel activity was mimicked by addition of purified PKG to the cytoplasmic surface of a cell-free membrane patch from CASM myocytes (∼100-fold increase). These findings indicate that TES-induced relaxation of endothelium-denuded coronary arteries is mediated, at least in part, by enhanced NO production, leading to cGMP synthesis and PKG activation, which, in turn, opens BKCa channels. These findings provide a molecular mechanism that could help explain why androgens have been reported to relax coronary arteries and relieve angina pectoris. PMID:22081702

  13. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications

    PubMed Central

    Aizenman, Einat; Kirshberg, Sophie; Ilouz, Nili; Gil, Yaniv; Berman-Zaken, Yael; Perlman, Temima Schnitzer; Geva, Nitshia; Levy, Ora; Arbell, Daniel; Simon, Alex; Ben-Meir, Assaf; Shufaro, Yoel; Laufer, Neri; Reubinoff, Benjamin E.

    2012-01-01

    Clinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs. PMID:22745653

  14. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  15. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release

    PubMed Central

    Huang, Wei; Cane, Matthew C; Mukherjee, Rajarshi; Szatmary, Peter; Zhang, Xiaoying; Elliott, Victoria; Ouyang, Yulin; Chvanov, Michael; Latawiec, Diane; Wen, Li; Booth, David M; Haynes, Andrea C; Petersen, Ole H; Tepikin, Alexei V; Criddle, David N

    2017-01-01

    Objective Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. Design Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. Results Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. Conclusions Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2

  16. The effects of forskolin and rolipram on cAMP, cGMP and free fatty acid levels in diet induced obesity.

    PubMed

    Doseyici, S; Mehmetoglu, I; Toker, A; Yerlikaya, F H; Erbay, E

    2014-07-01

    Obesity is a major health problem. We investigated the effects of forskolin and rolipram in the diet of animals in which obesity had been induced. We used 50 female albino Wistar rats that were assigned randomly into five groups as follows: group 1, control; group 2, high fat diet; group 3, high fat diet + forskolin; group 4, high fat diet + rolipram; and group 5, high fat diet + rolipram + forskolin. The rats were fed for 10 weeks and rolipram and forskolin were administered during last two weeks. The animals were sacrificed and blood samples were obtained. Serum cAMP, cGMP and free fatty acids (FFA) levels were measured using ELISA assays. We also measured weight gain during the 10 week period. cAMP and FFA levels of groups 3, 4 and 5 were significantly higher than those of groups 1 and 2. We found no significant differences in serum cGMP levels among the groups. The weight gain in groups 3, 4 and 5 was significantly less than for group 2. We also found that the weight gain in group 5 was significantly less than in groups 3 and 4. We found that both forskolin and rolipram stimulated lipolysis and inhibited body weight increase by increasing cAMP levels. Also, combination therapy using the two agents may be more effective in preventing diet induced obesity than either agent alone. We found also that these agents did not effect cellular cGMP levels in diet induced obesity.

  17. NADPH-diaphorase activity and NO synthase expression in the olfactory epithelium of the bovine.

    PubMed

    Wenisch, S; Arnhold, S

    2010-06-01

    NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3',5'-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction.

  18. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Amiri, Shayan; Haj-Mirzaian, Arvin; Amini-Khoei, Hossien; Ostadhadi, Sattar; Dehpour, AhmadReza

    2016-06-05

    Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway. Copyright © 2016. Published by Elsevier B.V.

  19. Acute effects of head-down tilt and hypoxia on modulators of fluid homeostasis

    NASA Technical Reports Server (NTRS)

    Whitson, P. A.; Cintron, N. M.; Pietrzyk, R. A.; Scotto, P.; Loeppky, J. A.

    1994-01-01

    In an effort to understand the interaction between acute postural fluid shifts and hypoxia on hormonal regulation of fluid homeostasis, the authors measured the responses to head-down tilt with and without acute exposure to normobaric hypoxia. Plasma atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), plasma aldosterone (ALD), and plasma renin activity (PRA) were measured in six healthy male volunteers who were exposed to a head-down tilt protocol during normoxia and hypoxia. The tilt protocol consisted of a 17 degrees head-up phase (30 minutes), a 28 degrees head-down phase (1 hour), and a 17 degrees head-up recovery period (2 hours, with the last hour normoxic in both experiments). Altitude equivalent to 14,828 ft was simulated by having the subjects breathe an inspired gas mixture with 13.9% oxygen. The results indicate that the postural fluid redistribution associated with a 60-minute head-down tilt induces the release of ANP and cGMP during both hypoxia and normoxia. Hypoxia increased cGMP, cAMP, ALD, and PRA throughout the protocol and significantly potentiated the increase in cGMP during head-down tilt. Hypoxia had no overall effect on the release of ANP, but appeared to attenuate the increase with head-down tilt. This study describes the acute effects of hypoxia on the endocrine response during fluid redistribution and suggests that the magnitude, but not the direction, of these changes with posture is affected by hypoxia.

  20. Cyclic steady state stress-strain behavior of UHMW polyethylene.

    PubMed

    Krzypow, D J; Rimnac, C M

    2000-10-01

    To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship.