Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
A Material Model for the Cyclic Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael
2011-07-01
The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.
Cyclic steady state stress-strain behavior of UHMW polyethylene.
Krzypow, D J; Rimnac, C M
2000-10-01
To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship.
NASA Astrophysics Data System (ADS)
Turkova, Vera; Stepanova, Larisa
2018-03-01
For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.
Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading
NASA Astrophysics Data System (ADS)
Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah
2018-03-01
An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.
Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging
NASA Astrophysics Data System (ADS)
Sarraj, R.; Hassine, T.; Gamaoun, F.
2018-01-01
NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.
Nonlinear behavior of shells of revolution under cyclic loading.
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1973-01-01
A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.
Nonlinear behavior of shells of revolution under cyclic loading
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1972-01-01
A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions.
A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading
NASA Technical Reports Server (NTRS)
Rui, Yuting; Sun, C. T.
1990-01-01
Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.
Sas, Wojciech; Głuchowski, Andrzej; Gabryś, Katarzyna; Soból, Emil; Szymański, Alojzy
2016-01-01
Recycled concrete aggregate (RCA) is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr) as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law. PMID:28773905
Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Chamis, C. C.
1996-01-01
A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin
2016-01-01
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430
Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.
Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin
2016-04-22
Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.
2011-11-01
ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose
NASA Astrophysics Data System (ADS)
Ding, J.; Chester, F. M.; Chester, J. S.; Zhu, C.; Shen, X.; Arson, C. F.
2016-12-01
Synthetic salt-rock is produced through uniaxial consolidation of sieved granular salt (0.3-0.355 mm grain diam.) at 75-107 MPa pressure and 100-200 0 C for 15 min duration, to produce low porosity (3%-6%) aggregates. Based on microstructural observations, consolidation mechanisms are grain rearrangement, intragranular plastic flow, and minor microfracture and recrystallization. Following consolidation, the salt-rock is deformed by cyclic, triaxial loading at room temperature and 4 MPa confining pressure to investigate microfracture development, closure and healing effects on elastic properties and flow strength. Load cycles are performed within the elastic regime, up to yielding, and during steady ductile flow. The mechanical properties are determined using an internal load cell and strain gages bonded to the samples. Elastic properties vary systematically during deformation reflecting cracking and pore and grain shape changes. Between triaxial load cycles, samples are held at isostatic loads for durations up to one day to determine healing rates and strength recovery; a change in mechanical behavior is observed when significant healing is induced. The microstructures of all samples are characterized before and after cyclic loading using optical microscopy. The consolidation and cyclic triaxial tests, and optical microscopy investigations, are conducted in a controlled low-humidity environment to ensure nominally dry conditions. The microstructures of samples from different stages of cyclic triaxial deformation indicate that intracrystalline plasticity, accompanied by minor recovery by recrystallization, is dominant; but, grain-boundary crack opening also becomes significant. Grain-boundary microcracks have preferred orientations that are sub-parallel to the load axis. The stress-strain behavior correlates with microcrack fabrics and densities during cyclic loading. These experiments are used to both inform and test continuum damage mechanics models of salt-rock deformation in the semibrittle domain, as well as to help design and optimize salt-rock storage facilities.
Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi
2017-08-01
This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology.
Gong, Baoming; Cui, Shaohua; Zhao, Yun; Sun, Yongtao; Ding, Qian
2017-12-01
In the study, the low-cycle fatigue behaviors of 3D-printed poly lactic acid (PLA) scaffolds with 60% porosity and two kinds of geometrical pores were investigated under strain-controlled loading. The obtained Δε a -N f curves were fitted by Coffin-Manson relation. The mechanical stability of the porous structure under cyclic loading was studied. Both kinds of specimens undergo the strain softening after the initial cyclic hardening. The scaffold with circular pore exhibits stable resistance to the fatigue damage which is desirable for bone repairing. Regarding to the accumulation of inelastic deformation, the triangular-scaffold is more sensitive to the cyclic load. The superior fatigue behaviors of the scaffold with circular pore is attributed to homogeneous distribution of the applied mechanical stress and diminishing stress concentration by the introduction of circular pore.
1991-10-01
23 8. High Cycle Fatigue Crack Growth Data for Cast Stainless Steel Showing Comparison with Rolfe and Barsom Fit .......... 24 9. Cyclic Load...compared to the Rolfe /Barsom4 fatigue crack propagation equation for austenitic stainless steels in Fig. 8. ELASTIC-PLASTIC Cyclic J-testing was...place during both the compression and tensile loadings. The J-integral was calculated on each cycle using the Merkle -Corten 9 J equation as modified by
NASA Astrophysics Data System (ADS)
Yang, Di
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
Modeling of high-strength concrete-filled FRP tube columns under cyclic load
NASA Astrophysics Data System (ADS)
Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid
2018-05-01
The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li
2015-05-01
Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.
Finite element modelling of creep crack growth in 316 stainless and 9Cr-1Mo steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, P.; Brust, F.W.
1994-09-01
The failure behavior of steels under sustained and cyclic loads has been addressed. The constitutive behavior of the two steels have been represented by the conventional strain-hardening law and the Murakami-Ohno model for reversed and cyclic loads. The laws have been implemented into the research finite element code FVP. Post processors for FVP to calculate various path independent integral fracture parameters have been written. Compact tension C(T) specimens have been tested under sustained and cyclic loads with both the load point displacement and crack growth monitored during the tests. FE models with extremely refined meshes for the C(T) specimens weremore » prepared and the experiment simulated numerically. Results from this analysis focus on the differences between the various constitutive models as well as the fracture parameters in characterizing the creep crack growth of the two steels.« less
Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M
1990-02-01
Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.
Behavior of nonplastic silty soils under cyclic loading.
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.
Behavior of Nonplastic Silty Soils under Cyclic Loading
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
Implementation of DSC model and application for analysis of field pile tests under cyclic loading
NASA Astrophysics Data System (ADS)
Shao, Changming; Desai, Chandra S.
2000-05-01
The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.
Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam
NASA Astrophysics Data System (ADS)
Lanser, R. L.; Ruggles-Wrenn, M. B.
2016-08-01
Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.
Cyclic Degradation Behavior of < 001 > -Oriented Fe-Mn-Al-Ni Single Crystals in Tension
NASA Astrophysics Data System (ADS)
Vollmer, M.; Kriegel, M. J.; Krooß, P.; Martin, S.; Klemm, V.; Weidner, A.; Chumlyakov, Y.; Biermann, H.; Rafaja, D.; Niendorf, T.
2017-12-01
In the present study, functional fatigue behavior of a near 〈001〉-oriented Fe-Mn-Al-Ni single crystal was investigated under tensile load. An incremental strain test up to 3.5% strain and cyclic tests up to 25 cycles revealed rapid pseudoelastic degradation. Progressive microstructural degradation was studied by in situ scanning electron microscopy. The results show a partially inhibited reactivation of previously formed martensite and proceeding activation of untransformed areas in subsequent cycles. The preferentially formed martensite variants were identified by means of Schmid factor calculation and the Kurdjumov-Sachs relationship. Post mortem transmission electron microscopy investigations shed light on the prevailing degradation mechanisms. Different types of dislocations were found promoting the progressive degradation during cyclic loading.
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan
2018-04-01
The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
Wear Behavior of an Ultra-High-Strength Eutectoid Steel
NASA Astrophysics Data System (ADS)
Mishra, Alok; Maity, Joydeep
2018-02-01
Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.
Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu
2016-10-01
This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. Copyright © 2016 Elsevier B.V. All rights reserved.
Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng
2013-01-01
Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228
NASA Astrophysics Data System (ADS)
Sinha, Subhasis; Gurao, N. P.
2017-12-01
Tensile and cyclic deformation behavior of three samples oriented at 0, 45, and 90 deg to the rolling direction in the rolling direction-transverse direction (RD-TD) plane of cold-rolled and annealed plate of commercially pure titanium is studied in the present investigation. The sample along the RD (R0) shows the highest strength but lowest ductility in monotonic tension. Although ultimate tensile strength (UTS) and elongation of samples along 45 and 90 deg to the RD (R45 and R90, respectively) are similar, the former has significantly higher yield strength than the latter, indicating different strain-hardening behavior. It is found that the R90 sample exhibits the highest monotonic ductility as well as fatigue life. This is attributed to a higher propensity for twinning in this sample with the presence of multiple variants and twin intersections. Cyclic life is also influenced by the high tendency for detwinning of contraction twins in this orientation. Elastoplastic self-consistent (EPSC) simulations of one-cycle tension-compression load reversal indicate that the activity of pyramidal 〈 c + a〉 slip and extension twinning oscillates during cyclic loading that builds up damage in a cumulative manner, leading to failure in fatigue.
Flexural creep of structural flakeboards under cyclic humidity
M.C. Yeh; R.C. Tang; Chung-Yun Hse
1990-01-01
Flexural creep behavior of randomly oriented structural flakeboards under cyclic humidity is presented. Specimens fabricated with 5 and 7 percent phenol-formaldehyde resin were subjected to constant concentrated load in bending under slow and fast cyclic relative humidity (RH) between 65 and 95 percent for 100 days. The temperature was set at a constant 75°F through...
CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.
1999-01-01
The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.
Dynamic strain aging behavior of 10Cr steel under low cycle fatigue at 650°C
NASA Astrophysics Data System (ADS)
Mishnev, Roman; Dudova, Nadezhda; Kaibyshev, Rustam
2017-12-01
The low cycle fatigue behavior of a 10Cr-2W-0.7Mo-3Co-NbV steel with 80 ppm of B additions was studied at elevated temperatures of 600 and 650°C. The steel after normalizing and tempering at 770°C was tested under fully reversed tension-compression loading with the total strain amplitude controlled from ±0.2 to ±1.0% at temperatures of 600 and 650°C. It was revealed that the steel exhibits a positive temperature dependence of both the cyclic strain hardening exponent n' and the cyclic strength coefficient K ' during cyclic loading at 650°C. It was suggested that dynamic strain aging causes fatigue resistance degradation through facilitating microcrack initiation.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses
NASA Astrophysics Data System (ADS)
Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.
2017-06-01
Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.
NASA Astrophysics Data System (ADS)
Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang
2009-08-01
Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.
Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites
NASA Technical Reports Server (NTRS)
Lark, R. L.; Chamis, C. C.
1983-01-01
The static and cyclic load behavior of transverse filament tape (TFT) fiberglass/epoxy and TFY fiberglass/polyester composites, intended for use in the design of low-cost wind turbine blades, are presented. The data behavior is also evaluated with respect to predicted properties based on an integrated hygrothermomechanical response theory. Experimental TFT composite data were developed by the testing of laminates made by using composite layups typical of those used for the fabrication of TFT fiberglass wind turbine blades. Static properties include tension, compression, and interlaminar shear strengths at ambient conditions and at high humidity/elevated temperature conditions after a 500 hour exposure. Cyclic fatigue data were obtained using similar environmental conditions and a range of cyclic stresses. The environmental (temperature and moisture) and cyclic load effects on composite strength degradation are subsequently compared with the predictions obtained by using the composite life/durability theory. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties including fatigue at different cyclic stresses.
Cyclic axial-torsional deformation behavior of a cobalt-base superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-01-01
Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase and out-of-phase axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
Tensile and fatigue behavior of tungsten/copper composites
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Gabb, Timothy P.; Kim, Y. S.
1989-01-01
Work on W/Cu unidirectional composites was initiated to study the behavior of this ductile-ductile composite system under thermomechanical fatigue and to examine the applicability of fatigue-life prediction methods for thermomechanical fatigue of this metal matrix composite. The first step was to characterize the tensile behavior of four ply, 10 vol. percent W/Cu plates at room and elevated temperatures. Fatigue tests were conducted in load control on 0 degree specimens at 260 C. The maximum cyclic stress was varied but the minimum cyclic stress was kept constant. All tests were performed in vacuum. The strain at failure increased with increasing maximum cyclic stress.
Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.
Li, Guanghui; Zhao, Jun; Wang, Zike
2018-06-16
Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.
NASA Astrophysics Data System (ADS)
Prasad, Kartik; Sarkar, Rajdeep; Rao, K. Bhanu Sankara; Sundararaman, M.
2016-10-01
Thermomechanical fatigue behavior of Ti-alloy Timetal 834 has been studied at two temperature intervals viz. 573 K to 723 K (300 °C to 450 °C) and 723 K to 873 K (450 °C to 600 °C) under mechanical strain-controlled cycling. Among the temperatures studied, the alloy exhibited initial cyclic softening followed by cyclic hardening at 723 K (450 °C) in the temperature interval of 573 K to 723 K (300 °C to 450 °C). However, continuous cyclic hardening was observed at 723 K (450 °C) in 723 K to 873 K (450 °C to 600 °C). At 573 K (300 °C) and 873 K (600 °C), cyclic softening was observed in the cyclic stress response curves in both the temperature intervals. The dislocation substructure was observed to be planar in both the modes of TMF loading. Based on TEM microstructures and few unconventional fatigue tests, the observed cyclic hardening is attributed to dynamic strain aging. The reduced fatigue life at 723 K to 873 K (450 °C to 600 °C) under OP-TMF loading was attributed to the combined effect of cyclic hardening (leading to early strain localization and crack initiation), oxidation, and development of tensile mean stresses.
Fatigue induced changes in conical implant-abutment connections.
Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja
2015-11-01
Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo
To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue
2015-01-01
Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established.
Groth, Kevin M; Granata, Kevin P
2008-06-01
Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.
Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2001-01-01
Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.
Tensile and compressive stress-strain behavior of heat treated boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.
1978-01-01
An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.
Contact fatigue of human enamel: Experiments, mechanisms and modeling.
Gao, S S; An, B B; Yahyazadehfar, M; Zhang, D; Arola, D D
2016-07-01
Cyclic contact between natural tooth structure and engineered ceramics is increasingly common. Fatigue of the enamel due to cyclic contact is rarely considered. The objectives of this investigation were to evaluate the fatigue behavior of human enamel by cyclic contact, and to assess the extent of damage over clinically relevant conditions. Cyclic contact experiments were conducted using the crowns of caries-free molars obtained from young donors. The cuspal locations were polished flat and subjected to cyclic contact with a spherical indenter of alumina at 2Hz. The progression of damage was monitored through the evolution in contact displacement, changes in the contact hysteresis and characteristics of the fracture pattern. The contact fatigue life diagram exhibited a decrease in cycles to failure with increasing cyclic load magnitude. Two distinct trends were identified, which corresponded to the development and propagation of a combination of cylindrical and radial cracks. Under contact loads of less than 400N, enamel rod decussation resisted the growth of subsurface cracks. However, at greater loads the damage progressed rapidly and accelerated fatigue failure. Overall, cyclic contact between ceramic appliances and natural tooth structure causes fatigue of the enamel. The extent of damage is dependent on the magnitude of cyclic stress and the ability of the decussation to arrest the fatigue damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
NASA Technical Reports Server (NTRS)
Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
NASA Astrophysics Data System (ADS)
König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom
2016-04-01
The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as the temperature effects. The contributed input parameters in the constitutive model are calibrated using the experimental measurements. In the following, the initial numerical simulation is modified based on the introduced constitutive model implemented in a finite element code. However, because of the significant levels of uncertainties involved in the design procedure of such structures, a reliable design can be achieved by employing probabilistic approaches. Therefore, the numerical calculation is extended by statistical tools such as sensitivity analysis, probabilistic analysis and robust reliability-based design. Uncertainties e.g. due to limited site investigation, which is always fragmentary within these depths, can be compensated by using data sets of field measurements for back calculation of input parameters with the developed numerical model. Monitoring concepts can be optimized by identifying sensor localizations e.g. using sensitivity analyses.
Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads
NASA Astrophysics Data System (ADS)
Ren, Huai-Hui; Wang, Xi-Shu
2014-04-01
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.
Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash
2014-01-01
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029
Kwan, Charles C F; Wang, Zhirui
2013-08-13
Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.
Kwan, Charles C.F.; Wang, Zhirui
2013-01-01
Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.
2018-05-01
Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.
Cyclic Behavior of Mortarless Brick Joints with Different Interlocking Shapes
Liu, Hongjun; Liu, Peng; Lin, Kun; Zhao, Sai
2016-01-01
The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface. PMID:28773291
Finite element based contact analysis of radio frequency MEMs switch membrane surfaces
NASA Astrophysics Data System (ADS)
Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen
2017-10-01
Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Zhong-ping; Li, Chun-wang
2018-03-01
This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.
NASA Astrophysics Data System (ADS)
Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.
2017-02-01
The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.
Cyclic debonding of adhesively bonded composites
NASA Technical Reports Server (NTRS)
Mall, S.; Johnson, W. S.; Everett, R. A., Jr.
1982-01-01
The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.
High Temperature Fatigue Properties Research of GH4169 under Multiaxial Cyclic Loading
NASA Astrophysics Data System (ADS)
Ma, Shaojun; Tong, Dihua; Li, Liyun; Cheng, Yangyang; Hu, Benrun; Chen, Bo
2018-03-01
The high temperature (550°C and 650°C) fatigue properties of GH4169 for thin-wall tube specimen are investigated under uniaxial tension, uniaxial torsion, proportional tension-torsion and nonproportional tension-torsion. All tests are strain-controlled. The results indicate that the shape of the hysteresis loops of uniaxial tension, uniaxial torsion and proportional tension-torsion are similar, but hysteresis loop of non-proportional tension-torsion has distortion; the cyclic softening behavior is shown for GH4169 under uniaxial tension, uniaxial torsion and proportional tension-torsion, but the cyclic hardening behavior is shown for the first several cycles of nonproportional tension-torsion.
Creep behavior of sweetgum OSB: effect of load level and relative humidity
J.H. Pu; R.C. Tang; Chung-Yun Hse
1994-01-01
Flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (OSB). under constnat (65% and 95%) and cyclic (65% 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75 F (23.9 C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20% and...
Phenomenon of low-alloy steel parametrization transformation at cyclic loading in low-cyclic area
NASA Astrophysics Data System (ADS)
Shipachev, A. M.; Nazarova, M. N.
2017-10-01
Following the results of measurements of hardness, magnetizing force and the rate of ultrasonic longitudinal waves of 09G2S steel samples at various cyclic operating time values, there is a phenomenon of transformation from the normal law of speed distribution of these parameters in power-mode distribution. It shows the submission of the behavior of metal as a complex system to the theory of the self-organized criticality.
Superelastic SMA U-shaped dampers with self-centering functions
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhu, Songye
2018-05-01
As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, R.C.; Garard, R.J.; Lokhandwala, K.K.
The crush behavior (specific energy absorption and crush load stability) of unidirectional fiber composite rods having tougher matrices than vinyl ester were investigated and compared with the crush behavior of similar specimens having a vinyl ester matrix. The matrices were a cyclic polyester and two rubber-toughened vinyl esters. The specific energy absorption with the cyclic polyester matrix, 180 MJ/m{sup 3}, was slightly lower than that with the vinyl ester matrix, 230 MJ/m{sup 3}. On the other hand, the crush stability was markedly better. The average deviation of the crush load about the mean was as small as 3.5% with themore » cyclic polyester matrix, in contrast to about 12% with the vinyl ester matrix. The higher ductility of the cyclic polyester and the good fiber-matrix bond strength together resulted in less fracturing of the matrix and more uniform kink-band formation across the composite cross section than occurred with the vinyl ester matrix. There was also a reduction in the tendency for fibers at the periphery of the rod to splay outward rather than being crushed. Of the two rubber-toughened vinyl ester matrices, a 30% reduction was found in the average deviation of the crush load about the mean with the matrix toughened with a core-shell material, although no improvement was found with the CTBN rubber-modified vinyl ester resin.« less
NASA Astrophysics Data System (ADS)
Kannan, Manigandan
The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.
Microstructure: Property correlation. [multiaxial fatigue damage evolution in waspaloy
NASA Technical Reports Server (NTRS)
Jayaraman, N.
1990-01-01
Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional (when the axial and torsional strain cycles are in-phase) and non-proportional (when the axial and torsional strain cycles are 90 deg out-of-phase) cyclic conditions. The deformation behavior under these different cyclic conditions were evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions and it was shown that when the slip deformation is predominant, non-proportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under non-proportional cyclic conditions, deformation was through multiple slip as opposed single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.
Creep behavior of sweetgum OSB: Effect of load level and relative humidity
J.H. Pu; R.C. Tang; Chung-Yun Hse
1994-01-01
flexural creep behavior of laboratory-fabricated sweetgum oriented strandboard (0SB), under constant (65% and 95%) and cyclic (65% ↔ 95% at a 96-hr. frequency) relative humidity (RH) conditions at 75°F(23.9°C) is presented. Two levels (4.5% and 6.5%) of resin content (RC) of phenol-formaldehyde were used in fabricating the test panels. Two load levels (20%...
NASA Technical Reports Server (NTRS)
Cramer, B. A.; Davis, J. W.
1975-01-01
A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.
NASA Astrophysics Data System (ADS)
Woo, Sung-Choong; Goo, Nam Seo
The objective of this work is to investigate the influence of electromechanical cyclic loading on the performance of a bending piezoelectric composite actuator. We have analyzed the fatigue damage mechanisms in terms of the behavior of the AE event rate. It was found that whether the actuators are subjected to purely electric loading or electromechanical loading, the initial fatigue damage of the bending piezoelectric composite actuator was caused by the transgranular fracture in the PZT ceramic layer; the final failure was caused only in the case of PCAWB under electromechanical loading by a local discharge, which critically affected the performance reduction of the actuators. As the number of cycles increased, a large reduction in displacement performance coincided with a high AE event rate, which was identified via microscopic observations.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.
Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A
2013-11-01
To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions
Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.
2013-01-01
Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Barua, Bipul; Soppet, William K.
This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less
Behavior of tunnel form buildings under quasi-static cyclic lateral loading
Yuksel, S.B.; Kalkan, E.
2007-01-01
In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.
The cyclic stress-strain behavior of a nickel-base superalloy at 650 C
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Welsch, G. E.
1986-01-01
It is pointed out that examinations of the monotonic tensile and fatigue behaviors of single crystal nickel-base superalloys have disclosed orientation-dependent tension-compression anisotropies and significant differences in the mechanical response of octahedral and cube slip at intermediate temperatures. An examination is conducted of the cyclic hardening response of the single crystal superalloy PWA 1480 at 650 C. In the considered case, tension-compression anisotropy is present, taking into account primarily conditions under which a single slip system is operative. Aspects of a deformation by single slip are considered along with cyclic hardening anisotropy in tension and compression. It is found that specimens deforming by octahedral slip on a single slip system have similar hardening responses in tensile and low cycle fatigue loading. Cyclic strain hardening is very low for specimens displaying single slip.
Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg
2018-02-01
Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.
Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-01-01
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
Computational Modeling of Sinkage of Objects into Porous Bed under Cyclic Loading
NASA Astrophysics Data System (ADS)
Sheikh, B.; Qiu, T.; Liu, X.
2017-12-01
This work is a companion of another abstract submitted to this session on the computational modeling for the prediction of underwater munitions. In the other abstract, the focus is the hydrodynamics and sediment transport. In this work, the focus is on the geotechnical aspect and granular material behavior when the munitions interact with the porous bed. The final goal of the project is to create and utilize a comprehensive modeling framework, which integrates the flow and granular material models, to simulate and investigate the motion of the munitions. In this work, we present the computational modeling of one important process: the sinkage of rigid-body objects into porous bed under cyclic loading. To model the large deformation of granular bed materials around sinking objects under cyclic loading, a rate-independent elasto-plastic constitutive model is implemented into a Smoothed Particle Hydrodynamics (SPH) model. The effect of loading conditions (e.g., amplitude and frequency of shaking), object properties (e.g., geometry and density), and granular bed material properties (e.g., density) on object singkage is discussed.
Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters
NASA Astrophysics Data System (ADS)
Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.
2016-02-01
The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Dutta, Krishna; Bhardwaj, Ravindra; Yedla, Natraj; Karthik, V.; Pal, Snehanshu
2017-11-01
Molecular dynamics (MD) simulation-based studies of tensile test and structural evolution of Cu-5 at.% Zr alloy under asymmetric cyclic loading (i.e., ratcheting behavior) considering various stress ratios such as - 0.2, - 0.4 and - 0.6 for different temperatures, viz.≈ 100, 300 and 500 K have been performed using embedded atom model Finnis-Sinclair potential. According to obtained stress-strain response from MD calculation, Cu-5 at.% Zr alloy specimen is pristine in nature as sudden drop in stress just after yield stress and subsequent elastic type deformation are observed for this alloy. Predicted ratcheting strain by MD simulation for Cu-5 at.% Zr alloy varies from 4.5 to 5%. Significant increase in ratcheting strain has been observed with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed radial distribution function analysis and cluster analysis.
Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading
NASA Astrophysics Data System (ADS)
Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.
2018-03-01
SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.
Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
1998-01-01
SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.
NASA Technical Reports Server (NTRS)
Lucas, L. J.
1982-01-01
The accuracy of the Neuber equation at room temperature and 1,200 F as experimentally determined under cyclic load conditions with hold times. All strains were measured with an interferometric technique at both the local and remote regions of notched specimens. At room temperature, strains were obtained for the initial response at one load level and for cyclically stable conditions at four load levels. Stresses in notched members were simulated by subjecting smooth specimens to he same strains as were recorded on the notched specimen. Local stress-strain response was then predicted with excellent accuracy by subjecting a smooth specimen to limits established by the Neuber equation. Data at 1,200 F were obtained with the same experimental techniques but only in the cyclically stable conditions. The Neuber prediction at this temperature gave relatively accurate results in terms of predicting stress and strain points.
Response of resin transfer molded (RTM) composites under reversed cyclic loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahfuz, H.; Haque, A.; Yu, D.
1996-01-01
Compressive behavior and the tension-compression fatigue response of resin transfer molded IM7 PW/PR 500 composite laminate with a circular notch have been studied. Fatigue damage characteristics have been investigated through the changes in the laminate strength and stiffness by gradually incrementing the fatigue cycles at a preselected load level. Progressive damage in the surface of the laminate during fatigue has been investigated using cellulose replicas. Failure mechanisms during static and cyclic tests have been identified and presented in detail. Extensive debonding of filaments and complete fiber bundle fracture accompanied by delamination were found to be responsible for fatigue failures, whilemore » fiber buckling, partial fiber fracture and delamination were characterized as the failure modes during static tests. Weibull analysis of the static, cyclic and residual tests have been performed and described in detail. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) for the fractured specimen were also performed and the analysis of the failure behavior is presented.« less
Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian
2015-04-01
This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1974-01-01
Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.
Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91
NASA Astrophysics Data System (ADS)
Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne
An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.
Measuring the mechanical behavior of paperboard in a changing humidity environment
Dennis E. Gunderson; John M. Considine
1986-01-01
âBoth the strength and stability of compressively loaded paperboard are known to be adversely affected by cyclic changes in relative humidity. Current research at the Forest Products Laboratory (FPL) seeks to observe and explain this phenomenon and to develop a simple, practical test to determine allowable "working loads" in cyclicmoisture environments. A new...
NASA Technical Reports Server (NTRS)
Ramaswamy, V. G.
1986-01-01
The objective was to develop unified constitutive equations which can model a variety of nonlinear material phenomena observed in Rene 80 at elevated temperatures. A constitutive model was developed based on back stress and drag stress. The tensorial back stress was used to model directional effects; whereas, the scalar drag stress was used to model isotropic effects and cyclic hardening or softening. A flow equation and evolution equations for the state variables were developed in multiaxial form. Procedures were developed to generate the material parameters. The model predicted very well the monotonic tensile, cyclic, creep, and stress relaxation behavior of Rene 80 at 982 C. The model was then extended to 871, 760, and 538 C. It was shown that strain rate dependent behavior at high temperatures and strain rate independent behavior at the lower temperatures could be predicted very well. A large number of monotonic tensile, creep, stress relation, and cyclic experiments were predicted. The multiaxial capabilities of the model were verified extensively for combined tension/torsion experiments. The prediction of the model agreed very well for proportional, nonproportional, and pure shear cyclic loading conditions at 982 and 871 C.
2006-06-01
Mehrman investigated the effects of prior fatigue on creep behavior, and concluded that a history of prior fatigue loading increases creep life of...as reduced susceptibility to oxidation [4]. Nextel™ 720/Alumina composite (N720/A), combines the strength and creep resistance of a di- phase...studied the response to creep and cyclic loading, respectively, and showed that the presence of steam severely degrades performance at 1200ºC [35
Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading
NASA Astrophysics Data System (ADS)
Kozinov, S.; Kuna, M.
2018-07-01
The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.
Effect of Stress Corrosion and Cyclic Fatigue on Fluorapatite Glass-Ceramic
NASA Astrophysics Data System (ADS)
Joshi, Gaurav V.
2011-12-01
Objective: The objective of this study was to test the following hypotheses: 1. Both cyclic degradation and stress corrosion mechanisms result in subcritical crack growth in a fluorapatite glass-ceramic. 2. There is an interactive effect of stress corrosion and cyclic fatigue to cause subcritical crack growth (SCG) for this material. 3. The material that exhibits rising toughness curve (R-curve) behavior also exhibits a cyclic degradation mechanism. Materials and Methods: The material tested was a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). Rectangular beam specimens with dimensions of 25 mm x 4 mm x 1.2 mm were fabricated using the press-on technique. Two groups of specimens (N=30) with polished (15 mum) or air abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2 Hz (N=44) and 10 Hz (N=36), and at different stress amplitudes. All tests were performed using a fully articulating four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined by using a statistical approach by Munz and Fett (1999). The fatigue lifetime data were fit to a general log-linear model in ALTA PRO software (Reliasoft). Fractographic techniques were used to determine the critical flaw sizes to estimate fracture toughness. To determine the presence of R-curve behavior, non-linear regression was used. Results: Increasing the frequency of cycling did not cause a significant decrease in lifetime. The parameters of the general log-linear model showed that only stress corrosion has a significant effect on lifetime. The parameters are presented in the following table.* SCG parameters (n=19--21) were similar for both frequencies. The regression model showed that the fracture toughness was significantly dependent (p<0.05) on critical flaw size. Conclusions: 1. Cyclic fatigue does not have a significant effect on the SCG in the fluorapatite glass-ceramic IPS e.max ZirPress. 2. There was no interactive effect between cyclic degradation and stress corrosion for this material. 3. The material exhibited a low level of R-curve behavior. It did not exhibit cyclic degradation. *Please refer to dissertation for table.
Fatigue crack propagation in additively manufactured porous biomaterials.
Hedayati, R; Amin Yavari, S; Zadpoor, A A
2017-07-01
Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation and propagation in their critical points. In this study, the static and fatigue crack propagation in additively manufactured porous biomaterials with porosities between 66% and 84% is investigated using compact-tension (CT) samples. The samples were made using selective laser melting from Ti-6Al-4V and were loaded in tension (in static study) and tension-tension (in fatigue study) loadings. The results showed that displacement accumulation diagram obtained for different CT samples under cyclic loading had several similarities with the corresponding diagrams obtained for cylindrical samples under compression-compression cyclic loadings (in particular, it showed a two-stage behavior). For a load level equaling 50% of the yield load, both the CT specimens studied here and the cylindrical samples we had tested under compression-compression cyclic loading elsewhere exhibited similar fatigue lives of around 10 4 cycles. The test results also showed that for the same load level of 0.5F y , the lower density porous structures demonstrate relatively longer lives than the higher-density ones. This is because the high bending stresses in high-density porous structures gives rise to local Mode-I crack opening in the rough external surface of the struts which leads to quicker formation and propagation of the cracks. Under both the static and cyclic loading, all the samples showed crack pathways which were not parallel to but made 45 ° angles with respect to the notch direction. This is due to the fact that in the rhombic dodecahedron unit cell, the weakest struts are located in 45 ° direction with respect to the notch direction. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko
2016-11-01
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.
Stress-Strain Properties of SIFCON in Uniaxial Compression and Tension
1988-08-01
direction act as contacting beams whereas fibers aligned parallel to the loading direction act as individual columns . The combination of fiber-to-fiber...applicable to the study of SIFCON. These include such topics as the influence of strain rate on composite behavior, cyclic loading response, fiber-to-matrix...the specimen are shown in Figure 17. The grips consisted of self-clamping steel plates and a universal joint connection to the loading machine which
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
1988-02-01
9 cyclic 8980 936 0.2071 0.2472 10 static 13470 --- 0.4606 11 cyclic 13470 337 0.4181 0.4299 12 static 22450 --- 1.2874 13 cyclic 19085 237 0.8992...8217%’. ’ ,i’nch z 10 feet W ’ ’,,....¢." 0-0 0 0 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 04 N 0 0 I- 0 4 CA * 0 - u* -U.. LU C LUL...IDENTIFICATION NUMBER ORGANIZATION j(if applicable) Sc. ADDRESS (City, State, and ZIP Code) 10 . SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT
Cyclic tensile response of a pre-tensioned polyurethane
NASA Astrophysics Data System (ADS)
Nie, Yizhou; Liao, Hangjie; Chen, Weinong W.
2018-05-01
In the research reported in this paper, we subject a polyurethane to uniaxial tensile loading at a quasi-static strain rate, a high strain rate and a jumping strain rate where the specimen is under quasi-static pre-tension and is further subjected to a dynamic cyclic loading using a modified Kolsky tension bar. The results obtained at the quasi-static and high strain rate clearly show that the mechanical response of this material is significantly rate sensitive. The rate-jumping experimental results show that the response of the material behavior is consistent before jumping. After jumping the stress-strain response of the material does not jump to the corresponding high-rate curve. Rather it approaches the high-rate curve asymptotically. A non-linear hyper-viscoelastic (NLHV) model, after having been calibrated by monotonic quasi-static and high-rate experimental results, was found to be capable of describing the material tensile behavior under such rate jumping conditions.
Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls
T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer
2016-01-01
Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....
NASA Astrophysics Data System (ADS)
Park, Joonam; Choi, Eunsoo; Park, Kyoungsoo; Kim, Hong-Taek
2011-09-01
Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel.
NASA Astrophysics Data System (ADS)
Ren, Lingbao; Quan, Gaofeng; Boehlert, Carl J.; Zhou, Mingyang; Guo, Yangyang; Fan, Lingling
2018-06-01
Cyclic loading-unloading uniaxial tension experiments were conducted at temperatures ranging between 293 K and 623 K and a strain rate of 10-3 s-1 to study the cyclic accumulated plastic deformation (CAP) behavior of extruded AZ80. The 673 K/4-h heat treatment to the as-extruded AZ80 led to a noticeable decrease in yield strength which was associated with both dissolution of the β-Mg17Al12 phase and growth of the matrix grain size. The critical number of cycles needed to soften the material (N c) decreased from 5 to 4 when the cyclic strain amplitude (ɛ a) increased from 3.3 to 5.0 pct for the as-extruded AZ80. The average cyclic hardening rate (Θ) increased from 11 to 23 MPa/cycle after heat treatment, and this was attributed to the more pronounced twinning process in the coarse-grained microstructure. During the 293 K to 473 K CAP deformation, the increasing accumulated cyclic tension strain may have accelerated the propagation of secondary twinning leading to the Lüders-like post-yield softening. Twinning was prevalent at low temperature (293 K to 473 K) in the ɛ a = 3.0 pct CAP deformation for the heat-treated alloy, and twin-assisted precipitation occurred during the 523 K CAP deformation, which implied that the high diffusivity in the twin boundary accelerated the heterogeneous nucleation of precipitates. The preferred cracking locations changed from twin boundaries to grain boundaries when the CAP deformation temperature increased from 473 K to 523 K. As for the 623 K CAP deformation, cavities initiated at the grain boundaries, and the volume fraction of the cracks/cavities increased from 0.01 to 0.05 with increasing temperature.
A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites
Huber, Otto
2017-01-01
The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806
Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Sluys, W.A.; Emanuelson, R.H.
1986-01-01
During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less
Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading
NASA Astrophysics Data System (ADS)
Wang, Xu; Li, Yingxu; Gao, Yuanwen
2016-01-01
The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.
Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P
2016-01-01
The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.
PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.
2016-01-01
SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450
A biomechanical comparison of single and double-row fixation in arthroscopic rotator cuff repair.
Smith, Christopher D; Alexander, Susan; Hill, Adam M; Huijsmans, Pol E; Bull, Anthony M J; Amis, Andrew A; De Beer, Joe F; Wallace, Andrew L
2006-11-01
The optimal method for arthroscopic rotator cuff repair is not yet known. The hypothesis of the present study was that a double-row repair would demonstrate superior static and cyclic mechanical behavior when compared with a single-row repair. The specific aims were to measure gap formation at the bone-tendon interface under static creep loading and the ultimate strength and mode of failure of both methods of repair under cyclic loading. A standardized tear of the supraspinatus tendon was created in sixteen fresh cadaveric shoulders. Arthroscopic rotator cuff repairs were performed with use of either a double-row technique (eight specimens) or a single-row technique (eight specimens) with nonabsorbable sutures that were double-loaded on a titanium suture anchor. The repairs were loaded statically for one hour, and the gap formation was measured. Cyclic loading to failure was then performed. Gap formation during static loading was significantly greater in the single-row group than in the double-row group (mean and standard deviation, 5.0 +/- 1.2 mm compared with 3.8 +/- 1.4 mm; p < 0.05). Under cyclic loading, the double-row repairs failed at a mean of 320 +/- 96.9 N whereas the single-row repairs failed at a mean of 224 +/- 147.9 N (p = 0.058). Three single-row repairs and three double-row repairs failed as a result of suture cut-through. Four single-row repairs and one double-row repair failed as a result of anchor or suture failure. The remaining five repairs did not fail, and a midsubstance tear of the tendon occurred. Although more technically demanding, the double-row technique demonstrates superior resistance to gap formation under static loading as compared with the single-row technique. A double-row reconstruction of the supraspinatus tendon insertion may provide a more reliable construct than a single-row repair and could be used as an alternative to open reconstruction for the treatment of isolated tears.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
Roche, Christopher P; Staunch, Cameron; Hahn, William; Grey, Sean G; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D
2015-12-01
ASTM F2028-14 was adopted to recom mend a cyclic eccentric glenoid edge loading test that simulates the rocking horse loading mechanism beleived to cause aTSA glenoid loosening. While this method accurately simulates that failure mechanism, the recommended 750 N load may not be sufficient to simulate worst-case loading magnitudes, and the recommended 100,000 cycles may not be sufficient to simulate device fatigue-related failure modes. Finally, if greater loading magnitude or a larger number of cycles is performed, the recommended substrate density may not be sufficiently strong to support the elevated loads and cycles. To this end, a new test method is proposed to supplement ASTM F2028-14. A series of cyclic tests were performed to evaluate the long-term fixation strength of two different hybrid glenoid designs in both low (15 pcf) and high (30 pcf) density polyurethane blocks at elevated loads relative to ASTM F2028-14. To simulate a worst case clinical condition in which the humeral head is superiorly migrated, a cyclic load was applied to the superior glenoid rim to induce a maximum torque on the fixation pegs for three different cyclic loading tests: 1. 1,250 N load for 0.75 M cycles in a 15 pcf block, 2. 1,250 N load for 1.5 M cycles in a 30 pcf block, and 3. 2,000 N load for 0.65 M cycles in a 30 pcf block. All devices completed cyclic loading without failure, fracture, or loss of fixation regardless of glenoid design, polyurethane density, loading magnitude, or cycle length. No significant difference in post-cyclic displacement was noted between designs in any of the three tests. Post-cyclic radiographs demonstrated that each device maintained fixa - tion with the metal pegs within the bone-substitute blocks with no fatigue related failures. These results demonstrate that both cemented hybrid glenoids maintained fixation when tested according to each cyclic loading scenario, with no difference in post-cyclic displacement observed between designs. The lack of fatigue-related failures in these elevated load and high cycle test scenarios are promising, as are the relatively low displacements given the extreme nature of each test. This cyclic loading method is intended to supplement the ASTM F2028-14 standard that adequately simulates the rocking horse loading mechanism but may not adequately simulate the fatigue-related failure modes.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.
1992-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.
1991-01-01
The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.
Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.
Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M
2009-03-01
Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.
NASA Technical Reports Server (NTRS)
Jones, David J.; Kurath, Peter
1988-01-01
Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.
NASA Astrophysics Data System (ADS)
Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid
2015-01-01
This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.
Ratcheting induced cyclic softening behaviour of 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kreethi, R.; Mondal, A. K.; Dutta, K.
2015-02-01
Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.
Xiao, Jian-rui; Li, Yong-Qi; Guan, Su-Min; Kong, Liang; Liu, Baolin; Li, Dehua
2012-03-01
Our aim was to evaluate the effects of lateral cortical anchorage on the primary stability of implants subjected to immediate loading. Implants were placed into bovine bones with monocortical anchorage (implant placed through the cortical bone of the crest) and bicortical anchorage (the crest cortical bone plus one cortical bone on the lateral side). Loads of 25N and 50N were applied to the implants in different cycles. The implant stability quotient (ISQ) was measured before and after the cyclic loadings. Under 25N load there was no difference in ISQ between 1800 cyclic loading and preloading, but the values decreased significantly after 3600 cyclic loading in both groups (p<0.05). Under a 50N load the ISQ value after 1800 and 3600 cyclic loading decreased in the monocortical group (p<0.05), but there was no difference between 1800 cyclic loading and preloading in the bicortical group, and the ISQ in the bicortical group was higher than in the monocortical group after 1800 cyclic loading (p<0.05). Our results suggest that the stability of implants with bicortical anchorage decreased more slowly under higher loads. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2010-11-01
The use of modular bridge deck components has the potential to produce higher quality, more durable bridge decks; however, the required connections have often proved lacking, resulting in less than desirable overall system performance. Advanced cemen...
NASA Technical Reports Server (NTRS)
Maile, K.
1982-01-01
The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.
Atomistic origin of size effects in fatigue behavior of metallic glasses
NASA Astrophysics Data System (ADS)
Sha, Zhendong; Wong, Wei Hin; Pei, Qingxiang; Branicio, Paulo Sergio; Liu, Zishun; Wang, Tiejun; Guo, Tianfu; Gao, Huajian
2017-07-01
While many experiments and simulations on metallic glasses (MGs) have focused on their tensile ductility under monotonic loading, the fatigue mechanisms of MGs under cyclic loading still remain largely elusive. Here we perform molecular dynamics (MD) and finite element simulations of tension-compression fatigue tests in MGs to elucidate their fatigue mechanisms with focus on the sample size effect. Shear band (SB) thickening is found to be the inherent fatigue mechanism for nanoscale MGs. The difference in fatigue mechanisms between macroscopic and nanoscale MGs originates from whether the SB forms partially or fully through the cross-section of the specimen. Furthermore, a qualitative investigation of the sample size effect suggests that small sample size increases the fatigue life while large sample size promotes cyclic softening and necking. Our observations on the size-dependent fatigue behavior can be rationalized by the Gurson model and the concept of surface tension of the nanovoids. The present study sheds light on the fatigue mechanisms of MGs and can be useful in interpreting previous experimental results.
TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom
2013-01-01
Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study ismore » to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,« less
Biomechanical Cadaveric Evaluation of Partial Acute Peroneal Tendon Tears.
Wagner, Emilio; Wagner, Pablo; Ortiz, Cristian; Radkievich, Ruben; Palma, Felipe; Guzmán-Venegas, Rodrigo
2018-06-01
No clear guideline or solid evidence exists for peroneal tendon tears to determine when to repair, resect, or perform a tenodesis on the damaged tendon. The objective of this study was to analyze the mechanical behavior of cadaveric peroneal tendons artificially damaged and tested in a cyclic and failure mode. The hypothesis was that no failure would be observed in the cyclic phase. Eight cadaveric long leg specimens were tested on a specially designed frame. A longitudinal full thickness tendon defect was created, 3 cm in length, behind the tip of the fibula, compromising 66% of the visible width of the peroneal tendons. Cyclic testing was initially performed between 50 and 200 N, followed by a load-to-failure test. Tendon elongation and load to rupture were measured. No tendon failed or lengthened during cyclic testing. The mean load to failure for peroneus brevis was 416 N (95% confidence interval, 351-481 N) and for the peroneus longus was 723 N (95% confidence interval, 578-868 N). All failures were at the level of the defect created. In a cadaveric model of peroneal tendon tears, 33% of remaining peroneal tendon could resist high tensile forces, above the physiologic threshold. Some peroneal tendon tears can be treated conservatively without risking spontaneous ruptures. When surgically treating a symptomatic peroneal tendon tear, increased efforts may be undertaken to repair tears previously considered irreparable.
Mixed formulation for seismic analysis of composite steel-concrete frame structures
NASA Astrophysics Data System (ADS)
Ayoub, Ashraf Salah Eldin
This study presents a new finite element model for the nonlinear analysis of structures made up of steel and concrete under monotonic and cyclic loads. The new formulation is based on a two-field mixed formulation. In the formulation, both forces and deformations are simultaneously approximated within the element through independent interpolation functions. The main advantages of the model is the accuracy in global and local response with very few elements while maintaining rapid numerical convergence and robustness even under severe cyclic loading. Overall four elements were developed based on the new formulation: an element that describes the behavior of anchored reinforcing bars, an element that describes the behavior of composite steel-concrete beams with deformable shear connectors, an element that describes the behavior of reinforced concrete beam-columns with bond-slip, and an element that describes the behavior of pretensioned or posttensioned, bonded or unbonded prestressed concrete structures. The models use fiber discretization of beam sections to describe nonlinear material response. The transfer of forces between steel and concrete is described with bond elements. Bond elements are modeled with distributed spring elements. The non-linear behavior of the composite element derives entirely from the constitutive laws of the steel, concrete and bond elements. Two additional elements are used for the prestressed concrete models, a friction element that models the effect of friction between the tendon and the duct during the posttensioning operation, and an anchorage element that describes the behavior of the prestressing tendon anchorage in posttensioned structures. Two algorithms for the numerical implementation of the new proposed model are presented; an algorithm that enforces stress continuity at element boundaries, and an algorithm in which stress continuity is relaxed locally inside the element. Stability of both algorithms is discussed. Comparison with standard displacement based models and earlier flexibility based models is presented through numerical studies. The studies prove the superiority of the mixed model over both displacement and flexibility models. Correlation studies of the proposed model with experimental results of structural specimens are conducted. The studies show the accuracy of the model and its numerical robustness even under severe cyclic loading conditions.
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
NASA Technical Reports Server (NTRS)
Pionke, L. J.; Garland, K. C.
1973-01-01
Candidate alloys for the Shuttle Solid Rocket Booster (SRB) case were tested under simulated service conditions to define subcritical flaw growth behavior under both sustained and cyclic loading conditions. The materials evaluated were D6AC and 18 Ni maraging steel, both heat treated to a nominal yield strength of 1380 MN/sq m (200 ksi). The sustained load tests were conducted by exposing precracked, stressed specimens of both alloys to alternate immersion in synthetic sea water. It was found that the corrosion and stress corrosion resistance of the 18 Ni maraging steel were superior to that of the D6AC steel under these test conditions. It was also found that austenitizing temperature had little influence on the threshold stress intensity of the D6AC. The cyclic tests were conducted by subjecting precracked surface-flawed specimens of both alloys to repeated load/thermal/environmental profiles which were selected to simulate the SRB missions. It was found that linear removal operations that involve heating to 589 K (600 F) cause a decrease in cyclic life of D6AC steel relative to those tests conducted with no thermal cycling.
NASA Astrophysics Data System (ADS)
Saleeb, A. F.; Natsheh, S. H.; Owusu-Danquah, J. S.; Dhakal, B.
2017-05-01
In this work, we address two of the main challenges encountered in constitutive modeling of the thermomechanical behaviors of actuation-based shape memory alloys. Firstly, the complexity of behavior under cyclic thermomechanical loading is properly handled, particularly with regard to assessing the long-term dimensional stability. Secondly, we consider the marked differences in behavior distinguishing virgin-versus-trained SMA material. To this end, we utilize a set of experimental data comprehensive in scope to cover all the anticipated operational conditions for one and same SMA alloy, having a specific chemical composition with fixed heat treatment. More specifically, this includes twenty-four different tests from the recent SMA experimental literature for the Ni49.9Ti50.1 material having austenite finish temperature above 100 °C. Under all the different conditions investigated, the model results were found to be in very good agreement with the experimental measurements.
DOT National Transportation Integrated Search
2015-07-01
Concrete has been used in dams, bridges, and highway pavements in which freeze-thaw process and cyclic loading are considered as important factors affecting its mechanical behavior during its service life. Damage caused by frost expansion is a primar...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Yield Behavior of Solution Treated and Aged Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.
2014-01-01
Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Huang, M; Niu, X
In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces.more » They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).« less
NASA Astrophysics Data System (ADS)
Li, Yaokun; Han, Xiaolei; Galal, Khaled; Ji, Jing
2018-01-01
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P v, material type and cushion thickness h c were taken as variables. Conclusions include: 1) under monotonic loading, P v is the most significant factor; the shear resistance P hmax increases as P v increases, but the normalized factor of resistance μ n has an opposite tendency; 2) for the materials used in this study, μ n varies from 0.40 to 0.70, the interface friction angle δ s varies from 20° to 35°, while u max varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ n, the displacement u 1 and stiffness K 1 of the elastic stage, the displacement u 2 and stiffness K 2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K 1, K 2 and μ n have been obtained.
Scott, Jeremiah E.; McAbee, Kevin R.; Veit, Anna J.; Fling, Annika L.
2015-01-01
Using a model organism (rabbits) that resembles a number of mammalian herbivores in key aspects of its chewing behaviors, we examined how variation in dietary mechanical properties affects food breakdown during mastication. Such data have implications for understanding phenotypic variation in the mammalian feeding apparatus, particularly with respect to linking jaw form to diet-induced repetitive loading. Results indicate that chewing frequency (chews/s) is independent of food properties, whereas chewing investment (chews/g) and chewing duration(s), which are proportional to repetitive loading of the jaws, are positively related to food stiffness and toughness. In comparisons of displacement-limited and stress-limited fragmentation indices, which respectively characterize the intraoral breakdown of tough and stiff foods, increases in chewing investment and duration are linked solely to stiffness. This suggests that stiffer foods engender higher peak loads and increased cyclical loading. Our findings challenge conventional wisdom by demonstrating that toughness does not, by itself, underlie increases in cyclical loading and loading duration. Instead, tough foods may be associated with such jaw-loading patterns because they must be processed in greater volumes owing to their lower nutritive quality and for longer periods of time to increase oral exposure to salivary chemicals. PMID:26557436
Folman, Y; Wosk, J; Voloshin, A; Liberty, S
1986-01-01
The cyclic impacts induced by heel strike when walking were studied using both a high-resonance-frequency force plate and a low-mass skin-mounted accelerometer. The data were computer analyzed. The results showed that during normal human walking, the locomotor system is subjected to repetitive impact loads at heel strike, lasting about 5 ms and consisting of frequency spectra up to and above 100 Hz. The natural shock-absorbing structures in the musculoskeletal system have viscoelastic time-dependent mechanical behavior, which is relatively ineffective in withstanding sudden impulsive loads. Degenerative joint diseases may thus be seen as a late clinical result of fatigue failure of the natural shock absorbers, submitted to deleterious impacts over a period of time.
Prediction of thermal cycling induced matrix cracking
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1992-01-01
Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.
History-independent cyclic response of nanotwinned metals
NASA Astrophysics Data System (ADS)
Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei
2017-11-01
Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
Rat Disc Torsional Mechanics: Effect of Lumbar and Caudal Levels and Axial Compression Load
Elliott, Dawn M; Espinoza Orías, Alejandro A; Malhotra, Neil R
2009-01-01
Background Context Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior in order to evaluate changes following model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Purpose Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Study Design Cadaveric biomechanical study. Methods Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. Results The apparent torsional modulus was higher in the lumbar region than in the caudal region,: 0.081±0.026 (MPa/°, Mean±SD) for lumbar axially loaded; 0.066±0.028 caudal axially loaded; 0.091±0.033 for lumbar in pure torsion; and 0.056±0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/°. Conclusions Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics. PMID:18495544
NASA Technical Reports Server (NTRS)
Berkovits, Avraham
1961-01-01
Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
The basic relationships between stress and strain under cyclic conditions of loading are not at present well understood. It would seem that information of this type is vital for a fundamental approach to understand the fatigue behavior of dynamically loaded structures. In this paper, experimental and computational methods are utilized to study the fatigue behavior of a thin aluminum cantilever plate subjected to dynamic loading. The studies are performed by combining optomechanical and finite element methods. The cantilever plate is loaded periodically by excitation set at a fixed amplitude and at a specific resonance frequency of the plate. By continuously applying this type of loading and using holographic interferometry, the behavior of the plate during a specific period of time is investigated. Quantitative information is obtained from laser vibrometry data which are utilized by a finite element program to calculate strains and stresses assuming a homogeneous and isotropic material and constant strain elements. It is shown that the use of experimental and computational hybrid methodologies allows identification of different zones of the plate that are fatigue critical. This optomechanical approach proves to be a viable tool for understanding of fatigue behavior of mechanical components and for performing optimization of structures subjected to fatigue conditions.
Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui
2018-05-01
In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.
Effect of cyclic loading and retightening on reverse torque value in external and internal implants.
Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2015-08-01
The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading.
Tensile stress-strain behavior of boron/aluminum laminates
NASA Technical Reports Server (NTRS)
Sova, J. A.; Poe, C. C., Jr.
1978-01-01
The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.
Using ABAQUS Scripting Interface for Materials Evaluation and Life Prediction
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Arnold, Steven M.; Baranski, Andrzej
2006-01-01
An ABAQUS script has been written to aid in the evaluation of the mechanical behavior of viscoplastic materials. The purposes of the script are to: handle complex load histories; control load/displacement with alternate stopping criteria; predict failure and life; and verify constitutive models. Material models from the ABAQUS library may be used or the UMAT routine may specify mechanical behavior. User subroutines implemented include: UMAT for the constitutive model; UEXTERNALDB for file manipulation; DISP for boundary conditions; and URDFIL for results processing. Examples presented include load, strain and displacement control tests on a single element model. The tests are creep with a life limiting strain criterion, strain control with a stress limiting cycle and a complex interrupted cyclic relaxation test. The techniques implemented in this paper enable complex load conditions to be solved efficiently with ABAQUS.
The Effects of Small Deformation on Creep and Stress Rupture Behavior of ODS Superalloys.
1983-01-07
effects or shock loading effects. During this project year, we modified several Satec high temperature static creep test machines to obtain the required...loading control. Figure 14 is a schematic represen- tation of our cyclic creep test system. The system retains features of the Satec machine such as...and almost completely while, if the stress is held at the initial level for longer periods, dislocation will es - cape the strengthening interactions
Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading
2012-03-01
prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates
Failure mechanism of coated biomaterials under high impact-sliding contact stresses
NASA Astrophysics Data System (ADS)
Chen, Ying
This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support to coating better and a ductile and adhesive interface layer can delay the cracked coating from peeled-off.
Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu
2014-08-01
This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Characterization of Microporous Insulation, Microsil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.
Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within thismore » report.« less
Cyclic load magnitude is a risk factor for a cumulative lower back disorder.
Le, Peter; Solomonow, Moshe; Zhou, Bing-He; Lu, Yun; Patel, Vikas
2007-04-01
Epidemiological data suggest that high loads lifted by workers engaged in static and cyclic daily activities may be a risk factor for low back disorder. Our previous research provided physiological and biomechanical validation of the epidemiological data for static load conditions. The objective of this report was to provide physiological and biomechanical experimental validation to the epidemiological data in cyclic (repetitive) load conditions. Three groups of in vivo feline models were subjected to 3 cyclic load levels in a series of 6 periods of 10 minutes of work spaced by 10 minutes of rest followed by 7 hours of rest. Multifidus electromyography (EMG) and lumbar displacement were statistically analyzed after processing. Delayed muscular hyperexcitability was observed only in moderate (40 N) and high (60 N) loads (P<0.0001) but was absent in low (20 N) loads. The magnitude of the delayed hyperexcitability was found to be higher (P<0.0001) in the high (60 N) loads compared with the moderate (40 N) loads. Exposure to moderate and high loads in cyclic (repetitive) work results in an acute neuromuscular disorder indicative of soft tissue inflammation that may become chronic with further exposure.
Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading
NASA Astrophysics Data System (ADS)
Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.
2014-05-01
The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.
Subcritical crack growth of selected aerospace pressure vessel materials
NASA Technical Reports Server (NTRS)
Hall, L. R.; Bixler, W. D.
1972-01-01
This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.
Discrete Dislocation Modeling of Fatigue
NASA Astrophysics Data System (ADS)
Needleman, Alan
2004-03-01
In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.
Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.
NASA Astrophysics Data System (ADS)
Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah
2018-03-01
This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.
Coons, David A; Barber, F Alan; Herbert, Morley A
2006-11-01
This study evaluated the strength and suture-tendon interface security of different suture configurations from triple-suture-loaded anchors. A juvenile bovine infraspinatus tendon was detached and repaired by use of 4 different suture combinations from 2 suture anchors: 3 simple sutures in each anchor (ThreeVo anchor; Linvatec, Largo, FL); 2 peripheral simple stitches and 1 central horizontal mattress suture passed deeper into the tendon, creating a larger footprint (bigfoot-print anchor); 2 peripheral simple stitches with 1 central horizontal mattress stitch passed through the same holes as the simple sutures (stitch-of-Burns); and 2 simple stitches (TwoVo anchor; Linvatec). The constructs were cyclically loaded between 10 N and 180 N for 3,500 cycles and then destructively tested. The number of cycles required to create a 5-mm gap and a 10-mm gap and the ultimate load to failure and failure mode were recorded. The ThreeVo anchor was strongest and most resistant to cyclic loading (P < .01). The TwoVo anchor was least resistant to cyclic loading. The stitch-of-Burns anchor was more resistant to cyclic loading than both the bigfoot-print anchor and the TwoVo anchor (P < .03). The ThreeVo, stitch-of-Burns, and TwoVo anchors were stronger than the bigfoot-print anchor (P < .05). Three simple sutures in an anchor hold better than two simple sutures. Three simple sutures provide superior suture-tendon security than combinations of one mattress and two simple stitches subjected to cyclic loading. A central mattress stitch placed more medially than two peripheral simple stitches (bigfoot-print anchor) configured to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as three simple stitches (ThreeVo anchor). Placing a central mattress stitch more medially than 2 peripheral simple stitches to enlarge the tendon-suture footprint was not as resistant to cyclic loading or destructive testing as 3 simple stitches.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Effect of cyclic loading and retightening on reverse torque value in external and internal implants
Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin
2015-01-01
PURPOSE The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading. PMID:26330975
Thermoviscoplastic model with application to copper
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.
Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya
2015-06-01
The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.
Study of the influence of hole quality on composite materials
NASA Technical Reports Server (NTRS)
Pengra, J. J.
1980-01-01
The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
Fundamental aspects of and failure modes in high-temperature composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Ginty, Carol A.
1990-01-01
Fundamental aspects of and attendant failure mechanisms for high temperature composites are summarized. These include: (1) in-situ matrix behavior; (2) load transfer; (3) limits on matrix ductility to survive a given number of cyclic loadings; (4) fundamental parameters which govern thermal stresses; (5) vibration stresses; and (6) impact resistance. The resulting guidelines are presented in terms of simple equations which are suitable for the preliminary assessment of the merits of a particular high temperature composite in a specific application.
Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Ranjith, P. G.
2017-11-01
The deformation failure characteristics of marble subjected to triaxial cyclic loading are significant when evaluating the stability and safety of deep excavation damage zones. To date, however, there have been notably few triaxial experimental studies on marble under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic tests was conducted to analyze the mechanical damage characteristics of a marble. The post-peak deformation of the marble changed gradually from strain softening to strain hardening as the confining pressure increased from 0 to 10 MPa. Under uniaxial compression, marble specimens showed brittle failure characteristics with a number axial splitting tensile cracks; in the range of σ 3 = 2.5-7.5 MPa, the marble specimens assumed single shear fracture characteristics with larger fracture angles of about 65°. However, at σ 3 = 10 MPa, the marble specimens showed no obvious shear fracture surfaces. The triaxial cyclic experimental results indicate that in the range of the tested confining pressures, the triaxial strengths of the marble specimens under cyclic loading were approximately equal to those under monotonic loading. With the increase in cycle number, the elastic strains of the marble specimens all increased at first and later decreased, achieving maximum values, but the plastic strains of the marble specimens increased nonlinearly. To evaluate quantitatively the damage extent of the marble under triaxial cyclic loading, a damage variable is defined according to the irreversible deformation for each cycle. The evolutions of the elastic modulus for the marble were characterized by four stages: material strengthening, material degradation, material failure and structure slippage. Based on the experimental results of the marble specimens under complex cyclic loading, the cohesion of the marble decreased linearly, but the internal friction angles did not depend on the damage extent. To describe the peak strength characteristics of the marble specimens under complex cyclic loadings with various deformation positions, a revised strength criterion for damaged rocks is offered.
Effects of Cyclic Loading on the Uniaxial Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Schlun, M.; Zipse, A.; Dreher, G.; Rebelo, N.
2011-07-01
The widespread development and use of implants made from NiTi is accompanied by the publication of many NiTi material characterization studies. These publications have increased significantly the knowledge about the mechanical properties of NiTi. However, this knowledge also increased the complexity of the numerical simulation of NiTi implants or devices. This study is focused on the uniaxial behavior of NiTi tubing due to cyclic loading and had the goal to deliver both precise and application-oriented results. Single aspects of this study have already been published (Wagner in Ein Beitrag zur strukturellen und funktionalen Ermüdung von Drähten und Federn aus NiTi-Formgedaechtnislegierungen, Ph.D. Thesis, 2005; Eucken and Duerig in Acta Metall 37:2245-2252, 1989; Yawny et al. in Z Metallkd 96:608-618, 2005); however, there is no publication known that shows all the single effects combined in a "duty cycle case." It was of particular importance to summarize the main effects of pre-strain and subsequent small or large strain amplitudes on the material properties. The phenomena observed were captured in an extended Abaqus® Nitinol material model, presented by Rebelo et al. (A Material Model for the Cyclic Behavior of Nitinol, SMST Extended Abstracts 2010). The cyclic tensile tests were performed using a video extensometer to obtain accurate strain measurement on small electro-polished dog-bone specimen that were incorporated into a stent framework so that standard manufacturing methods could be used for the fabrication. This study indicates that a prestrain beyond 6% strain alters the transformation plateaus and if the cyclic displacement amplitude is large enough, additional permanent deformations are observed, the lower plateau and most notably the upper plateau change. The changes to the upper plateau are very interesting in the sense that an additional stress plateau develops: its "start stress" is lowered thereby creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. This study was conducted in the course of the work of a consortium of several stent manufacturers, SAFE Technology Limited and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices.
Mechanical annealing under low-amplitude cyclic loading in micropillars
NASA Astrophysics Data System (ADS)
Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo
2016-04-01
Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.
Determination of the critical plane and durability estimation for a multiaxial cyclic loading
NASA Astrophysics Data System (ADS)
Burago, N. G.; Nikitin, A. D.; Nikitin, I. S.; Yakushev, V. L.
2018-03-01
An analytical procedure is proposed to determine the critical plane orientation according to the Findley criterion for the multiaxial cyclic loading. The cases of in-phase and anti-phase cyclic loading are considered. Calculations of the stress state are carried out for the system of the gas turbine engine compressor disk and blades for flight loading cycles. The formulas obtained are used for estimations of the fatigue durability of this essential element of structure.
Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading
Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao
2018-01-01
The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383
Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.
Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao
2018-02-26
The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.
Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.
1977-01-01
The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.
A simple approach for the modeling of an ODS steel mechanical behavior in pilgering conditions
NASA Astrophysics Data System (ADS)
Vanegas-Márquez, E.; Mocellin, K.; Toualbi, L.; de Carlan, Y.; Logé, R. E.
2012-01-01
The optimization of the forming of ODS tubes is linked to the choice of an appropriated constitutive model for modeling the metal forming process. In the framework of a unified plastic constitutive theory, the strain-controlled cyclic characteristics of a ferritic ODS steel were analyzed and modeled with two different tests. The first test is a classical tension-compression test, and leads to cyclic softening at low to intermediate strain amplitudes. The second test consists in alternated uniaxial compressions along two perpendicular axes, and is selected based on the similarities with the loading path induced by the Fe-14Cr-1W-Ti ODS cladding tube pilgering process. This second test exhibits cyclic hardening at all tested strain amplitudes. Since variable strain amplitudes prevail in pilgering conditions, the parameters of the considered constitutive law were identified based on a loading sequence including strain amplitude changes. A proposed semi automated inverse analysis methodology is shown to efficiently provide optimal sets of parameters for the considered loading sequences. When compared to classical approaches, the model involves a reduced number of parameters, while keeping a good ability to capture stress changes induced by strain amplitude changes. Furthermore, the methodology only requires one test, which is an advantage when the amount of available material is limited. As two distinct sets of parameters were identified for the two considered tests, it is recommended to consider the loading path when modeling cold forming of the ODS steel.
Nonlinear crack analysis with finite elements
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.
1973-01-01
The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.
2003-01-01
Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.
Crack Growth Behavior in the Threshold Region for High Cyclic Loading
NASA Technical Reports Server (NTRS)
Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.
2011-01-01
The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.
2011-01-01
Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less
Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy
2013-06-01
Corrosion Fatigue Corrosion fatigue is defined as the failure of metal due to a cyclical load in combination with exposure to a caustic environment...lifetime is spent creating the crack while the actual crack growth makes up a smaller portion of the total lifetime. With corrosion fatigue however
Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries
NASA Astrophysics Data System (ADS)
Peigney, Michaël
2018-02-01
Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.
The role of peel stresses in cyclic debonding
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1982-01-01
When an adhesively bonded joint is undergoing cyclic loading, one of the possible damage modes that occurs is called cyclic debonding - progressive separation of the adherends by failure of the adhesive bond under cyclic loading. In most practical structures, both peel and shear stresses exist in the adhesive bonding during cyclic loading. The results of an experimental and analytical study to determine the role of peel stresses on cyclic debonding in a mixed mode specimen are presented. Experimentally, this was done by controlling the forces that create the peel stresses by applying a clamping force to oppose the peel stresses. Cracked lap shear joints were chosen for this study. A finite element analysis was developed to assess the effect of the clamping force on the strain energy release rates due to shear and peel stresses. The results imply that the peel stress is the principal stress causing cyclic debonding.
A micro-mechanical model to determine changes of collagen fibrils under cyclic loading
NASA Astrophysics Data System (ADS)
Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.
Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.
NASA Astrophysics Data System (ADS)
He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin
2017-11-01
A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.
Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions
NASA Astrophysics Data System (ADS)
Stander, C. J.; Heyns, P. S.
2005-07-01
Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.
Degradation forecast for PEMFC cathode-catalysts under cyclic loads
NASA Astrophysics Data System (ADS)
Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.
2017-08-01
Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.
DOT National Transportation Integrated Search
2012-03-01
This research study aims at evaluating the performance of base and subgrade soil in flexible pavements under repeated loading test conditions. For this purpose, an indoor cyclic plate load testing equipment was developed and used to conduct a series ...
Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude
2015-06-01
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-01-01
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research. PMID:28793741
Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading.
Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Wei, Chunli
2015-12-12
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.
Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel
NASA Astrophysics Data System (ADS)
Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.
2018-02-01
Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.
Cyclic performance of concrete-filled steel batten built-up columns
NASA Astrophysics Data System (ADS)
Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.
2016-03-01
Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.
Fatigue crack growth under general-yielding cyclic-loading
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1986-01-01
In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.
Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading
NASA Astrophysics Data System (ADS)
Hosseini, Seyyed Alireza
2017-12-01
Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.
Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE
Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare
2013-01-01
Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898
Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.
Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T
2011-05-01
The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.
NASA Technical Reports Server (NTRS)
Elber, W.
1973-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.
Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel
NASA Technical Reports Server (NTRS)
Elber, W.
1974-01-01
The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.
Viscoplasticity based on overstress with a differential growth law for the equilibrium stress
NASA Technical Reports Server (NTRS)
Krempl, E.; Mcmahon, J. J.; Yao, D.
1985-01-01
Two coupled, nonlinear differential equations are proposed for the modeling of the elastic and rate (time) dependent inelastic behavior of structural metals in the absence of recovery and aging. The structure of the model is close to the unified theories but contains essential differences. It is shown that the model reproduces almost elastic regions upon initial loading and in the unloading regions of the hysteresis loop. Under loading, unloading and reloading in strain control the model simulated the experimentally observed sharp transition from nearly elastic to inelastic behavior. When a formulation akin to existing unified theories is adopted the almost elastic regions reduce the points and the transition upon reloading is very gradual. For different formulations the behavior under sudden in(de)creases of the strain rate by two orders of magnitude is simulated by numerical experiments and differences are noted. The model represents cyclically neutral behavior and contains three constants and two positive, decreasing functions. The determination of constants and functions from monotonic loading with strain rate changes and relaxation periods is described.
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A
1984-01-01
The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.
Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin
2016-03-01
Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, J. W.; Cramer, B. A.
1976-01-01
A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.
Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps
Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624
Thermo-mechanical response predictions for metal matrix composite laminates
NASA Technical Reports Server (NTRS)
Aboudi, J.; Hidde, J. S.; Herakovich, C. T.
1991-01-01
An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.
The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix
NASA Technical Reports Server (NTRS)
Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.
1989-01-01
The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.
Short rest between cyclic flexion periods is a risk factor for a lumbar disorder.
Hoops, Heather; Zhou, Bing-He; Lu, Yun; Solomonow, Moshe; Patel, Vikas
2007-08-01
The epidemiology identifies cyclic lumbar loading as a risk factor for cumulative trauma disorder. Experimental biomechanical and physiological confirmation is lacking. The objective of this study was to asses the impact of different rest durations applied between periods of cyclic loading on the development of an acute lumbar disorder which, if continued to be subjected to loading, may develop into a cumulative disorder. Three groups of in vivo feline preparations were subjected to six sequential 10 min loading periods of cyclic lumbar flexion at 40 N with a frequency of 0.25 Hz applied to the L-4/5 level. The rest durations varied from 5 min in the first group, to 10 min in the second and to 20 min in the third. Reflexive EMG from the multifidi and lumbar displacement were used to identify significant (P<0.001) effects of time and rest duration for post-load EMG and displacement. Single-cycle test were performed hourly for 7 h post-loading to assess recovery. A model developed earlier was applied to represent the experimental data. The groups allowed 5 and 10 min rest exhibited an acute neuromuscular disorder expressed by a significant (P<0.001) delayed hyperexcitability 2-3 h into the 7 h recovery period with the intensity of the hyperexcitability significantly higher (P<0.001) for the group allowed only 5 min rest. The group allowed 20 min rest had a slow, uneventful recovery, free of delayed hyperexcitability. Occupational and sports activities requiring repetitive (cyclic) loading of the lumbar spine may be a risk factor for the development of a cumulative lumbar disorder and may require sufficient rest, as much as twice as long as the loading period, for prevention. Comparison to similar data for static lumbar loading shows that cyclic loading is more deleterious than static loading, requiring more rest to offset the negative effect of the repeated acts of stretch.
Modeling the viscoplastic behavior of Inconel 718 at 1200 F
NASA Technical Reports Server (NTRS)
Abdel-Kader, M. S.; Eftis, J.; Jones, D. L.
1988-01-01
A large number of tests, including tensile, creep, fatigue, and creep-fatigue were performed to characterize the mechanical properties of Inconel 718 (a nickel based superalloy) at 1200 F, the operating temperature for turbine blades. In addition, a few attempts were made to model the behavior of Inconel 718 at 1200 F using viscoplastic theories. The Chaboche theory of viscoplasticity can model a wide variety of mechanical behavior, including monotonic, sustained, and cyclic responses of homogeneous, initially-isotropic, strain hardening (or softening) materials. It is shown how the Chaboche theory can be used to model the viscoplastic behavior of Inconel 718 at 1200 F. First, an algorithm was developed to systematically determine the material parameters of the Chaboche theory from uniaxial tensile, creep, and cyclic data. The algorithm is general and can be used in conjunction with similar high temperature materials. A sensitivity study was then performed and an optimal set of Chaboche's parameters were obtained. This study has also indicated the role of each parameter in modeling the response to different loading conditions.
NASA Astrophysics Data System (ADS)
Shajil, N.; Srinivasan, S. M.; Santhanam, M.
2012-04-01
Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi
2016-10-01
Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Williams, Jamie R.; Natarajan, Raghu N.; Andersson, Gunnar B.J.
2009-01-01
Understanding the relationship between repetitive lifting and the breakdown of disc tissue over several years of exposure is difficult to study in vivo and in vitro. The aim of this investigation was to develop a three-dimensional poroelastic finite element model of a lumbar motion segment that reflects the biological properties and behaviors of in vivo disc tissues including swelling pressure due to the proteoglycans and strain dependent permeability and porosity. It was hypothesized that when modeling the annulus, prescribing tissue specific material properties will not be adequate for studying the in vivo loading and unloading behavior of the disc. Rather, regional variations of these properties, which are known to exist within the annulus, must also be included. Finite element predictions were compared to in vivo measurements published by Tyrrell et al., (Tyrrell et al., 1985) of percent change in total stature for two loading protocols, short-term creep loading and standing recovery and short-term cyclic loading with standing recovery. The model in which the regional variations of material properties in the annulus had been included provided an overall better prediction of the in vivo behavior as compared to the model in which the annulus properties were assumed to be homogenous. This model will now be used to study the relationship between repetitive lifting and disc degeneration. PMID:17156786
Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures
NASA Technical Reports Server (NTRS)
Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.
2015-01-01
FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.
Effect of thermal profile on cyclic flaw growth in aluminum
NASA Technical Reports Server (NTRS)
Engstrom, W. L.
1975-01-01
Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.
Biomechanical evaluation of various suture configurations in side-to-side tenorrhaphy.
Wagner, Emilio; Ortiz, Cristian; Wagner, Pablo; Guzman, Rodrigo; Ahumada, Ximena; Maffulli, Nicola
2014-02-05
Side-to-side tenorrhaphy is increasingly used, but its mechanical performance has not been studied. Two porcine flexor digitorum tendon segments of equal length (8 cm) and thickness (1 cm) were placed side by side. Eight tenorrhaphies (involving sixteen tendons) were performed with each of four suture techniques (running locked, simple eight, vertical mattress, and pulley suture). The resulting constructs underwent cyclic loading on a tensile testing machine, followed by monotonically increasing tensile load if failure during cyclic loading did not occur. Clamps secured the tendons on each side of the repair, and specimens were mounted vertically. Cyclic loading varied between 15 N and 35 N, with a distension rate of 1 mm/sec. Cyclic loading strength was determined by applying a force of 70 N. The cause of failure and tendon distension during loading were recorded. All failures occurred in the monotonic loading phase and resulted from tendon stripping. No suture or knot failure was observed. The mean loads resisted by the configurations ranged from 138 to 398 N. The mean load to failure, maximum load resisted prior to 1 cm of distension, and load resisted at 1 cm of distension were significantly lower for the vertical mattress suture group than for any of the other three groups (p < 0.031). All four groups sustained loads well above the physiologic loads expected to occur in tendons in the foot and ankle (e.g., in tendon transfer for tibialis posterior tendon insufficiency). None of the four side-to-side configurations distended appreciably during the cyclic loading phase. The vertical mattress suture configuration appeared to be weaker than the other configurations. For surgeons who advocate immediate loading or motion of a side-to-side tendon repair, a pulley, running locked, or simple eight suture technique appears to provide a larger safety margin compared with a vertical mattress suture technique.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZrO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long-term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Eldridge, Jeffrey I.; Lee, Kang N.; Miller, Robert A.
2003-01-01
In this paper, surface cracking and interface reactions of a BSAS coating and a multi-layer ZTO2-8wt%Y2O3 and mullite/BSAS/Si thermal and environmental barrier coating system on SiC/SiC ceramic matrix composites were characterized after long-term combined laser thermal gradient and furnace cyclic tests in a water vapor containing environment. The surface cracking was analyzed based on the coating thermal gradient sintering behavior and thermal expansion mismatch stress characteristics under the thermal cyclic conditions. The interface reactions, which were largely enhanced by the coating surface cracking in the water vapor environment, were investigated in detail, and the reaction phases were identified for the coating system after the long- term exposure. The accelerated coating delamination failure was attributed to the increased delamination driving force under the thermal gradient cyclic loading and the reduced interface adhesion due to the detrimental interface reactions.
Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures
Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.
2008-01-01
Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019
Experimental investigation of cyclic thermomechanical deformation in torsion
NASA Technical Reports Server (NTRS)
Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.
1992-01-01
An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.
Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere
NASA Astrophysics Data System (ADS)
Hayashi, Morihito; Toeda, Kazunori
In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.
Damage accumulation of bovine bone under variable amplitude loads.
Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J
2016-12-01
Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.
Shinkai, Koichi; Ebihara, Takashi; Shirono, Manabu; Seki, Hideaki; Wakaki, Suguru; Suzuki, Masaya; Suzuki, Shiro; Katoh, Yoshiroh
2009-03-01
The purpose of this study was to evaluate the effects of dentin attrition, phosphoric acid etching, and cyclic loading on the microtensile bond strength (microTBS) of a self-etching adhesive system to dentin. Flat dentin surfaces of human molars were assigned to eight experimental groups based on those with or without attrition, prior acid-etching, and cyclic loading. Resin composite paste was placed and polymerized after the bonding procedure according to manufacturer's instructions. The specimens were subjected to microTBS testing at a crosshead speed of 0.5 mm/min. Results showed that the minimum mean value of microTBS was 14.9 MPa in the group without attrition and acid-etching but with loading, while the maximum mean value of microTBS was 40.0 MPa in the group without attrition and loading but with acid etching. Therefore, the value of microTBS to dentin without attrition was significantly decreased by cyclic loading but that to dentin with attrition was not affected.
The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
Gooyers, Chad E; McMillan, Robert D; Howarth, Samuel J; Callaghan, Jack P
2012-08-01
An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P < 0.001) was noted in the magnitude of FSU height loss. Subsequent analysis of simple effects revealed significant differences between cyclic and static loading protocols in both a neutral (P = 0.016) and a flexed posture (P < 0.0001). No significant differences (P = 0.320) were noted between pre/postmeasurements of FSU compressive stiffness. Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.
Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.
Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
NASA Astrophysics Data System (ADS)
Paul, Surajit Kumar
2013-07-01
The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.
Crack tip field and fatigue crack growth in general yielding and low cycle fatigue
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1984-01-01
Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.
Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.
Wendler, Michael; Belli, Renan; Valladares, Diana; Petschelt, Anselm; Lohbauer, Ulrich
2018-06-01
Chemical and mechanical degradation play a key role on the lifetime of dental restorative materials. Therefore, prediction of their long-term performance in the oral environment should base on fatigue, rather than inert strength data, as commonly observed in the dental material's field. The objective of the present study was to provide mechanistic fatigue parameters of current dental CAD/CAM materials under cyclic biaxial flexure and assess their suitability in predicting clinical fracture behaviors. Eight CAD/CAM materials, including polycrystalline zirconia (IPS e.max ZirCAD), reinforced glasses (Vitablocs Mark II, IPS Empress CAD), glass-ceramics (IPS e.max CAD, Suprinity PC, Celtra Duo), as well as hybrid materials (Enamic, Lava Ultimate) were evaluated. Rectangular plates (12×12×1.2mm 3 ) with highly polished surfaces were prepared and tested in biaxial cyclic fatigue in water until fracture using the Ball-on-Three-Balls (B3B) test. Cyclic fatigue parameters n and A* were obtained from the lifetime data for each material and further used to build SPT diagrams. The latter were used to compare in-vitro with in-vivo fracture distributions for IPS e.max CAD and IPS Empress CAD. Susceptibility to subcritical crack growth under cyclic loading was observed for all materials, being more severe (n≤20) in lithium-based glass-ceramics and Vitablocs Mark II. Strength degradations of 40% up to 60% were predicted after only 1 year of service. Threshold stress intensity factors (K th ) representing the onset of subcritical crack growth (SCG), were estimated to lie in the range of 0.37-0.44 of K Ic for the lithium-based glass-ceramics and Vitablocs Mark II and between 0.51-0.59 of K Ic for the other materials. Failure distributions associated with mechanistic estimations of strength degradation in-vitro showed to be useful in interpreting failure behavior in-vivo. The parameter K th stood out as a better predictor of clinical performance in detriment to the SCG n parameter. Fatigue parameters obtained from cyclic loading experiments are more reliable predictors of the mechanical performance of contemporary dental CAD/CAM restoratives than quasi-static mechanical properties. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Simulation of fatigue crack growth under large scale yielding conditions
NASA Astrophysics Data System (ADS)
Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann
2010-07-01
A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.
Bernal, Rodrigo A; Aghaei, Amin; Lee, Sangjun; Ryu, Seunghwa; Sohn, Kwonnam; Huang, Jiaxing; Cai, Wei; Espinosa, Horacio
2015-01-14
Silver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations to characterize the cyclic stress-strain behavior and plasticity mechanisms of pentatwinned silver nanowires with diameters thinner than 120 nm. The experimental measurements were enabled by a novel system allowing displacement-controlled tensile testing of nanowires, which also affords higher resolution for capturing stress-strain curves. We observe the Bauschinger effect, that is, asymmetric plastic flow, and partial recovery of the plastic deformation upon unloading. TEM observations and atomistic simulations reveal that these processes occur due to the pentatwinned structure and emerge from reversible dislocation activity. While the incipient plastic mechanism through the nucleation of stacking fault decahedrons (SFDs) is fully reversible, plasticity becomes only partially reversible as intersecting SFDs lead to dislocation reactions and entanglements. The observed plastic recovery is expected to have implications to the fatigue life and the application of silver nanowires to flexible electronics.
2004-03-01
elevated temperature of 550 C. Cyclic loading of C/SiC was investigated at frequencies of 375 Hz , 10 Hz, 1 Hz, and 0.1 Hz. Creep-Rupture tests and tests that...is reduced when frequency of fatigue is increased. At high frequency fatigue (10Hz to 375 Hz ), C/SiC composites have longer cycle lives and time lives
Ramo, Nicole L.; Puttlitz, Christian M.
2018-01-01
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558
Lorbach, O; Pape, D; Raber, F; Busch, L C; Kohn, D; Kieb, M
2012-11-01
Influence of the initial rotator cuff tear size and of different subregions of the SSP tendon on the cyclic loading behavior of a modified single-row reconstruction compared to a suture-bridging double-row repair. Artificial tears (25 and 35 mm) were created in the rotator cuff of 24 human cadaver shoulders. The reconstructions were performed as a single-row repair (SR) using a modified suture configuration or a suture-bridge double-row repair (DR). Radiostereometric analysis was used under cyclic loading (50 cycles, 10–180 N, 10–250 N) to calculate cyclic displacement in three different planes (anteroposterior (x), craniocaudal (y) and mediolateral (z) level). Cyclic displacement was recorded, and differences in cyclic displacement of the anterior compared to the posterior subregions of the tendon were calculated. In small-to-medium tears (25 mm) and medium-to-large tears (35 mm), significant lower cyclic displacement was seen for the SR-reconstruction compared to the DR-repair at 180 N (p ≤ 0.0001; p = 0.001) and 250 N (p = 0.001; p = 0.007) in the x-level. These results were confirmed in the y-level at 180 N (p = 0.001; p = 0.0022) and 250 N (p = 0.005; p = 0.0018). Comparison of the initial tear sizes demonstrated significant differences in cyclic displacement for the DR technique in the x-level at 180 N (p = 0.002) and 250 N (p = 0.004). Comparison of the anterior versus the posterior subregion of the tendon revealed significant lower gap formation in the posterior compared to the anterior subregions in the x-level for both tested rotator cuff repairs (p ≤ 0.05). The tested single-row repair using a modified suture configuration achieved superior results in three-dimensional measurements of cyclic displacement compared to the tested double-row suture-bridge repair. The results were dependent on the initial rupture size of the rotator cuff tear. Furthermore, significant differences were found between tendon subregions of the rotator cuff with significantly higher gap formation for the anterior compared to the posterior subregions.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen
2017-01-01
Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.
Development of a new connection for precast concrete walls subjected to cyclic loading
NASA Astrophysics Data System (ADS)
Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul
2017-01-01
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.
DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068
Connelly, John T; Vanderploeg, Eric J; Mouw, Janna K; Wilson, Christopher G; Levenston, Marc E
2010-06-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro.
Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique
Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak
2016-01-01
Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814
Witt, Florian; Duda, Georg N; Bergmann, Camilla; Petersen, Ansgar
2014-02-01
Bone healing is a complex process with an increased metabolic activity and consequently high demand for oxygen. In the hematoma phase, inflammatory cells and mesenchymal stromal cells (MSCs) are initially cut off from direct nutritional supply via blood vessels. Cyclic mechanical loading that occurs, for example, during walking is expected to have an impact on the biophysical environment of the cells but meaningful quantitative experimental data are still missing. In this study, the hypothesis that cyclic mechanical loading within a physiological range significantly contributes to oxygen transport into the fracture hematoma was investigated by an in vitro approach. MSCs were embedded in a fibrin matrix to mimic the hematoma phase during bone healing. Construct geometry, culture conditions, and parameters of mechanical loading in a bioreactor system were chosen to resemble the in vivo situation based on data from human studies and a well-characterized large animal model. Oxygen tension was measured before and after mechanical loading intervals by a chemical optical microsensor. The increase in oxygen tension at the center of the constructs was significant and depended on loading time with maximal values of 9.9%±5.1%, 14.8%±4.9%, and 25.3%±7.2% of normal atmospheric oxygen tension for 5, 15, and 30 min of cyclic loading respectively. Histological staining of hypoxic cells after 48 h of incubation confirmed sensor measurements by showing an increased number of normoxic cells with intermittent cyclic compression compared with unloaded controls. The present study demonstrates that moderate cyclic mechanical loading leads to an increased oxygen transport and thus to substantially enhanced supply conditions for cells entrapped in the hematoma. This link between mechanical conditions and nutrition supply in the early regenerative phases could be employed to improve the environmental conditions for cell metabolism and consequently prevent necrosis.
Hoogeslag, Roy A G; Brouwer, Reinoud W; Huis In 't Veld, Rianne; Stephen, Joanna M; Amis, Andrew A
2018-02-03
There is a lack of objective evidence investigating how previous non-augmented ACL suture repair techniques and contemporary augmentation techniques in ACL suture repair restrain anterior tibial translation (ATT) across the arc of flexion, and after cyclic loading of the knee. The purpose of this work was to test the null hypotheses that there would be no statistically significant difference in ATT after non-, static- and dynamic-augmented ACL suture repair, and they will not restore ATT to normal values across the arc of flexion of the knee after cyclic loading. Eleven human cadaveric knees were mounted in a test rig, and knee kinematics from 0° to 90° of flexion were recorded by use of an optical tracking system. Measurements were recorded without load and with 89-N tibial anterior force. The knees were tested in the following states: ACL-intact, ACL-deficient, non-augmented suture repair, static tape augmentation and dynamic augmentation after 10 and 300 loading cycles. Only static tape augmentation and dynamic augmentation restored ATT to values similar to the ACL-intact state directly postoperation, and maintained this after cyclic loading. However, contrary to dynamic augmentation, the ATT after static tape augmentation failed to remain statistically less than for the ACL-deficient state after cyclic loading. Moreover, after cyclic loading, ATT was significantly less with dynamic augmentation when compared to static tape augmentation. In contrast to non-augmented ACL suture repair and static tape augmentation, only dynamic augmentation resulted in restoration of ATT values similar to the ACL-intact knee and decreased ATT values when compared to the ACL-deficient knee immediately post-operation and also after cyclic loading, across the arc of flexion, thus allowing the null hypotheses to be rejected. This may assist healing of the ruptured ACL. Therefore, this study would support further clinical evaluation of dynamic augmentation of ACL repair.
Meffert, Rainer H.; Raschke, Michael J.; Blunk, Torsten; Ochman, Sabine
2014-01-01
Purpose. To analyse the biomechanical characteristics of locking plates under cyclic loading compared to a nonlocking plate in a diaphyseal metacarpal fracture. Methods. Oblique diaphyseal shaft fractures in porcine metacarpal bones were created in a biomechanical fracture model. An anatomical reduction and stabilization with a nonlocking and a comparable locking plate in mono- or bicortical screw fixation followed. Under cyclic loading, the displacement, and in subsequent load-to-failure tests, the maximum load and stiffness were measured. Results. For the monocortical screw fixation of the locking plate, a similar displacement, maximum load, and stiffness could be demonstrated compared to the bicortical screw fixation of the nonlocking plate. Conclusions. Locking plates in monocortical configuration may function as a useful alternative to the currently common treatment with bicortical fixations. Thereby, irritation of the flexor tendons would be avoided without compromising the stability, thus enabling the necessary early functional rehabilitation. PMID:24757429
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.
Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods
NASA Astrophysics Data System (ADS)
Yogesha, K. K.; Joshi, Amit; Jayaganthan, R.
2017-05-01
In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
DOT National Transportation Integrated Search
2012-04-01
This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...
Babaei, Behzad; Velasquez-Mao, Aaron J; Thomopoulos, Stavros; Elson, Elliot L; Abramowitch, Steven D; Genin, Guy M
2017-05-01
The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ∼10s. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Babaei, Behzad; Velasquez-Mao, Aaron J.; Thomopoulos, Stavros; Elson, Elliot L.; Abramowitch, Steven D.; Genin, Guy M.
2017-01-01
The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ~10 seconds. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. PMID:28088071
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
Fujita, Masaru; Diab, Mohammad; Xu, Zheng; Puttlitz, Christian M
2006-09-01
An in vitro biomechanical calf thoracic spine study. To evaluate the biomechanical stability of sublaminar and subtransverse process fixation using stainless steel wires and ultra-high molecular weight polyethylene (UHMWPE) cables. It is commonly held that transverse process fixation provides less stability than sublaminar fixation. To our knowledge, this is the first biomechanical study to compare the stability afforded by sublaminar fixation and subtransverse process fixation using metal wire and UHMWPE cable before and after cyclic loading. There were 6 fresh-frozen calf thoracic spines (T4-T9) used to determine the sublaminar fixation stiffness and subtransverse process fixation stiffness in each group. Double strands of 18-gauge stainless steel wire, 3 and 5 mm-width UHMWPE cable (Nesplon; Alfresa, Inc., Osaka, Japan) were applied to each spine. Cyclic pure flexion-extension moment loading (2 Nm, 0.5 Hz, 5000 cycles) was applied after the initial stability was analyzed by measuring the range of motion. Statistical analyses were used to delineate differences between the various experimental groups. Subtransverse process wiring was more stable than sublaminar wiring after cyclic loading in flexion-extension (P < 0.05). There were no significant differences between each group in lateral bending and axial rotation after cyclic loading. Sublaminar stainless steel wiring was more stable than sublaminar 3 and 5-mm cable before and after cyclic loading in axial rotation (P < 0.01). Acute subtransverse process fixation using 3-mm cable was less stable after cyclic loading in axial rotation (P < 0.05). All other groups did not produce statistically significant differences. Subtransverse process fixation provides at least as much stability as sublaminar fixation. A 5-mm UHMWPE cable and stainless steel wire result in equivalent sublaminar and subtransverse process stability.
Kim, Ki-Seong; Han, Jung-Suk; Lim, Young-Jun
2014-01-01
The aim of this study was to evaluate and compare the settling of abutments into implants and the removal torque values (RTVs) before and after cyclic loading. Five different implant-abutment connections were tested: Ext = external butt joint + two-piece abutment; Int-H2 = internal hexagon + two-piece abutment; Int-H1 = internal hexagon + one-piece abutment; Int-O2 = internal octagon + two-piece abutment; and Int-O1 = internal octagon + one-piece abutment. Ten abutments from each group were secured to their corresponding implants (total n = 50). All samples were tested in a universal testing machine with a vertical load of 250 N for 100,000 cycles of 14 Hz. The amount of settling of the abutment into the implant was calculated from the change in the total length of the implant-abutment sample before and after loading, as measured with an electronic digital micrometer. The RTV after cyclic loading was compared to the initial RTV with a digital torque gauge. Statistical analysis was performed at a 5% significance level. A multiple-comparison test showed specific significant differences in settling values in each group after 250 N cyclic loading (Int-H1, Ext < Int-H2 < Int-O2 < Int-O1). There were statistically significant decreases in RTVs after loading compared to the initial RTVs in the Int-H2 and Int-O2 groups. No statistically significant differences were found in the Ext, Int-H1, and Int-O1 groups. The results of this study demonstrated that the settling amount and RTV (loss of preload) after cyclic loading were specific to the abutment type and related to the design characteristics of the implant-abutment connection.
NASA Technical Reports Server (NTRS)
Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)
1988-01-01
The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.
NASA Technical Reports Server (NTRS)
Svalbonas, V.; Levine, H.
1975-01-01
The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.
Fatigue characteristics of carbon nanotube blocks under compression
NASA Astrophysics Data System (ADS)
Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.
2008-03-01
In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.
Behavior of a Large-Scale Pile Group Subjected to Cyclic Lateral Loading.
1988-02-01
Unlimited DTIC " APR 1 3 1988 H Prepared for US Army Engineer Waterways Experiment Station PO Box 631, Vicksburg, Mississippi 39180-0631 LABORATO Under...not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval...of the use of such commercial products. ~5.ww~ .. - V ~ ~ *% *w %~ , , sr ’. .. - lr - Unrla Wipd SECURITY CLASSIFICATION OF THIS PAGE Form
Development of a clinically validated bulk failure test for ceramic crowns.
Kelly, J Robert; Rungruanganunt, Patchnee; Hunter, Ben; Vailati, Francesca
2010-10-01
Traditional testing of ceramic crowns creates a stress state and damage modes that differ greatly from those seen clinically. There is a need to develop and communicate an in vitro testing protocol that is clinically valid. The purpose of this study was to develop an in vitro failure test for ceramic single-unit prostheses that duplicates the failure mechanism and stress state observed in clinically failed prostheses. This article first compares characteristics of traditional load-to-failure tests of ceramic crowns with the growing body of evidence regarding failure origins and stress states at failure from the examination of clinically failed crowns, finite element analysis (FEA), and data from clinical studies. Based on this analysis, an experimental technique was systematically developed and test materials were identified to recreate key aspects of clinical failure in vitro. One potential dentin analog material (an epoxy filled with woven glass fibers; NEMA grade G10) was evaluated for elastic modulus in blunt contact and for bond strength to resin cement as compared to hydrated dentin. Two bases with different elastic moduli (nickel chrome and resin-based composite) were tested for influence on failure loads. The influence of water during storage and loading (both monotonic and cyclic) was examined. Loading piston materials (G10, aluminum, stainless steel) and piston designs were varied to eliminate Hertzian cracking and to improve performance. Testing was extended from a monolayer ceramic (leucite-filled glass) to a bilayer ceramic system (glass-infiltrated alumina). The influence of cyclic rate on mean failure loads was examined (2 Hz, 10 Hz, 20 Hz) with the extremes compared statistically (t test; α=.05). Failure loads were highly influenced by base elastic modulus (t test; P<.001). Cyclic loading while in water significantly decreased mean failure loads (1-way ANOVA; P=.003) versus wet storage/dry cycling (350 N vs. 1270 N). G10 was not significantly different from hydrated dentin in terms of blunt contact elastic behavior or resin cement bond strength. Testing was successful with the bilayered ceramic, and the cycling rate altered mean failure loads only slightly (approximately 5%). Test methods and materials were developed to validly simulate many aspects of clinical failure. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.
2002-01-01
The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.
Mechanisms of High-Temperature Fatigue Failure in Alloy 800H
NASA Technical Reports Server (NTRS)
BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.
1996-01-01
The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.
High cycle fatigue in the transmission electron microscope
Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...
2016-06-28
One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less
High cycle fatigue in the transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.
One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less
Dargel, Jens; Koebke, Jürgen; Brüggemann, Gert-Peter; Pennig, Dietmar; Schmidt-Wiethoff, Rüdiger
2009-10-01
This study investigates the influence of various femoral anterior cruciate ligament graft fixation methods on the amount of tension degradation and the initial fixation strength after cyclic flexion-extension loading in a porcine knee model. One hundred twenty porcine digital extensor tendons, used as 4-stranded free tendon grafts, were fixated within porcine femoral bone tunnels by use of extracortical button, cross-pin, or interference screw fixation. One hundred twenty porcine patellar tendon-bone grafts were fixated by use of cross-pin, interference screw, or press-fit fixation. Each femur-graft complex was submitted to cyclic flexion-extension loading for 1,000 cycles throughout different loading ranges, and the total loss of tension was determined. After cyclic testing, the grafts were loaded to failure, and the data were compared with a pullout series without cyclic loading. Tension degradation after 1,000 cycles of flexion-extension loading averaged 62.6% +/- 10.0% in free tendon grafts and 48.9% +/- 13.35% in patellar tendon-bone grafts. There was no influence of the loading range on the total amount of tension degradation. The total amount of tension degradation was the highest with interference screw fixation of free tendon and patellar tendon-bone grafts. Despite excessive loss of tension, the initial fixation strength of the femur-graft complex was not reduced. The method of femoral graft fixation significantly influenced tension degradation during dynamic flexion-extension loading. Femoral graft fixation methods that secure the graft close to the tunnel entrance and that displace the graft substance from the center of the bone tunnel show the largest amount of tension degradation during cyclic flexion-extension loading. The graft substance, not the fixation site, was the weakest link of the graft complex within this investigation. We believe that the graft fixation method should be considered when aiming to improve the precision of femoral graft placement in anterior cruciate ligament reconstruction.
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.
1985-01-01
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
Effect of moisture on the fatigue behavior of graphite/epoxy composite laminates
NASA Technical Reports Server (NTRS)
Ramani, S. V.; Nelson, H. G.
1979-01-01
The form of the moisture distribution in the specimen (gradient and flat profile) was considered to establish the influence of accelerated moisture conditioning on fatigue behavior. For the gradient specimens having an average moisture content of 1.4 percent, fatigue life was reduced by a factor of 8 at all stress levels investigated. Corresponding reduction in fatigue life for the flat moisture profile specimens at the same average moisture content was comparatively smaller, being about a factor of 5 from the value in dry specimens. X-ray radiographic analysis of damage accumulation in compression-compression fatigue revealed interlaminar cracking to be the dominant mode of failure responsible for the observed enhanced cyclic degradation of moisture-conditioned specimens. This finding was corroborated by the observed systematic reduction in interlaminar shear strength as a function of moisture content, which, in turn, increased the propensity for delamination under cyclic compressive loads. Residual strength measurements on cycled specimens indicated significant strength reductions at long lives, particularly in moisture conditioned specimens.
Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey
2017-12-01
Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Effects of cyclic fatigue stress-biocorrosion on noncarious cervical lesions.
Grippo, John O; Chaiyabutr, Yada; Kois, John C
2013-08-01
Although there is a high prevalence of noncarious cervical lesions (NCCLs), the etiology of these lesions remains contentious. To evaluate the combined effects of cyclic fatigue stress and biocorrosion activity on NCCLs. Extracted premolar teeth were allocated into four groups (N = 10). Two groups were cyclically fatigue loaded (100 N; 72 cycles per minute; 9,200 cycles) and placed in either hydrochloric acid gel (pH = 0.1) or orange juice (pH = 4). The other two groups were stored in identical chemical solutions without fatigue load. The buccal-lingual width of each tooth was measured before and after testing. The depth of biocorrosion, normalized by the percentage change in buccolingual width, normalized by time (hour) was calculated. The data were analyzed using a two-way analysis of variance and Tukey's HSD multiple comparison test (α = 0.05). Mean (SD) of the depth of biocorrosion values were as follows: teeth receiving fatigue loading with hydrochloric acid gel exposure (1.003%/hour [0.063]) revealed a significantly higher depth of biocorrosion than the fatigue-loaded group with orange juice exposure (0.511%/hour [0.281]) (p < 0.01). For the groups without fatigue loading, those with hydrochloric acid gel (0.022%/hour [0.006]) had a significantly higher depth of biocorrosion than the group with orange juice (0.009%/hour [0.004]) (p < 0.01). The cyclically fatigue-loaded teeth with hydrochloric acid gel had a significantly greater depth of biocorrosion than either group without fatigue loading (p < 0.001). Cyclic fatigue stress-acidic biocorrosion had a significant effect on the depth of the NCCLs. In order to manage the destructive NCCLs lesions properly, it is essential to understand the etiology of these lesions. The present study indicated that the combined mechanisms of cyclic fatigue stress and biocorrosion could contribute to the formation of NCCLs. © 2013 Wiley Periodicals, Inc.
Effect of chlorhexidine and ethanol on push-out bond strength of fiber posts under cyclic loading.
Cecchin, Doglas; Giacomin, Mateus; Farina, Ana Paula; Bhering, Cláudia Lopes; Mesquita, Marcelo Ferraz; Ferraz, Caio Cezar
2014-02-01
To investigate the effects of pretreatment with 2% chlorhexidine in a gel base (CHX) and 100% ethanol (EtOH) on the bond strength between fiber posts relined with resin composite and root dentin under cyclic loading. Forty bovine incisor roots were divided into four groups after phosphoric acid etching: group 1 (control), irrigation with physiological saline solution; group 2, 5 min pretreatment with CHX; group 3, 1 min pretreatment with EtOH; group 4, 5 min pretreatment with CHX followed by 1 min with EtOH. Fiber posts relined with resin composite were cemented with RelyX ARC and the etch-and-rinse adhesive system Scotchbond Multi-Purpose. Each group was randomly divided into two subgroups: 24 h of storage (immediate groups) and cyclic loading (loading groups) with 250,000 cycles in a controlled chewing simulator. All roots were sectioned transversely and push-out tests were performed. Failure modes were observed and the bond strength means were analyzed using ANOVA and Tukey's test (a = 0.05). The mean values for the bond strength test (MPa) in immediate groups were: group 1, 5.44 ± 1.48; group 2, 5.57 ± 1.41; group 3, 5.49 ± 1.48; group 4, 5.57 ± 1.42. Immediate groups showed similar bond strength values (p > 0.05). In the cyclic loading groups, the bond strength values were: group 1, 2.80 ± 0.79; group 2, 4.02 (1.30); group 3, 4.50 ± 1.67; group 4, 4.97 ± 2.00. After cyclic loading, a significant decrease in the control group was observed (p < 0.05), while CHX pretreatment resulted in intermediate values (p < 0.05) and EtOH alone or associated with CHX preserved the bond strength values (p > 0.05). Chlorhexidine and/or ethanol pretreatment preserved the bond strength of the fiber post after cyclic loading.
High-repetition cyclic loading is a risk factor for a lumbar disorder.
Navar, Daniel; Zhou, Bing-He; Lu, Yun; Solomonow, Moshe
2006-11-01
Epidemiological data suggest that prolonged exposure to cyclic lumbar flexion elicits a chronic neuromuscular disorder and disability in workers. This study provides a physiological and biomechanical assessment of various repetitions of cyclic lumbar flexion sessions as a risk factor for development of an acute neuromuscular disorder. An in vivo feline model was subjected to 10 minutes of cyclic (0.25-HZ) loading, followed by a 10-minute rest period, repeated three times in one experimental group, six times in a second group, and nine times in the third group, followed by rest for 7 hours. Displacement of the lumbar viscoelastic tissue and reflex electromyographic (EMG) activity from the lumbar multifidus muscle were monitored. Creep developed and accumulated during each load/rest period and partially recovered during the subsequent rest. Loading periods were characterized by a decrease in reflex EMG activity with superimposed spasms. In the 7-hour recovery period, initial hyperexcitability was present in all groups, whereas only the six- and nine-repetition groups displayed significant delayed hyperexcitability, indicating the presence of acute inflammation. The mathematical model developed fit the data reasonably well, as the R2 values were generally near 0.90. It was concluded that the resulting delayed muscular hyperexcitability constitutes an acute neuromuscular disorder associated with exposure to many repetitions of cyclic lumbar flexion. The acute disorder can become chronic if not allowed sufficient rest to resolve itself. Workers engaged in cyclic lumbar flexion (e.g., loading/unloading, assembly workers) should avoid long-term exposure in order to prevent the development of a chronic neuromuscular condition known as cumulative trauma disorder.
The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.
2011-10-01
In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.
Connelly, John T.; Vanderploeg, Eric J.; Mouw, Janna K.; Wilson, Christopher G.
2010-01-01
Mesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1–2 weeks) periods using a custom loading system. At early stages of chondrogenesis, 24 h of cyclic tension stimulated both protein and proteoglycan synthesis, but at later stages, tension increased protein synthesis only. One week of intermittent cyclic tension significantly increased the total sulfated glycosaminoglycan and collagen contents in the constructs, but these differences were lost after 2 weeks of loading. Constraining the gels during the extended culture periods prevented contraction of the fibrin matrix, induced collagen fiber alignment, and increased sulfated glycosaminoglycan release to the media. Cyclic tension specifically stimulated collagen I mRNA expression and protein synthesis, but had no effect on collagen II, aggrecan, or osteocalcin mRNA levels. Overall, these studies suggest that the combination of chondrogenic stimuli and tensile loading promotes fibrochondrocyte-like differentiation of BMSCs and has the potential to direct fibrocartilage development in vitro. PMID:20088686
Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?
Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori
2010-02-01
Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.
Wan, Xuejuan; Liu, Tao; Liu, Shiyong
2011-04-11
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.
Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira
2017-04-01
The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than conventional. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hampton, Francis Patrick
Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3--6 were achieved for all concrete elements tested. To study the long-term behavior of DHFRP, the creep-rupture strength of 5-mm bars was tested. This was conducted first on individual bar specimens and is important in the life-cycle design and performance of DHFRP reinforced concrete.
Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces
NASA Astrophysics Data System (ADS)
Khoury, Charbel N.
Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear strength than that of the drying (D) tests. This is believed to be the result of many factors such as: (1) cyclic suction stress loading, (2) water content (less on wetting than drying), and (3) type of soil. The cyclic suction loading may have induced irrecoverable plastic strains, resulting in stiffer samples for wetting tests as compared to drying. Additionally, water may be acting as a lubricant and thus resulting in lower shear strength for test samples D with higher water contents than DW samples. Furthermore, various shear strength models were investigated for their applicability to the experimental data. Models were proposed for the prediction of shear strength with suction based on the SWCC. The models are able to predict the shear strength of unsaturated soil and interfaces due to drying and wetting (i.e. hydraulic hysteresis) by relating directly to the SWCC. The proposed models were used and partly validated by predicting different test results from the literature. In addition, an existing elastoplastic constitutive model was investigated and validated by comparing the predicted and experimental (stress-displacement, volume change behavior) results obtained from rough and geotextile interface tests. This study also explores the effect of hydraulic hysteresis on the resilient modulus (Mr) of subgrade soils. Suction-controlled Mr tests were performed on compacted samples along the primary drying, wetting, secondary drying and wetting paths. Two test types were performed to check the effect of cyclic deviatoric stress loading on the results. First, M r tests were performed on the same sample at each suction (i.e. 25, 50, 75, 100 kPa) value along all the paths (drying, wetting etc.). A relationship between resilient modulus (Mr) and matric suction was obtained and identified as the resilient modulus characteristic curve (MRCC). MRCC results indicated that Mr increased with suction along the drying curve. On the other hand, results on the primary wetting indicated higher Mr than that of the primary drying and the secondary drying. The second type of test was performed at selected suction without subjecting the sample to previous Mr tests. Results indicated that Mr compared favorably with the other type of test (i.e. with previous M r testing), which indicates that the cyclic deviatoric stress loading influence was not as significant as the hydraulic hysteresis (i.e. cyclic suction stress loading). A new model to predict the MRCC results during drying and wetting (i.e., hydraulic hysteresis) is proposed based on the SWCC hysteresis. The model predicted favorably the drying and then the wetting results using the SWCC at all stress levels. (Abstract shortened by UMI.)
Fracture Behavior in Nylon 6 Fibers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lloyd, B. A.
1972-01-01
Electron paramagnetic resonance (EPR) techniques are used to determine the number of free radicals produced during deformation leading to fracture of nylon 6 fibers. A reaction rate molecular model is proposed to explain some of the deformation and bond rupture behavior leading to fracture. High-strength polymer fibers are assumed to consist of a sandwich structure of disordered and ordered regions along the fiber axis. In the disordered or critical flaw regions, tie chains connecting the ordered or crystalline block regions are assumed to have a statistical distribution in length. These chains are, therefore, subjected to different stresses. The effective length distribution was determined by EPR. The probability of bond rupture was assumed to be controlled by reaction-rate theory with a stress-aided activation energy and behavior of various loadings determined by numerical techniques. The model is successfully correlated with experimental stress, strain, and bond rupture results for creep, constant rate loadings, cyclic stress, stress relaxation and step strain tests at room temperature.
Light Steel-Timber Frame with Composite and Plaster Bracing Panels
Scotta, Roberto; Trutalli, Davide; Fiorin, Laura; Pozza, Luca; Marchi, Luca; De Stefani, Lorenzo
2015-01-01
The proposed light-frame structure comprises steel columns for vertical loads and an innovative bracing system to efficiently resist seismic actions. This seismic force resisting system consists of a light timber frame braced with an Oriented Strand Board (OSB) sheet and an external technoprene plaster-infilled slab. Steel brackets are used as foundation and floor connections. Experimental cyclic-loading tests were conduced to study the seismic response of two shear-wall specimens. A numerical model was calibrated on experimental results and the dynamic non-linear behavior of a case-study building was assessed. Numerical results were then used to estimate the proper behavior factor value, according to European seismic codes. Obtained results demonstrate that this innovative system is suitable for the use in seismic-prone areas thanks to the high ductility and dissipative capacity achieved by the bracing system. This favorable behavior is mainly due to the fasteners and materials used and to the correct application of the capacity design approach. PMID:28793642
Light Steel-Timber Frame with Composite and Plaster Bracing Panels.
Scotta, Roberto; Trutalli, Davide; Fiorin, Laura; Pozza, Luca; Marchi, Luca; De Stefani, Lorenzo
2015-11-03
The proposed light-frame structure comprises steel columns for vertical loads and an innovative bracing system to efficiently resist seismic actions. This seismic force resisting system consists of a light timber frame braced with an Oriented Strand Board (OSB) sheet and an external technoprene plaster-infilled slab. Steel brackets are used as foundation and floor connections. Experimental cyclic-loading tests were conduced to study the seismic response of two shear-wall specimens. A numerical model was calibrated on experimental results and the dynamic non-linear behavior of a case-study building was assessed. Numerical results were then used to estimate the proper behavior factor value, according to European seismic codes. Obtained results demonstrate that this innovative system is suitable for the use in seismic-prone areas thanks to the high ductility and dissipative capacity achieved by the bracing system. This favorable behavior is mainly due to the fasteners and materials used and to the correct application of the capacity design approach.
Crack Growth in Mercury Embrittled Aluminum Alloys under Cyclic and Static Loading Conditions
1983-03-01
STATEMENT (ol the abalract entered In Block 20, It dlHerent from Report) 18. SUPPLEMENTARY NOTES This was a thesis in partial fulfillment of...argued that the strengthening that occurs from cold rolling suppresses crack nucleation at the surface under monotonlc loading. Under cyclic loading...precracking. Copper was chosen because It can be easily electrodeposited on aluminum, easily wet with mercury, and remains wet almost indefinitely
The mechanical and electrochemical properties of bulk metallic glasses
NASA Astrophysics Data System (ADS)
Morrison, Mark Lee
The objectives of this study were to define and model the electrochemical and mechanical behaviors of BMGs, in addition to the interactions between these. The electrochemical behaviors of Zr-, Ti-, and Ca-based BMGs have been studied in various environments. Moreover, the electrochemical behaviors of several common, crystalline materials have also been characterized in the same environments to facilitate comparisons. Mechanical characterization of the Vitreloy 105 alloy was conducted through four-point bend fatigue testing, as well as tensile testing with in situ thermography. After the electrochemical and mechanical behaviors of the Vit 105 BMG alloy were defined separately, the corrosion-fatigue behavior of this alloy was studied. Corrosion-fatigue tests were conducted in a 0.6 M NaCl electrolyte, identical to one of the environments in which the electrochemical behavior was previously defined. The environmental effect was found to be significant at most stress levels, with decreasing effects at higher stress levels due to decreasing time in the detrimental environment, and severely depressed the corrosion-fatigue endurance limit. Cyclic-anodic-polarization tests were conducted during cyclic loading to elucidate the effect of cyclic stresses on the electrochemical behavior. It was found that a stress range of 900 MPa resulted in active pitting at the open-circuit potentials. The degradation mechanism was determined to be stress-assisted dissolution, not hydrogen embrittlement. Finally, tensile tests were conducted with the Vit 105 BMG alloy with in situ infrared (IR) thermography to observe the evolution of shear bands during deformation. More importantly, the length, location, sequence, temperature evolution, and velocity of individual shear bands have been quantified through the use of IR thermography. Based upon all of these studies on a variety of BMG alloy systems, the most important factor in the mechanical and electrochemical behavior was found to be material quality and homogeneity. Therefore, future research on the improvement of BMG alloys should be focused on this area.
NASA Technical Reports Server (NTRS)
Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming
1997-01-01
Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
NASA Astrophysics Data System (ADS)
Ghamgosar, M.; Erarslan, N.
2016-03-01
The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.
NASA Technical Reports Server (NTRS)
Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac
2009-01-01
The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.
A tension-torsional fatigue testing apparatus for micro-scale components.
Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu
2016-01-01
Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.
A tension-torsional fatigue testing apparatus for micro-scale components
NASA Astrophysics Data System (ADS)
Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu
2016-01-01
Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.
Hydrogen effects on Ni-Ti fatigue performance by self -heating method
NASA Astrophysics Data System (ADS)
Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.
2017-10-01
Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.
Effect of cyclic fatigue on the fracture toughness of Polyoxymethylene
NASA Astrophysics Data System (ADS)
Ramoa, B.; Berer, M.; Schwaiger, M.; Pinter, G.
2017-05-01
Polymers are used in a wide range of applications and their properties are dependent upon the morphological development during processing and the specimen configuration which in turn define the mechanical properties. In this context fatigue and monotonic testing are part of the standard procedure to assess relevant mechanical and material parameters to ensure a better part design. The present work addresses the performance issues of a real component made of Polyoxymethylene (POM) which is subjected to cyclic loads from intermediate levels to high peak values inside a damping mechanism. For this linear elastic fracture mechanics concepts were used to characterize the behavior of a POM homopolymer resin used in this application. Injection molded compact tension specimens, with sharp and blunt notches, were tested under a combination of cyclic and monotonic loads and the fracture surfaces were examined. The critical stress intensity factor obtained by monotonic tests was evaluated as a function of the cycle number, where an increase after the first 1000 cycles followed by a continuous decrease with higher numbers of cycles was observed. A variation of approximately 50% and 70% were obtained along the duration of the tests for the sharp and blunt notch specimens, respectively. In light of the obtained results, a discussion is presented considering the dynamic specimen compliance and the structural features observed on the fracture surfaces in combination with the fracture mechanical response.
Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel
Bajaj, Devendra; Arola, Dwayne
2009-01-01
The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near threshold region of cyclic extension was typical of ‘short crack’ behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth’s surface. PMID:19433137
Role of prism decussation on fatigue crack growth and fracture of human enamel.
Bajaj, Devendra; Arola, Dwayne
2009-10-01
The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
NASA Astrophysics Data System (ADS)
Ketiyot, Rattapon; Hansapinyo, Chayanon
2018-04-01
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
The effects of dynamic loading on the intervertebral disc.
Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin
2011-11-01
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
1977-05-01
this report are not to be used for advertising , publication, or promotional purposes. Citat ion of trade names does not constitute an off icial... Vs . Real Materials 3 PLASTIC HYSTERESIS PHENOMENA 12 Observed Transient Phenomena Analysis of Hysteresis Loops Observed Typical Yie ld Range...strain or stress amp litude). Fitr examp le , if varm m uus sited hyshet esis loops produced by the model a me super- Memory Modei Vs . Real Materials
Fatigue of Ti-3A1-2.5V Alloy Tube and Rod
2007-02-28
during cyclic straining of a 18% nickel maraging steel and attributed it to the presence of a crack. Skelton (reference 6) also attributed a hysteresis...growth, and fracture lives was also defined. The LCF behavior of the alloy tube and rod was investigated, examining the shape change of load...is weldable as the commercially pure grades and has excellent resistance to torsion and corrosion . Therefore, it is used principally as tubing in
Costa, Daniele Morosini; Somacal, Deise Caren; Borges, Gilberto Antonio; Spohr, Ana Maria
2017-01-01
Objective: The aim was to evaluate, in vitro, the tensile bond strength to dentin of Scotchbond Universal (SU), All-Bond Universal (AU) and One Coat 7 Universal (OC7) adhesives applied in self-etch mode, after 24 h of storage and after 500,000 loading cycles, using Clearfil SE Bond (SE) as a control. Materials and Methods: The adhesives were applied on the dentin of bovine teeth, followed by the application of a composite resin. Thirty specimens were obtained for each adhesive. Half of the specimens were submitted to cyclic loading for 500,000 cycles. All specimens were submitted to a tensile bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/minute. Results: According to two-way ANOVA and Tukey’s test (α=5%), the interaction between the adhesive and cyclic loading factors was significant (p=0.001). The means followed by the same letter represent no significant difference in the bond strength (MPa) after 24 h: OC7=7.86A (±2.90), SU=6.78AB (±2.03), AU=5.61BC (±2.32), and SE=3.53C (±1.89). After cyclic loading, SE, SU and AU maintained bond strength comparable to 24 h period. There was a significant decrease only for OC7. Conclusion: SU, AU and OC7 had bond strength to dentin comparable to that of SE. Only OC7 had decreased bond strength to dentin after cyclic loading. PMID:28839476
A discrete element model for damage and fracture of geomaterials under fatigue loading
NASA Astrophysics Data System (ADS)
Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille
2017-06-01
Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.
[Cyclic fatigue of Vita mark II machinable ceramics under Hertzian's contact].
Liu, Wei-Cai; Zhang, Zhi-Shen; Huang, Cheng-Min; Chao, Yong-Lie; Wan, Qian-Bing
2006-08-01
To investigate the cyclic fatigue modes of Vita mark II machinable ceramics under Hertzian's contact. Hertzian's contact technique (WC spheres r = 3.18 mm) was used to investigate the cyclic fatigue of Vita mark II machinable ceramic. All specimens were fatigued by cyclic loading in moist environment, furthermore, surviving strength was examined by three point test and morphology damage observation. In homogeneous Vita mark II machinable ceramics, two fatigue damage modes existed after cyclic loading with spheres under moist environment, including conventional tensile-driven cone cracking (brittle mode) and shear-driven microdamage accumulation (quasi-plastic mode). The latter generated radial cracks and deeply penetrating secondary cone crack. Initial strength degradation were caused by the cone cracks, subsequent and much more deleterious loss was caused by radial cracks. Cyclic fatigue modes of Vita mark II machinable ceramics includes brittle and quasi-plastic mode.
Test method research on weakening interface strength of steel - concrete under cyclic loading
NASA Astrophysics Data System (ADS)
Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan
2018-02-01
The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.
Assessment of a novel biomechanical fracture model for distal radius fractures
2012-01-01
Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634
NASA Astrophysics Data System (ADS)
Lee, J.; Bong, H. J.; Ha, J.; Choi, J.; Barlat, F.; Lee, M.-G.
2018-05-01
In this study, a numerical sensitivity analysis of the springback prediction was performed using advanced strain hardening models. In particular, the springback in U-draw bending for dual-phase 780 steel sheets was investigated while focusing on the effect of the initial yield stress determined from the cyclic loading tests. The anisotropic hardening models could reproduce the flow stress behavior under the non-proportional loading condition for the considered parametric cases. However, various identification schemes for determining the yield stress of the anisotropic hardening models significantly influenced the springback prediction. The deviations from the measured springback varied from 4% to 13.5% depending on the identification method.
Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G
2018-01-01
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Assessment of burned coal shale properties based on cyclic load
NASA Astrophysics Data System (ADS)
Grygierek, Marcin; Kalisz, Piotr; Pacześniowski, Krzysztof; Pytlik, Andrzej; Zięba, Magdalena
2018-04-01
Road surfaces that are subjected to cyclic loads generated by vehicle wheels must meet the requirements concerning the durability in the assumed period of use. The durability of the layered pavement construction systems depends on the value and frequency of the load as well as on the mechanical features of its individual layers. Layers of unbound, mechanically stabilized mixtures are a significant aspect of surfaces that are susceptible. Mixtures of this type can be applied both to the subgrade layers as well as to the bottom pavement layers, including the improved course. Considering the cyclic nature of the load on the surface of the entire system, mechanically stabilized layers are subject to continuous, but slow, densification during the period of use, which results in the formation of permanent deformations and so-called structural ruts. Post-mining waste is frequently used in road construction. which is the so-called burned shale that can be used for the bottom layers of the surface and layers of the improved subgrade (soil replacement). This material was the subject of the analysis. The evaluation was based mainly on the results of pilot studies covering cyclic loads of the layer/course made of the so-called red shale. The applied research method was aimed at preliminary assessment of its suitability for the assessment of the behaviour of the disintegrated medium under the conditions of test loads simulating the movement of vehicles.
Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu
2013-04-01
CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ply cracking in composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngmyong.
1989-01-01
Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less
Effects of state recovery on creep buckling under variable loading
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Arnold, S. M.
1986-01-01
Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.
Quantification of Cyclic Ground Reaction Force Histories During Daily Activity in Humans
NASA Technical Reports Server (NTRS)
Breit, G. A.; Whalen, R. T.; Wade, Charles E. (Technical Monitor)
1994-01-01
Theoretical models and experimental studies of bone remodeling suggest that bone density and structure are influenced by local cyclic skeletal tissue stress and strain histories. Estimation of long-term loading histories in humans is usually achieved by assessment of physical activity level by questionnaires, logbooks, and pedometers, since the majority of lower limb cyclic loading occurs during walking and running. These methods provide some indication of the mechanical loading history, but fail to consider the true magnitude of the lower limb skeletal forces generated by various daily activities. These techniques cannot account for individual gait characteristics, gait speed, and unpredictable high loading events that may influence bone mass significantly. We have developed portable instrumentation to measure and record the vertical component of the ground reaction force (GRFz) during normal daily activity. This equipment allows long-term quantitative monitoring of musculoskeletal loads, which in conjunction with bone mineral density assessments, promises to elucidate the relationship between skeletal stresses and bone remodeling.
Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rezaizadeh, M. A.; Mall, S.
1985-01-01
A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.
Study on stress-strain response of multi-phase TRIP steel under cyclic loading
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.
2013-12-01
The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.
Matrix cracking in laminated composites under monotonic and cyclic loadings
NASA Technical Reports Server (NTRS)
Allen, David H.; Lee, Jong-Won
1991-01-01
An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.
Fatigue failure of hydrogen embrittled high strength steels
NASA Technical Reports Server (NTRS)
Kim, Y. G.; Aleszka, J.
1975-01-01
Results of an experimental investigation are presented concerning the fracture behavior of cathodically charged, quenched and tempered martensitic steels under cyclic load conditions. Introduction of H2 by cathodic charging reduced fatigue life by as much as 60%. It is proposed that subsurface transverse fatigue cracks nucleate simultaneously at multiple sites, such as at microcracks, voids, or inclusions. Fatigue crack growth then occurs on planes perpendicular to the major applied stress axis in the presence of the critical combination of applied external stress and hydrogen.
Structural analysis of cylindrical thrust chambers, volume 3
NASA Technical Reports Server (NTRS)
Pearson, M. L.
1981-01-01
A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.
Application of a substructuring technique to the problem of crack extension and closure
NASA Technical Reports Server (NTRS)
Armen, H., Jr.
1974-01-01
A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.
Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites
NASA Technical Reports Server (NTRS)
Lark, R. F.; Chamis, C. C.
1984-01-01
Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.
2014-03-27
testing machine was warmed up for at least 30 min using a cyclic command with a sine waveform in displacement control . Gripping sections of each test...the test specimen was inserted into the susceptor. Then the testing machine is placed in displacement control and the top portion of the specimen...the MTS software also triggered the operation of the high speed cameras. 31 The testing system was placed in displacement /rotation control and the
NASA Technical Reports Server (NTRS)
Pettit, D. E.; Hoeppner, D. W.
1972-01-01
A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.
Static and cyclic loading of fiber-reinforced dental resin.
Drummond, James L; Bapna, Mahendra S
2003-05-01
The aim of this study was to evaluate the flexure strength of unidirectional fiber-reinforced resins under static and cyclic loading with and without thermal cycling. The fiber-reinforced resin materials chosen for this project were commercially available endodontic posts and commercially procured bar samples. For all materials, controls for flexure strength were tested in air and in water using three-point loading. Specimens were thermal cycled between 7 and 63 degrees C for 6000 cycles. A staircase approach was used to determine the flexure fatigue limit and scanning microscopy was used to examine the microstructure. The carbon/graphite fiber-reinforced resin posts and the glass FiberKor posts were significantly stronger than the ceramic (zirconia) and the other glass-reinforced resin materials. Thermal cycling caused a significant lowering (11-24%) of the flexure strength for each resin based post system. The ceramic post system decreased only by 2%. Further, for standard size glass fiber-reinforced resin bars, no significant differences between testing in air and water was observed, but a significant difference between static and cyclic loading was noted. The decreases in the strength property due to thermal cycling and the cyclic loading of these materials indicates that their utilization in the oral environment enhances their degradation, and potentially shortens their clinical life.
Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.
NASA Astrophysics Data System (ADS)
Zhuk, Ya A.; Senchenkov, I. K.
1999-02-01
Certain aspects of the correct definitions of stress and strain concentration factors for elastic-viscoplastic solids under cyclic loading are discussed. Problems concerning the harmonic kinematic excitation of cylindrical specimens with a lateral V-notch are examined. The behavior of the material of a cylinder is modeled using generalized flow theory. An approximate model based on the concept of complex moduli is used for comparison. Invariant characteristics such as stress and strain intensities and maximum principal stress and strain are chosen as constitutive quantities for concentration-factor definitions. The behavior of time-varying factors is investigated. Concentration factors calculated in terms of the amplitudes of the constitutive quantities are used as representative characteristics over the cycle of vibration. The dependences of the concentration factors on the loads are also studied. The accuracy of Nueber's and Birger's formulas is evaluated. The solution of the problem in the approximate formulation agrees with its solution in the exact formulation. The possibilities of the approximate model for estimating low-cycle fatigue are evaluated.
[Establishment and application of mechanical strain loading system of multi-channel cells].
Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin
2012-02-01
Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, P.K.; Nicholas, T.
This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplasticmore » grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.« less
Fatigue response of notched laminates subjected to tension-compression cyclic loads
NASA Technical Reports Server (NTRS)
Bakis, C. E.; Stinchcomb, W. W.
1986-01-01
The fatigue response of a ((0/45/90/-45)(sub s))(sub 4) T300-5208 graphite-epoxy laminate with a drilled center-hole subjected to various components of tensile and compressive cyclic loads was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength measurement were used to establish the mechanisms of damage development as well as the effect of such damage on the laminate strength, stiffness and life. Damage modes consisted of transverse matrix cracks, initiating at the hole, in all plies, followed by delamination between plies of different orientation. A characteristic stiffness repsonse during cyclic loading at two load levels was identified and utilized a more reliable indicator of material and residual properties than accumulated cycles. For the load ratios of tension-compression loading, residual tensile strength increased significantly above the virgin strength early in the fatigue life and remained approximately constant to near the end of life. A technique developed for predicting delamination initiation sites along the hole boundary correlated well with experimental evidence.
NASALIFE - Component Fatigue and Creep Life Prediction Program
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.
2014-01-01
NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason Maung, K.; Hahn, H. Thomas; Ju, Y.S.
Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading upmore » to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures. (author)« less
Determination of babbit mechanical properties based on tin under static and cyclic loading
NASA Astrophysics Data System (ADS)
Zernin, M. V.
2018-03-01
Based on the results of studies of babbitt on the basis of tin under static loading under three types of stress state, the parameters of the criterion for the equivalence of stressed states were refined and a single diagram of the babbitt deformation was obtained. It is shown that the criterion of equivalence for static loading should contain the first principal stress and stress intensity. With cyclic loading, the first main voltage can be used as a criterion. The stages of development of fatigue cracks are described and it is logical to use a statistical approach to reveal the boundary of the transition from short cracks to macrocracks, based on a significant difference in the characteristics of the dispersion of the crack speeds at these two stages. The results of experimental studies of the cyclic crack resistance of babbitt are presented and the parameters of this boundary are obtained.
Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J
2012-01-01
Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020
Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.
Karl, Matthias; Taylor, Thomas D
2016-01-01
Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.
Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite
NASA Technical Reports Server (NTRS)
2005-01-01
Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the isothermal, LCF behavior of a [0]_32 MMC tested under strain- and load-controlled conditions for both zero-tension and tension-compression loading conditions. These tests were run at 427 C on thick specimens of SiC-reinforced Ti-15-3. For the fully-reversed tests, no difference was observed in the lives between the load- and strain-controlled tests. However, for the zero-tension tests, the strain-controlled tests had longer lives by a factor of 3 in comparison to the load-controlled tests. This was due to the fact that under strain-control the specimens cyclically softened, reducing the cracking potential. In contrast, the load-controlled tests ratcheted toward larger tensile strains leading to an eventual overload of the fibers. Fatigue tests revealed that specimens tested under fully-reversed conditions had lives approximately an order of magnitude longer than for those specimens tested under zero tension. When examined on a strain-range basis, the fully reversed specimens had similar, but still shorter lives than those of the unreinforced matrix material. However, the composite had a strain limitation at short lives because of the limited strain capacity of the brittle ceramic fiber. The composite also suffered at very high lives because of the lack of an apparent fatigue limit in comparison to the unreinforced matrix. The value of adding fibers to the matrix is apparent when the fatigue lives are plotted as a function of stress range. Here, the composite is far superior to the unreinforced matrix because of the additional load-carrying capacity of the fibers.
Ma, C Benjamin; Comerford, Lyn; Wilson, Joseph; Puttlitz, Christian M
2006-02-01
Recent studies have shown that arthroscopic rotator cuff repairs can have higher rates of failure than do open repairs. Current methods of rotator cuff repair have been limited to single-row fixation of simple and horizontal stitches, which is very different from open repairs. The objective of this study was to compare the initial cyclic loading and load-to-failure properties of double-row fixation with those of three commonly used single-row techniques. Ten paired human supraspinatus tendons were split in half, yielding four tendons per cadaver. The bone mineral content at the greater tuberosity was assessed. Four stitch configurations (two-simple, massive cuff, arthroscopic Mason-Allen, and double-row fixation) were randomized and tested on each set of tendons. Specimens were cyclically loaded between 5 and 100 N at 0.25 Hz for fifty cycles and then loaded to failure under displacement control at 1 mm/sec. Conditioning elongation, peak-to-peak elongation, ultimate tensile load, and stiffness were measured with use of a three-dimensional tracking system and compared, and the failure type (suture or anchor pull-out) was recorded. No significant differences were found among the stitches with respect to conditioning elongation. The mean peak-to-peak elongation (and standard error of the mean) was significantly lower for the massive cuff (1.1 +/- 0.1 mm) and double-row stitches (1.1 +/- 0.1 mm) than for the arthroscopic Mason-Allen stitch (1.5 +/- 0.2 mm) (p < 0.05). The ultimate tensile load was significantly higher for double-row fixation (287 +/- 24 N) than for all of the single-row fixations (p < 0.05). Additionally, the massive cuff stitch (250 +/- 21 N) was found to have a significantly higher ultimate tensile load than the two-simple (191 +/- 18 N) and arthroscopic Mason-Allen (212 +/- 21 N) stitches (p < 0.05). No significant differences in stiffness were found among the stitches. Failure mechanisms were similar for all stitches. Rotator cuff repairs in the anterior half of the greater tuberosity had a significantly lower peak-to-peak elongation and higher ultimate tensile strength than did repairs on the posterior half. In this in vitro cadaver study, double-row fixation had a significantly higher ultimate tensile load than the three types of single-row fixation stitches. Of the single-row fixations, the massive cuff stitch had cyclic and load-to-failure characteristics similar to the double-row fixation. Anterior repairs of the supraspinatus tendon had significantly stronger biomechanical behavior than posterior repairs.
NASA Astrophysics Data System (ADS)
Dehghan Banadaki, Arash
Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials. This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by implementing the viscoelastic fracture criterion. In the end, an efficient cyclic loading framework is developed to evaluate the damage accumulation in the material that is caused by long-sustained cyclic loads.
NASA Astrophysics Data System (ADS)
Hosseini, E.; Ghafoori, E.; Leinenbach, C.; Motavalli, M.; Holdsworth, S. R.
2018-02-01
The stress recovery and cyclic deformation behaviour of Fe-17Mn-5Si-10Cr-4Ni-1(V,C) shape memory alloy (Fe-SMA) strips, which are often used for pre-stressed strengthening of structural members, were studied. The evolution of recovery stress under different constraint conditions was studied. The results showed that the magnitude of the tensile stress in the Fe-SMA member during thermal activation can have a signification effect on the final recovery stress. The higher the tensile load in the Fe-SMA (e.g., caused by dead load or thermal expansion of parent structure during heating phase), the lower the final recovery stress. Furthermore, this study investigated the cyclic behaviour of the activated SMA followed by a second thermal activation. Although the magnitude of the recovery stress decreased during the cyclic loading, the second thermal activation could retrieve a significant part of the relaxed recovery stress. This observation suggests that the relaxation of recovery stress during cyclic loading is due to a reversible phase transformation-induced deformation (i.e., forward austenite-to-martensite transformation) rather than an irreversible dislocation-induced plasticity. Retrieval of the relaxed recovery stress by the reactivation process has important practical implications as the prestressing loss in pre-stressed civil structures can be simply recovered by reheating of the Fe-SMA elements.
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; Allison, J. E.; van Aken, D. C.
1995-12-01
The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.
Kuroda, Soichi; Shinya, Akikazu; Vallittu, Pekka K; Nakasone, Yuji; Shinya, Akiyoshi
2013-02-01
To evaluate in vitro the influence of dynamic loading applied to a glass-fiber-reinforced hybrid composite resin on its flexural strength in a moist, simulated oral environment. Three-point flexural strength specimens were subjected to cyclic loading in water at 37°C and 55°C to investigate the influence of immersion temperature on impact fatigue properties. Specimens were subjected to cyclic impact loading at 1 Hz for up to 5 × 105 cycles to obtain the number of cycles to failure, the number of unbroken specimens after 5 × 105 cycles, and the residual flexural strength of unbroken specimens. Maximum loads of 100, 200, and 300 N were chosen for both the non-reinforced and the glass-fiber reinforced hybrid composite resins. The mean residual flexural strength for 100 N impact loading at temperatures of 37°C and 55°C was 634 and 636 MPa, respectively. All specimens fractured at fewer than 5 × 105 cycles for loads of 200 and 300 N. Reduced numbers of cycles to fracture and lower fatigue values were observed as both the maximum load and immersion temperature increased.
Ma, Jian-Xiong; Wang, Jie; Xu, Wei-Guo; Yu, Jing-Tao; Yang, Yang; Ma, Xin-Long
2015-01-01
Reverse obliquity intertrochanteric fractures are a challenge for orthopedic surgeons. The optimal internal fixation for repairing this type of unstable intertrochanteric fractures remains controversial. This study aimed to compare the biomechanical properties in axial load and cyclical axial load of proximal femoral nail antirotation (PFNA) and proximal femoral locking compression plate (PFLCP) for fixation of reverse obliquity intertrochanteric fractures. Sixteen embalmed cadaver femurs were sawed to simulate reverse obliquity intertrochanteric fracture and instrumented with PFNA or PFLCP. Axial loads and axial cyclic loads were applied to the femoral head by an Instron tester. If the implant-femur constructs did not fail, axial failure load was added to the remaining implant-femur constructs. Mean axial stiffness for PFNA was 21.10% greater than that of PFLCP. Cyclic axial loading caused significantly less (p=0.022) mean irreversible deformation in PFNA (3.43 mm) than in PFLCP (4.34 mm). Significantly less (p=0.002) mean total deformation was detected in PFNA (6.16 mm) than in PFLCP (8.67 mm). For fixing reverse obliquity intertrochanteric fractures, PFNA is superior to PFLCP under axial load.
Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z
2018-04-01
The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.
A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments
Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo
2014-01-01
PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206
Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives
NASA Astrophysics Data System (ADS)
Cerfontaine, B.; Collin, F.
2018-02-01
The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.
De Carli, Angelo; Lanzetti, Riccardo Maria; Monaco, Edoardo; Labianca, Luca; Mossa, Luigi; Ferretti, Andrea; Feretti, Andrea
2012-11-01
Despite technical advances in rotator cuff surgery, recurrent or persistent defects in the repaired tendon continue to occur. The improved strength of sutures and suture anchors has shown that the most common site of failure is the suture-tendon interface. The purpose of this study was to compare two different types of repair under both cyclic and load-to-failure conditions. The hypothesis is that the use of a fixation system with knotless anchor and taped suture results in better biomechanical performance, under both cyclic and load-to-failure conditions. Thirty bovine shoulder specimens were randomly assigned to two group tests: the Swivelock 5-mm anchor with Fibertape (Group A) and the Bio-Corkscrew 5 mm with Fiberwire (Group B). We simulated the reconstruction of a rotator cuff tear with a single-row technique, performing a tenodesis with types A and B fixation. Each specimen underwent cyclic testing from 5 to 30 N for 30 cycles, followed by load-to-failure testing, in order to calculate the ultimate failure load (UFL). Load-to-failure tests revealed a significantly higher UFL in Group A than in Group B. Wire fixing failed at the anchor loop whereas tape fixing failed at the sutures, suture-tendon interface, and anchors. Cyclic testing revealed no significantly greater slippage between the two groups. Stiffness values were not statistically significantly different. In all cases, tendons remained intact until the end of the cyclic testing. The tape structure is biomechanically stronger than the wire structure.
Cyclic Mechanical Loading Enhances Transport of Antibodies Into Articular Cartilage.
DiDomenico, Chris D; Xiang Wang, Zhen; Bonassar, Lawrence J
2017-01-01
The goal of this study was to characterize antibody penetration through cartilage tissue under mechanical loading. Mechanical stimulation aids in the penetration of some proteins, but this effect has not characterized molecules such as antibodies (>100 kDa), which may hold some clinical value for treating osteoarthritis (OA). For each experiment, fresh articular cartilage plugs were obtained and exposed to fluorescently labeled antibodies while under cyclic mechanical load in unconfined compression for several hours. Penetration of these antibodies was quantified using confocal microscopy, and finite element (FE) simulations were conducted to predict fluid flow patterns within loaded samples. Transport enhancement followed a linear trend with strain amplitude (0.25-5%) and a nonlinear trend with frequency (0.25-2.60 Hz), with maximum enhancement found to be at 5% cyclic strain and 1 Hz, respectively. Regions of highest enhancement of transport within the tissue were associated with the regions of highest interstitial fluid velocity, as predicted from finite-element simulations. Overall, cyclic compression-enhanced antibody transport by twofold to threefold. To our knowledge, this is the first study to test how mechanical stimulation affects the diffusion of antibodies in cartilage and suggest further study into other important factors regarding macromolecular transport.
Computational study on the behaviors of granular materials under mechanical cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoliang; Ye, Minyou; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2015-11-07
Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal forcemore » distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.« less
Modeling the mechanical response of PBX 9501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng
2010-01-01
An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the formmore » of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.« less
Development and Fatigue Testing of Ceramic Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.
Choi, Jae-Won; Bae, Ji-Hyeon; Jeong, Chang-Mo; Huh, Jung-Bo
2017-05-01
Implant angulation should be considered when selecting an attachment. Some in vitro studies have investigated the relationship between implant angulation and changes in the retention force of the stud attachment, but few studies have evaluated the effect of cyclic loading and repeated cycles of insertion and removal on the stud attachment. The purpose of this in vitro study was to evaluate the effects of implant angulation on the retentive characteristics of overdentures with 2 different stud attachments, an experimental system and O-rings in red and orange, after cyclic loading and repeated insertion and removal cycles. The canine region of a mandibular experimental model was fitted with 2 implant fixtures with 2 different stud attachment systems at implant angulations of 0, 15, or 30 degrees. A mastication simulator was used to simulate cyclic loading, and a universal testing machine was used to evaluate retentive force changes after repeated insertion and removal cycles. To simulate the numbers of mastication and insertion and removal cycles per annum, 400000 cyclic loadings and 1080 insertion and removal cycles were performed. Wear patterns and attachment surface deformations were evaluated by scanning electron microscopy. Data were analyzed using the Kruskal-Wallis test, Mann-Whitney U test with Bonferroni correction (α=.05/3=.017), and the paired-sample Student t test (α=.05). When retentive forces before and after testing were compared, O-ring showed significant retention loss at all implant angulations (P<.001). In contrast, the experimental system showed little retention loss in the 0- and 15-degree models (P>.05), whereas the 30-degree model showed a significant increase in retentive force (P=.001). At all implant angulations, retention loss increased significantly for the orange O-ring, followed by the red O-ring, and the experimental system (P<.001). Scanning electron microscopy analysis showed more intense wear in the matrix than the patrix (abutment that matches to matrix) and more severe wear and deformation of the O-ring rubber matrix than of the experimental zirconia ball. Upon completion of the experiment, wear and deformation were found for all attachment systems. Even when implants are not installed in parallel, the experimental system can be used without involving great loss of retention. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
Gencur, Sara J; Rimnac, Clare M; Kurtz, Steven M
2006-03-01
To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.
A Biomechanical Comparison of Distal Fixation for Bridge Plating in a Distal Radius Fracture Model.
Alluri, Ram K; Bougioukli, Sofia; Stevanovic, Milan; Ghiassi, Alidad
2017-09-01
To compare the biomechanical properties of second versus third metacarpal distal fixation when using a radiocarpal spanning distraction plate in an unstable distal radius fracture model. Biomechanical evaluation of the radiocarpal spanning distraction plate comparing second versus third metacarpal distal fixation was performed using a standardized model of an unstable wrist fracture in 10 matched-pair cadaveric specimens. Each fixation construct underwent a controlled cyclic loading protocol in flexion and extension. The resultant displacement and stiffness were calculated at the fracture site. After cyclic loading, each specimen was loaded to failure. The stiffness, maximum displacement, and load to failure were compared between the 2 groups. Cyclic loading in flexion demonstrated that distal fixation to the third metacarpal resulted in greater stiffness compared with the second metacarpal. There was no significant difference between the 2 groups with regards to maximum displacement at the fracture site in flexion. Cyclic loading in extension demonstrated no significant difference in stiffness or maximum displacement between the 2 groups. The average load to failure was similar for both groups. Fixation to the third metacarpal resulted in greater stiffness in flexion. All other biomechanical parameters were similar when comparing distal fixation to the second or third metacarpal in distal radius fractures stabilized with a spanning internal distraction plate. The treating surgeon should choose distal metacarpal fixation primarily based on fracture pattern, alignment, and soft tissue integrity. If a stiffer construct is desired, placement of the radiocarpal spanning plate at the third metacarpal is preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Demler, Eugen; Rodman, Dmytro; Rodman, Mykhailo; Gerstein, Gregory; Grydin, Olexandr; Briukhanov, Arkadiy A.; Klose, Christian; Nürnberger, Florian; Maier, Hans Jürgen
2018-02-01
The process of cyclic bending was investigated using thin sheets of the magnesium alloy AZ31 and α-titanium. These materials possess an hcp crystal lattice with different c/a ratios. It turned out that the latter have a substantial influence on the sheet deformation behavior. Even for small deformations (up to 2% strain), a large influence on the yield stress was present for both materials. In addition, cyclic bending contributes to the activation of prismatic slip, which is accompanied by twinning and detwinning. The changes in sheet anisotropy following cyclic bending were determined using texture measurements. Specifically, the AZ31 alloy sheets exhibited a considerable change in anisotropy of the mechanical properties with an increasing number of bending cycles. The anisotropy in the yield stress increases from 15% in the initial condition to 40% after three cycles. For the α-titanium sheet, the change in anisotropy was approx. 26% less. In general, the largest changes in properties occurred already in the first bending cycle and a stabilization took place upon further cycling.
Life prediction and constitutive behavior
NASA Technical Reports Server (NTRS)
Halford, G. R.
1983-01-01
One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades.
Life prediction modeling based on cyclic damage accumulation
NASA Technical Reports Server (NTRS)
Nelson, Richard S.
1988-01-01
A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.
Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.
Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J
2010-12-01
Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Linzhi; Lu, Xilin; Jiang, Huanjun; Zheng, Jianbo
2009-06-01
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests of ten column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
A glasses-type wearable device for monitoring the patterns of food intake and facial activity
NASA Astrophysics Data System (ADS)
Chung, Jungman; Chung, Jungmin; Oh, Wonjun; Yoo, Yongkyu; Lee, Won Gu; Bang, Hyunwoo
2017-01-01
Here we present a new method for automatic and objective monitoring of ingestive behaviors in comparison with other facial activities through load cells embedded in a pair of glasses, named GlasSense. Typically, activated by subtle contraction and relaxation of a temporalis muscle, there is a cyclic movement of the temporomandibular joint during mastication. However, such muscular signals are, in general, too weak to sense without amplification or an electromyographic analysis. To detect these oscillatory facial signals without any use of obtrusive device, we incorporated a load cell into each hinge which was used as a lever mechanism on both sides of the glasses. Thus, the signal measured at the load cells can detect the force amplified mechanically by the hinge. We demonstrated a proof-of-concept validation of the amplification by differentiating the force signals between the hinge and the temple. A pattern recognition was applied to extract statistical features and classify featured behavioral patterns, such as natural head movement, chewing, talking, and wink. The overall results showed that the average F1 score of the classification was about 94.0% and the accuracy above 89%. We believe this approach will be helpful for designing a non-intrusive and un-obtrusive eyewear-based ingestive behavior monitoring system.
Residual stresses in angleplied laminates and their effects on laminate behavior
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
Evidence of the presence of lamination residual stresses in angleplied laminates were transply cracks and warpage of unsymmetric laminates which occur prior to application of any mechanical load. Lamination residual strains were measured using the embedded strain gage technique. These strains result from the temperature differences between cure and room temperature and vary linearly within this temperature range. Lamination residual stresses were usually present in angleplied fiber composites laminates; they were also present in unidirectional hybrids and superhybrids. For specific applications, the magnitudes of lamination residual stresses were determined and evaluated relative to the anticipated applied stresses. Particular attention was given to cyclic thermal loadings in applications where the thermal cycling takes place over a wide temperature range.
Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong
This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less
Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An; Wang, Hong
This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling
Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.
2016-09-29
This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less
Predicting a contact's sensitivity to initial conditions using metrics of frictional coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flicek, Robert C.; Hills, David A.; Brake, Matthew Robert W.
This paper presents a method for predicting how sensitive a frictional contact’s steady-state behavior is to its initial conditions. Previous research has proven that if a contact is uncoupled, i.e. if slip displacements do not influence the contact pressure distribution, then its steady-state response is independent of initial conditions, but if the contact is coupled, the steady-state response depends on initial conditions. In this paper, two metrics for quantifying coupling in discrete frictional systems are examined. These metrics suggest that coupling is dominated by material dissimilarity due to Dundurs’ composite material parameter β when β ≥ 0.2, but geometric mismatchmore » becomes the dominant source of coupling for smaller values of β. Based on a large set of numerical simulations with different contact geometries, material combinations, and friction coefficients, a contact’s sensitivity to initial conditions is found to be correlated with the product of the coupling metric and the friction coefficient. For cyclic shear loading, this correlation is maintained for simulations with different contact geometries, material combinations, and friction coefficients. Furthermore, for cyclic bulk loading, the correlation is only maintained when the contact edge angle is held constant.« less
Multi-planar bending properties of lumbar intervertebral joints following cyclic bending.
Chow, Daniel H K; Luk, Keith D K; Holmes, Andrew D; Li, Xing-Fei; Tam, Steven C W
2004-02-01
To assess the changes in the multi-planar bending properties of intervertebral joints following cyclic bending along different directions. An in vitro biomechanical study using porcine lumbar motion segments. Repeated bending has been suggested as part of the etiology of gradual prolapse of the intervertebral disc, but the multi-planar changes in bending properties following cyclic loading have not been examined in detail. Porcine lumbar motion segments were subject to 1500 cycles of bending along directions of 0 degrees (flexion), 30 degrees, 60 degrees, or 90 degrees (right lateral bending). The multi-planar bending moments and hysteresis energies were recorded before loading and after various cycle numbers. Repeated bending at 30 degrees and 60 degrees resulted in greater decreases in mean bending moment and hysteresis energy than bending at 0 degrees or 90 degrees. No significant differences were seen between loading groups for the change in bending moment along the anterior testing directions, but significant differences were observed in the posterior and lateral testing directions, with bending at 30 degrees causing a significantly greater decrease in bending moment in the postero-lateral directions. The change in mechanical properties of porcine intervertebral joints due to cyclic bending depend on the direction of loading and the direction in which the properties are measured. Loading at 30 degrees provokes the most marked changes in bending moment and hysteresis energy.
Cyclic fatigue behavior of nickel-titanium dental rotary files in clinical simulated root canals.
Chi, Chih-Wen; Li, Chun-Chieh; Lin, Chun-Pin; Shin, Chow-Shing
2017-04-01
Dental rotary instruments can be applied in multiple conditions of canals, but unpredictable fatigue fracture may happen. This study evaluated the fatigue lives of two batches of nickel-titanium (NiTi) dental rotary files operating in clinically simulated root canals. Single-step cyclic fatigue tests were carried out to assess the performance of two batches of NiTi files (ProTaper and ProFile) in nine combinations of simulated canals (cylinder radii 5 mm, 7.5 mm, and 10 mm, and insertion angles 20°, 40°, and 60°). Two-step cyclic fatigue tests were carried out in simulated root canals with the same radius by using the following two sets of insertion angles: (20°, 40°), (20°, 60°), (40°, 20°), and (60°, 20°). Fracture surfaces were observed by scanning electron microscopy. The single-step cyclic fatigue results showed that cyclic fatigue lives of the files decreased with increasing insertion angles or decreasing cylinder radius. The ProFile #25 .04 file was more fatigue resistant than the ProTaper F2 file. In two-step cyclic fatigue tests, the total fatigue lives were usually more than 100% when the files operated at a lower strain and then at a higher strain. By scanning electron microscopy, a larger area of fatigue striation corresponded to a longer fatigue life. Cyclic fatigue life can be influenced by the strains and geometries of files. The fatigue life was prolonged when the files operated at a lower strain and then at a higher strain. However, the fatigue life was shortened if the loading sequence was reversed. Copyright © 2016. Published by Elsevier B.V.
Analysis and Design of Connections, Openings and Attachments for Protective Construction
1989-10-01
precast connection details were subjected to cyclic simulated earthquake loads . The detail... column and beam flexural steel. At the onset of flexural yield under cyclical loading , crack sizes at the face of the joint increase and reinforcement... beam / column connections may be a necessity and can be placed without a great deal of difficulty. However, their placement in slab/wall connections
Evaluating Daily Load Stimulus Formulas in Relating Bone Response to Exercise
NASA Technical Reports Server (NTRS)
Pennline, James A.; Mulugeta, Lealem
2014-01-01
Six formulas representing what is commonly referred to as "daily load stimulus" are identified, compared and tested in their ability to relate skeletal mechanical loading to bone maintenance and osteogenic response. Particular emphasis is placed on exercise- induced skeletal loading and whether or not the formulas can adequately capture the known experimental observations of saturation of continuous cyclic loading, rest insertion between repetitions (cycles), recovery of osteogenic potential following saturation, and multiple shorter bouts versus a single long bout of exercise. To evaluate the ability of the formulas to capture these characteristics, a set of exercise scenarios with type of exercise bout, specific duration, number of repetitions, and rest insertion between repetitions is defined. The daily load values obtained from the formulas for the loading conditions of the set of scenarios is illustrated. Not all of the formulas form estimates of daily load in units of stress or in terms of strain at a skeletal site due to the loading force from a specific exercise prescription. The comparative results show that none of the formulas are able to capture all of the experimentally observed characteristics of cyclic loading. However, the enhanced formula presented by Genc et al. does capture several characteristics of cyclic loading that the others do not, namely recovery of osteogenic potential and saturation. This could be a basis for further development of mathematical formulas that more adequately approximates the amount of daily stress at a skeletal site that contributes to bone adaptation.
Experimental and analytical studies on the seismic behavior of conventional and hybrid braced frames
NASA Astrophysics Data System (ADS)
Lai, Jiun-Wei
This dissertation summarizes both experimental and analytical studies on the seismic response of conventional steel concentrically braced frame systems of the type widely used in North America, and preliminary studies of an innovative hybrid braced frame system: the Strong-Back System. The research work is part of NEES small group project entitled "International Hybrid Simulation of Tomorrow's Braced Frames." In the experimental phase, a total of four full-scale, one-bay, two-story conventional braced frame specimens with different bracing member section shapes and gusset plate-to-beam connection details were designed and tested at the NEES Berkeley Laboratory. Three braced frame specimens were tested quasi-statically using the same predefined loading protocol to investigate the inelastic cyclic behavior of code-compliant braced frames at both the global and local level. The last braced frame specimen was nearly identical to one of those tested quasi-statically. However, it was tested using hybrid simulation techniques to examine the sensitivity of inelastic behavior on loading sequence and to relate the behavior observed to different levels of seismic hazard. Computer models of the test specimens were developed using two different computer software programs. In the software framework OpenSees fiber-based line elements were used to simulate global buckling of members and yielding and low-cycle fatigue failure at sections. The LS-DYNA analysis program was also used to model individual struts and the test specimens using shell elements with adaptive meshing and element erosion features. This program provided enhanced ability to simulate section local buckling, strain concentrations and crack development. The numerical results were compared with test results to assess and refine and the ability of the models to predict braced frame behavior. A series of OpenSees numerical cyclic component simulations were then conducted using the validated modeling approach. Two hundred and forty pin-ended struts with square hollow structural section shape were simulated under cyclic loading to examine the effect of width-to-thickness ratios and member slenderness ratios on the deformation capacity and energy dissipation characteristics of brace members. The concept of a hybrid system, consisting of a vertical elastic truss or strong-back, and a braced frame that responds inelastically, is proposed herein to mitigate the tendency of weak-story mechanisms to form in conventional steel braced frames. A simple design strategy about member sizing of the proposed Strong-Back System is provided in this study. To assess the ability of the new Strong-Back System to perform well under seismic loading, a series of inelastic analyses were performed considering three six-story hybrid braced frames having different bracing elements, and three six-story conventional brace frames having different brace configurations. Monotonic and cyclic quasi-static inelastic analyses and inelastic time history analyses were carried out. The braced frame system behavior, bracing member force-displacement hysteresis loops, and system residual drifts were the primary response quantities examined. These indicated that the new hybrid system was able to achieve its design goals. Experimental results show for the same loading history that the braced frame specimen using round hollow structural sections as brace members has the largest deformation capacity among the three types of bracing elements studied. Beams connected to gusset plates at the column formed plastic hinges adjacent to the gusset plate. The gusset plates tend to amplify the rotation demands at these locations and stress concentrations tended to result in early fractures of the plastic hinges that form. To remedy this problem, pinned connection details used in the last two specimens; these proved to prevent failures at these locations under both quasi-static and pseudo-dynamic tests. Failure modes observed near the column to base plate connections in all of the specimens suggest the need for further study. Both OpenSees and LS-DYNA models developed in this study predict the global braced frame behavior with acceptable accuracy. In both models, low-cycle fatigue damage models were needed to achieve an acceptable level of fidelity. Shell element models were able to predict local behavior and the mode of failures with greater but not perfect confidence. OpenSees analysis results show that the proposed hybrid braced frames would perform better than conventional braced frames and that the story deformations are more uniform. Finally, future research targets are briefly discussed at the end of this dissertation.
Damage Model of Reinforced Concrete Members under Cyclic Loading
NASA Astrophysics Data System (ADS)
Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai
2018-06-01
Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Du, Fangzhu; Ou, Jinping
2017-03-01
Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP-CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP-CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP-CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP-CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP-CCFT columns and provide critical warning information for composite structures.
Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P.
In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion ® NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 °C, 2%RH extruded Ion Power ® N111-IP membranes have a longer lifetime than Gore™-Select ® 57 and Nafion ® NRE-211 membranes.
Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment
DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio
2011-01-01
Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464
A method for continuous monitoring of the Ground Reaction Force during daily activity
NASA Technical Reports Server (NTRS)
Whalen, Robert; Quintana, Jason; Emery, Jeff
1993-01-01
Theoretical models and experimental studies of bone remodeling have identified peak cyclic force levels (or cyclic tissue strain energy density), number of daily loading cycles, and load (strain) rate as possible contributors to bone modeling and remodeling stimulus. To test our theoretical model and further investigate the influence of mechanical forces on bone density, we have focused on the calcaneus as a model site loaded by calcaneal surface tractions which are predominantly determined by the magnitude of the external ground reaction force (GRF).
1982-01-01
The cyclicly changing axial stresses a . and a are leading to the dynamic stress path which loads the frozen soil [MN/m’) samples. It is obvious that...Fig. 5 are related to a sinoidal dynamic axial loading . Figure a sample temperature of T = -10*C, in 4 shows schematically a triaxial test re- Fig. 6...Czajkowski (1978), Behaviour of Fro-ry phase was not reached. zen Clay under Cyclic Axial Loading , Journal of the Geotechnical Engineer- ing Division
On the variation in crack-opening stresses at different locations in a three-dimensional body
NASA Technical Reports Server (NTRS)
Chermahini, R. G.; Blom, Anders F.
1990-01-01
Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.
High Load Ratio Fatigue Strength and Mean Stress Evolution of Quenched and Tempered 42CrMo4 Steel
NASA Astrophysics Data System (ADS)
Bertini, Leonardo; Le Bone, Luca; Santus, Ciro; Chiesi, Francesco; Tognarelli, Leonardo
2017-08-01
The fatigue strength at a high number of cycles with initial elastic-plastic behavior was experimentally investigated on quenched and tempered 42CrMo4 steel. Fatigue tests on unnotched specimens were performed both under load and strain controls, by imposing various levels of amplitude and with several high load ratios. Different ratcheting and relaxation trends, with significant effects on fatigue, are observed and discussed, and then reported in the Haigh diagram, highlighting a clear correlation with the Smith-Watson-Topper model. High load ratio tests were also conducted on notched specimens with C (blunt) and V (sharp) geometries. A Chaboche model with three parameter couples was proposed by fitting plain specimen cyclic and relaxation tests, and then finite element analyses were performed to simulate the notched specimen test results. A significant stress relaxation at the notch root became clearly evident by reporting the numerical results in the Haigh diagram, thus explaining the low mean stress sensitivity of the notched specimens.
Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G
1993-01-01
A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.
Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo
2015-01-01
To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.
Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L
2017-11-01
Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria
2015-07-01
Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P < .05). The IPS Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P < .05). The IPS Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic fatigue loading negatively influenced only IPS e.max CAD. The CEREC VITABLOCS Mark II, IPS Empress CAD, and IPS e.max CAD ceramic crowns cemented on solid abutments showed sufficient resistance to withstand normal chewing forces. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.
Block, Jonathan; Matalon, Shlomo; Tanase, Gabriela; Ormianer, Zeev
2017-08-01
This study investigated strain levels during and after implant insertion, and during and after simulated mastication, in splinted and nonsplinted restorations with different occlusal schemes. Fresh bovine bone resembling type I jawbone was collected. Strain gauges were placed at each implant's neck, one horizontally and one vertically. Strains at and after implant insertion were recorded. The restoration was loaded with cyclic load simulating mastication. Loading and residual strains were recorded for 6 experimental loading types. At and after implant insertion, high horizontal strains were measured. Full splint loading presented higher vertical compared with horizontal strains (P < 0.05). Segmented cross-arch splint showed higher horizontal strains (P < 0.05). Premolar loading guidance presented the most favorable loading and residual strain results (P < 0.05). Splinting implant restorations may reduce strain levels at implant neck area and provide preferable strain distribution during cyclic loading.
A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading
NASA Astrophysics Data System (ADS)
Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar
2011-01-01
A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.
Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan
2015-09-01
Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikitin, I.; Juijerm, P.
2018-02-01
The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.
Isothermal Damage and Fatigue Behavior of SCS-6/Timetal 21S [0/90](Sub S) Composite at 650 Deg C
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1994-01-01
The isothermal fatigue damage and life behaviors of SCS-6/Timetal 21S (0/90)s were investigated at 650 C. Strain ratcheting and degradation of the composite's static elastic modulus were carefully monitored as functions of cycles to indicate damage progression. Extensive fractographic and metallographic analyses were conducted to determine damage/failure mechanisms. Resulting fatigue lives show considerable reductions in comparison to (0) reinforced titanium matrix composites subjected to comparable conditions. Notable stiffness degradations were found to occur after the first cycle of loading, even at relatively low maximum stress levels, where cyclic lives are greater than 25,000 cycles. This was attributed to the extremely weak fiber/matrix bond which fails under relatively low transverse loads. Stiffness degradations incurred on first cycle loadings and degradations thereafter were found to increase with increasing maximum stress. Environmental effects associated with oxidation of the (90) fiber interfaces clearly played a role in the damage mechanisms as fracture surfaces revealed environment assisted matrix cracking along the (90) fibers. Metallographic analysis indicated that all observable matrix fatigue cracks initiated at the (90) fiber/matrix interfaces. Global de-bonding in the loading direction was found along the (90) fibers. No surface initiated cracks were evident and minimal if any (0) fiber cracking was visible.
The effect of cycling deflection on the injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo Vj; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka
2016-01-01
The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.
NASA Astrophysics Data System (ADS)
Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo
2017-05-01
Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.
Environmental effects on aluminum fracture
NASA Technical Reports Server (NTRS)
Schwartzberg, F. R.; Shepic, J. A.
1976-01-01
The sustained load stress corrosion cracking (SCC) threshold for aluminum alloy 214 was determined using smooth (sigma sub TH) and precracked (K sub ISCC) specimens, and cyclic load growth behavior in 3.5% NaCl salt solution was studied. The relationship between K sub ISCC and sigma sub TH was also studied. The work showed that 2124-T851 aluminum alloy in plate gage has a moderately high resistance to stress corrosion attack. Experimental results showed that no SCC occurred in the longitudinal and long transverse directions in any of the tests. Some SCC was found by smooth tests in the short transverse direction, and the data were confirmed by two test methods-sigma sub TH = 275 MN/sq m (40 ksi). No SCC was found from compact specimen tests in any direction: surface flaw and center notch specimens evaluated in the short transverse direction exhibited SCC. The data indicate that stress corrosion behavior is defect, size, and stress dependent, but not entirely in accordance with a stress intensity controlled mechanism.
Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON
Wang, Liqian; Zhang, Zhiguo; Chen, Xue
2014-01-01
Energy consumption in optical access networks costs carriers substantial operational expense (OPEX) every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON), a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs) can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS) guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain. PMID:25177727
Durability Testing of Tank Track Rubber Compounds under Cyclic Loading
1987-10-15
depiction of time-to-failure vs applied ( engineering ) stress for 15TP-14AX rubber compounds in creep experiments at 23"C. (After McKenna (1...behavior of the 15TP-14AX rubber was carried out at 23, 75, 125 and 175 OC. The logarithm of the time to failure vs. the applied ( engineering ) stress is...4 3I. I I 5 10 15 a/MPa Figure 3-7 Semilogarith±ic depiction of time-to--failure vs applied ( engineering ) stress for 15TP-14AX rubber compounds in
2015-12-01
hardening heat treatment were the controlling factors of the fatigue resistance, while testing directions have the least impact. Leuders et al. [16...radius. The microstructurally-small fatigue crack growth test was run under load control at constant stress ratio R=0.1 and a cyclic frequency of 20 Hz...not been thoroughly investigated. In this study, long fatigue crack growth tests were conducted at two stress ratios (R=0.1 and 0.8), using Ti-6Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris
The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.
Feucht, Matthias J; Grande, Eduardo; Brunhuber, Johannes; Burgkart, Rainer; Imhoff, Andreas B; Braun, Sepp
2013-12-01
A tear of the posterior medial meniscus root (PMMR) is increasingly recognized as a serious knee joint injury. Several suture techniques for arthroscopic transtibial pull-out repair have been described; however, only limited data about the biomechanical properties of these techniques are currently available. There are significant differences between the tested suture techniques, with more complex suture configurations providing superior biomechanical properties. Controlled laboratory study. A total of 40 porcine medial menisci were randomly assigned to 1 of 4 groups (10 specimens each) according to suture technique: two simple stitches (TSS), horizontal mattress suture (HMS), modified Mason-Allen suture (MMA), and two modified loop stitches (TLS). Meniscus-suture constructs were subjected to cyclic loading followed by load-to-failure testing in a servohydraulic material testing machine. During cyclic loading, the HMS and TLS groups showed a significantly higher displacement after 100, 500, and 1000 cycles compared with the TSS and MMA groups. After 1000 cycles, the highest displacement was found for the TLS group, with significant differences compared with all other groups. During load-to-failure testing, the highest maximum load and yield load were observed for the MMA group, with statistically significant differences compared with the TSS and TLS groups. With regard to stiffness, the TSS and MMA groups showed significantly higher values compared with the HMS and TLS groups. The MMA technique provided the best biomechanical properties with regard to cyclic loading and load-to-failure testing. The TSS technique seems to be a valuable alternative. Both the HMS and TLS techniques have the disadvantage of lower stiffness and higher displacement during cyclic loading. Using a MMA technique may improve healing rates and avoid progressive extrusion of the medial meniscus after transtibial pull-out repair of PMMR tears. The TSS technique may be used as an alternative that is easier to perform, but a more careful rehabilitation program is possibly necessary to avoid early failure.
NASA Astrophysics Data System (ADS)
Ali, Mohammed Ali Nasser
The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.
Hierarchical Simulation of Hot Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.
1993-01-01
Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
NASA Technical Reports Server (NTRS)
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Perez-Blanca, Ana; Prado Nóvoa, María; Lombardo Torre, Maximiano; Espejo-Reina, Alejandro; Ezquerro Juanco, Francisco; Espejo-Baena, Alejandro
2018-04-01
To assess the role of suture cutout in the mechanics of failure of the repaired posterior meniscal root during the early post-operative period when using sutures of different shape. Twenty medial porcine menisci were randomized in two groups depending on the suture shape used to repair the posterior root: thread or tape. The sutured menisci were subjected to cyclic loading (1000 cycles, (10, 30) N) followed by load-to-failure testing. Residual displacements, stiffness, and ultimate failure load were determined. During tests, the tissue-suture interface was recorded using a high-resolution camera. In cyclic tests, cutout progression at the suture insertion points was not observed for any specimen of either group and no differences in residual displacements were found between use of thread or tape. In load-to-failure tests, suture cutout started in all menisci at a load close to the ultimate failure and all specimens failed by suture pullout. Suture tape had a greater ultimate load with no other differences. In a porcine model of a repaired posterior meniscal root subjected to cyclic loads representative of current rehabilitation protocols in the early post-operative period under restricted loading conditions, suture cutout was not found as a main source of permanent root displacement when using suture thread or tape. Suture cutout progression started at high loading levels close to the ultimate load of the construct. Tape, with a meniscus-suture contact area larger than thread, produced higher ultimate load.
Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions
NASA Technical Reports Server (NTRS)
Nakagaki, M.; Atluri, S. N.
1978-01-01
Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.
Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey
NASA Technical Reports Server (NTRS)
Stuhrke, W. F.; Carpenter, J. L., Jr.
1975-01-01
Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information
Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor
NASA Technical Reports Server (NTRS)
Wilson, Robert E.
1995-01-01
Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
Life prediction of materials exposed to monotonic and cyclic loading: Bibliography
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.
1975-01-01
This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Aircraft engine hot section technology: An overview of the HOST Project
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E.; Hirschberg, Marvin H.
1990-01-01
NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.
Dynamic Microstructure Design Consortium
2011-03-23
multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the...can alter the residual stress distribution 13. The present work ex- plores how short-range microplastic deformation during cyclic loading promotes
Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth
2014-11-01
Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2001-01-01
This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.
Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.
Dahl, Michael C; Freeman, Andrew L
2016-04-01
Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganehgheshlaghi, Mohannad
2014-01-01
The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.
Durability and Damage Development in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)
2001-01-01
Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.
Spang, Jeffrey T; Buchmann, Stefan; Brucker, Peter U; Kouloumentas, Panos; Obst, Tobias; Schröder, Manuel; Burgkart, Rainer; Imhoff, Andreas B
2009-08-01
A novel double-row configuration was compared with a traditional double-row configuration for rotator cuff repair. In 10 matched-pair sheep shoulders in vitro repair was performed with either a double-row technique with corkscrew suture anchors for the medial row and insertion anchors for the lateral row (group A) or a double-row technique with a new tape-like suture material with insertion anchors for both the medial and lateral rows (group B). Each specimen underwent cyclic loading from 10 to 150 N for 100 cycles, followed by unidirectional failure testing. Gap formation and strain within the repair area for the first and last cycles were analyzed with a video digitizing system, and stiffness and failure load were determined from the load-elongation curve. The results were similar for the 2 repair types. There was no significant difference between the ultimate failure loads of the 2 techniques (421 +/- 150 N in group A and 408 +/- 66 N in group B, P = .31) or the stiffness of the 2 techniques (84 +/- 26 N/mm in group A and 99 +/- 20 N/mm in group B, P = .07). In addition, gap formation was not different between the repair types. Strain over the repair area was also not different between the repair types. Both tested rotator cuff repair techniques had high failure loads, limited gap formation, and acceptable strain patterns. No significant difference was found between the novel and conventional double-row repair types. Two double-row techniques-one with corkscrew suture anchors for the medial row and insertion anchors for the lateral row and one with insertion anchors for both the medial and lateral rows-provided excellent biomechanical profiles at time 0 for double-row repairs in a sheep model. Although the sheep model may not directly correspond to in vivo conditions, all-insertion anchor double-row constructs are worthy of further investigation.
Effect of phase lag on cyclic durability of laminated composite
NASA Astrophysics Data System (ADS)
Andersons, Janis; Limonov, V.; Tamuzs, Vitants
1992-07-01
Theoretical and experimental results on fatigue of laminated fiber reinforced composites under out-of-phase, biaxial cyclic loading are presented. Experiments were carried out on tubular filament wound samples of epoxy matrix/organic (Kevlar type) fiber composites. Fatigue strength under two different loading modes, namely cyclic torsion combined with axial tension or compression, was investigated for phase lags psi = 0, pi/2, and pi. Durability was shown to decrease with increasing phase shift both for axial tension (R = 0.1) and compression (R = 10). A matrix failure criterion was proposed for a unidirectionally reinforced ply, and the ply discount method was modified to account for phase lag. Calculated S-N curves agree reasonably well with experimental data.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2005-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2004-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys
NASA Technical Reports Server (NTRS)
Gyekenyesi, Andrew L.; Baaklini, George Y.
2000-01-01
During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.
Crosslinked elastic fibers are necessary for low energy loss in the ascending aorta.
Kim, Jungsil; Staiculescu, Marius Catalin; Cocciolone, Austin J; Yanagisawa, Hiromi; Mecham, Robert P; Wagenseil, Jessica E
2017-08-16
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln -/- ) or two key proteins (lysyl oxidase, Lox -/- , or fibulin-4, Fbln4 -/- ) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln -/- , Lox -/- , and Fbln4 -/- ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56-97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln -/- aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53-387% in Eln -/- , Lox -/- , and Fbln4 -/- aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studies on thermo-elastic heating of horns used in ultrasonic plastic welding.
Roopa Rani, M; Prakasan, K; Rudramoorthy, R
2015-01-01
Ultrasonic welding horn is half wavelength section or tool used to focus the ultrasonic vibrations to the components being welded. The horn is designed in such a way that it maximizes the amplitude of the sound wave passing through it. The ends of the horn represent the displacement anti-nodes and the center the 'node' of the wave. As the horns perform 20,000 cycles of expansion and contraction per second, they are highly stressed at the nodes and are heated owing to thermo-elastic effects. Considerable temperature rise may be observed in the horn, at the nodal region when working at high amplitudes indicating high stress levels leading to failure of horns due to cyclic loading. The limits for amplitude must therefore be evaluated for the safe working of the horn. Horns made of different materials have different thermo-elastic behaviors and hence different temperatures at the nodes and antinodes. This temperature field can be used as a control mechanism for setting the amplitude/weld parameters. Safe stress levels can be predicted using modal and harmonic analyses followed by a stress analysis to study the effect of cyclic loads. These are achieved using 'Ansys'. The maximum amplitude level obtained from the stress analysis is used as input for 'Comsol' to predict the temperature field. The actual temperature developed in the horn during operation is measured using infrared camera and compared with the simulated temperature. From experiments, it is observed that horn made of titanium had the lowest temperature rise at the critical region and can be expected to operate at amplitudes up to 77 μm without suffering failure due to cyclic loading. The method of predicting thermo-elastic stresses and temperature may be adopted by the industry for operating the horn within the safe stress limits thereby extending the life of the horn. Copyright © 2014 Elsevier B.V. All rights reserved.
Bravo, Alencar; Toubal, Lotfi; Koffi, Demagna; Erchiqui, Fouad
2015-11-02
Despite the knowledge gained in recent years regarding the use of acoustic emissions (AEs) in ecologically friendly, natural fiber-reinforced composites (including certain composites with bio-sourced matrices), there is still a knowledge gap in the understanding of the difference in damage behavior between green and biocomposites. Thus, this article investigates the behavior of two comparable green and biocomposites with tests that better reflect real-life applications, i.e. , load-unloading and creep testing, to determine the evolution of the damage process. Comparing the mechanical results with the AE, it can be concluded that the addition of a coupling agent (CA) markedly reduced the ratio of AE damage to mechanical damage. CA had an extremely beneficial effect on green composites because the Kaiser effect was dominant during cyclic testing. During the creep tests, the use of a CA also avoided the transition to new damaging phases in both composites. The long-term applications of PE green material must be chosen carefully because bio and green composites with similar properties exhibited different damage processes in tests such as cycling and creep that could not be previously understood using only monotonic testing.
Bravo, Alencar; Toubal, Lotfi; Koffi, Demagna; Erchiqui, Fouad
2015-01-01
Despite the knowledge gained in recent years regarding the use of acoustic emissions (AEs) in ecologically friendly, natural fiber-reinforced composites (including certain composites with bio-sourced matrices), there is still a knowledge gap in the understanding of the difference in damage behavior between green and biocomposites. Thus, this article investigates the behavior of two comparable green and biocomposites with tests that better reflect real-life applications, i.e., load-unloading and creep testing, to determine the evolution of the damage process. Comparing the mechanical results with the AE, it can be concluded that the addition of a coupling agent (CA) markedly reduced the ratio of AE damage to mechanical damage. CA had an extremely beneficial effect on green composites because the Kaiser effect was dominant during cyclic testing. During the creep tests, the use of a CA also avoided the transition to new damaging phases in both composites. The long-term applications of PE green material must be chosen carefully because bio and green composites with similar properties exhibited different damage processes in tests such as cycling and creep that could not be previously understood using only monotonic testing. PMID:28793640
Fracture mode during cyclic loading of implant-supported single-tooth restorations.
Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus
2012-08-01
Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. This study compared the mode of fracture and number of cyclic loads until veneering fracture when ceramic and metal ceramic restorations with different veneering ceramics were supported by implants. Thirty-two implant-supported single-tooth restorations were fabricated. The test group was composed of 16 ceramic restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed by descriptive analysis and the Mann-Whitney test (α=.05). The differences in loading cycles until veneering fracture were estimated with the Cox proportional hazards analysis. Veneering fracture was the most frequently observed fracture mode. The severity of fractures was significantly more in ceramic restorations than in metal ceramic restorations. Significantly more loading cycles until veneering fracture were estimated with metal ceramic restorations veneered with glass-ceramics than with other restorations. The metal ceramic restorations demonstrated fewer and less severe fractures and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Gilbert, Jeremy L; Mehta, Manav; Pinder, Bryan
2009-01-01
Modular tapers continue to be used in a wide variety of orthopedic implants. In this study, stainless steel (ASTM F-1568) femoral hip stems combined with Co-Cr-Mo alloy heads (SS/CoCr) were tested in an in vitro fretting corrosion test set-up to assess the propensity for mechanically assisted corrosion. Three different aspects of the modular design were evaluated in this study: (1) material combination compared to CoCr/CoCr, (2) wet versus dry assembly for SS/CoCr couples, and (3) 0- and 6-mm head offset for SS/CoCr couples. Fretting corrosion tests over a range of cyclic loads up to 3300 N were performed, and continuous cyclic loading at 3300 N for 1 M cycles were performed on each group (n = 5). Fretting micromotion was measured as a function of cyclic load on select couples to detect the nature and extent of motion present. The results showed that SS/CoCr couples were more susceptible to fretting corrosion than CoCr/CoCr couples, that dry assembly does not prevent fretting corrosion from taking place but raises the onset load, and that 6-mm offset heads had higher visual evidence of fretting damage but showed mixed statistical results in terms of onset loads and OCP shifts and currents compared to the 0-mm offset samples. Current and voltage excursions over 1 million cycles tended to diminish towards their unloaded control levels but did not fully recover until cyclic loading ceased. Micromotion measurements indicated fretting motions in the range of 10-25 microm where 0-mm heads tended to piston on the trunion, while 6 mm heads tended to rock. (c) 2008 Wiley Periodicals, Inc.
Lawley, Richard J; Klein, Samuel E; Chudik, Steven C
2017-03-01
To evaluate the biomechanical performance of tibial cross-pin (TCP) fixation relative to femoral cross-pin (FCP), femoral interference screw (FIS), and tibial interference screw (TIS) fixation. We randomized 40 porcine specimens (20 tibias and 20 femurs) to TIS fixation (group 1, n = 10), FIS fixation (group 2, n = 10), TCP fixation (group 3, n = 10), or FCP fixation (group 4, n = 10) and performed biomechanical testing to compare ultimate load, stiffness, yield load, cyclic displacement, and load at 5-mm displacement. We performed cross-pin fixation of the looped end and interference screw fixation of the free ends of 9-mm-diameter bovine extensor digitorum communis tendon grafts. Graft fixation constructs were cyclically loaded and then loaded to failure in line with the tunnels. Regarding yield load, FIS was superior to TIS (704 ± 125 N vs 504 ± 118 N, P = .002), TCP was superior to TIS (1,449 ± 265 N vs 504 ± 118 N, P < .001), and TCP was superior to FCP (1,449 ± 265 N vs 792 ± 397 N, P < .001). Cyclic displacement for FCP was superior to TCP. Cyclic displacement for TIS versus FIS showed no statistically significant difference (2.5 ± 1.0 mm vs 2.2 ± 0.6 mm, P = .298). Interference screw fixation consistently failed by graft slippage, whereas TCP fixation failed by tibial bone failure. FCP fixation failed by either femoral bone failure or failure elsewhere in the testing apparatus. Regarding yield load, TCP fixation performed biomechanically superior to the clinically proven FCP at time zero. Because TIS fixation shows the lowest yield strength, it represents the weak link, and combined TCP-FIS fixation theoretically would be biomechanically superior relative to combined FCP-TIS fixation with regard to yield load. Cyclic displacement showed a small difference in favor of FCP over TCP fixation and no difference between TIS and FIS. Time-zero biomechanics of TCP fixation paired with FIS fixation show that this method of fixation can be considered a potential alternative to current practice and may pose clinical benefits in different clinical scenarios of anterior cruciate ligament reconstruction. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee
2005-12-15
To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.
Bhatia, Sanjeev; Civitarese, David M; Turnbull, Travis Lee; LaPrade, Christopher M; Nitri, Marco; Wijdicks, Coen A; LaPrade, Robert F
2016-03-01
Complete radial tears of the medial meniscus have been reported to be functionally similar to a total meniscectomy. At present, there is no consensus on an ideal technique for repair of radial midbody tears of the medial meniscus. Prior attempts at repair with double horizontal mattress suture techniques have led to a reportedly high rate of incomplete healing or healing in a nonanatomic (gapped) position, which compromises the ability of the meniscus to withstand hoop stresses. A newly proposed 2-tunnel radial meniscal repair method will result in decreased gapping and increased ultimate failure loads compared with the double horizontal mattress suture repair technique under cyclic loading. Controlled laboratory study. Ten matched pairs of male human cadaveric knees (average age, 58.6 years; range, 48-66 years) were used. A complete radial medial meniscal tear was made at the junction of the posterior one-third and middle third of the meniscus. One knee underwent a horizontal mattress inside-out repair, while the contralateral knee underwent a radial meniscal repair entailing the same technique with a concurrent novel 2-tunnel repair. Specimens were potted and mounted on a universal testing machine. Each specimen was cyclically loaded 1000 times with loads between 5 and 20 N before experiencing a load to failure. Gap distances at the tear site and failure load were measured. The 2-tunnel repairs exhibited a significantly stronger ultimate failure load (median, 196 N; range, 163-212 N) than did the double horizontal mattress suture repairs (median, 106 N; range, 63-229 N) (P = .004). In addition, the 2-tunnel repairs demonstrated decreased gapping at all testing states (P < .05) with a final measured gapping of 1.7 mm and 4.1 mm after 1000 cycles for the 2-tunnel and double horizontal mattress suture repairs, respectively. The 2-tunnel repairs displayed significantly less gapping distance after cyclic loading and had significantly stronger ultimate failure loads compared with the double horizontal mattress suture repairs. Complete radial tears of the medial meniscus significantly decrease the ability of the meniscus to dissipate tibiofemoral loads, predisposing patients to early osteoarthritis. Improving the ability to repair medial meniscal radial tears in a way that withstands cyclic loads and heals in an anatomic position could significantly improve patient healing rates and result in improved preservation of the articular cartilage of the medial compartment of the knee. The 2-tunnel repair may be a more reliable and stronger repair option for midbody radial tears of the medial meniscus. Clinical studies are warranted to further evaluate these repairs. © 2015 The Author(s).
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, R. G.; Zanganeh, M.
2014-01-01
This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.
NASA Technical Reports Server (NTRS)
Blichfeldt, B.; Mccarty, J. E.
1972-01-01
Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.
Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure
Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne
2013-01-01
The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321
NASA Astrophysics Data System (ADS)
Nasri, Mohamed Aziz; Robert, Camille; Ammar, Amine; El Arem, Saber; Morel, Franck
2018-02-01
The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In order to analyse the applicability and the performance of the use of a space-time separated representation, the simulations are carried out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the standard solver.
Transitions from trees to cycles in adaptive flow networks
NASA Astrophysics Data System (ADS)
Martens, Erik A.; Klemm, Konstantin
2017-11-01
Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.
Observation of Failure and Domain Switching in Lead Zirconate Titanate Ceramics
NASA Astrophysics Data System (ADS)
Okayasu, Mitsuhiro; Sugiyama, Eriko; Sato, Kazuto; Mizuno, Mamoru
The mechanical and electrical properties (electromechanical coupling coefficient, piezoelectric constant and dielectric constant) of lead zirconate titanate (PZT) ceramics are investigated during mechanical static and cyclic loading. There are several failure characteristics which can alter the material properties of PZT ceramics. The elastic constant increases and electrical properties decrease with increasing the applied load. This is due to the internal strain arising from the domain switching. In this case, 90° domain switching occurs anywhere in the samples as the sample is loaded. It is also apparent that electrogenesis occurs several times during cyclic loading to the final fracture. This occurrence is related to the domain switching. The elastic constant and electrical properties can decrease because of crack generation in the PZT ceramics. Moreover, the elastic constant increases with increase of the mechanical load and decreases with decrease of the load. On the contrary, the opposite sense of change of the electrical properties is observed.
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
Local deformation behavior of surface porous polyether-ether-ketone.
Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken
2017-01-01
Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-03-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-02-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds
NASA Technical Reports Server (NTRS)
Achenbach, J. D.; Tang, Z.
1999-01-01
In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.
Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S
2009-01-01
Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.
DEM study of fabric features governing undrained post-liquefaction shear deformation of sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min
In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less
DEM study of fabric features governing undrained post-liquefaction shear deformation of sand
Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min; ...
2016-10-05
In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less
NASA Astrophysics Data System (ADS)
Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen
2016-03-01
To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.
Microcracking and Healing in Semibrittle Salt-Rock: Elastic and Plastic Behavior
NASA Astrophysics Data System (ADS)
Ding, J.; Chester, F. M.; Chester, J. S.; Shen, X.; Arson, C. F.
2017-12-01
Microcracking and healing during semibrittle deformation are important processes that affect physical properties such as elastic moduli and permeability. We study these processes through triaxial compression tests involving cyclic differential loading and isostatic-holds on synthetic salt-rock at room temperature and low confining pressure (Pc, 1 to 4 MPa). The salt samples are produced by uniaxial pressing of granular (300 µm dia.) halite to 75 MPa at 150˚C for 10^3 s, to create low-porosity ( 5%) aggregates of nearly equant, work-hardened grains. Alternating large- and small-load cycles are performed to track the evolution of plastic and elastic properties, respecitively, with progressive strain to 8% axial shortening. 24-hour holds are carried out at about 4% axial shortening followed by renewed cyclic loading to investigate healing. During large load cycles samples yield and exhibit distributed flow with dilatancy and small work hardening. Young's Modulus (YM) decreases and then tends to stabilize, while Poisson's Ratio (PR) increases at a reducing rate, with progressive strain. Microstructures at sequential stages show that opening-mode grain-boundary cracking, grain-boundary sliding, and some intracrystalline plasticity are the dominant deformation processes. Opening and shear occur preferentially on boundaries that are parallel and inclined to the shortening axis, respectively, leading to progressive redistribution of porosity. Opening-mode grain-boundary cracks increase in number and aperature with strain, and are linked by sliding grain-boundaries to form en echelon arrays. After a 24-hour hold, samples show yielding and flow behavior consistent with that prior to the hold, whereas YM and PR are reset to the same values documented at zero strain and subsequently evolve with additional strain similar to that documented at smaller strains prior to the hold. Open grain-boundary cracks are not closed or healed during the hold. Observations suggest that changes in elastic properties in the semibrittle salt-rock reflect weakening and healing of grain-boundaries undergoing sliding rather than progressive dilatancy or healing of opening-mode cracks. Findings are being used to inform and develop continuum damage mechanics models of semibrittle deformation in polycrystalline aggregates
Fatigue behavior of resin-modified monolithic CAD-CAM RNC crowns and endocrowns.
Rocca, G T; Sedlakova, P; Saratti, C M; Sedlacek, R; Gregor, L; Rizcalla, N; Feilzer, A J; Krejci, I
2016-12-01
To evaluate the influence of different types of modifications with resin on fatigue resistance and failure behavior of CAD-CAM resin nano ceramic (RNC) restorations for maxillary first premolars. Sixty standardized resin composite root dies received CAD-CAM RNC endocrowns (n=30) and crowns (n=30) (Lava Ultimate, 3M Espe). Restorations were divided into six groups: full anatomic endocrowns (group A) and crowns (group D), buccal resin veneered endocrowns (group B) and crowns (group E) and buccal resin veneered endocrowns (group C) and crowns (group F) with a central groove resin filling. A nano-hybrid resin composite was used to veneer the restorations (Filtek Supreme, 3M Espe). All specimens were first submitted to thermo-mechanical cyclic loading (1.7Hz, 49N, 600000 cycles, 1500 thermo-cycles) and then submitted to cyclic isometric stepwise loading (5Hz) until completion of 105000 cycles or failure after 5000 cycles at 200N, followed by 20000 cycles at 400N, 600N, 800N, 1000N and 1200N. In case of fracture, fragments were analyzed using SEM and modes of failure were determined. Results were statistically analyzed by Kaplan-Meier life survival analysis and log rank test (p=0.05). The differences in survival between groups were not statistically significant, except between groups D and F (p=0.039). Endocrowns fractured predominantly with a mesio-distal wedge-opening fracture (82%). Partial cusp fractures were observed above all in crowns (70%). Analysis of the fractured specimens revealed that the origin of the fracture was mainly at the occlusal contact points of the stepwise loading. Veneering of CAD-CAM RNC restorations has no influence on their fatigue resistance except when monolithic crowns are modified on their occlusal central groove. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lavagnino, Michael; Bedi, Asheesh; Walsh, Christopher P; Sibilsky Enselman, Elizabeth R; Sheibani-Rad, Shahin; Arnoczky, Steven P
2014-06-01
Tendons are viscoelastic tissues that deform (elongate) in response to cyclic loading. However, the ability of a tendon to recover this elongation is unknown. Tendon length significantly increases after in vivo or in vitro cyclic loading, and the ability to return to its original length through a cell-mediated contraction mechanism is an age-dependent phenomenon. Controlled laboratory study. In vitro, rat tail tendon fascicles (RTTfs) from Sprague-Dawley rats of 3 age groups (1, 3, and 12 months) underwent 2% cyclic strain at 0.17 Hz for 2 hours, and the percentages of elongation were determined. After loading, the RTTfs were suspended for 3 days under tissue culture conditions and photographed daily to determine the amount of length contraction. In vivo, healthy male participants (n = 29; age, 19-49 years) had lateral, single-legged weightbearing radiographs taken of the knee at 60° of flexion immediately before, immediately after, and 24 hours after completing eccentric quadriceps loading exercises on the dominant leg to fatigue. Measurements of patellar tendon length were taken from the radiographs, and the percentages of tendon elongation and subsequent contraction were calculated. In vitro, cyclic loading increased the length of all RTTfs, with specimens from younger (1 and 3 months) rats demonstrating significantly greater elongation than those from older (12 months) rats (P = .009). The RTTfs contracted to their original length significantly faster (P < .001) and in an age-dependent fashion, with younger animals contracting faster. In vivo, repetitive eccentric loading exercises significantly increased patellar tendon length (P < .001). Patellar tendon length decreased 24 hours after exercises (P < .001) but did not recover completely (P < .001). There was a weak but significant (R (2) = 0.203, P = .014) linear correlation between the amount of tendon contraction and age, with younger participants (<30 years) demonstrating significantly more contraction (P = .014) at 24 hours than older participants (>30 years). Cyclic tendon loading results in a significant increase in tendon elongation under both in vitro and in vivo conditions. Tendons in both conditions demonstrated an incomplete return to their original length after 24 hours, and the extent of this return was age dependent. The age- and time-dependent contraction of tendons, elongated after repetitive loading, could result in transient alterations in the mechanobiological environment of tendon cells. This, in turn, could induce the onset of catabolic changes associated with the pathogenesis of tendinopathy. These results suggest the importance of allowing time for contraction between bouts of repetitive exercise and may explain why age is a predisposing factor in tendinopathy. © 2014 The Author(s).
Fatigue failure of dentin-composite disks subjected to cyclic diametral compression
Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex
2015-01-01
Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269
Does Abutment Collar Length Affect Abutment Screw Loosening After Cyclic Loading?
Siadat, Hakimeh; Pirmoazen, Salma; Beyabanaki, Elaheh; Alikhasi, Marzieh
2015-07-01
A significant vertical space that is corrected with vertical ridge augmentation may necessitate selection of longer abutments, which would lead to an increased vertical cantilever. This study investigated the influence of different abutment collar heights on single-unit dental implant screw-loosening after cyclic loading. Fifteen implant-abutment assemblies each consisted of an internal hexagonal implant were randomly assigned to 3 groups: Group1, consisting of 5 abutments with 1.5 mm gingival height (GH); Group2, 5 abutments with 3.5 mm GH; and Group3, 5 abutments with 5.5 mm GH. Each specimen was mounted in transparent auto-polymerizing acrylic resin block, and the abutment screw was tightened to 35 Ncm with an electric torque wrench. After 5 minutes, initial torque loss (ITL) was recorded for all specimens. Metal crowns were fabricated with 45° occlusal surface and were placed on the abutments. A cyclic load of 75 N and frequency of 1 Hz were applied perpendicular to the long axis of each specimen. After 500 000 cycles, secondary torque loss (STL) was recorded. One-way ANOVA analysis was used to evaluate the effects of abutment collar height before and after cyclic loading. One-way ANOVA showed that ITL among the groups was not significantly different (P = .52), while STL was significantly different among the groups (P = .008). Post-hoc Tukey HSD tests showed that STL values were significantly different between the abutments with 1.5 mm GH (Group1) and with 5.5 mm GH (Group3) (P = .007). A paired comparison t-test showed that cyclic loading significantly influenced the STL in comparison with the ITL in each group. Within the limitations of this study, it can be concluded that increase in height of the abutment collar could adversely affect the torque loss of the abutment screw.
Karim, Lamya; Van Vliet, Miranda; Bouxsein, Mary L
2018-01-01
Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties. Copyright © 2016. Published by Elsevier Inc.
The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters
NASA Technical Reports Server (NTRS)
Harvey, K. W.
1974-01-01
The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.
Accelerated testing of composites
NASA Technical Reports Server (NTRS)
Papazian, H. A.
1983-01-01
It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.
Uddameri, Venkatesh; Singaraju, Sreeram; Hernandez, E Annette
2018-02-21
Seasonal and cyclic trends in nutrient concentrations at four agricultural drainage ditches were assessed using a dataset generated from a multivariate, multiscale, multiyear water quality monitoring effort in the agriculturally dominant Lower Rio Grande Valley (LRGV) River Watershed in South Texas. An innovative bootstrap sampling-based power analysis procedure was developed to evaluate the ability of Mann-Whitney and Noether tests to discern trends and to guide future monitoring efforts. The Mann-Whitney U test was able to detect significant changes between summer and winter nutrient concentrations at sites with lower depths and unimpeded flows. Pollutant dilution, non-agricultural loadings, and in-channel flow structures (weirs) masked the effects of seasonality. The detection of cyclical trends using the Noether test was highest in the presence of vegetation mainly for total phosphorus and oxidized nitrogen (nitrite + nitrate) compared to dissolved phosphorus and reduced nitrogen (total Kjeldahl nitrogen-TKN). Prospective power analysis indicated that while increased monitoring can lead to higher statistical power, the effect size (i.e., the total number of trend sequences within a time-series) had a greater influence on the Noether test. Both Mann-Whitney and Noether tests provide complementary information on seasonal and cyclic behavior of pollutant concentrations and are affected by different processes. The results from these statistical tests when evaluated in the context of flow, vegetation, and in-channel hydraulic alterations can help guide future data collection and monitoring efforts. The study highlights the need for long-term monitoring of agricultural drainage ditches to properly discern seasonal and cyclical trends.
Cyclic strain alters the expression and release of angiogenic factors by human tendon cells.
Mousavizadeh, Rouhollah; Khosravi, Shahram; Behzad, Hayedeh; McCormack, Robert G; Duronio, Vincent; Scott, Alex
2014-01-01
Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.
Cyclic Strain Alters the Expression and Release of Angiogenic Factors by Human Tendon Cells
Mousavizadeh, Rouhollah; Khosravi, Shahram; Behzad, Hayedeh; McCormack, Robert G.; Duronio, Vincent; Scott, Alex
2014-01-01
Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy. PMID:24824595
Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1996-01-01
The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Kamantsev, I. S.; Zadvorkin, S. M.; Drukarenko, N. A.; Goruleva, L. S.; Veselova, V. E.
2017-12-01
An approach to the estimation of the residual durability of structural elements in view of their initial stress-strain state is proposed. The adequacy of the developed approach is confirmed by experiments on cyclic loading of specimens without pronounced stress concentrators simulating the work of real structural elements under conditions of overshooting the total stresses causing local plastic deformation of the material, with regard for residual stresses.
Madsen, Wes; Yaseen, Zaneb; LaFrance, Russell; Chen, Tony; Awad, Hani; Maloney, Michael; Voloshin, Ilya
2013-06-01
The purpose of this study was to determine the effect of coracoclavicular (CC) fixation on biomechanical stability in type IIB distal clavicle fractures fixed with plate and screws. Twelve fresh-frozen matched cadaveric specimens were used to create type IIB distal clavicle fractures. Dual-energy x-ray absorptiometry (DEXA) scans ensured similar bone quality. Group 1 (6 specimens) was stabilized with a superior precontoured distal clavicle locking plate and supplemental suture anchor CC fixation. Group 2 (6 specimens) followed the same construct without CC fixation. Each specimen was cyclically loaded in the coronal plane at 40 to 80 N for 17,500 cycles. Load-to-failure testing was performed on the specimens that did not fail cyclic loading. Outcome measures included mode of failure and the number of cycles or load required to create 10 mm of displacement in the construct. All specimens (12 of 12) completed cyclic testing without failure and underwent load-to-failure testing. Group 1 specimens failed at a mean of 808.5 N (range, 635.4 to 952.3 N), whereas group 2 specimens failed at a mean of 401.3 N (range, 283.6 to 656.0 N) (P = .005). Group 1 specimens failed by anchor pullout without coracoid fracture (4 of 6) and distal clavicle fracture fragment fragmentation (1 of 6); one specimen did not fail at the maximal load the materials testing machine was capable of exerting (1,000 N). Group 2 specimens failed by distal clavicle fracture fragment fragmentation (3 of 6) and acromioclavicular (AC) joint displacement (1 of 6); 2 specimens did not fail at the maximal load of the materials testing machine. During cyclic loading, type IIB distal clavicle fractures with and without CC fixation remain stable. CC fixation adds stability to type IIB distal clavicle fractures fixed with plate and screws when loaded to failure. CC fixation for distal clavicle fractures is a useful adjunct to plate-and-screw fixation to augment stability of the fracture. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
SSME structural computer program development. Volume 2: BOPACE users manual
NASA Technical Reports Server (NTRS)
Vos, R. G.
1973-01-01
A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.
1986-09-01
for each mode and heat treament condition are plotted versus the average peak strain, £_) ea ^. in Figures 4.10, 4.11, and 4.12. For Mode 1 resonance...specimen reversed its relative position to the other heat treament conditions (i.e., it showed the lowest damping levels in Modes 2 and 3). However, as...LATTICE PARAMETERS FOR EACH HEAT TREATMENT CONDITION OF INCRAMUTE Heat Treament Lattice Parameter (Angstrons) AQ 3.7484 1 Hour Age 3.737864 2 Hour Age
Evaluation of the cyclic behavior of aircraft turbine disk alloys
NASA Technical Reports Server (NTRS)
Cowles, B. A.; Sims, D. L.; Warren, J. R.
1978-01-01
Five aircraft turbine disk alloys representing various strength and processing histories were evaluated at 650 C to determine if recent strength advances in powder metallurgy have resulted in corresponding increases in low cycle fatigue (LCF) capability. Controlled strain LCF tests and controlled load crack propagation tests were performed. Results were used for direct material comparisons and in the analysis of an advanced aircraft turbine disk, having a fixed design and operating cycle. Crack initiation lives were found to increase with increasing tensile yield strength, while resistance to fatigue crack propagation generally decreased with increasing strength.
Thermomechanical Multiaxial Fatigue Testing Capability Developed
NASA Technical Reports Server (NTRS)
1996-01-01
Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.
Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns
ATTIA, Ahmed
2010-01-01
Objective This study investigated the durability of repaired all-ceramic crowns after cyclic loading. Material and methods Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20). Fracture site was treated before repair as follows: roughening with diamond bur, (DB); air abrasion using 50 µm Al2O3, (AA) and silica coating using Cojet system followed by silane application, (SC). Control group (CG) 20 specimens were left without fracture. Palatal cusps were repaired using composite resin. Specimens were stored in water bath at 37°C for one week. Ten specimens of each group were subjected to cyclic loading. Fracture load (N) was recorded for each specimen using a universal testing machine. Two-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (α=.05) were used for statistical analysis. Results There was statistically significant difference between control and tested groups, (p<0.001). Post Hoc analysis with the Tukey HSD test showed that cyclic loading fatigue significantly decreased means fracture load of control and test groups as follows (CG, 950.4±62.6 / 872.3±87.4, P = 0.0004), (DB, 624.2 ±38 / 425.5± 31.7, P <.001), (AA, 711.5 ±15.5 / 490 ± 25.2, p <0.001) and (SC, 788.7 ± 18.1 / 610.2 ± 25.2, P <.001), while silica coating and silane application significantly increased fracture load of repaired crowns (p<0.05). Conclusion Repair of fractured Inceram zirconia crowns after chairside treatment of the fracture site by silica coating and silane application could improve longevity of repaired In-ceram zirconia crowns. PMID:20485932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidenaar, W.A.
1992-12-01
Centrally notched (hole), cross-ply, ((0/90) sub 2) sub s, and unidirectional, (0) sub 8 laminates of Silicon Carbide fiber-reinforced Aluminosilicate glass, SiC/1723, were fatigue tested under tension-compression loading with a load ratio of -1. Damage accumulated continuously for both lay-ups, leading to eventual failure and a reduced fatigue life. Critical damage in the cross-ply consisted of longitudinal cracks in the 90 deg plies growing and combining with transverse cracks to effectively eliminate the 90 deg plies' load carrying capability and allowing the specimen to buckle. Critical damage in the unidirectional lay-up consisted of longitudinal cracks which initiated at the shearmore » stress concentration points on the hole periphery. Reversed cyclic loading caused continued crack growth at maximum stresses below the tension-tension fatigue limit. The cross-ply lay-up appeared insensitive to the hole, while critical damage in the unidirectional lay-up was dependent on the shear stress concentrations at the hole.... Ceramic matrix composite, Tension-compression fatigue, Notched specimen.« less
Intervertebral disc response to cyclic loading--an animal model.
Ekström, L; Kaigle, A; Hult, E; Holm, S; Rostedt, M; Hansson, T
1996-01-01
The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 percent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the initial elastic response.
NASA Astrophysics Data System (ADS)
Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.
2011-06-01
Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yi., E-mail: zhaoyi091218@163.com; Xu, Li. Hua.
This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of themore » ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.« less
Cyclic loading of simulated fault gouge to large strains
NASA Astrophysics Data System (ADS)
Jones, Lucile M.
1980-04-01
As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).
NASA Astrophysics Data System (ADS)
Longbiao, Li
2018-02-01
In this paper, the strength degradation of non-oxide and oxide/oxide fiber-reinforced ceramic-matrix composites (CMCs) subjected to cyclic loading at elevated temperatures in oxidative environments has been investigated. Considering damage mechanisms of matrix cracking, interface debonding, interface wear, interface oxidation and fibers fracture, the composite residual strength model has been established by combining the micro stress field of the damaged composites, the damage models, and the fracture criterion. The relationships between the composite residual strength, fatigue peak stress, interface debonding, fibers failure and cycle number have been established. The effects of peak stress level, initial and steady-state interface shear stress, fiber Weibull modulus and fiber strength, and testing temperature on the degradation of composite strength and fibers failure have been investigated. The evolution of residual strength versus cycle number curves of non-oxide and oxide/oxide CMCs under cyclic loading at elevated temperatures in oxidative environments have been predicted.
Time- and temperature-dependent failures of a bonded joint
NASA Astrophysics Data System (ADS)
Sihn, Sangwook
This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.
2003-01-01
Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.
NASA Astrophysics Data System (ADS)
Chen, Si; An, Tong; Qin, Fei; Chen, Pei
2017-10-01
Through-silicon vias (TSVs) have become an important technology for three-dimensional integrated circuit (3D IC) packaging. Protrusion of electroplated Cu-filled vias is a critical reliability issue for TSV technology. In this work, thermal cycling tests were carried out to identify how the microstructure affects protrusion during thermal cycling. Cu protrusion occurs when the loading temperature is higher than 149°C. During the first five thermal cycles, the grain size of Cu plays a dominant role in the protrusion behavior. Larger Cu grain size before thermal cycling results in greater Cu protrusion. With increasing thermal cycle number, the effect of the Cu grain size reduces and the microstrain begins to dominate the Cu protrusion behavior. Higher magnitude of microstrain within Cu results in greater protrusion increment during subsequent thermal cycles. When the thermal cycle number reaches 25, the protrusion rate of Cu slows down due to strain hardening. After 30 thermal cycles, the Cu protrusion stabilizes within the range of 1.92 μm to 2.09 μm.
Bithermal fatigue: A simplified alternative to thermomechanical fatigue
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.
1988-01-01
A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.
Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480
NASA Technical Reports Server (NTRS)
Majumdar, S.; Antolovich, S. D.; Milligan, W. W.
1985-01-01
PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.
Fatigue Life Estimation under Cumulative Cyclic Loading Conditions
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.
1999-01-01
The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.
DOT National Transportation Integrated Search
1999-01-01
Deck deterioration is responsible for the majority of deficient bridge ratings in the United States (Sotiropoulos & GangaRao, 1993). Subject to dynamic loading, cyclic loading, and occasional overloading, bridge decks are the most severely stressed e...
Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty.
Roche, Christopher P; Stroud, Nicholas J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Dipaola, Matthew J
2013-12-01
Superior glenoid wear is a common challenge with reverse shoulder arthroplasty and, if left uncorrected, can result in superior glenoid tilt, which increases the risk of aseptic glenoid loosening. This study evaluates the impact of an E2 superior defect on reverse shoulder glenoid fixation in composite scapulae after correction of glenoid tilt by use of 2 different glenoid reaming techniques: eccentric reaming and off-axis reaming. A superior glenoid defect was created in 14 composite scapulae. The superior defect was corrected by 2 different glenoid reaming techniques: (1) eccentric reaming with implantation of a standard glenoid baseplate and (2) off-axis reaming with implantation of a superior-augment glenoid baseplate. Each corrected superior-defect scapula was then cyclically loaded (along with a control group consisting of 7 non-worn scapulae) for 10,000 cycles at 750 N; glenoid baseplate displacement was measured for each group to quantify fixation before and after cyclic loading. Regardless of the glenoid reaming technique or the glenoid baseplate type, each standard and superior-augment glenoid baseplate remained well fixed in this superior-defect model scenario after cyclic loading. No differences in baseplate displacement were observed either before or after cyclic loading between groups. Our results suggest that either glenoid reaming technique may be used to achieve fixation in the clinically challenging situation of superior wear with reverse shoulder arthroplasty. Basic science, biomechanical study. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Geomechanical rock properties of a basaltic volcano
NASA Astrophysics Data System (ADS)
Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo
2015-06-01
In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.
Comparison between single-row and double-row rotator cuff repair: a biomechanical study.
Milano, Giuseppe; Grasso, Andrea; Zarelli, Donatella; Deriu, Laura; Cillo, Mario; Fabbriciani, Carlo
2008-01-01
The aim of this study was to compare the mechanical behavior under cyclic loading test of single-row and double-row rotator cuff repair with suture anchors in an ex-vivo animal model. For the present study, 50 fresh porcine shoulders were used. On each shoulder, a crescent-shaped full-thickness tear of the infraspinatus was performed. Width of the tendon tear was 2 cm. The lesion was repaired using metal suture anchors. Shoulders were divided in four groups, according the type of repair: single-row tension-free repair (Group 1); single-row tension repair (Group 2); double-row tension-free repair (Group 3); double-row tension repair (Group 4); and a control group. Specimens were subjected to a cyclic loading test. Number of cycles at 5 mm of elongation and at failure, and total elongation were calculated. Single-row tension repair showed significantly poorest results for all the variables considered, when compared with the other groups. Regarding the mean number of cycles at 5 mm of elongation and at failure, there was a nonsignificant difference between Groups 3 and 4, and both of them were significantly greater than Group 1. For mean total elongation, the difference between Groups 1, 3, and 4 was not significant, but all of them were significantly lower than the control group. A single-row repair is particularly weak when performed under tension. Double-row repair is significantly more resistant to cyclic displacement than single-row repair in both tension-free and tension repair. Double-row repair technique can be primarily considered for large, unstable rotator cuff tears to improve mechanical strength of primary fixation of tendons to bone.
NASA Astrophysics Data System (ADS)
Li, L. L.; Zhang, P.; Zhang, Z. J.; Zhang, Z. F.
2014-01-01
Incoherent twin boundaries (ITBs) are widespread and play a crucial role in unidirectional deformation behavior of materials, however, the intrinsic role of individual ITB under cyclic loading remains elusive. Here we show the fatigue cracking behavior of Cu bicrystal with an ITB as its sole interface for the first time. The slip bands (SBs) could transfer through the ITB; meanwhile, the ITB could migrate with the motion of partial dislocations. Both the penetrability and mobility contribute to the higher fatigue cracking resistance of the ITB and hence the fatigue crack nucleates along the SBs preferentially. These new findings not only shed light on the fatigue cracking mechanisms of a penetrable boundary with direct evidence but also could provide important implications for future interfacial optimization of metallic materials.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou
2018-03-01
The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.
Elevated Temperature Crack Growth Behavior in HSCT Structural Materials
NASA Technical Reports Server (NTRS)
Saxena, Ashok
1998-01-01
Structures in super-sonic aircraft are subjected to conditions of high temperature and cyclic and sustained loading for extended periods of time. The durability of structures fabricated from aluminum and certain titanium alloys in such demanding conditions is of primary concern to the designers and manufacturers of futuristic transport aircraft. Accordingly, the major goal of this project was to evaluate the performance and durability of high temperature aluminum and titanium alloys for use in high speed civil transport (HSCT) structures. Additional goals were to develop time-dependent fracture mechanics methodology and test methods for characterizing and predicting elevated temperature crack growth behavior in creep-brittle materials such as ones being considered for use in HSCT structures and to explore accelerated methods of simulating microstructural degradation during service and measuring degraded properties in these materials.
The cyclic fatigue behavior of adhesive joints
NASA Astrophysics Data System (ADS)
Kinloch, A. J.; Toh, T.
1995-06-01
In the last six months we have: (1) Concentrated our efforts on the fatigue failure of carbon-fiber PEEK/AFl63 lap joints, and in particular we have started to predict the life time of single-lap joints under cyclic fatigue loading. The analysis is based on data obtained from double cantilever beam (DCB) fracture mechanics tests; (2) Further, we have been successful in measuring the rate of crack growth in lap joints during fatigue fracture using ultrasonic scanning; (3) Preliminary test data on the static fracture of glass-fiber reinforced poly(phenylene sulphide) (PPS)/AF163 joints have also been studied; and (4) A comparison has been made in computing the critical strain energy release rate G(sub c) for the glass-fiber PPS/AF163 joints based on the compliance method, beam theory and corrected beam theory. The last method accounts for large non-linear deflections and the associated crack root rotations along with the necessary corrections for the increase in stiffness introduced by the presence of end blocks.
Biomechanical testing of circumferential instrumentation after cervical multilevel corpectomy.
Hartmann, Sebastian; Thomé, Claudius; Keiler, Alexander; Fritsch, Helga; Hegewald, Aldemar Andres; Schmölz, Werner
2015-12-01
Biomechanical investigation. This study describes ex vivo evaluation of the range of motion (ROM) to characterize the stability and need for additional dorsal fixation after cervical single-level, two-level or multilevel corpectomy (CE) to elucidate biomechanical differences between anterior-only and supplemental dorsal instrumentation. Twelve human cervical cadaveric spines were loaded in a spine tester with pure moments of 1.5 Nm in lateral bending (LB), flexion/extension (FE), and axial rotation (AR), followed by two cyclic loading periods for three-level corpectomies. After each cyclic loading session, flexibility tests were performed for anterior-only instrumentation (group_1, six specimens) and circumferential instrumentation (group_2, six specimens). The flexibility tests for all circumferential instrumentations showed a significant decrease in ROM in comparison with the intact state and anterior-only instrumentations. In comparison with the intact state, supplemental dorsal instrumentation after three-level CE reduced the ROM to 12% (±10%), 9% (±12%), and 22% (±18%) in LB, FE, and AR, respectively. The anterior-only construct outperformed the intact state only in FE, with a significant ROM reduction to 57% (±35 %), 60% (±27%), and 62% (±35%) for one-, two- and three-level CE, respectively. The supplemental dorsal instrumentation provided significantly more stability than the anterior-only instrumentation regardless of the number of levels resected and the direction of motion. After cyclic loading, the absolute differences in stability between the two instrumentations remained significant while both instrumentations showed a comparable increase of ROM after cyclic loading. The large difference in the absolute ROM of anterior-only compared to circumferential instrumentations supports a dorsal support in case of three-level approaches.
Virk, Mandeep S; Bruce, Benjamin; Hussey, Kristen E; Thomas, Jacqueline M; Luthringer, Tyler A; Shewman, Elizabeth F; Wang, Vincent M; Verma, Nikhil N; Romeo, Anthony A; Cole, Brian J
2017-02-01
To compare the biomechanical performance of medial row suture placement relative to the musculotendinous junction (MTJ) in a cadaveric transosseous equivalent suture bridge (TOE-SB) double-row (DR) rotator cuff repair (RCR) model. A TOE-SB DR technique was used to reattach experimentally created supraspinatus tendon tears in 9 pairs of human cadaveric shoulders. The medial row sutures were passed either near the MTJ (MTJ group) or 10 mm lateral to the MTJ (rotator cuff tendon [RCT] group). After the supraspinatus repair, the specimens underwent cyclic loading and load to failure tests. The localized displacement of the markers affixed to the tendon surface was measured with an optical tracking system. The MTJ group showed a significantly higher (P = .03) medial row failure (5/9; 3 during cyclic testing and 2 during load to failure testing) compared with the RCT group (0/9). The mean number of cycles completed during cyclic testing was lower in the MTJ group (77) compared with the RCT group (100; P = .07) because 3 specimens failed in the MTJ group during cyclic loading. There were no significant differences between the 2 study groups with respect to biomechanical properties during the load to failure testing. In a cadaveric TOE-SB DR RCR model, medial row sutures through the MTJ results in a significantly higher rate of medial row failure. In rotator cuff tears with tendon tissue loss, passage of medial row sutures through the MTJ should be avoided in a TOE-SB RCR technique because of the risk of medial row failure. Copyright © 2016. Published by Elsevier Inc.
Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.
Kassem, Amr S; Atta, Osama; El-Mowafy, Omar
2012-01-01
The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.
Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter; Pape, Dietrich
2012-02-01
To compare the biomechanical properties and footprint coverage of a single-row (SR) repair using a modified suture configuration versus a double-row (DR) suture-bridge repair in small to medium and medium to large rotator cuff tears. We created 25- and 35-mm artificial defects in the rotator cuff of 24 human cadaveric shoulders. The reconstructions were performed as either an SR repair with triple-loaded suture anchors (2 to 3 anchors) and a modified suture configuration or a modified suture-bridge DR repair (4 to 6 anchors). Reconstructions were cyclically loaded from 10 to 60 N. The load was increased stepwise up to 100, 180, and 250 N. Cyclic displacement and load to failure were determined. Furthermore, footprint widths were quantified. In the 25-mm rupture, ultimate load to failure was 533 ± 107 N for the SR repair and 681 ± 250 N for the DR technique (P ≥ .21). In the 35-mm tear, ultimate load to failure was 792 ± 122 N for the SR reconstruction and 891 ± 174 N for the DR reconstruction (P ≥ .28). There were no statistically significant differences for both tested rupture sizes. Cyclic displacement showed no significant differences between the tested configurations at 60 N (P = .563), 100 N (P = .171), 180 N (P = .211), and 250 N (P = .478) for the 25-mm tear. For the 35-mm tear, cyclic displacement showed significantly lower gap formation for the SR reconstruction at 180 N (P = .037) and 250 N (P = .020). No significant differences were found at 60 N (P = .296) and 100 N (P = .077). A significantly greater footprint width (P = .028) was seen for the DR repair (16.2 mm) compared with the SR repair (13.8 mm). However, both reconstructions were able to achieve complete footprint coverage compared with the initial footprint. The tested SR repair using a modified suture configuration was similar in load to failure and cyclic displacement to the DR suture-bridge technique independent of the tested initial sizes of the rupture. The tested DR repair consistently restored a larger footprint than the SR method. However, both constructs achieved complete footprint coverage. SR repairs with modified suture configurations might combine the biomechanical advantages and increased footprint coverage that are described for DR repairs without increasing the overall costs of the reconstruction. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Le Guen, Morgan; Naline, Emmanuel; Grassin-Delyle, Stanislas; Devillier, Philippe; Faisy, Christophe
2015-01-01
Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress during mechanical ventilation. PMID:26011598
Mayr, Hermann O; Hube, Robert; Bernstein, Anke; Seibt, Alexander B; Hein, Werner; von Eisenhart-Rothe, Ruediger
2007-06-01
The goal of this study was to test fixation properties of microporous pure beta-tricalcium phosphate (TCP) plugs (porosity 40%) for press-fit fixation of the ACL graft using patellar tendons with and without bone blocks. We set out to establish whether it is possible, in this way, to obtain results comparable with those of interference screw fixation of bone-tendon-bone (BTB) grafts in terms of cyclic loading and load-to-failure. In a bovine model 30 ACL grafts were fixed in tibial drill holes, divided into three groups: 10 BTB grafts fixed with TCP press-fit plugs (7x25 mm), 10 pure patellar tendon grafts with TCP press-fit plugs (7x25 mm), and 10 BTB grafts with metal interference screws (7x25 mm). All grafts were tested by cyclic loading (50-200 N) and loaded until failure in a tensiometer. Under cyclic loading one interference screw fixation failed. None of the TCP plug fixations failed. After 1500 cycles the displacement of the graft in the drill hole for BTB fixed with screws was 3.6+/-7.8 mm, for BTB/TCP plugs 1.6+/-3.4 mm, and for the pure tendon/TCP grafts 1.4+/-0.4 mm. Regarding cyclic loading the pure tendon/TCP system was significantly superior to BTB (p=0.007). The load-to-failure for the BTB/interference screw group was 908+/-539 N with a stiffness of 94+/-36 N/mm, 936+/-245 N for the BTB/TCP cylinder group with a stiffness of 98+/-12 N/mm, and 673+/-159 N for the pure tendon/TCP group with a stiffness of 117+/-9 N/mm. In terms of pull-out load the BTB/TCP system was significantly better than the pure tendon/TCP group (p=0.011). However, pure tendon/TCP grafts achieved significantly greater stiffness (p=0.002) than the BTB system. Press-fit fixation with microporous pure beta-TCP plugs of BTB grafts or patellar tendon grafts without bone blocks for ACL reconstruction leads to primary stability comparable with that achieved by fixation with metal interference screws in case of BTB grafts.
DOT National Transportation Integrated Search
2012-04-01
Asphalt pavement ages continuously, beginning with production and construction and thoughout its service life. "Aging" refers to many changes in asphalt properties over time that generally result in increased pavement damage. Because aging is often a...
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1994-01-01
Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.
Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
Cowin, Stephen C; Gailani, Gaffar; Benalla, Mohammed
2009-09-13
The governing equations for the theory of poroelastic materials with hierarchical pore space architecture and compressible constituents undergoing small deformations are developed. These equations are applied to the problem of determining the exchange of pore fluid between the vascular porosity (PV) and the lacunar-canalicular porosity (PLC) in bone tissue due to cyclic mechanical loading and blood pressure oscillations. The result is basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. A formula for the volume of fluid that moves between the PLC and PV in a cyclic loading is obtained as a function of the cyclic mechanical loading and blood pressure oscillations. Formulas for the oscillating fluid pore pressure in both the PLC and the PV are obtained as functions of the two driving forces, the cyclic mechanical straining and the blood pressure, both with specified amplitude and frequency. The results of this study also suggest a PV permeability greater than 10(-9) m(2) and perhaps a little lower than 10(-8) m(2). Previous estimates of this permeability have been as small as 10(-14) m(2).
On the Crack Bifurcation and Fanning of Crack Growth Data
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Zanganeh, Mohammad
2015-01-01
Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.
On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials
NASA Technical Reports Server (NTRS)
Burbach, J.
1972-01-01
The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.
Inverse Slip Accompanying Twinning and Detwinning during Cyclic Loading of Magnesium Single Crystal
Yu, Qin; Wang, Jian; Jiang, Yanyao
2013-01-01
In situ , observation of twinning and detwinning in magnesium single crystals during tension-compression cyclic loading was made using optical microscopy. A quantitative analysis of plastic strain indicates that twinning and detwinning experience two stages, low and high work hardening de-twinning, and pure re-twinning and fresh twinning combined with retwinning. Slip is always activated. For the first time, inverse slip accompanying with pure retwinning and high work hardening detwinning was experimentally identified, which provides insights in better understanding of the activity of twining, detwinning, and slips.
Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila
To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.