Periodic Heat Transfer at Small Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Pfriem, H.
1943-01-01
The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.
Degradation forecast for PEMFC cathode-catalysts under cyclic loads
NASA Astrophysics Data System (ADS)
Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.
2017-08-01
Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation
NASA Technical Reports Server (NTRS)
Taylor, E S; Leary, W A; Diver, J R
1940-01-01
An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.
Fracture control method for composite tanks with load sharing liners
NASA Technical Reports Server (NTRS)
Bixler, W. D.
1975-01-01
The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.
Study on cyclic injection gas override in condensate gas reservoir
NASA Astrophysics Data System (ADS)
Sun, Yan; Zhu, Weiyao; Xia, Jing; Li, Baozhu
2018-02-01
Cyclic injection gas override in condensate gas reservoirs for the large density difference between injection gas and condensate gas has been studied, but no relevant mathematical models have been built. In this paper, a mathematical model of cyclic injection gas override in condensate gas reservoir is established, considering density difference between the injected gas and the remaining condensate gas in the formation. The vertical flow ratio and override degree are used to reflect the override law of injected dry gas. Combined with the actual data of Tarim gas condensate reservoir, the parameters of injected dry gas override are calculated and analysed. The results show that the radial pressure rises or falls rapidly and the pressure gradient varies greatly in the near wells. The radial pressure varies slowly and the pressure gradient changes little in the reservoir which is within a certain distance from the wells. In the near injection well, the injected dry gas mainly migrates along the radial direction, and the vertical migration is relatively not obvious. With the distance from the injection well, the vertical flow ratio and override degree of injected dry gas increases, and the vertical flow ratio reaches the maximum in the middle of the injection well and the production well.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Ranjith, P. G.
2017-11-01
The deformation failure characteristics of marble subjected to triaxial cyclic loading are significant when evaluating the stability and safety of deep excavation damage zones. To date, however, there have been notably few triaxial experimental studies on marble under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic tests was conducted to analyze the mechanical damage characteristics of a marble. The post-peak deformation of the marble changed gradually from strain softening to strain hardening as the confining pressure increased from 0 to 10 MPa. Under uniaxial compression, marble specimens showed brittle failure characteristics with a number axial splitting tensile cracks; in the range of σ 3 = 2.5-7.5 MPa, the marble specimens assumed single shear fracture characteristics with larger fracture angles of about 65°. However, at σ 3 = 10 MPa, the marble specimens showed no obvious shear fracture surfaces. The triaxial cyclic experimental results indicate that in the range of the tested confining pressures, the triaxial strengths of the marble specimens under cyclic loading were approximately equal to those under monotonic loading. With the increase in cycle number, the elastic strains of the marble specimens all increased at first and later decreased, achieving maximum values, but the plastic strains of the marble specimens increased nonlinearly. To evaluate quantitatively the damage extent of the marble under triaxial cyclic loading, a damage variable is defined according to the irreversible deformation for each cycle. The evolutions of the elastic modulus for the marble were characterized by four stages: material strengthening, material degradation, material failure and structure slippage. Based on the experimental results of the marble specimens under complex cyclic loading, the cohesion of the marble decreased linearly, but the internal friction angles did not depend on the damage extent. To describe the peak strength characteristics of the marble specimens under complex cyclic loadings with various deformation positions, a revised strength criterion for damaged rocks is offered.
Jensen, Henrik; Jensen, Morten O; Vind-Kezunovic, Stefan; Vestergaard, Rikke; Ringgaard, Steffen; Smerup, Morten H; Hønge, Jesper L; Hasenkam, J Michael; Nielsen, Sten L
2013-07-01
In patients with chronic functional ischemic mitral regurgitation (FIMR), papillary muscle relocation has the potential to induce reverse left ventricular remodeling. However, in order to optimize function and durability, the forces imposed on the left ventricular myocardium by papillary muscle relocation should be assessed. Eight pigs with FIMR were subjected to down-sized ring annuloplasty in combination with relocation of the anterior (5 mm) and posterior (15 mm) papillary muscles towards the respective trigone. Papillary muscle relocation was obtained by a 2-0 expanded polytetrafluoroethylene stitch fixed to the trigone, exteriorized through the myocardium overlying the papillary muscle, and fixed to an epicardial disc. Tension in these stitches was measured at a systolic blood pressure > 80 mmHg using a custom-made sliding caliper with a strain gauge mounted in line. This allowed assessment of the cyclic change from minimal diastolic to maximum systolic papillary muscle relocation stitch tension. Maximum cyclic change in the posterior papillary muscle (PPM) stitch tension was 1.1 N at 15 mm relocation. In comparison, the anterior papillary muscle (APM) tension was increased to a maximum of 1.4 N with only 5 mm relocation. Surprisingly, during each step of isolated PPM relocation, the APM stitch tension increased concomitantly, but in contrast APM relocation did not influence the magnitude of PPM stitch tension. There was no statistically significant difference between cyclic changes in APM and PPM stitch tension at any step of relocation. Papillary muscle relocation using stitches attached between epicardial discs and respective trigones induced a cyclic change in papillary muscle relocation stitch tension of 1.1-1.4 N. These values were in the range of normal tension in the mitral valve apparatus, and equivalent to only 19-24% of the total papillary muscle forces. Therefore, this technique does not appear to induce a non-physiologically high cyclic load on the mitral valve complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawls, G.; Newhouse, N.; Rana, M.
2010-04-13
The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPamore » (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.« less
Peladeau-Pigeon, Melanie
2017-01-01
Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1972-01-01
An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.
Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions
NASA Astrophysics Data System (ADS)
Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu
2014-05-01
Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.
Separation of isotopes by cyclical processes
Hamrin, Jr., Charles E.; Weaver, Kenny
1976-11-02
Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Makhsous, Mohsen; Lin, Fang; Knaus, Evan; Zeigler, Mary; Rowles, Diane M; Gittler, Michelle; Bankard, James; Chen, David
2009-11-01
To evaluate whether an individualized cyclic pressure-relief protocol accelerates wound healing in wheelchair users with established pressure ulcers (PrUs). Randomized controlled study. Spinal cord injury clinics. Forty-four subjects, aged 18-79 years, with a Stage II or Stage III PrU, were randomly assigned to the control (n = 22) or treatment (n = 22) groups. Subjects in the treatment group used wheelchairs equipped with an individually adjusted automated seat that provided cyclic pressure relief, and those in the control group used a standard wheelchair. All subjects sat in wheelchairs for a minimum of 4 hours per day for 30 days during their PrU treatment. Wound characteristics were assessed using the Pressure Ulcer Scale for Healing (PUSH) tool and wound dimensions recorded with digital photographs twice a week. Median healing time for a 30% healing relative to initial measurements, the percentage reduction in wound area, and the percentage improvement in PUSH score achieved at the end of the trial were compared between groups. At the end of 30 days, both groups demonstrated a general trend of healing. However, the treatment group was found to take significantly less time to achieve 30% healing for the wound measurement compared with the control group. The percentage improvement of the wound area and PUSH scores were greater in using cyclic seating (45.0 +/- 21.0, P < .003; 29.9 +/- 24. 6, P < .003) compared with standard seating (10.2 +/- 34.9, 5.8 +/- 9.2). The authors' findings show that cyclically relieving pressure in the area of a wound for seated individuals can greatly aid wound healing. The current study provides evidence that the individualized cyclic pressure-relief protocol helps promote pressure wound healing in a clinical setting. The authors concluded that the individualized cyclic pressure relief may have substantial benefits in accelerating the healing process in wheelchair users with existing PrUs, while maintaining the mobility of individuals with SCI during the PrU treatment.
Malara, Megan M; Kim, Jayne Y; Clark, J Alexander; Blackstone, Britani N; Ruegsegger, Mark A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M
2018-06-13
Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.
NASA Astrophysics Data System (ADS)
Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam
2016-09-01
Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.
Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology
Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.
2016-01-01
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398
Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Sluys, W.A.; Emanuelson, R.H.
1986-01-01
During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less
Wong, Marcy; Siegrist, Mark; Goodwin, Kelly
2003-10-01
Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.
Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading
NASA Astrophysics Data System (ADS)
Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah
2018-03-01
An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.
Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J
2003-01-01
Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.
NASA Astrophysics Data System (ADS)
Wang, Bo; Bauer, Sebastian
2017-04-01
With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per day. The average bottom hole pressure is 87 bars at the beginning of cyclic operation and reduces to 79 bars after 10 years. This pressure drop over time is caused by the open boundary conditions defined at the model edges and is not influenced by the cyclic operation. In the storage formation, the pressure response induced by the initial filling can be observed in the whole model domain, and a maximum pressure built-up of about 31 bars and 3 bars are observed near the wells and at a distance of 10 km from the wells, respectively. During the cyclic operation, however, pressure fluctuations of more than 1 bar can only be observed within the gas phase. Assuming formations with different permeabilities, a sensitivity analysis is carried out to find the number of wells required. Results show that the number of wells required does not linearly decrease with increasing permeability of the storage formation due to well interference during air extraction.
Behavior of nonplastic silty soils under cyclic loading.
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.
Behavior of Nonplastic Silty Soils under Cyclic Loading
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343
Tensile and fatigue behavior of tungsten/copper composites
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Gabb, Timothy P.; Kim, Y. S.
1989-01-01
Work on W/Cu unidirectional composites was initiated to study the behavior of this ductile-ductile composite system under thermomechanical fatigue and to examine the applicability of fatigue-life prediction methods for thermomechanical fatigue of this metal matrix composite. The first step was to characterize the tensile behavior of four ply, 10 vol. percent W/Cu plates at room and elevated temperatures. Fatigue tests were conducted in load control on 0 degree specimens at 260 C. The maximum cyclic stress was varied but the minimum cyclic stress was kept constant. All tests were performed in vacuum. The strain at failure increased with increasing maximum cyclic stress.
SUMMARY OF THE SEVENTH MEETING OF THE REFRACTORY COMPOSITES WORKING GROUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibeaut, W.A.; Ogden, H.R.
1963-05-30
Information on refractory composites for use above 2500 deg F is summarized. Reports are concerned with protective coatings, insulating ceramics, materials for rocket thrust chambers, dispersion strengthening of metals, joining of refractory materials, and testing techniques. The problem of accelerated failure of silicide coatings under conditions of very low air pressure at high temperatures is studied. Although the maximum temperature capability of most silicide coatings is reduced about 50 theta deg at low air pressures, several coatings can protect molybdenum for 1/2 hr at 2800 to 3000 deg F under these conditions. The tin-aluminum coating also is susceptible to earlymore » failure at reduced pressure. An evaluation of the mechanical properties of 6-mil foils of D- 36, B-68, and TZM coated with commercial coatings demonstrated that some coatings seriously degrade substrate mechanical properties. Research on thermal- protection systems for re-entry vehicles whose surface temperatures reach from 3300 to 5500 deg F has resulted in agreement upon oxide coatings and thick metal- reinforced oxide composites. Simple plasmaarc-sprayed oxide coatings have demonstrated adequate oxidation resistance, but their structural stability in cyclic thermal exposure is inferior to metal-reinforced oxide. Thin unreinforced oxide coatings tend to spall in tests involving cyclic heating. A metal- reinforced oxide composite (reinforcement welded to substrate) has survived cyclic tests such as five 3-minute exposures at 4500 deg F without failing. A new carbon material called glassy carbon has demonstrnted better oxidation resistance than pyrolytic graphite at very high temperatures. The erosion resistance of pyrolytic graphite coatings on regular graphite in rocket firing tests using solid propellants is encouraging. There is considerable interest in fabricating small radiation-cooled rocket thrust chambers by plasma arc spraying. The design concept of internal reinforcement of sprayed-metal rocket chambers with wrought ductile wife appears impractical because of poor bonding and porosity around the wire. (auth)« less
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee
2005-12-15
To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.
Shim, J W; Elder, S H
2006-11-01
The goal of this study was to demonstrate whether cyclically imposed hydrostatic pressure, compressive in nature, could induce fibrocartilaginous metaplasia in a purely tendinous cell source in vitro. The effect of short-duration cyclic hydrostatic pressure on tendon fibroblasts (tenocytes) expanded from rat Achilles tendon was studied. Total RNA was isolated either immediately after loading or 24 h later. The mRNA expression of tendon and cartilage specific markers - Collagen types I and II, Sox9, and Aggrecan was quantified by real-time reverse transcription polymerase chain reaction over multiple biological samples (n=6). For immediately isolated RNA samples, there were statistically significant increases in mRNA expression of Aggrecan and Collagen type II, while Collagen type I significantly decreased. Noticeably, for RNA samples isolated 24 h later, there were further increases in mRNA expression of Aggrecan and Collagen type II, whereas Collagen type I increased roughly three-fold relative to the non-loaded control. These findings support the hypothesis that cyclic hydrostatic pressurization can induce fibrocartilaginous metaplasia in tenocytes by upregulation of cartilaginous gene expression. Also, it was demonstrated that changes in mRNA expression as a result of single 2 h pressurization persist even up to 24 h.
Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G
2018-01-01
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles
Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc
2012-01-01
A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638
Effect of nitrogen on high temperature low cycle fatigue behaviors in type 316L stainless steel
NASA Astrophysics Data System (ADS)
Kim, Dae Whan; Ryu, Woo-Seog; Hong, Jun Hwa; Choi, Si-Kyung
1998-04-01
Strain-controlled low cycle fatigue (LCF) tests were conducted in the temperature range of RT-600°C and air atmosphere to investigate the nitrogen effect on LCF behavior of type 316L stainless steels with different nitrogen contents (0.04-0.15%). The waveform of LCF was a symmetrical triangle with a strain amplitude of ±0.5% and a constant strain rate of 2×10 -3/s was employed for most tests. Cyclic stress response of the alloys exhibited a gradual cyclic softening at RT, but a cyclic hardening at an early stage of fatigue life at 300-600°C. The hardening at high temperature was attributed to dynamic strain aging (DSA). Nitrogen addition decreased hardening magnitude (maximum cyclic stress — first cyclic stress) because nitrogen retarded DSA for these conditions. The dislocation structures were changed from cell to planar structure with increasing temperature and nitrogen addition by DSA and short range order (SRO). Fatigue life was a maximum at 0.1% nitrogen content, which was attributed to the balance between DSA and SRO.
Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates
Epperly, William R.; Deane, Barry C.; Brunson, Roy J.
1982-01-01
An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane
The specific objective of this project was to develop physically durable and chemically regenerable MgO-based sorbents that can remove carbon dioxide from raw coal gas at operating condition prevailing in IGCC processes. A total of sixty two (62) different sorbents were prepared in this project. The sorbents were prepared either by various sol-gel techniques (22 formulations) or modification of dolomite (40 formulations). The sorbents were prepared in the form of pellets and in granular forms. The solgel based sorbents had very high physical strength, relatively high surface area, and very low average pore diameter. The magnesium content of the sorbentsmore » was estimated to be 4-6 % w/w. To improve the reactivity of the sorbents toward CO{sub 2}, The sorbents were impregnated with potassium salts. The potassium content of the sorbents was about 5%. The dolomite-based sorbents were prepared by calcination of dolomite at various temperature and calcination environment (CO{sub 2} partial pressure and moisture). Potassium carbonate was added to the half-calcined dolomite through wet impregnation method. The estimated potassium content of the impregnated sorbents was in the range of 1-6% w/w. In general, the modified dolomite sorbents have significantly higher magnesium content, larger pore diameter and lower surface area, resulting in significantly higher reactivity compared to the sol-gel sorbents. The reactivities of a number of sorbents toward CO{sub 2} were determined in a Thermogravimetric Analyzer (TGA) unit. The results indicated that at the low CO{sub 2} partial pressures (i.e., 1 atm), the reactivities of the sorbents toward CO{sub 2} are very low. At elevated pressures (i.e., CO{sub 2} partial pressure of 10 bar) the maximum conversion of MgO obtained with the sol-gel based sorbents was about 5%, which corresponds to a maximum CO{sub 2} absorption capacity of less than 1%. The overall capacity of modified dolomite sorbents were at least one order of magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
A cyclic oxidation interfacial spalling model has been developed in Part 1. The governing equations have been simplified here by substituting a new algebraic expression for the series (Good-Smialek approximation). This produced a direct relationship between cyclic oxidation weight change and model input parameters. It also allowed for the mathematical derivation of various descriptive parameters as a function of the inputs. It is shown that the maximum in weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction, all to the 1/2 power. The number of cycles to reach maximum and zero weight change vary inversely with the spall fraction, and the ratio of these cycles is exactly 1:3 for most oxides. By suitably normalizing the weight change and cycle number, it is shown that all cyclic oxidation weight change model curves can be represented by one universal expression for a given oxide scale.
Nonlinear lymphangion pressure-volume relationship minimizes edema
Venugopal, Arun M.; Stewart, Randolph H.; Laine, Glen A.
2010-01-01
Lymphangions, the segments of lymphatic vessel between two valves, contract cyclically and actively pump, analogous to cardiac ventricles. Besides having a discernable systole and diastole, lymphangions have a relatively linear end-systolic pressure-volume relationship (with slope Emax) and a nonlinear end-diastolic pressure-volume relationship (with slope Emin). To counter increased microvascular filtration (causing increased lymphatic inlet pressure), lymphangions must respond to modest increases in transmural pressure by increasing pumping. To counter venous hypertension (causing increased lymphatic inlet and outlet pressures), lymphangions must respond to potentially large increases in transmural pressure by maintaining lymph flow. We therefore hypothesized that the nonlinear lymphangion pressure-volume relationship allows transition from a transmural pressure-dependent stroke volume to a transmural pressure-independent stroke volume as transmural pressure increases. To test this hypothesis, we applied a mathematical model based on the time-varying elastance concept typically applied to ventricles (the ratio of pressure to volume cycles periodically from a minimum, Emin, to a maximum, Emax). This model predicted that lymphangions increase stroke volume and stroke work with transmural pressure if Emin < Emax at low transmural pressures, but maintain stroke volume and stroke work if Emin= Emax at higher transmural pressures. Furthermore, at higher transmural pressures, stroke work is evenly distributed among a chain of lymphangions. Model predictions were tested by comparison to previously reported data. Model predictions were consistent with reported lymphangion properties and pressure-flow relationships of entire lymphatic systems. The nonlinear lymphangion pressure-volume relationship therefore minimizes edema resulting from both increased microvascular filtration and venous hypertension. PMID:20601461
Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro.
Henstock, J R; Rotherham, M; Rose, J B; El Haj, A J
2013-04-01
Mechanical loading of bone and cartilage in vivo results in the generation of cyclic hydrostatic forces as bone compression is transduced to fluid pressure in the canalicular network and the joint synovium. It has therefore been suggested that hydrostatic pressure is an important stimulus by which osteochondral cells and their progenitors sense and respond to mechanical loading in vivo. In this study, hydrostatic pressure regimes of 0-279kPa at 0.005-2Hz were applied to organotypically cultured ex vivo chick foetal femurs (e11) for 1hour per day in a custom designed bioreactor for 14days and bone formation assessed by X-ray microtomography and qualified by histology. We found that the mineralised portion of the developing femur cultured under any cyclic hydrostatic pressure regime was significantly larger and/or denser than unstimulated controls but that constant (non-cycling) hydrostatic pressure had no effect on bone growth. Further experiments showed that the increase in bone formation was directly proportional to stimulation frequency (R(2)=0.917), but independent of the magnitude of the pressure applied, whilst even very low frequencies of stimulation (0.005Hz) had significant effects on bone growth. Expression of Type-II collagen in both epiphyses and diaphysis was significantly upregulated (1.48-fold and 1.95-fold respectively), together with osteogenic genes (osteonectin and osteopontin) and the osteocyte maturation marker CD44. This work demonstrates that cyclic hydrostatic pressure promotes bone growth and mineralisation in a developmental model and supports the hypothesis that hydrostatic forces play an important role in regulating bone growth and remodelling in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Static and cyclic performance evaluation of sensors for human interface pressure measurement.
Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W
2012-01-01
Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.
Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
Cowin, Stephen C; Gailani, Gaffar; Benalla, Mohammed
2009-09-13
The governing equations for the theory of poroelastic materials with hierarchical pore space architecture and compressible constituents undergoing small deformations are developed. These equations are applied to the problem of determining the exchange of pore fluid between the vascular porosity (PV) and the lacunar-canalicular porosity (PLC) in bone tissue due to cyclic mechanical loading and blood pressure oscillations. The result is basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. A formula for the volume of fluid that moves between the PLC and PV in a cyclic loading is obtained as a function of the cyclic mechanical loading and blood pressure oscillations. Formulas for the oscillating fluid pore pressure in both the PLC and the PV are obtained as functions of the two driving forces, the cyclic mechanical straining and the blood pressure, both with specified amplitude and frequency. The results of this study also suggest a PV permeability greater than 10(-9) m(2) and perhaps a little lower than 10(-8) m(2). Previous estimates of this permeability have been as small as 10(-14) m(2).
Evans, CE; Mylchreest, S; Andrew, JG
2006-01-01
Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors) or co-cultures of macrophages and osteoblasts (from the same donor), were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors <70 years at the time of operation (p < 0.05 Mann Whitney U) than it was in patients >70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p < 0.01). Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in this system. Macrophages subjected to pressure (both alone and in co-culture) stained more strongly for RANK on immunohistochemstry than non-pressurized controls and 1,25-dihydroxyvitamin D3 (1,25 D3) further increased this. Immunocytochemical staining also demonstrated that more cells in pressurized co-cultures exhibited osteoclast markers (tartrate-resistant acid phosphatase, vitronectin receptor and multinuclearity) than did unpressurized controls. Conclusion These data show that in co-cultures of osteoblasts and macrophages the ratio of OPG : sRANKL was decreased by pressure in younger patients but increased in older patients. As falls in this ratio promote bone resorption, this finding may be important in explaining the relatively high incidence of osteolysis around orthopaedic implants in young patients. The finding that secretion of OPG and sRANKL by osteoblasts in monoculture was sensitive to hydrostatic pressure, and that hydrostatic pressure stimulated the differentiation of macrophages into cells exhibiting osteoclast markers indicates that both osteoblasts and preosteoclasts are sensitive to cyclic pressure. However, the effects of pressure on cocultures were not simply additive and coculture appears useful to examine the interaction of these cell types. These findings have implications for future therapies for aseptic loosening and for the development of tests to predict the development of this condition. PMID:16519799
USDA-ARS?s Scientific Manuscript database
Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...
NASA Technical Reports Server (NTRS)
Dufrane, K. F.; Kannel, J. W.; Merriman, T. L.; Rosenfield, A. R.
1985-01-01
Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability.
Control law system for X-Wing aircraft
NASA Technical Reports Server (NTRS)
Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)
1990-01-01
Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.
2015-01-01
Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.
Meffert, Rainer H.; Raschke, Michael J.; Blunk, Torsten; Ochman, Sabine
2014-01-01
Purpose. To analyse the biomechanical characteristics of locking plates under cyclic loading compared to a nonlocking plate in a diaphyseal metacarpal fracture. Methods. Oblique diaphyseal shaft fractures in porcine metacarpal bones were created in a biomechanical fracture model. An anatomical reduction and stabilization with a nonlocking and a comparable locking plate in mono- or bicortical screw fixation followed. Under cyclic loading, the displacement, and in subsequent load-to-failure tests, the maximum load and stiffness were measured. Results. For the monocortical screw fixation of the locking plate, a similar displacement, maximum load, and stiffness could be demonstrated compared to the bicortical screw fixation of the nonlocking plate. Conclusions. Locking plates in monocortical configuration may function as a useful alternative to the currently common treatment with bicortical fixations. Thereby, irritation of the flexor tendons would be avoided without compromising the stability, thus enabling the necessary early functional rehabilitation. PMID:24757429
Krüger, Antonio; Baroud, Gamal; Noriega, David; Figiel, Jens; Dorschel, Christine; Ruchholtz, Steffen; Oberkircher, Ludwig
2013-08-01
Two different procedures, used for percutaneous augmentation of vertebral compression fractures were compared, with respect to height restoration and maintenance after cyclic loading. Additionally the impact of the cement volume used was investigated. Wedge compression fractures were created in 36 human cadavaric vertebrae (T10-L3). Twenty-seven vertebrae were treated with the SpineJack® with different cement volumes (maximum, intermediate, and no cement), and 9 vertebrae were treated with Balloon Kyphoplasty. Vertebral heights were measured pre- and postfracture as well as after treatment and loading. Cyclic loading was performed with 10,000cycles (1Hz, 100-600N). The average anterior height after restoration was 85.56% for Kyphoplasty; 96.20% for SpineJack® no cement; 93.44% for SpineJack® maximum and 96% for the SpineJack® intermediate group. The average central height after restoration was 93.89% for Kyphoplasty; 100.20% for SpineJack® no cement; 99.56% for SpineJack® maximum and 101.13% for the SpineJack® intermediate group. The average anterior height after cyclic loading was 85.33 % for Kyphoplasty; 87.30% in the SpineJack® no cement, 92% in the SpineJack® maximum and 87% in the SpineJack® intermediate group. The average central height after cyclic loading was 92% for Kyphoplasty; 93.80% in the SpineJack® no cement; 98.56% in the SpineJack® maximum and 94.25% in the SpineJack® intermediate group. Height restoration was significantly better for the SpineJack® group compared to Kyphoplasty. Height maintenance was dependent on the cement volume used. The group with the SpineJack® without cement nevertheless showed better results in height maintenance, yet the statistical significance could not be demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan
2016-01-01
Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.
Cyclic stress analysis of an air-cooled turbine vane
NASA Technical Reports Server (NTRS)
Kaufman, A.; Gauntner, D. J.; Gauntner, J. W.
1975-01-01
The effects of gas pressure level, coolant temperature, and coolant flow rate on the stress-strain history and life of an air-cooled vane were analyzed using measured and calculated transient metal temperatures and a turbine blade stress analysis program. Predicted failure locations were compared to results from cyclic tests in a static cascade and engine. The results indicate that a high gas pressure was detrimental, a high coolant flow rate somewhat beneficial, and a low coolant temperature the most beneficial to vane life.
DOT National Transportation Integrated Search
2012-04-01
This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...
The Evolution of Elastic Moduli With Increasing Crack Damage During Cyclic Stressing of Etna Basalt
NASA Astrophysics Data System (ADS)
Heap, M. J.; Meredith, P. G.; Vinciguerra, S.; Boon, S. A.
2007-12-01
Volcanic edifices, such as Mt. Etna volcano, are commonly subject to cycles of pressurization and depressurization over extended periods of time due to repeated episodes of magma emplacement from deep reservoirs to shallow depths. Such repeated episodes of deformation can lead to an increase in the level of crack damage within the rocks of the edifice, and hence changes in their elastic properties. Importantly, a number of volcano monitoring techniques, such as seismic tomography and ground deformation modeling, rely on accurate knowledge of elastic properties. However, the effect of cyclic stressing on mechanical and elastic properties of volcanic rock remains unclear. To this end, we report results of changes in elastic moduli from stress-cycling experiments on samples of extrusive basalt from Mount Etna, Italy. The basalt contains an extensive pre-existing network of isotropic, interconnected microcracks caused by cooling. Both oven-dry and water-saturated samples were initially loaded to 20 MPa at a constant rate and then unloaded to 8 MPa. Samples were then sequentially reloaded and unloaded at the same rate with the peak stress in each subsequent cycle increased by 10 MPa. Stress-cycling was continued until each sample failed. Results from oven-dry samples showed a gradual reduction in sample stiffness with each increasing stress cycle that resulted in a total decrease in Young's modulus of approximately 30% and an increase in Poisson's ratio of approximately 60%. Results from water-saturated samples showed an almost identical trend. These changes in moduli are attributed to the growth of new cracks in each stress cycle and, hence, an increase in the total crack density. This is supported by the observation of increased acoustic emission (micro-seismic) output in each cycle. We also observed the Kaiser stress-memory effect, where acoustic emission on each cycle only occurs when the maximum stress in the previous cycle has been exceeded. During the deformation history of volcanic edifices, however, the stress in each pressurization cycle may not always exceed that of the previous cycle. In order to better understand this more realistic situation, we also report results from cyclic stressing experiments where the peak stress in each cycle has been randomly selected to be either higher or lower than that of the previous cycle. In this case we observed a more complex manifestation of the Kaiser effect, where AE output in any cycle was only observed when the stress in that cycle exceeded the maximum stress on any previous cycle.
Low cycle fatigue behavior of a ferritic reactor pressure vessel steel
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.
2015-07-01
The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.
DOT National Transportation Integrated Search
2012-04-01
Asphalt pavement ages continuously, beginning with production and construction and thoughout its service life. "Aging" refers to many changes in asphalt properties over time that generally result in increased pavement damage. Because aging is often a...
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor
NASA Astrophysics Data System (ADS)
Regitz, S.; Collings, N.
2008-07-01
A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.
The Effects of Combined Cyclic Stretch and Pressure on the Aortic Valve Interstitial Cell Phenotype
Thayer, Patrick; Balachandran, Kartik; Rathan, Swetha; Yap, Choon Hwai; Arjunon, Sivakkumar; Jo, Hanjoong; Yoganathan, Ajit P.
2017-01-01
Aortic valve interstitial cells (VIC) can exhibit phenotypic characteristics of fibroblasts, myofibroblasts, and smooth muscle cells. Others have proposed that valve cells become activated and exhibit myofibroblast or fibroblast characteristics during disease initiation and progression; however, the cues that modulate this phenotypic change remain unclear. We hypothesize that the mechanical forces experienced by the valve play a role in regulating the native phenotype of the valve and that altered mechanical forces result in an activated phenotype. Using a novel ex vivo cyclic stretch and pressure bioreactor, we subjected porcine aortic valve (AV) leaflets to combinations of normal and pathological stretch and pressure magnitudes. The myofibroblast markers α-SMA and Vimentin, along with the smooth muscle markers Calponin and Caldesmon, were analyzed using immunohistochemistry and immunoblotting. Tissue structure was analyzed using Movat’s pentachrome staining. We report that pathological stretch and pressure inhibited the contractile and possibly myofibroblast phenotypes as indicated by downregulation of the proteins α-SMA, Vimentin, and Calponin. In particular, Calponin downregulation implies depolymerization of actin filaments and possible conversion to a more synthetic (non-contractile) phenotype. This agreed well with the increase in spongiosa and fibrosa thickness observed under elevated pressure and stretch that are typically indicative of increased matrix synthesis. Our study therefore demonstrates how cyclic stretch and pressure may possibly act together to modulate the AVIC phenotype. PMID:21347552
Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1988-01-01
An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.
Woods, M; Houslay, M D
1991-02-01
Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.
Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves
Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.
2011-01-01
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment. PMID:21876532
Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.
Schipke, Kimberly J; To, S D Filip; Warnock, James N
2011-08-23
The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment.
Popova, Antoaneta V; Dobrev, Konstantin; Velitchkova, Maya; Ivanov, Alexander G
2018-05-03
The high-light-induced alterations in photosynthetic performance of photosystem II (PSII) and photosystem I (PSI) as well as effectiveness of dissipation of excessive absorbed light during illumination for different periods of time at room (22 °C) and low (8-10 °C) temperature of leaves of Arabidopsis thaliana, wt and lut2, were followed with the aim of unraveling the role of lutein in the process of photoinhibition. Photosynthetic parameters of PSII and PSI were determined on whole leaves by PAM fluorometer and oxygen evolving activity-by a Clark-type electrode. In thylakoid membranes, isolated from non-illuminated and illuminated for 4.5 h leaves of wt and lut2 the photochemical activity of PSII and PSI and energy interaction between the main pigment-protein complexes was determined. Results indicate that in non-illuminated leaves of lut2 the maximum rate of oxygen evolution and energy utilization in PSII is lower, excitation pressure of PSII is higher and cyclic electron transport around PSI is faster than in wt leaves. Under high-light illumination, lut2 leaves are more sensitive in respect to PSII performance and the extent of increase of excitation pressure of PSII, Φ NO , and cyclic electron transport around PSI are higher than in wt leaves, especially when illumination is performed at low temperature. Significant part of the excessive light energy is dissipated via mechanism, not dependent on ∆pH and to functioning of xanthophyll cycle in LHCII, operating more intensively in lut2 leaves.
Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1995-01-01
The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
A Biomechanical Comparison of Distal Fixation for Bridge Plating in a Distal Radius Fracture Model.
Alluri, Ram K; Bougioukli, Sofia; Stevanovic, Milan; Ghiassi, Alidad
2017-09-01
To compare the biomechanical properties of second versus third metacarpal distal fixation when using a radiocarpal spanning distraction plate in an unstable distal radius fracture model. Biomechanical evaluation of the radiocarpal spanning distraction plate comparing second versus third metacarpal distal fixation was performed using a standardized model of an unstable wrist fracture in 10 matched-pair cadaveric specimens. Each fixation construct underwent a controlled cyclic loading protocol in flexion and extension. The resultant displacement and stiffness were calculated at the fracture site. After cyclic loading, each specimen was loaded to failure. The stiffness, maximum displacement, and load to failure were compared between the 2 groups. Cyclic loading in flexion demonstrated that distal fixation to the third metacarpal resulted in greater stiffness compared with the second metacarpal. There was no significant difference between the 2 groups with regards to maximum displacement at the fracture site in flexion. Cyclic loading in extension demonstrated no significant difference in stiffness or maximum displacement between the 2 groups. The average load to failure was similar for both groups. Fixation to the third metacarpal resulted in greater stiffness in flexion. All other biomechanical parameters were similar when comparing distal fixation to the second or third metacarpal in distal radius fractures stabilized with a spanning internal distraction plate. The treating surgeon should choose distal metacarpal fixation primarily based on fracture pattern, alignment, and soft tissue integrity. If a stiffer construct is desired, placement of the radiocarpal spanning plate at the third metacarpal is preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Klein, K U; Boehme, S; Hartmann, E K; Szczyrba, M; Heylen, L; Liu, T; David, M; Werner, C; Markstaller, K; Engelhard, K
2013-02-01
Cyclic recruitment and derecruitment (R/D) play a key role in the pathomechanism of acute lung injury (ALI) leading to respiration-dependent oscillations of arterial partial pressure of oxygen (Pa(O(2))). These Pa(O(2)) oscillations could also be forwarded to the cerebral microcirculation. In 12 pigs, partial pressure of oxygen was measured in the thoracic aorta (Pa(O(2))) and subcortical cerebral tissue (Pbr(O(2))). Cerebral cortical haemoglobin oxygen saturation (Sbr(O(2))), cerebral blood flow (CBF), and peripheral haemoglobin saturation (Sp(O(2))) were assessed by spectroscopy and laser Doppler flowmetry. Measurements at different fractions of inspired oxygen (F(I(O(2)))) were performed at baseline and during cyclic R/D. frequency domain analysis, the Mann-Whitney test, linear models to test the influence of Pa(O(2)) and systolic arterial pressure (SAP) oscillations on cerebral measurements. Parameters [mean (SD)] remained stable during baseline. Pa(O(2)) oscillations [10.6 (8) kPa, phase(reference)], systemic arterial pressure (SAP) oscillations [20 (9) mm Hg, phase(Pa(O(2))-SAP) -33 (72)°], and Sp(O(2))oscillations [1.9 (1.7)%, phase(Pa(O(2))-Sp(O(2))) 264 (72)°] were detected during lung R/D at 1.0. Pa(O(2)) oscillations decreased [2.7 (3.5) kPa, P=0.0008] and Sp(O(2)) oscillations increased [6.8 (3.9)%, P=0.0014] at F(I(O(2))) 0.3. In the brain, synchronized Pbr(O(2)) oscillations [0.6 (0.4) kPa, phase(Pa(O(2))-Pbr(O(2))) 90 (39)°], Sbr(O(2)) oscillations [4.1 (1.5)%, phase(Pa(O(2))-Sbr(O(2))) 182 (54)°], and CBF oscillations [198 (176) AU, phase(Pa(O(2))-CBF) 201 (63)°] occurred that were dependent on Pa(O(2)) and SAP oscillations. Pa(O(2)) oscillations caused by cyclic R/D are transmitted to the cerebral microcirculation in a porcine model of ALI. These cyclic oxygen alterations could play a role in the crosstalk of acute lung and brain injury.
Mizuno, Shuichi; Murphy, George F.; Orgill, Dennis P.
2009-01-01
Background The optimal production of three-dimensional cartilage in vitro requires both inductive factors and specified culture conditions (e.g., hydrostatic pressure [HP], gas concentration, and nutrient supply) to promote cell viability and maintain phenotype. In this study, we optimized the conditions for human cartilage induction using human adipose–derived stem cells (ASCs), collagen scaffolds, and cyclic HP treatment. Methods Human ASCs underwent primary culture and three passages before being seeded into collagen scaffolds. These constructs were incubated for 1 week in an automated bioreactor using cyclic HP at 0–0.5 MPa, 0.5 Hz, and compared to constructs exposed to atmospheric pressure. In both groups, chondrogenic differentiation medium including transforming growth factor-β1 was employed. One, 2, 3, and 4 weeks after incubation, the cell constructs were harvested for histological, immunohistochemical, and gene expression evaluation. Results In histological and immunohistochemical analyzes, pericellular and extracellular metachromatic matrix was observed in both groups and increased over 4 weeks, but accumulated at a higher rate in the HP group. Cell number was maintained in the HP group over 4 weeks but decreased after 2 weeks in the atmospheric pressure group. Chondrogenic-specific gene expression of type II and X collagen, aggrecan, and SRY-box9 was increased in the HP group especially after 2 weeks. Conclusion Our results demonstrate chondrogenic differentiation of ASCs in a three-dimensional collagen scaffolds with treatment of a cyclic HP. Cyclic HP was effective in enhancing accumulation of extracellular matrix and expression of genes indicative of chondrogenic differentiation. PMID:19290804
Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto
2016-01-01
The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P < .05 and P < .001, respectively). Hyflex EDM showed a lower maximum torque load (P < .05) but a significantly higher angular rotation (P < .0001) to fracture than Reciproc R25 and WaveOne Primary. No significant difference was found comparing the maximum torque load, angular rotation, and cyclic fatigue of Reciproc R25 and WaveOne Primary (P > .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M
1997-09-01
Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.
Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters
NASA Astrophysics Data System (ADS)
Li, Yongqiang; Dillard, David A.; Case, Scott W.; Ellis, Michael W.; Lai, Yeh-Hung; Gittleman, Craig S.; Miller, Daniel P.
In this study, three commercially available proton exchange membranes (PEMs) are biaxially tested using pressure-loaded blisters to characterize their resistance to gas leakage under either static (creep) or cyclic fatigue loading. The pressurizing medium, air, is directly used for leak detection. These tests are believed to be more relevant to fuel cell applications than quasi-static uniaxial tensile-to-rupture tests because of the use of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test, in which a bare PEM or catalyst coated membrane is clamped with gas diffusion media and flow field plates and subjected to cyclic changes in relative humidity, because of the flexibility in allowing controlled mechanical loading and accelerated testing. Nafion ® NRE-211 membranes are tested at three different temperatures and the time-temperature superposition principle is used to construct stress-lifetime master curve. Tested at 90 °C, 2%RH extruded Ion Power ® N111-IP membranes have a longer lifetime than Gore™-Select ® 57 and Nafion ® NRE-211 membranes.
NASA Astrophysics Data System (ADS)
Music, Denis; Geyer, Richard W.; Hans, Marcus
2016-07-01
To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.
Fatigue of reinforcing bars during hydro-demolition
NASA Astrophysics Data System (ADS)
Hyland, C. W. K.; Ouwejan, A.
2017-05-01
Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars
Ratcheting induced cyclic softening behaviour of 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kreethi, R.; Mondal, A. K.; Dutta, K.
2015-02-01
Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California
Holzer, T.L.; Youd, T.L.
2007-01-01
Excess pore-water pressure and liquefaction at the Wildlife Liquefaction Array in 1987 were caused by deformation associated with both high-frequency strong ground motion and 5.5-second-period Love waves. The Love waves produced large (???1.5%) cyclic shear strains well after the stronger high-frequency ground motion abated. These cyclic strains generated approximately from 13 to 35% of the excess pore-water pressure in the liquefied layer and caused excess pore-water pressures ultimately to reach effective overburden stress. The deformation associated with the Love waves explains the "postearthquake" increase of pore-water pressure that was recorded at the array. This explanation suggests that conventional methods for predicting liquefaction based on peak ground acceleration are incomplete and may need to consider cyclic strains associated with long-period surface waves. A post-earthquake survey of an inclinometer casing indicated permanent shear strain associated with lateral spreading primarily occurred in the upper part of the liquefied layer. Comparison of cone penetration test soundings conducted after the earthquake with pre-earthquake soundings suggests sleeve friction increased. Natural lateral variability of the liquefied layer obscured changes in tip resistance despite a ???1% reduction in volume. The large oscillatory motion associated with surface waves explains ground oscillation that has been reported at some liquefaction sites during earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.
The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
NASA Technical Reports Server (NTRS)
Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.
2005-01-01
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.
Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.
1985-01-01
The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.
Bradnam, Lynley V; Graetz, Lynton J; McDonnell, Michelle N; Ridding, Michael C
2015-01-01
There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer's dystonia, 3 musician's dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer's Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia.
Bradnam, Lynley V.; Graetz, Lynton J.; McDonnell, Michelle N.; Ridding, Michael C.
2015-01-01
There is increasing evidence that the cerebellum has a role in the pathophysiology of primary focal hand dystonia and might provide an intervention target for non-invasive brain stimulation to improve function of the affected hand. The primary objective of this study was to determine if cerebellar transcranial direct current stimulation (tDCS) improves handwriting and cyclic drawing kinematics in people with hand dystonia, by reducing cerebellar-brain inhibition (CBI) evoked by transcranial magnetic stimulation (TMS). Eight people with dystonia (5 writer’s dystonia, 3 musician’s dystonia) and eight age-matched controls completed the study and underwent cerebellar anodal, cathodal and sham tDCS in separate sessions. Dystonia severity was assessed using the Writer’s Cramp Rating Scale (WRCS) and the Arm Dystonia Disability Scale (ADDS). The kinematic measures that differentiated the groups were; mean stroke frequency during handwriting and fast cyclic drawing and average pen pressure during light cyclic drawing. TMS measures of cortical excitability were no different between people with FHD and controls. There was a moderate, negative relationship between TMS-evoked CBI at baseline and the WRCS in dystonia. Anodal cerebellar tDCS reduced handwriting mean stroke frequency and average pen pressure, and increased speed and reduced pen pressure during fast cyclic drawing. Kinematic measures were not associated with a decrease in CBI within an individual. In conclusion, cerebellar anodal tDCS appeared to improve kinematics of handwriting and circle drawing tasks; but the underlying neurophysiological mechanism remains uncertain. A study in a larger homogeneous population is needed to further investigate the possible therapeutic benefit of cerebellar tDCS in dystonia. PMID:26042019
Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth
2014-11-01
Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cyclic membrane separation process
Nemser, Stuart M.
2005-05-03
A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.
Cyclic membrane separation process
Bowser, John
2004-04-13
A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.
DeAngelis, Anthony; Kuchel, George A.
2012-01-01
The prevalence of urinary symptoms increases with age and is a significant source of distress, morbidity, and expense in the elderly. Recent evidence suggests that symptoms in the aged may result from sensory dysfunction, rather than abnormalities of detrusor performance. Therefore, we employed a pressure/flow multichannel urethane-anesthetized mouse cystometry model to test the hypothesis that in vivo detrusor performance does not degrade with aging. Secondarily, we sought to evaluate sensory responsiveness to volume using pressure-volume data generated during bladder filling. Cystometric data from 2-, 12-, 22-, and 26-mo-old female C57BL6 mice were compared. All 2- and 12-mo-old mice, 66% of 22-mo-old mice, and 50% of 26-mo-old mice responded to continuous bladder filling with periodic reflex voiding. Abdominal wall contraction with voiding had a minimal contribution to expulsive pressure, whereas compliance pressure was a significant contributor. Maximum bladder pressure, estimated detrusor pressure, detrusor impulse (pressure-time integral), as well as indices of detrusor power and work, did not decrease with aging. Bladder precontraction pressures decreased, compliance increased, and nonvoiding contraction counts did not change with increasing age. Intervoid intervals, per-void volumes, and voiding flow rates increased with age. Calculations approximating wall stress during filling suggested loss of bladder volume sensitivity with increasing age. We conclude that aging is associated with an impaired ability to respond to the challenge of continuous bladder filling with cyclic voiding, yet among responsive animals, voiding detrusor contraction strength does not degrade with aging in this murine model. Furthermore, indirect measures suggest that bladder volume sensitivity is diminished. Thus, changes in homeostatic reserve and peripheral and/or central sensory mechanisms may be important contributors to aging-associated changes in bladder function. PMID:22204955
Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.
1976-01-01
Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.
NASA Technical Reports Server (NTRS)
Ziola, Steven M.
2014-01-01
Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.
Elnaghy, A M; Elsaka, S E
2015-09-01
To assess and compare the resistance to cyclic fatigue, torsional stress, bending and buckling of ProGlider (PG; Dentsply Maillefer, Ballaigues, Switzerland) instruments with PathFile (PF; Dentsply Maillefer) pathfinding nickel-titanium rotary instruments. Size 16, .02 taper PG and PF instruments were rotated in simulated canals until failure, and the number of cycles to failure (NCF) was recorded to evaluate their cyclic fatigue resistance. Torsional strength was measured using a torsiometer after fixing rigidly the apical 5 mm of the instrument. A scanning electron microscope was used to characterize the topographic features of the fracture surfaces of the instruments. The instruments were evaluated for bending resistance using a cantilever-bending test. The buckling resistance was measured by recording the maximum load required to form a lateral elastic displacement along the file axis using a universal testing machine. Data were statistically analysed using independent t-tests. Statistical significance was set at P < 0.05. ProGlider instrument had a significantly higher flexibility, higher resistance to cyclic fatigue and torsional stress than PF instruments (P < 0.05). The fractured cross-sectional surfaces revealed typical features of cyclic fatigue and torsional fractures. There was no significant difference in the maximum load needed to buckle the two instruments tested (P = 0.082). ProGlider NiTi pathfinding instrument manufactured from M-Wire alloy had enhanced mechanical properties, including higher flexibility, higher resistance to cyclic fatigue and torsional stress compared with PathFile instrument made of conventional NiTi alloy. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
2009-01-01
Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1992-01-01
A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni- and Co-base superalloys was reduced to a single attack parameter, K(sub a), for each run. This K(sub a) value was used to rank the cyclic oxidation resistance of each alloy at 1000, 1100, and 1150 C. These K(sub a) values were also used to derive an estimating equation using multiple linear regression involving log(sub 10)K(sub a) as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr, and Ta.
Pressure Dependence of the Boson Peak of Glassy Glycerol
Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...
2017-05-31
The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less
Effects of cyclic hydraulic pressure on osteocytes.
Liu, Chao; Zhao, Yan; Cheung, Wing-Yee; Gandhi, Ronak; Wang, Liyun; You, Lidan
2010-05-01
Bone is able to adapt its composition and structure in order to suit its mechanical environment. Osteocytes, bone cells embedded in the calcified matrix, are believed to be the mechanosensors and responsible for orchestrating the bone remodeling process. Recent in vitro studies have shown that osteocytes are able to sense and respond to substrate strain and fluid shear. However the capacity of osteocytes to sense cyclic hydraulic pressure (CHP) associated with physiological mechanical loading is not well understood. In this study, we subjected osteocyte-like MLO-Y4 cells to controlled CHP of 68 kPa at 0.5 Hz, and investigated the effects of CHP on intracellular calcium concentration, cytoskeleton organization, mRNA expression of genes related to bone remodeling, and osteocyte apoptosis. We found that osteocytes were able to sense CHP and respond by increased intracellular calcium concentration, altered microtubule organization, a time-dependent increase in COX-2 mRNA level and RANKL/OPG mRNA ratio, and decreased apoptosis. These findings support the hypothesis that loading induced cyclic hydraulic pressure in bone serves as a mechanical stimulus to osteocytes and may play a role in regulating bone remodeling in vivo. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Yoshino, Takashi; Yamazaki, Daisuke; Tange, Yoshinori; Higo, Yuji
2016-10-01
To determine the anelastic properties of materials of the Earth's interior, a short-period cyclic loading system was installed for in situ X-ray radiographic observation under high pressure to the multi-anvil deformation DIA press at the bending magnet beam line BL04B1 at SPring-8. The hydraulic system equipped with a piston controlled by a solenoid was designed so as to enable producing smooth sinusoidal stress in a wide range of oscillation period from 0.2 to 100 s and generating variable amplitudes. Time resolved X-ray radiography imaging of the sample and reference material provides their strain as a function of time during cyclic loading. A synchrotron X-ray radiation source allows us to resolve their strain variation with time even at the short period (<1 s). The minimum resolved strain is as small as 10 -4 , and the shortest oscillation period to detect small strain is 0.5 s. Preliminary experimental results exhibited that the new system can resolve attenuation factor Q -1 at upper mantle conditions. These results are in quantitative agreement with previously reported data obtained at lower pressures.
The mechanical behaviour of NBR/FEF under compressive cyclic stress strain
NASA Astrophysics Data System (ADS)
Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.
2006-06-01
Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.
Wu, Xiao; North, Michael
2017-01-10
A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quick, Christopher M; Venugopal, Arun M; Dongaonkar, Ranjeet M; Laine, Glen A; Stewart, Randolph H
2008-05-01
To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Orthotopic bladder substitution in men revisited: identification of continence predictors.
Koraitim, M M; Atta, M A; Foda, M K
2006-11-01
We determined the impact of the functional characteristics of the neobladder and urethral sphincter on continence results, and determined the most significant predictors of continence. A total of 88 male patients 29 to 70 years old underwent orthotopic bladder substitution with tubularized ileocecal segment (40) and detubularized sigmoid (25) or ileum (23). Uroflowmetry, cystometry and urethral pressure profilometry were performed at 13 to 36 months (mean 19) postoperatively. The correlation between urinary continence and 28 urodynamic variables was assessed. Parameters that correlated significantly with continence were entered into a multivariate analysis using a logistic regression model to determine the most significant predictors of continence. Maximum urethral closure pressure was the only parameter that showed a statistically significant correlation with diurnal continence. Nocturnal continence had not only a statistically significant positive correlation with maximum urethral closure pressure, but also statistically significant negative correlations with maximum contraction amplitude, and baseline pressure at mid and maximum capacity. Three of these 4 parameters, including maximum urethral closure pressure, maximum contraction amplitude and baseline pressure at mid capacity, proved to be significant predictors of continence on multivariate analysis. While daytime continence is determined by maximum urethral closure pressure, during the night it is the net result of 2 forces that have about equal influence but in opposite directions, that is maximum urethral closure pressure vs maximum contraction amplitude plus baseline pressure at mid capacity. Two equations were derived from the logistic regression model to predict the probability of continence after orthotopic bladder substitution, including Z1 (diurnal) = 0.605 + 0.0085 maximum urethral closure pressure and Z2 (nocturnal) = 0.841 + 0.01 [maximum urethral closure pressure - (maximum contraction amplitude + baseline pressure at mid capacity)].
[Tibial press-fit fixation of flexor tendons for reconstruction of the anterior cruciate ligament].
Ettinger, M; Liodakis, E; Haasper, C; Hurschler, C; Breitmeier, D; Krettek, C; Jagodzinski, M
2012-09-01
Press-fit fixation of hamstring tendon autografts for anterior cruciate ligament reconstruction is an interesting technique because no hardware is necessary. This study compares the biomechanical properties of press-fit fixations to an interference screw fixation. Twenty-eight human cadaveric knees were used for hamstring tendon explantation. An additional bone block was harvested from the tibia. We used 28 porcine femora for graft fixation. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclic loading were investigated. The maximum load to failure was 970±83 N for the press-fit tape fixation (T), 572±151 N for the bone bridge fixation (TS), 544±109 N for the interference screw fixation (I), 402±77 N for the press-fit suture fixation (S) and 290±74 N for the bone block fixation technique (F). The T fixation had a significantly better maximum load to failure compared to all other techniques (p<0.001). This study demonstrates that a tibial press-fit technique which uses an additional bone block has better maximum load to failure results compared to a simple interference screw fixation.
Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects.
Lanza, Fernanda de Cordoba; de Camargo, Anderson Alves; Archija, Lilian Rocha Ferraz; Selman, Jessyca Pachi Rodrigues; Malaguti, Carla; Dal Corso, Simone
2013-12-01
Chest wall mobility is often measured in clinical practice, but the correlations between chest wall mobility and respiratory muscle strength and lung volumes are unknown. We investigate the associations between chest wall mobility, axillary and thoracic cirtometry values, respiratory muscle strength (maximum inspiratory pressure and maximum expiratory pressure), and lung volumes (expiratory reserve volume, FEV(1), inspiratory capacity, FEV(1)/FVC), and the determinants of chest mobility in healthy subjects. In 64 healthy subjects we measured inspiratory capacity, FVC, FEV(1), expiratory reserve volume, maximum inspiratory pressure, and maximum expiratory pressure, and chest wall mobility via axillary and thoracic cirtometry. We used linear regression to evaluate the influence of the measured variables on chest wall mobility. The subjects' mean ± SD values were: age 24 ± 3 years, axillary cirtometry 6.3 ± 2.0 cm, thoracic cirtometry 7.5 ± 2.3 cm; maximum inspiratory pressure 90.4 ± 10.6% of predicted, maximum expiratory pressure 92.8 ± 13.5% of predicted, inspiratory capacity 99.7 ± 8.6% of predicted, FVC 101.9 ± 10.6% of predicted, FEV(1) 98.2 ± 10.3% of predicted, expiratory reserve volume 90.9 ± 19.9% of predicted. There were significant correlations between axillary cirtometry and FVC (r = 0.32), FEV(1) (r = 0.30), maximum inspiratory pressure (r = 0.48), maximum expiratory pressure (r = 0.25), and inspiratory capacity (r = 0.24), and between thoracic cirtometry and FVC (r = 0.50), FEV(1) (r = 0.48), maximum inspiratory pressure (r = 0.46), maximum expiratory pressure (r = 0.37), inspiratory capacity (r = 0.39), and expiratory reserve volume (r = 0.47). In multiple regression analysis the variable that best explained the axillary cirtometry variation was maximum inspiratory pressure (R(2) 0.23), and for thoracic cirtometry it was FVC and maximum inspiratory pressure (R(2) 0.32). Chest mobility in healthy subjects is related to respiratory muscle strength and lung function; the higher the axillary cirtometry and thoracic cirtometry values, the greater the maximum inspiratory pressure, maximum expiratory pressure, and lung volumes in healthy subjects.
Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H
1999-01-01
Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.
Cyclic axial-torsional deformation behavior of a cobalt-base superalloy
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-01-01
Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase and out-of-phase axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.
Voight; Sparks; Miller; Stewart; Hoblitt; Clarke; Ewart; Aspinall; Baptie; Calder; Cole; Druitt; Hartford; Herd; Jackson; Lejeune; Lockhart; Loughlin; Luckett; Lynch; Norton; Robertson; Watson; Watts; Young
1999-02-19
Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.
2009-01-01
Investigation of cyclic behavior of temperature and ozone data from five SHADOZ sites between the Equator and 5degS Latitude (Nairobi, Ascension Island, Natal, San Crystobal, and Watukoset) reveal an amazing array of oscillations. In particular, eight years of measurements (1998-2007) reveal changes such as decreasing amounts of ozone at some pressure levels and/or sites, while other levels and/or sites experience increasing ozone. Temperature changes of 1-2 C occur that also experience irregular oscillations. This study is preliminary and only concentrates on the 250-, 200-, 100-, 70-, and 50-hPa pressure surfaces. Surfaces existing below and above the tropopause behave differently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus
2016-07-28
To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to puremore » NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.« less
Kuroda, Soichi; Shinya, Akikazu; Vallittu, Pekka K; Nakasone, Yuji; Shinya, Akiyoshi
2013-02-01
To evaluate in vitro the influence of dynamic loading applied to a glass-fiber-reinforced hybrid composite resin on its flexural strength in a moist, simulated oral environment. Three-point flexural strength specimens were subjected to cyclic loading in water at 37°C and 55°C to investigate the influence of immersion temperature on impact fatigue properties. Specimens were subjected to cyclic impact loading at 1 Hz for up to 5 × 105 cycles to obtain the number of cycles to failure, the number of unbroken specimens after 5 × 105 cycles, and the residual flexural strength of unbroken specimens. Maximum loads of 100, 200, and 300 N were chosen for both the non-reinforced and the glass-fiber reinforced hybrid composite resins. The mean residual flexural strength for 100 N impact loading at temperatures of 37°C and 55°C was 634 and 636 MPa, respectively. All specimens fractured at fewer than 5 × 105 cycles for loads of 200 and 300 N. Reduced numbers of cycles to fracture and lower fatigue values were observed as both the maximum load and immersion temperature increased.
McLean, P. G.; Coupar, I. M.
1996-01-01
1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A. PMID:8799582
McLean, P G; Coupar, I M
1996-06-01
1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
Cyclic degassing of Erebus volcano, Antarctica
NASA Astrophysics Data System (ADS)
Ilanko, Tehnuka; Oppenheimer, Clive; Burgisser, Alain; Kyle, Philip
2015-06-01
Field observations have previously identified rapid cyclic changes in the behaviour of the lava lake of Erebus volcano. In order to understand more fully the nature and origins of these cycles, we present here a wavelet-based frequency analysis of time series measurements of gas emissions from the lava lake, obtained by open-path Fourier transform infrared spectroscopy. This reveals (i) a cyclic change in total gas column amount, a likely proxy for gas flux, with a period of about 10 min, and (ii) a similarly phased cyclic change in proportions of volcanic gases, which can be explained in terms of chemical equilibria and pressure-dependent solubilities. Notably, the wavelet analysis shows a persistent periodicity in the CO2/CO ratio and strong periodicity in H2O and SO2 degassing. The `peaks' of the cycles, defined by maxima in H2O and SO2 column amounts, coincide with high CO2/CO ratios and proportionally smaller increases in column amounts of CO2, CO, and OCS. We interpret the cycles to arise from recharge of the lake by intermittent pulses of magma from shallow depths, which degas H2O at low pressure, combined with a background gas flux that is decoupled from this very shallow magma degassing.
Universal Behavior of a Cyclic Oxidation Model
NASA Technical Reports Server (NTRS)
Smialek, James L.
2003-01-01
A mathematical model has been generated to represent the iterative, discrete growth and spallation processes associated with cyclic oxidation. Parabolic growth kinetics (k(sub p)) over and a constant spall area (F(sub A)) were assumed, with spalling occurring interfacially at the thickest regions of the scale. Although most models require numerical techniques, the regularity and simplicity of this progression permitted an approximation by algebraic expressions. Normalization could now be performed to reflect all parametric effects, and a universal cyclic oxidation response was generated: W(sub u) = 1/2 {3J(sub u)(sup 1/2)+ J(sub u)(sup 3/2)} where W, is weight change normalized by the maximum and J(sub u) is the cycle number normalized by the number to reach maximum. Similarly, the total amount of metal consumed was represented by a single normalized curve. The factor [(S(sub c)-l)(raised dot)sqrt(F(sub A)k(sub p)DELTAt)] was identified as a general figure of merit, where S(sub c) is the mass ratio of oxide to oxygen and DELTAt is the cycle duration. A cyclic oxidation failure map was constructed, in normalized k(sub p)-F(sub A) space, as defined by the locus of points corresponding to a critical amount of metal consumption in a given time. All three constructions describe behavior for every value of growth rate, spall fraction, and cycle duration by means of single curves, but with two branches corresponding to the times before and after steady state is achieved.
COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,
Maximum static inspiratory and expiratory pressures with different lung volumes
Lausted, Christopher G; Johnson, Arthur T; Scott, William H; Johnson, Monique M; Coyne, Karen M; Coursey, Derya C
2006-01-01
Background Maximum pressures developed by the respiratory muscles can indicate the health of the respiratory system, help to determine maximum respiratory flow rates, and contribute to respiratory power development. Past measurements of maximum pressures have been found to be inadequate for inclusion in some exercise models involving respiration. Methods Maximum inspiratory and expiratory airway pressures were measured over a range of lung volumes in 29 female and 19 male adults. A commercial bell spirometry system was programmed to occlude airflow at nine target lung volumes ranging from 10% to 90% of vital capacity. Results In women, maximum expiratory pressure increased with volume from 39 to 61 cmH2O and maximum inspiratory pressure decreased with volume from 66 to 28 cmH2O. In men, maximum expiratory pressure increased with volume from 63 to 97 cmH2O and maximum inspiratory pressure decreased with volume from 97 to 39 cmH2O. Equations describing pressures for both sexes are: Pe/Pmax = 0.1426 Ln( %VC) + 0.3402 R2 = 0.95 Pi/Pmax = 0.234 Ln(100 - %VC) - 0.0828 R2 = 0.96 Conclusion These results were found to be consistent with values and trends obtained by other authors. Regression equations may be suitable for respiratory mechanics models. PMID:16677384
Saptal, Vitthal B; Sasaki, Takehiko; Harada, Kei; Nishio-Hamane, Daisuke; Bhanage, Bhalchandra M
2016-03-21
An environmentally-benign carbocatalyst based on amine-functionalized graphene oxide (AP-GO) was synthesized and characterized. This catalyst shows superior activity for the chemical fixation of CO2 into cyclic carbonates at the atmospheric pressure. The developed carbocatalyst exhibits superior activity owing to its large surface area with abundant hydrogen bonding donor (HBD) capability and the presence of well-defined amine functional groups. The presence of various HBD and amine functional groups on the graphene oxide (GO) surface yields a synergistic effect for the activation of starting materials. Additionally, this catalyst shows high catalytic activity to synthesize carbonates at 70 °C and at 1 MPa CO2 pressure. The developed AP-GO could be easily recovered and used repetitively in up to seven recycle runs with unchanged catalyst activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oyabu, Chikako; Ushigome, Emi; Matsumoto, Shinobu; Tanaka, Toru; Hasegawa, Goji; Nakamura, Naoto; Ohnishi, Masayoshi; Tsunoda, Sei; Ushigome, Hidetaka; Yokota, Isao; Tanaka, Muhei; Asano, Mai; Yamazaki, Masahiro; Fukui, Michiaki
2017-11-01
Maximum home systolic blood pressure has been shown to predict target organ damage. We aimed to clarify the association between maximum home systolic blood pressure and urine albumin to creatinine ratio, an indicator of early-phase diabetic nephropathy in patients with type 2 diabetes. In 1040 patients, we assessed the relationship of mean or maximum home systolic blood pressure and urine albumin to creatinine ratio, and compared the area under the receiver operating characteristic curve of mean or maximum home systolic blood pressure for diabetic nephropathy (urine albumin to creatinine ratio ⩾30 mg/g Cr). Multivariate linear regression analyses indicated that mean morning systolic blood pressure ( β = 0.010, p < 0.001) and maximum morning systolic blood pressure ( β = 0.008, p < 0.001) were significantly associated with urine albumin to creatinine ratio. Area under the receiver operating characteristic curve (95% confidence interval) for diabetic nephropathy in mean and maximum morning systolic blood pressure was 0.667 (0.634-0.700; p < 0.001) and 0.671 (0.638-0.703; p < 0.001), respectively. Maximum home systolic blood pressure, as well as mean home systolic blood pressure, was significantly associated with diabetic nephropathy in patients with type 2 diabetes.
Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals
NASA Astrophysics Data System (ADS)
Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing
2018-05-01
Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Monitoring of Cyclic Steam Stimulation by Inversion of Surface Tilt Measurements
NASA Astrophysics Data System (ADS)
Maharramov, M.; Zoback, M. D.
2014-12-01
Temperature and pressure changes associated with the cyclic steam simulation (CSS) used in heavy oil production from sands are accompanied by significant deformation. Inversion of geomechanical data may provide a potentially powerful reservoir monitoring tool where geomechanical effects are significant. Induced pore pressure changes can be inverted from measurable surface deformations by solving an inverse problem of poroelasticity. In this work, we apply this approach to estimating pore pressure changes from surface tilt measurements at a heavy oil reservoir undergoing cyclic steam simulation. Steam was injected from November 2007 through January 2008. Surface tilt measurements were collected from 25 surface tilt stations during this period. The injection ran in two overlapping phases: Phase 1 ran from the beginning of the injection though mid-December, and Phase 2 overlapped with Phase 1 and ran through the beginning of January. During Phase 1 steam was injected in the western part of the reservoir, followed by injection in the eastern part in Phase 2. The pore pressure evolution was inverted from daily tilt measurements using regularized constrained least squares fitting, the results are shown on the plot. Estimated induced pore pressure change (color scale), observed daily incremental tilts (green arrows) and modeled daily incremental tilts (red arrows) are shown in three panels corresponding to two and five weeks of injection, and the end of injection period. DGPS measurements available for a single location were used as an additional inversion constraint. The results indicate that the pore pressure increase in the reservoir follows the same pattern as the steam injection, from west to east. This qualitative behaviour is independent of the amount of regularization, indirectly validating our inversion approach. Patches of lower pressure appear to be stable with regard to regularization and may provide valuable insight into the efficiency of steam injection. Inversion of pore pressure (and surface deformation) from tilts in this case is non-unique, and the DGPS measurement provided an important additional constraint. The method can be applied to inverting pore pressure changes from InSAR observations, and the latter can be expected to reduce limitations due to noise in tilt measurements.
NASA Astrophysics Data System (ADS)
Hyman, D.; Bursik, M. I.; Pitman, E. B.
2017-12-01
The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome, and must be the result of an oscillating supply of gas into the dome. The oscillating gas supply may result from alternating gas-rich and gas-poor regions of rising magma, so-called "porosity waves" within the conduit. These internal pressure fluctuations lead to periodic reductions in the stress required to fracture the dome and induce explosion.
Soft, Rotating Pneumatic Actuator.
Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M
2017-09-01
This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).
Sprick, Justin D; Rickards, Caroline A
2017-11-01
Remote ischemic preconditioning (RIPC) can attenuate tissue damage sustained by ischemia-reperfusion injury. Blood flow restriction exercise (BFRE) restricts blood flow to exercising muscles. We implemented a novel approach to BFRE with cyclical bouts of blood flow restriction-reperfusion, reflecting the RIPC model. A concern about BFRE, however, is potential amplification of the exercise pressor reflex, which could be unsafe in at-risk populations. We hypothesized that cyclical BFRE would elicit greater increases in sympathetic outflow and arterial pressure than conventional exercise (CE) when performed at the same relative intensity. We also assessed the cerebrovascular responses due to potential implementation of BFRE in stroke rehabilitation. Fourteen subjects performed treadmill exercise at 65-70% maximal heart rate with and without intermittent BFR (4 × 5-min intervals of bilateral thigh-cuff pressure followed by 5-min reperfusion periods). Mean arterial pressure (MAP), plasma norepinephrine (NE), and middle and posterior cerebral artery velocities (MCAv and PCAv) were compared between trials. As expected, BFRE elicited higher concentration NE compared with CE (1249 ± 170 vs. 962 ± 114 pg/ml; P = 0.06). Unexpectedly, however, there were no differences in MAP between conditions (overall P = 0.33), and MAP was 4-5 mmHg lower with BFRE versus CE during the reperfusion periods ( P ≤ 0.05 for reperfusion periods 3 and 4 ). There were no differences in MCAv or PCAv between trials ( P ≥ 0.22), suggesting equivalent cerebrometabolic demand. The exaggerated sympathoexcitatory response with BFRE was not accompanied by higher MAP, likely because of the cyclical reperfusions. This cyclical BFRE paradigm could be adapted to cardiac or stroke rehabilitation, where exercising patients could benefit from the cardio and cerebro protection associated with RIPC. Copyright © 2017 the American Physiological Society.
Cyclic and SCC Behavior of Alloy 690 HAZ in a PWR Environment
NASA Astrophysics Data System (ADS)
Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill
The objective of this work is to determine the cyclic and stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for Alloy 690 heat affected zone (HAZ). In order to meet the objective, an Alloy 152 J-weld was produced on a piece of Alloy 690 tubing, and the test specimens were aligned with the HAZ. The environmental enhancement of cyclic CGRs for Alloy 690 HAZ was comparable to that measured for the same alloy in the as-received condition. The two Alloy 690 HAZ samples tested exhibited maximum SCC CGR rates of 10-11 m/s in the simulated PWR environment at 320°C, however, on average, these rates are similar or only slightly higher than those for the as-received alloy.
Goozée, Justine V; Murdoch, Bruce E; Theodoros, Deborah G
2002-01-01
A miniature pressure transducer was used to assess the interlabial contact pressures produced by a group of 19 adults (mean age 30.6 years) with dysarthria following severe traumatic brain injury (TBI) during a set of speech and nonspeech tasks. Ten parameters relating to lip strength, endurance, rate of movement and lip pressure accuracy and stability were measured from the nonspeech tasks. The results attained by the TBI group were compared against a group of 19 age- and sex-matched control subjects. Significant differences between the groups were found for maximum interlabial contact pressure, maximum rate of repetition of maximum pressure, and lip pressure accuracy at 50 and 10% levels of maximum pressure. In regards to speech, the interlabial contact pressures generated by the TBI group and control group did not differ significantly. When expressed as percentages of maximum pressure, however, the TBI group's interlabial pressures appeared to have been generated with greater physiological effort. Copyright 2002 S. Karger AG, Basel
Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy
NASA Astrophysics Data System (ADS)
Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li
2015-05-01
Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.
Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng
2013-01-01
Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.
2002-01-01
The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.
Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas
2018-03-01
Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.
2002-01-29
This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.
Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.
2000-11-14
This invention is a process for the passivation or deactivation with resp to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.
Tomkinson, A.; Raeburn, D.
1996-01-01
1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552
NASA Astrophysics Data System (ADS)
Martinez, Rudy D.
A multiaxial fatigue model is proposed, as it would apply to cylindrical geometry in the form of industrial sized pressure vessels. The main focus of the multiaxial fatigue model will be based on using energy methods with the loading states confined to fluctuating tractions under proportional loading. The proposed fatigue model is an effort to support and enhance existing fatigue life predicting methods for pressure vessel design, beyond the ASME Boiler and Pressure Vessel codes, ASME Section VIII Division 2 and 3, which is currently used in industrial engineering practice for pressure vessel design. Both uniaxial and biaxial low alloy pearlittic-ferritic steel cylindrical cyclic test data are utilized to substantiate the proposed fatigue model. Approximate material hardening and softening aspects from applied load cycling states and the Bauschinger effect are accounted for by adjusting strain control generated hysteresis loops and the cyclic stress strain curve. The proposed fatigue energy model and the current ASME fatigue model are then compared with regards to the accuracy of predicting fatigue life cycle consistencies.
Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell
NASA Technical Reports Server (NTRS)
Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.
1987-01-01
During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2005-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2004-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
Elenes, Egleide Y; Hunter, Shawn A
2014-08-20
Allograft safety is contingent on effective sterilization. However, current sterilization methods have been associated with decreased biomechanical strength and higher failure rates of soft-tissue allografts. In this study, electron beam (e-beam) sterilization was explored as an alternative sterilization method to preserve biomechanical integrity. We hypothesized that e-beam sterilization would not significantly alter the biomechanical properties of tendon allograft compared with aseptic, nonsterilized controls and gamma-irradiated grafts. Separate sets of forty fresh-frozen tibialis tendon allografts (four from each of ten donors) and forty bisected bone-patellar tendon-bone (BTB) allografts (four from each of ten donors) were randomly assigned to four study groups. One group received a 17.1 to 21.0-kGy gamma radiation dose; two other groups were sterilized with an e-beam at either a high (17.1 to 21.0-kGy) or low (9.2 to 12.2-kGy) dose. A fourth group served as nonsterilized controls. Each graft was cyclically loaded to 200 N of tension for 2000 cycles at a frequency of 2 Hz, allowed to relax for five minutes, and then tested in tension until failure at a 100%/sec strain rate. One-way analysis of variance testing was used to identify significant differences. Tibialis tendons sterilized with both e-beam treatments and with gamma irradiation exhibited values for cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus that were not significantly different from those of nonsterilized controls. BTB allografts sterilized with the high e-beam dose and with gamma irradiation were not significantly different in cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus from nonsterilized controls. BTB allografts sterilized with the e-beam at the lower dose were significantly less stiff than nonsterilized controls (p = 0.014) but did not differ from controls in any other properties. The difference in stiffness likely resulted from variations in tendon size rather than the treatments, as the elastic moduli of the groups were similar. The biomechanical properties of tibialis and BTB allografts sterilized with use of an e-beam at a dose range of 17.1 to 21.0 kGy were not different from those of aseptic, nonsterilized controls or gamma-irradiated allografts. E-beam sterilization can be a viable method to produce safe and biomechanically uncompromised soft-tissue allografts. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Fatigue failure of dentin-composite disks subjected to cyclic diametral compression
Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex
2015-01-01
Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum operating pressure. 195.406 Section 195...
Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin
2017-01-01
Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675
Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam
NASA Astrophysics Data System (ADS)
Lanser, R. L.; Ruggles-Wrenn, M. B.
2016-08-01
Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.
Omidvar, Ramin; Tafazzoli-Shadpour, Mohammad; Mahmoodi-Nobar, Farbod; Azadi, Shohreh; Khani, Mohammad-Mehdi
2018-05-01
Vascular endothelium is continuously subjected to mechanical stimulation in the form of shear forces due to blood flow as well as tensile forces as a consequence of blood pressure. Such stimuli influence endothelial behavior and regulate cell-tissue interaction for an optimized functionality. This study aimed to quantify influence of cyclic stretch on the adhesive property and stiffness of endothelial cells. The 10% cyclic stretch with frequency of 1 Hz was applied to a layer of endothelial cells cultured on a polydimethylsiloxane substrate. Cell-substrate adhesion of endothelial cells was examined by the novel approach of atomic force microscope-based single-cell force spectroscopy and cell stiffness was measured by atomic force microscopy. Furthermore, the adhesive molecular bonds were evaluated using modified Hertz contact theory. Our results show that overall adhesion of endothelial cells with substrate decreased after cyclic stretch while they became stiffer. Based on the experimental results and theoretical modeling, the decrease in the number of molecular bonds after cyclic stretch was quantified. In conclusion, in vitro cyclic stretch caused alterations in both adhesive capacity and elastic modulus of endothelial cells through mechanotransductive pathways as two major determinants of the function of these cells within the cardiovascular system.
Hydraulic fracture development in granite during cyclic injection
NASA Astrophysics Data System (ADS)
Diaz, M.; Jung, S. G.; Nam, Y. J.; Yeom, S.; Zhuang, L.; Kim, K. Y.
2017-12-01
The concept of fatigue hydraulic fracturing was introduced by Zang et al. (2013) as an alternative stimulation scheme to mitigate seismicity during hydraulic stimulation. In situ experiments in hard rock, and laboratory tests in granite have shown a decrease in breakdown pressure during cyclic injection. However, little work has been done in relation to the study of fracture evolution with increasing number of injection cycles. This study uses cylindrical granite specimens to observe induced fractures under continuous injection and fracture development during cyclic injection, aided by X-ray CT technology and AE monitoring. The rock specimens have 30 mm in diameter, 48 mm in height, and a 5 mm diameter central borehole drilled along its axis. Each specimen was axially loaded with 10 MPa, and without confining pressure. The first specimen was continuously injected with water at a rate of 50 mm3/s. For the second specimen, the same injection rate was used, but it was stopped multiple times when the pressure reached a value of 4 MPa in order to create cycles. The time during each injection peak was 2 min. The results show how induced fractures are likely to initiate at the borehole wall and between grain mineral boundaries. Also, the fractures increase true length and height with increasing number of cycles, and mineral distribution affected fracture orientation during its development. These observations could shed light into the physics involved behind this process
Intermittent pressure decreases human keratinocyte proliferation in vitro.
Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S
2007-01-01
The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.
Fairfax, A J; Rehahn, M; Jones, D; O'Malley, B
1984-01-01
The time course of changes in plasma cyclic AMP, heart rate and bronchial tone after inhalation of fenoterol or isoprenaline from a dose-metered aerosol are reported in a group of normal subjects. After isoprenaline, plasma cyclic AMP increased rapidly reaching a peak by 10 min and returned to basal levels within 60 min. A rapid, transient rise in heart rate occurred that was maximal by 5 min and returned to a basal level by 45 min. After fenoterol, the changes in cyclic AMP and heart rate were of much longer duration. The rise in plasma cyclic AMP was slower in onset and of greater magnitude than for isoprenaline, reaching a peak by 20 min and remaining above basal level for more than 6 h. The maximum increase in heart rate after fenoterol was less than that observed with isoprenaline but an elevated rate persisted for 4 h after inhalation of fenoterol. Fenoterol is known to have a longer duration of action as a bronchodilator in comparison with isoprenaline. The prolonged rise in plasma cyclic AMP in normal subjects given inhaled fenoterol may reflect this long duration of action. The concomitant rise in heart rate, however, suggests that the duration of plasma cyclic AMP response may in part be due to the systemic effect of the fraction of inhaled fenoterol known to be absorbed via the buccal and intestinal routes. PMID:6322828
Studies on centrifugal clutch judder behavior and the design of frictional lining materials
NASA Astrophysics Data System (ADS)
Li, Tse-Chang; Huang, Yu-Wen; Lin, Jen-Fin
2016-01-01
This study examines the judder behavior of a centrifugal clutch from the start of hot spots in the conformal contact, then the repeated developments of thermoelastic instability, and finally the formation of cyclic undulations in the vibrations, friction coefficient and torque. This behavior is proved to be consistent with the testing results. Using the Taguchi method, 18 kinds of frictional lining specimens were prepared in order to investigate their performance in judder resistance and establish a relationship between judder behavior and the Ts/Td (Ts: static torque; Td: dynamic torque) and dμ/dVx (μ: friction coefficient; Vx: relative sliding velocity of frictional lining and clutch drum) parameters. These specimens are also provided to examine the effects and profitability with regard to the centrifugal clutch, and find the relative importance of the various control factors. Theoretical models for the friction coefficient (μ), the critical sliding velocity (Vc) with clutch judder, and the contact pressure ratio p* /pbar (p*: pressure undulation w.r.t. pbar; pbar: mean contact pressure) and temperature corresponding to judder behavior are developed. The parameters of the contact pressure ratio and temperature are shown to be helpful to explain the occurrence of judder. The frictional torque and the rotational speeds of the driveline, clutch, and clutch drum as functions of engagement time for 100 clutch cycles are obtained experimentally to evaluate dμ/dVx and Ts/Td. A sharp rise in the maximum p* /pbar occurred when the relative sliding velocity reached the critical velocity, Vc. An increase in the maximum p* /pbar generally led to an increase of the (initially negative) dμ/dVx value, and thus the severity of judder. The fluctuation intensity of dμ/dVx becomes a governing factor of the growth of dμ/dVx itself in the engagement process. The mean values of dμ/dVx and Ts/Td for the clutching tests with 100 cycles can be roughly divided into three groups dependent on the fluctuation intensities of these two parameters, for each of which there is a linear relationship.
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
46 CFR 151.03-37 - Maximum allowable working pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...
40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... authorized by rule-maximum injection pressure. 147.1803 Section 147.1803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED...—maximum injection pressure. The owner or operator shall limit injection pressure to the lesser of: (a) A...
NASA Astrophysics Data System (ADS)
Ding, J.; Chester, F. M.; Chester, J. S.; Zhu, C.; Shen, X.; Arson, C. F.
2016-12-01
Synthetic salt-rock is produced through uniaxial consolidation of sieved granular salt (0.3-0.355 mm grain diam.) at 75-107 MPa pressure and 100-200 0 C for 15 min duration, to produce low porosity (3%-6%) aggregates. Based on microstructural observations, consolidation mechanisms are grain rearrangement, intragranular plastic flow, and minor microfracture and recrystallization. Following consolidation, the salt-rock is deformed by cyclic, triaxial loading at room temperature and 4 MPa confining pressure to investigate microfracture development, closure and healing effects on elastic properties and flow strength. Load cycles are performed within the elastic regime, up to yielding, and during steady ductile flow. The mechanical properties are determined using an internal load cell and strain gages bonded to the samples. Elastic properties vary systematically during deformation reflecting cracking and pore and grain shape changes. Between triaxial load cycles, samples are held at isostatic loads for durations up to one day to determine healing rates and strength recovery; a change in mechanical behavior is observed when significant healing is induced. The microstructures of all samples are characterized before and after cyclic loading using optical microscopy. The consolidation and cyclic triaxial tests, and optical microscopy investigations, are conducted in a controlled low-humidity environment to ensure nominally dry conditions. The microstructures of samples from different stages of cyclic triaxial deformation indicate that intracrystalline plasticity, accompanied by minor recovery by recrystallization, is dominant; but, grain-boundary crack opening also becomes significant. Grain-boundary microcracks have preferred orientations that are sub-parallel to the load axis. The stress-strain behavior correlates with microcrack fabrics and densities during cyclic loading. These experiments are used to both inform and test continuum damage mechanics models of salt-rock deformation in the semibrittle domain, as well as to help design and optimize salt-rock storage facilities.
Evaluation of oil-leakage of multi-layered resin-hose clamped with metal nipple and sleeve
NASA Astrophysics Data System (ADS)
Matsuoka, Kenta; Okubo, Kazuya; Fujii, Toru; Nakamura, Chihiro; Fujishita, Yushi; Kusu, Fuko; Matsushita, Masato; Yoshihara, Ryota
2018-03-01
The purpose of this study is to investigate the path of occurred oil-leakage of multi-layered resin-hose as one of multifunctional materials around the caulked joint with a metal nipple and sleeve when excessive cyclic internal pressure was applied onto the hose. Equivalent cyclic axial tensile force was substitutively applied to the hose, where same degree of normal stress was produced in longitudinal direction. Excessive 3 and 5 times of the standard load was applied to the hose. Cyclic loading was paused at every 1000 and 10000 cycles and then designed internal pressure was applied to the hose by a hand-operated pump with water in order to check whether the leakage was occurred around the joint and surface of the hose for safety evaluation. Cyclic fatigue life was defined as the number of loading cycles in which the leakage and the initial damage which was the passage of the ultrasonic wave was observed on the cyclic test. Test results showed the fatigue life at which leakage of water was observed was increased 20 times in case of K=3 compared to that in case of K=5. The cycles of initial damage detected by the ultrasonic wave were passed was increased 3.3 times in case of K=3 compared to that in case of K=5. The fluorescent agent penetrated from the core layer of resin hose to the reinforcement layer in which a half cross section along longitudinal direction in failed specimens was observed after the leak test. The original specimens had the gap between the resin-hose and the nipple and then the gap extended and connected during fatigue cyclic. In this study, it was observed that oil was leaked through narrow gap between the nipple and core layer of resin hose.
Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes
Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.
2011-01-01
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease. PMID:22174951
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel
NASA Astrophysics Data System (ADS)
Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.
2018-02-01
Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.
The cyclical variation of energy flux and photospheric magnetic field strength from coronal holes
NASA Technical Reports Server (NTRS)
Webb, D. F.; Davis, J. M.
1985-01-01
The average soft X-ray emission from coronal holes observed on images obtained during rocket flights from 1974 to 1981 is measured. The variation of this emission over the solar cycle was then compared with photospheric magnetic flux measurements within coronal holes over the same period. It was found that coronal hole soft X-ray emission could be detected and that this emission appeared to increase with the rise of the sunspot cycle from activity minimum to maximum. These quantitative results confirmed previous suggestions that the coronal brightness contrast between holes and large-scale structure decreased during this period of the cycle. Gas pressures at the hole base were estimated for assumed temperatures and found to vary from about 0.03 dyne/sq cm in 1974 to 0.35 dyne/sq cm in 1981. The increase in coronal hole X-ray emission was accompanied by a similar trend in the surface magnetic flux of near-equatorial holes between 1975 and 1980 (Harvey et al., 1982).
Polypyrrole nanostructures and their field emission investigations
NASA Astrophysics Data System (ADS)
Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.
2015-03-01
Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.
Guo, Li-Xin; Fan, Wei
2017-09-01
The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2010 CFR
2010-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of my remediation material? (a) You must determine the maximum HAP vapor pressure of your remediation...
Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations
NASA Astrophysics Data System (ADS)
Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo
2016-04-01
We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.
Jortikka, M O; Parkkinen, J J; Inkinen, R I; Kärner, J; Järveläinen, H T; Nelimarkka, L O; Tammi, M I; Lammi, M J
2000-02-15
Chondrocytes of the articular cartilage sense mechanical factors associated with joint loading, such as hydrostatic pressure, and maintain the homeostasis of the extracellular matrix by regulating the metabolism of proteoglycans (PGs) and collagens. Intermittent hydrostatic pressure stimulates, while continuous high hydrostatic pressure inhibits, the biosynthesis of PGs. High continuous hydrostatic pressure also changes the structure of cytoskeleton and Golgi complex in cultured chondrocytes. Using microtubule (MT)-affecting drugs nocodazole and taxol as tools we examined whether MTs are involved in the regulation of PG synthesis in pressurized primary chondrocyte monolayer cultures. Disruption of the microtubular array by nocodazole inhibited [(35)S]sulfate incorporation by 39-48%, while MT stabilization by taxol caused maximally a 17% inhibition. Continuous hydrostatic pressure further decreased the synthesis by 34-42% in nocodazole-treated cultures. This suggests that high pressure exerts its inhibitory effect through mechanisms independent of MTs. On the other hand, nocodazole and taxol both prevented the stimulation of PG synthesis by cyclic 0. 5 Hz, 5 MPa hydrostatic pressure. The drugs did not affect the structural and functional properties of the PGs, and none of the treatments significantly affected cell viability, as indicated by the high level of PG synthesis 24-48 h after the release of drugs and/or high hydrostatic pressure. Our data on two-dimensional chondrocyte cultures indicate that inhibition of PG synthesis by continuous high hydrostatic pressure does not interfere with the MT-dependent vesicle traffic, while the stimulation of synthesis by cyclic pressure does not occur if the dynamic nature of MTs is disturbed by nocodazole. Similar phenomena may operate in cartilage matrix embedded chondrocytes. Copyright 2000 Academic Press.
On Three-dimensional Structures in Relativistic Hydrodynamic Jets
NASA Astrophysics Data System (ADS)
Hardee, Philip E.
2000-04-01
The appearance of wavelike helical structures on steady relativistic jets is studied using a normal mode analysis of the linearized fluid equations. Helical structures produced by the normal modes scale relative to the resonant (most unstable) wavelength and not with the absolute wavelength. The resonant wavelength of the normal modes can be less than the jet radius even on highly relativistic jets. High-pressure regions helically twisted around the jet beam may be confined close to the jet surface, penetrate deeply into the jet interior, or be confined to the jet interior. The high-pressure regions range from thin and ribbon-like to thick and tubelike depending on the mode and wavelength. The wave speeds can be significantly different at different wavelengths but are less than the flow speed. The highest wave speed for the jets studied has a Lorentz factor somewhat more than half that of the underlying flow speed. A maximum pressure fluctuation criterion found through comparison between theory and a set of relativistic axisymmetric jet simulations is applied to estimate the maximum amplitudes of the helical, elliptical, and triangular normal modes. Transverse velocity fluctuations for these asymmetric modes are up to twice the amplitude of those associated with the axisymmetric pinch mode. The maximum amplitude of jet distortions and the accompanying velocity fluctuations at, for example, the resonant wavelength decreases as the Lorentz factor increases. Long-wavelength helical surface mode and shorter wavelength helical first body mode generated structures should be the most significant. Emission from high-pressure regions as they twist around the jet beam can vary significantly as a result of angular variation in the flow direction associated with normal mode structures if they are viewed at about the beaming angle θ=1/γ. Variation in the Doppler boost factor can lead to brightness asymmetries by factors up to 6 as long-wavelength helical structure produced by the helical surface mode winds around the jet. Higher order surface modes and first body modes produce less variation. Angular variation in the flow direction associated with the helical mode appears consistent with precessing jet models that have been proposed to explain the variability in 3C 273 and BL Lac object AO 0235+164. In particular, cyclic angular variation in the flow direction produced by the normal modes could produce the activity seen in BL Lac object OJ 287. Jet precession provides a mechanism for triggering the helical modes on multiple length scales, e.g., the galactic superluminal GRO J1655-40.
Utanohara, Yuri; Hayashi, Ryo; Yoshikawa, Mineka; Yoshida, Mitsuyoshi; Tsuga, Kazuhiro; Akagawa, Yasumasa
2008-09-01
It is clinically important to evaluate tongue function in terms of rehabilitation of swallowing and eating ability. We have developed a disposable tongue pressure measurement device designed for clinical use. In this study we used this device to determine standard values of maximum tongue pressure in adult Japanese. Eight hundred fifty-three subjects (408 male, 445 female; 20-79 years) were selected for this study. All participants had no history of dysphagia and maintained occlusal contact in the premolar and molar regions with their own teeth. A balloon-type disposable oral probe was used to measure tongue pressure by asking subjects to compress it onto the palate for 7 s with maximum voluntary effort. Values were recorded three times for each subject, and the mean values were defined as maximum tongue pressure. Although maximum tongue pressure was higher for males than for females in the 20-49-year age groups, there was no significant difference between males and females in the 50-79-year age groups. The maximum tongue pressure of the seventies age group was significantly lower than that of the twenties to fifties age groups. It may be concluded that maximum tongue pressures were reduced with primary aging. Males may become weaker with age at a faster rate than females; however, further decreases in strength were in parallel for male and female subjects.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan
2017-11-10
The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.
Biomechanical characterization of double-bundle femoral press-fit fixation techniques.
Ettinger, M; Haasper, C; Hankemeier, S; Hurschler, C; Breitmeier, D; Krettek, C; Jagodzinski, M
2011-03-01
Press-fit fixation of patellar tendon bone anterior cruciate ligament autografts is an interesting technique because no hardware is necessary. To date, no biomechanical data exist describing an implant-free double-bundle press-fit procedure. The purpose of this study was to characterize the biomechanical properties of three double-bundle press-fit fixations. In a controlled laboratory study, the patellar-, quadriceps- and hamstring tendons of 10 human cadavers (age: 49.2 ± 18.5 years) were used. An inside out press-fit fixation with a knot in the semitendinosus and gracilis tendons (SG) combined with an additional bone block, with two quadriceps tendon bone block grafts (QU) was compared with press-fit fixation of two bone patellar tendon bone block (PT) grafts in 30 porcine femora. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclical loading were investigated. The maximum load to failure was 703 ± 136 N for SG fixation, 632 ± 130 N for QU and 656 ± 127 N for PT fixation. Stiffness of the constructs averaged 138 ± 26 N/mm for SG, 159 ± 74 N/mm for QU, and 154 ± 50 N/mm for PT fixation. Elongation during initial cyclical loading was 1.2 ± 1.4 mm for SG, 2.0 ± 1.4 mm for QU, and 1.0 ± 0.6 mm for PT (significantly larger for PT and QU between the first 5 cycles compared with cycles 15-20th, P < 0.01). All investigated double-bundle fixation techniques were equal in terms of maximum load to failure, stiffness, and elongation. Unlike with single-bundle press-fit fixation techniques that have been published, no difference was observed between pure tendon combined with an additional bone block and tendon bone grafts. All techniques exhibited larger elongation during initial cyclical loading. All three press-fit fixation techniques that were investigated exhibit comparable biomechanical properties. Preconditioning of the constructs is critical.
Constitutive and damage material modeling in a high pressure hydrogen environment
NASA Technical Reports Server (NTRS)
Russell, D. A.; Fritzemeier, L. G.
1991-01-01
Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.
NASA Technical Reports Server (NTRS)
Rubashev, B. M.
1978-01-01
The present state of research on the influence of solar sunspot activity on tropospheric temperature and pressure is reviewed. The existence of an 11-year temperature cycle of 5 different types is affirmed. A cyclic change in atmospheric pressure, deducing characteristic changes between 11-year cycles is discussed. The existence of 80-year and 5-to-6-year cycles of temperature is established, and physical causes for birth are suggested.
Fatigue tests of YBCO coated conductors
NASA Astrophysics Data System (ADS)
Bamba, S.; Tanaka, Y.; Ando, T.; Ueda, H.; Ishiyama, A.; Yamada, Y.; Shiohara, Y.
2008-02-01
In this paper, we report the fatigue characteristics of IBAD/PLD YBCO coated conductors. A YBCO coated conductor used in the superconducting coil of a SMES system is repeatedly subjected to mechanical tensile or compressive strain due to the Lorentz force during electrical charging or discharging. The superconducting characteristic of this conductor may deteriorate because of this cyclic strain. Therefore, it is necessary to investigate the effect of cyclic strain on the superconducting characteristics of YBCO coated conductors that have a laminated structure. We developed an experimental apparatus with a U-shaped sample holder in order to apply cyclic strain to the sample tape. This apparatus was used to perform the fatigue tests on YBCO coated conductors in liquid nitrogen in the absence of an external magnetic field. The strain cycles with the maximum strain epsilonmax (zero external strain → epsilonmax → zero external strain) were applied and repeated up to 5000 times, and the Ic measurements were performed at epsilonmax. Therefore, the application of cyclic strain with epsilonmax ranging from 0.3% to 0.5% did not result in any significant deterioration of the superconducting characteristics of the conductor.
Shinkai, Koichi; Ebihara, Takashi; Shirono, Manabu; Seki, Hideaki; Wakaki, Suguru; Suzuki, Masaya; Suzuki, Shiro; Katoh, Yoshiroh
2009-03-01
The purpose of this study was to evaluate the effects of dentin attrition, phosphoric acid etching, and cyclic loading on the microtensile bond strength (microTBS) of a self-etching adhesive system to dentin. Flat dentin surfaces of human molars were assigned to eight experimental groups based on those with or without attrition, prior acid-etching, and cyclic loading. Resin composite paste was placed and polymerized after the bonding procedure according to manufacturer's instructions. The specimens were subjected to microTBS testing at a crosshead speed of 0.5 mm/min. Results showed that the minimum mean value of microTBS was 14.9 MPa in the group without attrition and acid-etching but with loading, while the maximum mean value of microTBS was 40.0 MPa in the group without attrition and loading but with acid etching. Therefore, the value of microTBS to dentin without attrition was significantly decreased by cyclic loading but that to dentin with attrition was not affected.
Tielmann, Moritz; Reiser, Stefan; Hufnagl, Marc; Herrmann, Jens-Peter; Eckardt, André; Temming, Axel
2015-10-01
The brown shrimp (Crangon crangon) is a highly abundant invertebrate in the North Sea, with its life cycle stages ranging from deep offshore spawning to shallow onshore nursery areas. To overcome the long distances between these two habitats, brown shrimp are suspected to use selective tidal stream transport (STST), moving with the cyclic tide currents towards their preferred water depths. However, it is not known which stimulus actually triggers STST behavior in brown shrimp. In this work, we determined the influence of different hyperbaric pressures on STST behavior of juvenile brown shrimp. Brown shrimp activity was recorded in a hyperbaric pressure chamber that supplied constant and dynamic pressure conditions simulating different depths, with and without a tidal cycle. Subsequent wavelet and Fourier analysis were performed to determine the periodicity in the activity data. The results of the experiments show that STST behavior in brown shrimp varies with pressure and therefore with depth. We further show that STST behavior can be initiated by cyclic pressure changes. However, an interaction with one or more other environmental triggers remains possible. Furthermore, a security ebb-tide activity was identified that may serve to avoid potential stranding in shallow waters and is 'remembered' by shrimp for about 1.5 days without contact with tidal triggers. © 2015. Published by The Company of Biologists Ltd.
Recent advances in lightweight, filament-wound composite pressure vessel technology
NASA Technical Reports Server (NTRS)
Lark, R. F.
1977-01-01
A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.
Zhou, Xiang; Liu, Dawei; Su, Longxiang; Long, Yun; Du, Wei; Miao, Qi; Li, Fang; Jin, Zhengyu; Zeng, Zhengpei; Luo, Ailun; Huang, Yuguang
2015-01-01
Abstract Cardiac pheochromocytoma is relatively rare. Few reports describe the intraoperative and postoperative progression of patients experiencing a life-threatening pheochromocytoma crisis treated with extracorporeal membrane oxygenation (ECMO). A 35-year-old man was referred to our facility for paroxysmal hypertension with a 10-year history of sweating, headaches, cardiac palpitations, and postexercise dyspnea. The patient initially underwent urine catecholamine measurement and an isotope scan, somatostatin receptor scintigraphy, and 18F-fluorodeoxyglucose positron emission tomography/computer tomography (CT), which indicated a multiple, cardiac pheochromocytoma. Echocardiography, cardiac magnetic resonance imaging (MRI), CT reconstruction, and a coronary CT angiography revealed several lesions at the aortic root and along the cardiac vasculature. Multifocal cardiac pheochromocytoma was diagnosed and pheochromocytoma crisis with severe cyclic blood pressure fluctuation occurred during surgery. Surgical resection of multiple pheochromocytomas in the right medial carotid sheath, mediastinum between the main and pulmonary arteries, and between the abdominal aorta and inferior vena artery was performed. To ensure cardiac perfusion and avoid severe circulatory fluctuation, the cardiac paraganglioma resection was prioritized. After resecting the cardiac pheochromocytoma, a severe pheochromocytoma crisis with rapid cyclic blood pressure fluctuation developed. ECMO and intraaortic balloon pump (IABP) were initiated to stabilize circulation and perfusion. Phenoxybenzamine, norepinephrine, epinephrine, and fluid resuscitation were administered to support cardiovascular function. The magnitude of blood pressure fluctuation steadily decreased with treatment. IABP was discontinued after 3 days, and ECMO was discontinued after 16 days. The patient was discharged 3 months postoperatively. This case indicates that mechanical life support with ECMO is a valuable option for pheochromocytoma-induced cardiac shock and should be considered as an effective therapeutic choice in patients with highly unstable hemodynamic function. PMID:25929929
The effects of dynamic loading on the intervertebral disc.
Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin
2011-11-01
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella
2015-10-30
The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1-5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP.
Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella
2015-01-01
The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1–5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971
NASA Astrophysics Data System (ADS)
Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas
2017-05-01
The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.
Production of Reactive Oxygen Species by Polyhalogenated Cyclic Hydrocarbons (PCH)
1991-07-22
dry ice in metabolism cages. One ml aliquots of urine were derivatized with 2,4- dinitrophenylhydrazine , and extracted with pentane. The hydrazones of...U.S.A. Key Words: formaldehyde; acetaldehyde; malondialdehyde; acetone; high pressure liquid chromatography; 2,4- dinitrophenylhydrazine ; gas... dinitrophenylhydrazine , and extracted with pentane. The hydrazones of the four lipid metabolic products were quantitated by high pressure liquid chromatography
NASA Technical Reports Server (NTRS)
Jones, David J.; Kurath, Peter
1988-01-01
Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.
Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G
1993-01-01
A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.
Sharma, Rakesh Kumar; Gaur, Rashmi; Yadav, Manavi; Goswami, Anandarup; Zbořil, Radek; Gawande, Manoj B
2018-01-30
In the last few decades, the emission of carbon dioxide (CO 2 ) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO 2 is the cycloaddition reaction between epoxides and CO 2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO 2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.
49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...
Code of Federal Regulations, 2012 CFR
2012-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2011 CFR
2011-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2013 CFR
2013-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2014 CFR
2014-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum and minimum allowable operating pressure...
Code of Federal Regulations, 2010 CFR
2010-10-01
... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freon, A.; Berry, J.; Coste, J.-P.
1959-02-01
Some recordings of the variations of intensity of cosmic neutrons, made since October 1956 at the observatory of the Pic du Midi and since July 1957 on the Kerguelen Islands, have shown the existence, since the beginning of the observations and during at least 20 solar rotations, of a cyclic variation with a stable period equal to 27.35 plus or minus 0.1 solar days and a maximum amplitude of 2.2% attained in October 1957. (tr-auth)
Vaughan, Benjamin L; Galie, Peter A; Stegemann, Jan P; Grotberg, James B
2013-11-05
In the creation of engineered tissue constructs, the successful transport of nutrients and oxygen to the contained cells is a significant challenge. In highly porous scaffolds subject to cyclic strain, the mechanical deformations can induce substantial fluid pressure gradients, which affect the transport of solutes. In this article, we describe a poroelastic model to predict the solid and fluid mechanics of a highly porous hydrogel subject to cyclic strain. The model was validated by matching the predicted penetration of a bead into the hydrogel from the model with experimental observations and provides insight into nutrient transport. Additionally, the model provides estimates of the wall-shear stresses experienced by the cells embedded within the scaffold. These results provide insight into the mechanics of and convective nutrient transport within a cyclically strained hydrogel, which could lead to the improved design of engineered tissues. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Boo, Yoon Jung; Nam, Myung Hyun; Lee, Eun Hee; Lee, Kuang Chul
2015-04-02
Cyclic neutropenia is a rare disease. We report a 31-month-old girl with congenital cyclic neutropenia with a novel mutation in the ELANE gene who developed an acute necrotizing soft-tissue infection on her left axillary legion. A 31-month-old girl was admitted to our pediatric emergency room because of a necrotizing soft tissue infection of the left axillary area. The infection progressed rapidly and resulted in septic shock. Despite a medical treatment and surgical debridement, the sepsis was not controlled, and severe inflammation developed. After applying of negative-pressure wound therapy, her clinical symptoms improved. Finally, she was diagnosed with cyclic neutropenia with a novel genetic mutation. One month after admission, she was discharged with a completely recovered wound and no need for skin grafting. Both adequate medical treatment and effective control of the source of infection are critically important to reduce morbidity in such complex cases of necrotizing fasciitis as appeared in an immunocompromised pediatric patient.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1994-01-01
Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.
Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading
Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao
2018-01-01
The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383
Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.
Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao
2018-02-26
The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.
Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...
2017-06-22
Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less
Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction
NASA Astrophysics Data System (ADS)
Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.
2014-12-01
Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.
Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.
2013-01-01
Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524
Inflation rates, rifts, and bands in a pāhoehoe sheet flow
Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.
2012-01-01
The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 52.01-55 - Increase in maximum allowable working pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Increase in maximum allowable working pressure. 52.01-55 Section 52.01-55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When...
46 CFR 154.408 - Cargo tank external pressure load.
Code of Federal Regulations, 2010 CFR
2010-10-01
... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...
Condensation model for the ESBWR passive condensers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revankar, S. T.; Zhou, W.; Wolf, B.
2012-07-01
In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less
NASA Astrophysics Data System (ADS)
Heintz, Kyle C.
An experimental study of a cambered airfoil undergoing non-cyclical, transient pitch trajectories and the resulting effects on the dynamic stall phenomenon is presented. Surface pressure measurements and airfoil incidence angle are acquired simultaneously to resolve instantaneous aerodynamic load coefficients at Mach numbers ranging from 0.2 to 0.4. Derived from these coefficients are various formulations of the aerodynamic damping factor, referred to copiously throughout. Using a two-motor mechanism, each providing independent frequency and amplitude input to the airfoil, unique pitch motions can be implemented by actively controlling the phase between inputs. This work primarily focuses on three pitch motion schemas, the first of which is a "chirp" style trajectory featuring concurrent exponential frequency growth and amplitude decay. Second, these parameters are tested separately to determine their individual contributions. Lastly, a novel dual harmonic pitch motion is devised which rapidly traverses dynamic stall regimes on an inter-cycle basis by modulating the static-stall penetration angle. Throughout all results presented, there is evidence that for consecutive pitch-cycles, the process of dynamic stall is affected when prior oscillations prior have undergone deeper stall-penetration angles. In other words when stall-penetration is descending, retreating from a regime of light or deep stall, statistics of load coefficients, such as damping coefficient, maximum lift, minimum quarter-chord moment, and their phase relationships, do not match the values seen when stall-penetration was growing. The outcomes herein suggest that the airfoil retains some memory of previous flow separation which has the potential to change the influence of the dynamic stall vortex.
High methane natural gas/air explosion characteristics in confined vessel.
Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing
2014-08-15
The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko
2014-05-01
Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
40 CFR 146.23 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the injection phase of cyclic steam operations And recording of one observation of injection pressure...; (4) Maintenance of the results of all monitoring until the next permit review (see 40 CFR 144.52(a)(5...
40 CFR 146.23 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the injection phase of cyclic steam operations And recording of one observation of injection pressure...; (4) Maintenance of the results of all monitoring until the next permit review (see 40 CFR 144.52(a)(5...
40 CFR 146.23 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the injection phase of cyclic steam operations And recording of one observation of injection pressure...; (4) Maintenance of the results of all monitoring until the next permit review (see 40 CFR 144.52(a)(5...
40 CFR 146.23 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the injection phase of cyclic steam operations And recording of one observation of injection pressure...; (4) Maintenance of the results of all monitoring until the next permit review (see 40 CFR 144.52(a)(5...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2014 CFR
2014-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2012 CFR
2012-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
33 CFR 156.170 - Equipment tests and inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... distort under static liquid pressure at least 11/2 times the maximum allowable working pressure; and (iv... static liquid pressure test is successfully completed in the presence of the COTP. The test medium is not... static liquid pressure at least 11/2 times the maximum allowable working pressure; and (5) Each item of...
Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro
2011-01-01
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809
Direct measurements of the pressure distribution along the contact area during droplet impact
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao
2016-11-01
We report direct measurements of the pressure distribution on the contact area during the impact of a droplet on a micropillar array. The measurements were realized using an array of MEMS-based force sensors fabricated underneath the micropillars. We show that immediately after the droplet hits the surface, the pressure becomes maximum at the center of the contact area and this maximum pressure value is more than 10 times larger than the dynamic pressure. This result emphasizes the effect of water-hammer-type pressure during the early stage of the impact. Furthermore, our measurement results demonstrate that the critical pressure associated with Cassie-Wenzel transition agrees well with the maximum capillary pressure of the micropillar array.
Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.
Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A
2006-04-01
Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society
Carter, A J; Ballard, S A; Naylor, A M
1998-07-01
The effects of sildenafil, a highly selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5, on erectile function in the anesthetized dog were evaluated. In pentobarbital-anesthetized dogs, increases in intracavernosal pressure in the corpus cavernosum and penile blood flow were induced by pelvic nerve stimulation over a frequency range of 1 to 16 hertz. The effects of increasing doses of sildenafil on electrically stimulated intracavernosal pressure, penile blood flow, blood pressure, and heart-rate were evaluated. In parallel experiments, the effects of the nitric oxide synthase inhibitor N omega-Nitro-L-Arginine (L-NOArg) on these same parameters also were assessed. The effects of nerve stimulation on intracavernosal pressure and blood flow to the penis were blocked by L-NOArg, 0.1-3 mg./kg., in a dose-related manner, confirming the important role of nitric oxide in producing erections. Sildenafil, 1-100 microg./kg administered intravenously, had no direct effect on intracavernosal pressure but potentiated the increase in intracavernosal pressure induced by nerve stimulation. This potentiation occurred at sildenafil plasma concentrations consistent with its relaxation effect on isolated human cavernosal tissue and its inhibition of phosphodiesterase type 5 in vitro. Sildenafil had no significant effect on blood pressure or heart rate. By inhibiting cyclic guanosine monophosphate-specific phosphodiesterase type 5, sildenafil augments the neuronal mechanism responsible for penile erection. This mechanism explains the significant improvements reported in the rigidity and duration of erections seen in patients with erectile dysfunction who have been treated with oral sildenafil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.
Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less
Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?
Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori
2010-02-01
Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.
Finite element analysis of the cyclic indentation of bilayer enamel
NASA Astrophysics Data System (ADS)
Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian
2014-04-01
Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen
2017-01-01
Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.
Cyclic Mechanical Loading Enhances Transport of Antibodies Into Articular Cartilage.
DiDomenico, Chris D; Xiang Wang, Zhen; Bonassar, Lawrence J
2017-01-01
The goal of this study was to characterize antibody penetration through cartilage tissue under mechanical loading. Mechanical stimulation aids in the penetration of some proteins, but this effect has not characterized molecules such as antibodies (>100 kDa), which may hold some clinical value for treating osteoarthritis (OA). For each experiment, fresh articular cartilage plugs were obtained and exposed to fluorescently labeled antibodies while under cyclic mechanical load in unconfined compression for several hours. Penetration of these antibodies was quantified using confocal microscopy, and finite element (FE) simulations were conducted to predict fluid flow patterns within loaded samples. Transport enhancement followed a linear trend with strain amplitude (0.25-5%) and a nonlinear trend with frequency (0.25-2.60 Hz), with maximum enhancement found to be at 5% cyclic strain and 1 Hz, respectively. Regions of highest enhancement of transport within the tissue were associated with the regions of highest interstitial fluid velocity, as predicted from finite-element simulations. Overall, cyclic compression-enhanced antibody transport by twofold to threefold. To our knowledge, this is the first study to test how mechanical stimulation affects the diffusion of antibodies in cartilage and suggest further study into other important factors regarding macromolecular transport.
Zhou, Zhang-Yan; Fei-Li; Cheng, Shao-Ping; Huang, Hui; Peng, Bi-Wen; Wang, Jing; Liu, Chang-Mao; Xing, Cheng; Sun, Ya-Ling; Bsoul, Najeeb; Pan, Hui; Yi, Cun-Jian; Liu, Rong-Hua; Zhong, Guang-Jun
2015-01-01
Background The aim of this study was to determine if shRNA constructs targeting insulin-like growth factor binding protein-3 can rehabilitate decreased serum testosterone concentrations in streptozotocin-induced diabetic rats. Material/Methods After 12 weeks of intracavernous administration of IGFBP-3 shRNA, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 at mRNA and protein levels was detected by quantitative real-time PCR analysis and Western blot, respectively. The concentrations of serum testosterone and cavernous cyclic guanosine monophosphate were detected by enzyme-linked immunosorbent assay. Results After 12 weeks of intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic control group (p<0.01). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. Both serum testosterone and cavernous cyclic guanosine monophosphate concentrations were significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic control group (p<0.01). Conclusions These results suggest that IGFBP-3 shRNA may rehabilitate erectile function via increases of concentrations of serum testosterone and cavernous cyclic guanosine monophosphate in streptozotocin-induced diabetic rats. PMID:25582342
Meyer, E G; Buckley, C T; Steward, A J; Kelly, D J
2011-10-01
Mechanical signals can play a key role in regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to determine if the long-term application of cyclic hydrostatic pressure could be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs. MSCs were isolated from the femora of two porcine donors, expanded separately under identical conditions, and then suspended in cylindrical agarose hydrogels. Constructs from both donors were maintained in a chemically defined media supplemented with TGF-β3 for 42 days. TGF-β3 was removed from a subset of constructs from day 21 to 42. Loaded groups were subjected to 10 MPa of cyclic hydrostatic pressurisation at 1 Hz for one hour/day, five days/week. Loading consisted either of continuous hydrostatic pressure (CHP) initiated at day 0, or delayed hydrostatic pressure (DHP) initiated at day 21. Free swelling (FS) constructs were cultured in parallel as controls. Constructs were assessed at days 0, 21 and 42. MSCs isolated from both donors were morphologically similar, demonstrated comparable colony forming unit-fibroblast (CFU-F) numbers, and accumulated near identical levels of collagen and GAG following 42 days of free swelling culture. Somewhat unexpectedly the two donors displayed a differential response to hydrostatic pressure. For one donor the application of CHP resulted in increased collagen and GAG accumulation by day 42, resulting in an increased dynamic modulus compared to FS controls. In contrast, CHP had no effect on matrix accumulation for the other donor. The application of DHP had no effect on either matrix accumulation or construct mechanical properties for both donors. Variability in the response to hydrostatic pressure was also observed for three further donors. In conclusion, this study demonstrates that the application of long-term hydrostatic pressure can be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs by enhancing collagen and GAG accumulation. The response to such loading however is donor dependent, which has implications for the clinical utilisation of such a stimulus when engineering cartilaginous grafts using autologous MSCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Manderscheid, J. M.; Kaufman, A.
1985-01-01
Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.
Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra
2017-10-23
Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.
A Pressure-Based Analysis of Vortex Ring Pinch-Off
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Braun, Noah; Dabiri, John
2014-11-01
This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Feasibility Study of Cyclic Pressure Testing Thick-Walled Cylinders
1975-01-01
Watervliet, and also • for tests on Navy barrela, is the hydrostatic pressure cycling test. This test employs a cloae-fitting, high -strength steel...mandrel to keep water volume at a minimum. High preaaure pumps then cycle the water up to the desired teat pres- • sure, thirty to fifty thousand...be accomplished using s high energy metalworking process - electrohydraulice. m • Electrohydraulica is a metalworking process which employs the
Pressure and shear stress in trabecular bone marrow during whole bone loading.
Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L
2015-09-18
Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.
1999-01-01
The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.
Cyclic Oxidation Modeling Program Rewritten for MS Windows
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.
14 CFR 25.365 - Pressurized compartment loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
46 CFR 151.50-13 - Propylene oxide.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Pressure vessel cargo tanks shall meet the requirements of Class II pressure vessels. (2) Cargo tanks shall be designed for the maximum pressure expected to be encountered during loading, storing and... cargo piping shall be subjected to a hydrostatic test of 11/2 times the maximum pressure to which they...
NASA Astrophysics Data System (ADS)
Brain, M. J.; Petley, D. N.; Rosser, N.; Lim, M.; Sapsford, M.; Barlow, J.; Norman, E.; Williams, A.; Pybus, D.
2009-12-01
The Boulby Mine, which is situated on the northeast coast of England, is a major source of potash, primarily for use as a fertiliser, with a secondary product of rock salt (halite), used in highway deicing. The deposits are part of the Zechstein formation and are found at depths of between c.1100 and 1135 m below sea level. The evaporite sequence also contains a range of further lithologies, including anhydrite, dolomite and a mixed evaporate deposit. From a scientific perspective the dry, uncontaminated nature of the deposits, the range of lithologies present and the high stress conditions at the mine provide a unique opportunity to observe rock deformation in situ in varying geological and stress environments. To this end the Boulby Geoscience Project was established to examine the feasibility of developing an underground research laboratory at the mine. Information regarding the mechanical properties of the strata at the Boulby Mine is required to develop our understanding of the strength and deformation behaviour of the rock over differing timescales in response to variations in the magnitude and duration of applied stresses. As such data are currently limited, we have developed a laboratory testing programme that examines the behaviour of the deposits during the application of differential compressive stresses. We present the initial results of this testing programme here. Experiments have been carried out using a high pressure Virtual Infinite Strain (VIS) triaxial apparatus (250 kN maximum axial load; 64 MPa maximum cell pressure) manufactured by GDS Instruments. Conventional compression tests under uniaxial and triaxial conditions have been undertaken to determine the effects of axial stress application rate, axial strain rate and confining pressure on behaviour and failure mechanisms. The experimental programme also includes advanced testing into time-dependent creep behaviour under constant deviatoric stress; the effects of variations in temperature and stress path loading on peak shear strength and deformation behaviour; and the effects of low frequency cyclic loading on evolution of material properties. We compare the results of the testing programme with similar published data on evaporite rocks and existing models of material deformation and briefly discuss the implications for the design of sub-surface excavations.
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... greater than or equal to 151 m3 storing a liquid with a maximum true vapor pressure greater than or equal... liquid with a maximum true vapor pressure greater than or equal to 15.0 kPa shall maintain a record of... than or equal to 75 m3 but less than 151 m3 storing a liquid with a maximum true vapor pressure that is...
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Some effects of cyclic induced deformation in rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hannum, N. P.; Quentmeyer, R. J.
1979-01-01
A test program to investigate the deformation process observed in the hot gas wall of rocket thrust chambers was conducted using three different liner materials. Five thrust chambers were cycled to failure using hydrogen and oxygen as propellants at a chamber pressure of 4.14 MN/m square (600 psia). The deformation was observed nondestructively at midlife points and destructively after failure occurred. The cyclic life results are presented with an accompanying discussion about the types of failure encountered. Data indicating the deformation of the thrust chamber liner as cycles are accumulated are presented for each of the test thrust chambers.
Multi-Functional Composite Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.
2008-01-01
Damage and fracture of composites subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via a recently developed composite mechanics code that allows the user to focus on composite response at infinitely small scales. Constituent material properties, stress and strain limits are scaled up to the laminate level to evaluate the overall damage and durability. Results show the number of cycles to failure at different temperatures. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
NASA Astrophysics Data System (ADS)
Vollrath, Bastian; Hübel, Hartwig
2018-01-01
The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.
Selection for precocious flowering in Pinus sylvestris
Henry D. Gerhold
1966-01-01
The reproductive systems of forest trees that have evolved in wild habitats are usually characterized by delayed flowering age, cyclic seed years, and possibly an optimum, rather than a maximum, number of seeds per tree. Presumably these characteristics are favored by natural selection, though not necessarily in all species or in all situations.
14 CFR 27.923 - Rotor drive system and control mechanism tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the position that will give maximum longitudinal cyclic pitch change to simulate forward flight. The... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section...
ERIC Educational Resources Information Center
DeSarbo, Wayne S.; Park, Joonwook; Scott, Crystal J.
2008-01-01
A cyclical conditional maximum likelihood estimation procedure is developed for the multidimensional unfolding of two- or three-way dominance data (e.g., preference, choice, consideration) measured on ordered successive category rating scales. The technical description of the proposed model and estimation procedure are discussed, as well as the…
NASA Astrophysics Data System (ADS)
Gopalakrishnan, M.; Srikesh, G.; Mohan, A.; Arivazhagan, V.
2017-05-01
In this work, a low cost and pollution free in-situ synthesis of phase pure Co3O4 nanoparticles and Co3O4/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g-1 for pure and 395.04 F g-1 for Co3O4/graphite nanocomposite at a current density of 0.5 A g-1. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.
Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.
López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J
2014-12-15
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.
Shafagoj, Yanal A; Mohammed, Faisal I
2002-08-01
The physiological effects of cigarette smoking have been widely studied, however, little is known regarding the effects of smoking hubble-bubble. We examined the acute effects of hubble-bubble smoking on heart rate, systolic, diastolic, and mean arterial blood pressure and maximum end-expiratory carbon monoxide. This study was carried out in the student laboratory, School of Medicine, Department of Physiology, University of Jordan, Amman, Jordan, during the summer of 1999. In 18 healthy habitual hubble-bubble smokers, heart rate, blood pressure, and maximum end-expiratory carbon monoxide was measured before, during and post smoking of one hubble-bubble run (45 minutes). Compared to base line (time zero), at the end of smoking heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure, and maximum end-expiratory carbon monoxide were increased 16 2.4 beats per minute, 6.7 2.5 mm Hg, 4.4 1.6 mm Hg, 5.2 1.7 mm Hg, and 14.2 1.8 ppm, (mean standard error of mean, P<.05). Acute short-term active hubble-bubble smoking elicits a modest increase in heart rate, systolic blood pressure, diastolic blood pressure, mean arterial blood pressure and maximum end-expiratory carbon monoxide in healthy hubble-bubble smokers.
Enhanced oil recovery using flash-driven steamflooding
Roark, Steven D.
1990-01-01
The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.
Comparison of masticatory performance and tongue pressure between children and young adults.
Fujita, Yuko; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi
2018-04-01
The aims of the present study were to evaluate whether there are significant differences in masticatory performance by gender and dental stage. We also determined the factors directly associated with the masticatory performance in children, and those directly associated with masticatory performance in young adults. The study included 180 subjects, ranging in age from 6 to 12 years or 20 to 33 years. The subjects were divided into three groups according to the Hellman developmental stage (III A, III B, or VA); the groups were the subdivided according to gender. The body mass index (BMI), maximum tongue pressure, and sum of decayed, missing, and filled teeth (DMFT) were determined in all subjects. To investigate masticatory performance, the total number and maximum projected area of chewed particles of the jelly materials were measured. Masticatory performance had the highest values at Stage VA in both males and females. Regarding the maximum tongue pressure in females, Stage III B had the highest value of all stages. Multiple regression analysis showed that masticatory performance was associated with DMFT index, maximum tongue pressure, and BMI in children. Among young adults, masticatory performance was associated with DMFT index and maximum tongue pressure. Better masticatory performance is directly associated with better dental status, a higher BMI, and tongue pressure in schoolchildren. Additionally, masticatory performance was well-correlated with tongue pressure in young adults, although maximum tongue pressure reached its peak before Stage VA in females. We suggest that females need training with respect to tongue pressure, by the mixed dentition stage.
ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Yan, Yong; Wang, Hong
A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydridesmore » in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of hydrided Zircaloy-4 cladding, which served as a guideline to prepare in-cell hydride reorientation samples with high burnup HBR fuel segments. This report also provides the Phase II CIRFT test data for the hydride reorientation irradiated samples. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The CIRFT results appear to indicate that hydride reoriented treatment (HRT) have a negative effect on fatigue life, in addition to hydride reorientation effect. For HR4 specimen that had no pressurization procedure applied, the thermal annealing treatment alone showed a negative impact on the fatigue life compared to the HBR rod.« less
Altitude-Related Change in Endotracheal Tube Cuff Pressures in Helicopter EMS
Weisberg, Stacy N.; McCall, Jonathan C.; Tennyson, Joseph
2017-01-01
Introduction Over-inflation of endotracheal tube (ETT) cuffs has the potential to lead to scarring and stenosis of the trachea.1, 2,3, 4 The air inside an ETT cuff is subject to expansion as atmospheric pressure decreases, as happens with an increase in altitude. Emergency medical services helicopters are not pressurized, thereby providing a good environment for studying the effects of altitude changes ETT cuff pressures. This study aims to explore the relationship between altitude and ETT cuff pressures in a helicopter air-medical transport program. Methods ETT cuffs were initially inflated in a nonstandardized manner and then adjusted to a pressure of 25 cmH2O. The pressure was again measured when the helicopter reached maximum altitude. A final pressure was recorded when the helicopter landed at the receiving facility. Results We enrolled 60 subjects in the study. The mean for initial tube cuff pressures was 70 cmH2O. Maximum altitude for the program ranged from 1,000–3,000 feet above sea level, with a change in altitude from 800–2,480 feet. Mean cuff pressure at altitude was 36.52 ± 8.56 cmH2O. Despite the significant change in cuff pressure at maximum altitude, there was no relationship found between the maximum altitude and the cuff pressures measured. Conclusion Our study failed to demonstrate the expected linear relationship between ETT cuff pressures and the maximum altitude achieved during typical air-medical transportation in our system. At altitudes less than 3,000 feet above sea level, the effect of altitude change on ETT pressure is minimal and does not require a change in practice to saline-filled cuffs. PMID:28611883
Altitude-Related Change in Endotracheal Tube Cuff Pressures in Helicopter EMS.
Weisberg, Stacy N; McCall, Jonathan C; Tennyson, Joseph
2017-06-01
Over-inflation of endotracheal tube (ETT) cuffs has the potential to lead to scarring and stenosis of the trachea.1, 2,3, 4 The air inside an ETT cuff is subject to expansion as atmospheric pressure decreases, as happens with an increase in altitude. Emergency medical services helicopters are not pressurized, thereby providing a good environment for studying the effects of altitude changes ETT cuff pressures. This study aims to explore the relationship between altitude and ETT cuff pressures in a helicopter air-medical transport program. ETT cuffs were initially inflated in a nonstandardized manner and then adjusted to a pressure of 25 cmH 2 O. The pressure was again measured when the helicopter reached maximum altitude. A final pressure was recorded when the helicopter landed at the receiving facility. We enrolled 60 subjects in the study. The mean for initial tube cuff pressures was 70 cmH 2 O. Maximum altitude for the program ranged from 1,000-3,000 feet above sea level, with a change in altitude from 800-2,480 feet. Mean cuff pressure at altitude was 36.52 ± 8.56 cmH 2 O. Despite the significant change in cuff pressure at maximum altitude, there was no relationship found between the maximum altitude and the cuff pressures measured. Our study failed to demonstrate the expected linear relationship between ETT cuff pressures and the maximum altitude achieved during typical air-medical transportation in our system. At altitudes less than 3,000 feet above sea level, the effect of altitude change on ETT pressure is minimal and does not require a change in practice to saline-filled cuffs.
Lipin, Bruce R.
1993-01-01
This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.
Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E; Terán-Gilmore, Amador
2014-01-01
Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.
Bojórquez, Edén; Reyes-Salazar, Alfredo; Ruiz, Sonia E.; Terán-Gilmore, Amador
2014-01-01
Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF) steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions. PMID:25089288
Fatigue Behavior of Inconel 718 TIG Welds
NASA Astrophysics Data System (ADS)
Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.
2014-08-01
Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.
Full-Scale Testing and Analysis of Curved Aircraft Fuselage Panels.
DOT National Transportation Integrated Search
1993-12-01
The report presents data on (1) residual strength of aircraft panels containing Multiple-Site Damage (MSD) in lap splices, and (2) fatigue strength of panels subjected to cyclic pressure loading. The testing was conducted using the dedicated Aging Ai...
Spool valve cycles at controlled frequency
NASA Technical Reports Server (NTRS)
Charlton, K. W.; Van Arnam, D. E.
1966-01-01
Spool valve accurately controls the cycle of a pneumatically-actuated system over long periods. Regulation of pressure from the external source, positioning of the adjusting plugs, and magnet selection, together afford wide variation in cyclic timing and speed of closure in either direction.
Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitman, D.C.
1988-01-01
The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application.
Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen
2012-02-01
The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.
Recent advances in lightweight, filament-wound composite pressure vessel technology
NASA Technical Reports Server (NTRS)
Lark, R. F.
1977-01-01
A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.
A Study of the Response of the Human Cadaver Head to Impact
Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott
2008-01-01
High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591
Exhaust-Gas Pressure and Temperature Survey of F404-GE-400 Turbofan Engine
NASA Technical Reports Server (NTRS)
Walton, James T.; Burcham, Frank W., Jr.
1986-01-01
An exhaust-gas pressure and temperature survey of the General Electric F404-GE-400 turbofan engine was conducted in the altitude test facility of the NASA Lewis Propulsion System Laboratory. Traversals by a survey rake were made across the exhaust-nozzle exit to measure the pitot pressure and total temperature. Tests were performed at Mach 0.87 and a 24,000-ft altitude and at Mach 0.30 and a 30,000-ft altitude with various power settings from intermediate to maximum afterburning. Data yielded smooth pressure and temperature profiles with maximum jet temperatures approximately 1.4 in. inside the nozzle edge and maximum jet temperatures from 1 to 3 in. inside the edge. A low-pressure region located exactly at engine center was noted. The maximum temperature encountered was 3800 R.
Tatsumura, Masaki; Sakane, Masataka; Ochiai, Naoyuki; Mizuno, Shuichi
2013-01-01
The addition of cyclic hydrostatic pressure (cHP) to cell culture medium has been used to promote extracellular matrix (ECM) production by articular chondrocytes. Though a combination of cHP followed by atmospheric pressure (AP) has been examined previously, the rationale of such a combination was unclear. We compared the effects of loading once versus twice (combinations of cHP followed by AP) regarding both gene expression and biochemical and histological phenotypes of chondrocytes. Isolated bovine articular chondrocytes were embedded in a collagen gel and incubated for 14 days under conditions combining cHP and AP. The gene expression of aggrecan core protein and collagen type II were upregulated in response to cHP, and those levels were maintained for at least 4 days after cHP treatment. Accumulation of cartilage-specific sulfated glycosaminoglycans following cHP for 7 days and subsequent AP for 7 days was significantly greater than that of the AP control (p < 0.05). Therefore, incubation at AP after loading with cHP was found to beneficially affect ECM accumulation. Manipulating algorithms of cHP combined with AP will be useful in producing autologous chondrocyte-based cell constructs for implantation. © 2014 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.
2015-12-01
Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
The coronal structure of active regions
NASA Technical Reports Server (NTRS)
Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.
1975-01-01
A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.
DINNING, P. G.; WIKLENDT, L.; MASLEN, L.; GIBBINS, I.; PATTON, V.; ARKWRIGHT, J. W.; LUBOWSKI, D. Z.; O'GRADY, G.; BAMPTON, P. A.; BROOKES, S. J.; COSTA, M.
2015-01-01
Background Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques. Methods We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects. Key Results In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns. Conclusions & Inferences This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin. PMID:25131177
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-01-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-07-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.
Sound field inside acoustically levitated spherical drop
NASA Astrophysics Data System (ADS)
Xie, W. J.; Wei, B.
2007-05-01
The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
Electrochemistry of LB films of mixed MGDG:UQ on ITO.
Hoyo, Javier; Guaus, Ester; Torrent-Burgués, Juan; Sanz, Fausto
2015-08-01
The electrochemical behaviour of biomimetic monolayers of monogalactosyldiacylglycerol (MGDG) incorporating ubiquinone-10 (UQ) has been investigated. MGDG is the principal component in the thylakoid membrane and UQ seems a good substitute for plastoquinone-9, involved in photosynthesis chain. The monolayers have been performed using the Langmuir and Langmuir-Blodgett (LB) techniques and the redox behaviour of the LB films, transferred at several surface pressures on a glass covered with indium-tin oxide (ITO), has been characterized by cyclic voltammetry. The cyclic voltammograms show that UQ molecules present two redox processes (I and II) at high UQ content and high surface pressures, and only one redox process (I) at low UQ content and low surface pressures. The apparent rate constants calculated for processes I and II indicate a different kinetic control for the reduction and the oxidation of UQ/UQH2 redox couple, being k(Rapp)(I) = 2.2 · 10(-5) s(-1), k(Rapp)(II) = 5.1 · 10(-14) k(Oapp)(I) = 3.3 · 10(-3) s(-1) and k(Oapp)(II) = 6.1 · 10(-6) s(-1), respectively. The correlation of the redox response with the physical states of the LB films allows determining the positions of the UQ molecules in the biomimetic monolayer, which change with the surface pressure and the UQ content. These positions are known as diving and swimming. Copyright © 2015 Elsevier B.V. All rights reserved.
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
46 CFR 28.880 - Hydraulic equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...
ESD coating of copper with TiC and TiB2 based ceramic matrix composites
NASA Astrophysics Data System (ADS)
Talas, S.; Mertgenç, E.; Gökçe, B.
2016-08-01
In automotive industry, the spot welding is a general practice to join smaller sections of a car. This welding is specifically carried out in short time and in an elevated number with certain pressure applied on copper electrodes. In addition, copper electrodes are expected to endure against cyclic mechanical pressure and temperature that is released during the passage of the current. The deformation and oxidation behaviour of copper electrodes during service appear with increasing temperature of medium and they also need to be cleaned and cooled or replaced for the continuation of joining process. The coating of copper electrodes with ceramic matrix composites can provide alternative excellent high temperature strength and ensures both economic and efficient use of resources. This study shows that the ESD coating of copper electrodes with a continuous film of ceramic phase ensures an improved resistance to thermal effects during the service and the change in content of film may be critical for cyclic alloying.
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
Le Guen, Morgan; Naline, Emmanuel; Grassin-Delyle, Stanislas; Devillier, Philippe; Faisy, Christophe
2015-01-01
Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress during mechanical ventilation. PMID:26011598
Martian climate - An empirical test of possible gross variations
NASA Technical Reports Server (NTRS)
Owen, T.
1974-01-01
There appears to be evidence for a cyclic behavior of the Martian climate in which the surface pressure periodically reaches values compatible with the flow of water in equatorial regions on the planet. A relatively simple test of such hypotheses is pointed out. The premise on which cyclic models are based is that a substantial reservoir of volatils exist in frozen form at one or both poles. The proposed test involves a determination of the relative abundances of neon and argon isotopes. The required measurements may be made after the soft landing next February of Soviet spacecraft presently en route to the planet.
Plasma-sprayed zirconia gas path seal technology: A state-of-the-art review
NASA Technical Reports Server (NTRS)
Bill, R. C.
1979-01-01
The benefits derived from application of ceramic materials to high pressure turbine gas path seal components are described and the developmental backgrounds of various approaches are reviewed. The most fully developed approaches are those employing plasma sprayed zirconium oxide as the ceramic material. Prevention of cracking and spalling of the zirconium oxide under cyclic thermal shock conditions imposed by the engine operating cycle is the most immediate problem to be solved before implementation is undertaken. Three promising approaches to improving cyclic thermal shock resistance are described and comparative rig performance of each are reviewed. Advanced concepts showing potential for performance improvements are described.
Roche, Christopher P; Staunch, Cameron; Hahn, William; Grey, Sean G; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D
2015-12-01
ASTM F2028-14 was adopted to recom mend a cyclic eccentric glenoid edge loading test that simulates the rocking horse loading mechanism beleived to cause aTSA glenoid loosening. While this method accurately simulates that failure mechanism, the recommended 750 N load may not be sufficient to simulate worst-case loading magnitudes, and the recommended 100,000 cycles may not be sufficient to simulate device fatigue-related failure modes. Finally, if greater loading magnitude or a larger number of cycles is performed, the recommended substrate density may not be sufficiently strong to support the elevated loads and cycles. To this end, a new test method is proposed to supplement ASTM F2028-14. A series of cyclic tests were performed to evaluate the long-term fixation strength of two different hybrid glenoid designs in both low (15 pcf) and high (30 pcf) density polyurethane blocks at elevated loads relative to ASTM F2028-14. To simulate a worst case clinical condition in which the humeral head is superiorly migrated, a cyclic load was applied to the superior glenoid rim to induce a maximum torque on the fixation pegs for three different cyclic loading tests: 1. 1,250 N load for 0.75 M cycles in a 15 pcf block, 2. 1,250 N load for 1.5 M cycles in a 30 pcf block, and 3. 2,000 N load for 0.65 M cycles in a 30 pcf block. All devices completed cyclic loading without failure, fracture, or loss of fixation regardless of glenoid design, polyurethane density, loading magnitude, or cycle length. No significant difference in post-cyclic displacement was noted between designs in any of the three tests. Post-cyclic radiographs demonstrated that each device maintained fixa - tion with the metal pegs within the bone-substitute blocks with no fatigue related failures. These results demonstrate that both cemented hybrid glenoids maintained fixation when tested according to each cyclic loading scenario, with no difference in post-cyclic displacement observed between designs. The lack of fatigue-related failures in these elevated load and high cycle test scenarios are promising, as are the relatively low displacements given the extreme nature of each test. This cyclic loading method is intended to supplement the ASTM F2028-14 standard that adequately simulates the rocking horse loading mechanism but may not adequately simulate the fatigue-related failure modes.
Wang, H; Tang, Y; Zhang, Y; Xu, K; Zhao, J B
2018-05-10
Objective: To investigate the relationship between the maximum blood pressure fluctuation within 24 hours after admission and the prognosis at discharge. Methods: The patients with ischemic stroke admitted in Department of Neurology of the First Affiliated Hospital of Harbin Medical University within 24 hours after onset were consecutively selected from April 2016 to March 2017. The patients were grouped according to the diagnostic criteria of hypertension. Ambulatory blood pressure of the patients within 24 hours after admission were measured with bedside monitors and baseline data were collected. The patients were scored by NIHSS at discharge. The relationships between the maximum values of systolic blood pressure (SBP) or diastolic blood pressure (DBP) and the prognosis at discharge were analyzed. Results: A total of 521 patients with acute ischemic stroke were enrolled. They were divided into normal blood pressure group (82 cases) and hypertension group(439 cases). In normal blood pressure group, the maximum values of SBP and DBP were all in normal distribution ( P >0.05). The maximum value of SBP fluctuation was set at 146.6 mmHg. After adjustment for potential confounders, the OR for poor prognosis at discharge in patients with SBP fluctuation ≥146.6 mmHg was 2.669 (95 %CI : 0.594-11.992) compared with those with SBP fluctuation <146.6 mmHg. The maximum value of DBP fluctuation was set at 90.0 mmHg, and the adjusted OR for poor prognosis at discharge in patients with DBP fluctuation ≥90.0 mmHg was 0.416 (95 %CI : 0.087-1.992) compared with those with DBP fluctuation <90.0 mmHg. In hypertension group, the maximum values of SBP and DBP were not in normal distribution ( P <0.05). The maximum value of SBP fluctuation was set at median 171.0 mmHg. After adjustment for the confounders, the greater the maximum of SBP, the greater the risk of poor prognosis at discharge was, the OR was 1.636 (95 %CI : 1.014-2.641). The maximum value of DBP fluctuation was set at median 98.0 mmHg. After adjustment for the confounders, the greater the maximum of DBP, the greater the risk of poor prognosis at discharge was, the OR was 1.645 (95 %CI : 1.003-2.697). Conclusion: In acute ischemic stroke patients with normal blood pressure at admission, the maximum values of SBP and DBP within 24 hours after admission had no relationship with prognosis at discharge. In acute ischemic stroke patients with hypertension at admission, the maximum values of SBP and DBP within 24 hours after admission were associated with poor prognosis at discharge.
Tissue interface pressure and skin integrity in critically ill, mechanically ventilated patients.
Grap, Mary Jo; Munro, Cindy L; Wetzel, Paul A; Schubert, Christine M; Pepperl, Anathea; Burk, Ruth S; Lucas, Valentina
2017-02-01
To describe tissue interface pressure, time spent above critical pressure levels and the effect on skin integrity at seven anatomical locations. Descriptive, longitudinal study in critically ill mechanically ventilated adults, from Surgical Trauma ICU-STICU; Medical Respiratory ICU-MRICU; Neuroscience ICU-NSICU in a Mid-Atlantic urban university medical centre. Subjects were enroled in the study within 24hours of intubation. Tissue interface pressure was measured continuously using the XSENSOR pressure mapping system (XSENSOR Technology Corporation, Calgary, Canada). Skin integrity was observed at all sites, twice daily, using the National Pressure Ulcer Advisory Panel staging system, for the first seven ICU days and at day 10 and 14. Of the 132 subjects, 90.9% had no observed changes in skin integrity. Maximum interface pressure was above 32mmHg virtually 100% of the time for the sacrum, left and right trochanter. At the 45mmHg level, the left and right trochanter had the greatest amount of time above this level (greater than 95% of the time), followed by the sacrum, left and right scapula, and the left and right heels. Similarly, at levels above 60mmHg, the same site order applied. For those six subjects with sacral skin integrity changes, maximum pressures were greater than 32mmHg 100% of the time. Four of the six sacral changes were associated with greater amounts of time above both 45mmHg and 60mmHg than the entire sample. Maximum tissue interface pressure was above critical levels for the majority of the documented periods, especially in the sacrum, although few changes in skin integrity were documented. Time spent above critical levels for mean pressures were considerably less compared to maximum pressures. Maximum pressures may have reflected pressure spikes, but the large amount of time above the critical pressure levels remains substantial. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tissue interface pressure and skin integrity in critically ill, mechanically ventilated patients☆
Grap, Mary Jo; Munro, Cindy L.; Wetzel, Paul A.; Schubert, Christine M.; Pepperl, Anathea; Burk, Ruth S.; Lucas, Valentina
2016-01-01
Summary Objective To describe tissue interface pressure, time spent above critical pressure levels and the effect on skin integrity at seven anatomical locations. Design, setting, patients Descriptive, longitudinal study in critically ill mechanically ventilated adults, from Surgical Trauma ICU-STICU; Medical Respiratory ICU-MRICU; Neuroscience ICU-NSICU in a Mid-Atlantic urban university medical centre. Subjects were enroled in the study within 24 hours of intubation. Measurements Tissue interface pressure was measured continuously using the XSENSOR pressure mapping system (XSENSOR Technology Corporation, Calgary, Canada). Skin integrity was observed at all sites, twice daily, using the National Pressure Ulcer Advisory Panel staging system, for the first seven ICU days and at day 10 and 14. Results Of the 132 subjects, 90.9% had no observed changes in skin integrity. Maximum interface pressure was above 32 mmHg virtually 100% of the time for the sacrum, left and right trochanter. At the 45 mmHg level, the left and right trochanter had the greatest amount of time above this level (greater than 95% of the time), followed by the sacrum, left and right scapula, and the left and right heels. Similarly, at levels above 60 mmHg, the same site order applied. For those six subjects with sacral skin integrity changes, maximum pressures were greater than 32 mmHg100% of the time. Four of the six sacral changes were associated with greater amounts of time above both 45 mmHg and 60 mmHg than the entire sample. Conclusions Maximum tissue interface pressure was above critical levels for the majority of the documented periods, especially in the sacrum, although few changes in skin integrity were documented. Time spent above critical levels for mean pressures were considerably less compared to maximum pressures. Maximum pressures may have reflected pressure spikes, but the large amount of time above the critical pressure levels remains substantial. PMID:27836262
49 CFR 236.701 - Application, brake; full service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a split reduction in brake pipe pressure at a service rate until maximum brake cylinder pressure is developed. As applied to an automatic or electro-pneumatic brake with speed governor control, an application other than emergency which develops the maximum brake cylinder pressure, as determined by the design of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... profile that is dependent upon the pipelines attributes, its geographical location, design, operating... type of threats posed by the pipeline segment, including consideration of the age, design, pipe... calculation. There are several methods available for establishing MAOP or MOP. A hydrostatic pressure test...
Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application
Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen
2012-01-01
The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages. PMID:27877473
NASA Technical Reports Server (NTRS)
Cooper, R. A.
1976-01-01
Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.
Campillo, Noelia; Jorba, Ignasi; Schaedel, Laura; Casals, Blai; Gozal, David; Farré, Ramon; Almendros, Isaac; Navajas, Daniel
2016-01-01
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.
Burkhart, Stephen S; Denard, Patrick J; Obopilwe, Elifho; Mazzocca, Augustus D
2012-02-01
The purpose of this study was to compare tendon-bone footprint contact area over time under physiologic loads for 4 different rotator cuff repair techniques: single row (SR), triangle double row (DR), chain-link double row (CL), and diamondback double row (DBK). A supraspinatus tear was created in 28 human cadavers. Tears were fixed with 1 of 4 constructs: SR, DR, CL, or DBK. Immediate post-repair measurements of pressurized contact area were taken in neutral rotation and 0° of abduction. After a static tensile load, pressurized contact area was observed over a 160-minute period after repair. Cyclic loading was then performed. The DBK repair had the highest pressurized contact area initially, as well as the highest pressurized contact area and lowest percentage decrease in pressurized contact area after 160 minutes of testing. The DBK repair had significantly larger initial pressurized contact than CL (P = .003) and SR (P = .004) but not DR (P = .06). The DBK technique was the only technique that produced a pressurized contact area that exceeded the native footprint both at initial repair (P = .01) and after 160 minutes of testing (P = .01). DBK had a significantly larger mean pressurized contact area than all the repairs after 160 minutes of testing (P = .01). DBK had a significantly larger post-cyclic loading pressurized contact area than CL (P = .01) and SR (P = .004) but not DR (P = .07). This study showed that a diamondback repair (a modification of the transosseous repair) can significantly increase the rotator cuff pressurized contact area in comparison with other standard rotator cuff repair constructs when there is sufficient tendon mobility to perform a double-row repair without excessive tension on the repair site. The persistent pressurized contact area of a DBK repair may be desirable to enhance healing potential when there is sufficient tendon mobility to perform a double-row repair, particularly for large or massive rotator cuff tears where it is important to optimize footprint area and contact to encourage biologic healing. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
33 CFR Appendix A to Part 154 - Guidelines for Detonation Flame Arresters
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CG-522). 1. Scope 1.1This standard provides the minimum requirements for design, construction.../Circ. 373/Rev. 1—Revised Standards for the Design, Testing and Locating of Devices to Prevent the... maximum design pressure drop for that maximum flow rate. 6.1.10Maximum operating pressure. 7. Materials 7...
Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application
NASA Technical Reports Server (NTRS)
Spica, P. W.; Hannum, N. P.; Meyer, S. D.
1986-01-01
A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure.
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Mendelson, Alexander
1945-01-01
Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo
We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. Wemore » analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.« less
Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S
2009-01-01
Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.
Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash
2014-01-01
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029
Gudmundsson, M; Perchiazzi, G; Pellegrini, M; Vena, A; Hedenstierna, G; Rylander, C
2018-01-01
In mechanically ventilated, lung injured, patients without spontaneous breathing effort, atelectasis with shunt and desaturation may appear suddenly when ventilator pressures are decreased. It is not known how such a formation of atelectasis is related to transpulmonary pressure (P L ) during weaning from mechanical ventilation when the spontaneous breathing effort is increased. If the relation between P L and atelectasis were known, monitoring of P L might help to avoid formation of atelectasis and cyclic collapse during weaning. The main purpose of this study was to determine the relation between P L and atelectasis in an experimental model representing weaning from mechanical ventilation. Dynamic transverse computed tomography scans were acquired in ten anaesthetized, surfactant-depleted pigs with preserved spontaneous breathing, as ventilator support was lowered by sequentially reducing inspiratory pressure and positive end expiratory pressure in steps. The volumes of gas and atelectasis in the lungs were correlated with P L obtained using oesophageal pressure recordings. Work of breathing (WOB) was assessed from Campbell diagrams. Gradual decrease in P L in both end-expiration and end-inspiration caused a proportional increase in atelectasis and decrease in the gas content (linear mixed model with an autoregressive correlation matrix; P < 0.001) as the WOB increased. However, cyclic alveolar collapse during tidal ventilation did not increase significantly. We found a proportional correlation between atelectasis and P L during the 'weaning process' in experimental mild lung injury. If confirmed in the clinical setting, a gradual tapering of ventilator support can be recommended for weaning without risk of sudden formation of atelectasis. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2014 CFR
2014-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2012 CFR
2012-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2013 CFR
2013-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
40 CFR 63.7944 - How do I determine the maximum HAP vapor pressure of my remediation material?
Code of Federal Regulations, 2011 CFR
2011-07-01
... vapor pressure of my remediation material? 63.7944 Section 63.7944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Performance Tests § 63.7944 How do I determine the maximum HAP vapor pressure of...
49 CFR 229.49 - Main reservoir system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square... or unloads and loads the air compressor within 5 pounds per square inch above or below the maximum... pressure is not less than 15 pounds per square inch above the maximum brake pipe pressure fixed by the...
49 CFR 229.49 - Main reservoir system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square... or unloads and loads the air compressor within 5 pounds per square inch above or below the maximum... pressure is not less than 15 pounds per square inch above the maximum brake pipe pressure fixed by the...
Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues
2015-01-01
Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.
NASA Technical Reports Server (NTRS)
Hauser, Cavour H; Plohr, Henry W
1951-01-01
The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.
Intratidal Overdistention and Derecruitment in the Injured Lung: A Simulation Study.
Amini, Reza; Herrmann, Jacob; Kaczka, David W
2017-03-01
Ventilated patients with the acute respiratory distress syndrome (ARDS) are predisposed to cyclic parenchymal overdistention and derecruitment, which may worsen existing injury. We hypothesized that intratidal variations in global mechanics, as assessed at the airway opening, would reflect such distributed processes. We developed a computational lung model for determining local instantaneous pressure distributions and mechanical impedances continuously during a breath. Based on these distributions and previous literature, we simulated the within-breath variability of airway segment dimensions, parenchymal viscoelasticity, and acinar recruitment in an injured canine lung for tidal volumes( V T ) of 10, 15, and 20 mL·kg -1 and positive end-expiratory pressures (PEEP) of 5, 10, and 15 cm H 2 O. Acini were allowed to transition between recruited and derecruited states when exposed to stochastically determined critical opening and closing pressures, respectively. For conditions of low V T and low PEEP, we observed small intratidal variations in global resistance and elastance, with a small number of cyclically recruited acini. However, with higher V T and PEEP, larger variations in resistance and elastance were observed, and the majority of acini remained open throughout the breath. Changes in intratidal resistance, elastance, and impedance followed well-defined parabolic trajectories with tracheal pressure, achieving minima near 12 to 16 cm H 2 O. Intratidal variations in lung mechanics may allow for optimization of ventilator settings in patients with ARDS, by balancing lung recruitment against parenchymal overdistention. Titration of airway pressures based on variations in intratidal mechanics may mitigate processes associated with injurious ventilation.
Interlaminar shear fracture toughness and fatigue thresholds for composite materials
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.
1987-01-01
Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.
Scharfschwerdt, Michael; Leonhard, Moritz; Lehmann, Judith; Richardt, Doreen; Goldmann, Helmut; Sievers, Hans-Hinrich
2016-05-01
Prosthetic replacement of the thoracic aorta with common Dacron prostheses impairs the aortic 'windkessel' and, in valve-sparing procedures, also aortic valve function. Elastic graft material may overcome these deficiencies. Fresh porcine aortas including the root were set up in a mock circulation before and after replacement of the ascending part with a novel vascular prosthesis providing elastic behaviours. In a first series (n = 14), haemodynamics and leaflet motions of the aortic valve were investigated and also cyclic changes of aortic dimensions at different levels of the root. In a second series (n = 7), intravascular pressure and dimensions of the proximal descending aorta were measured and the corresponding wall tension was calculated. Haemodynamics of the aortic valve remain comparable after replacement. Though the novel prosthesis does not feature such high distensibility as the native aorta, the dynamic of the root was significantly increased compared with common Dacron prostheses at the commissural level, preserving 'windkessel' function. Thus, wall tension of the residual aorta remained unchanged; nevertheless, maximum pressure-time differential dp/dt increased by 13%. The use of the novel elastic prosthesis for replacement of the ascending aorta seems to be beneficial, especially with regard to the preservation of the aortic windkessel. Further studies will be needed to clarify long-term utilization of the material in vivo. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.
2001-02-01
A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.
Blank, J G; Miller, G H; Ahrens, M J; Winans, R E
2001-01-01
A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.
Walker, N J; Van Woerden, H C; Kiparoglou, V; Yang, Y
2016-07-26
As part of an electronic dashboard operated by Public Health Wales, senior managers at hospitals in Wales report daily "escalation" scores which reflect management opinion on the pressure a hospital is experiencing and ability to meet ongoing demand with respect to unscheduled care. An analysis was undertaken of escalation scores returned for 18 hospitals in Wales between the years 2006 and 2014 inclusive, with a view to identifying systematic temporal patterns in pressure experienced by hospitals in relation to unscheduled care. Exploratory data analysis indicated the presence of within-year cyclicity in average daily scores over all hospitals. In order to quantify this cyclicity, a Generalised Linear Mixed Model was fitted which incorporated a trigonometric function (sine and cosine) to capture within-year change in escalation. In addition, a 7-level categorical day of the week effect was fitted as well as a 3-level categorical Christmas holiday variable based on patterns observed in exploration of the raw data. All of the main effects investigated were found to be statistically significant. Firstly, significant differences emerged in terms of overall pressure reported by individual hospitals. Furthermore, escalation scores were found to vary systematically within-year in a wave-like fashion for all hospitals (but not between hospitals) with the period of highest pressure consistently observed to occur in winter and lowest pressure in summer. In addition to this annual variation, pressure reported by hospitals was also found to be influenced by day of the week (low at weekends, high early in the working week) and especially low over the Christmas period but high immediately afterwards. Whilst unpredictable to a degree, quantifiable pressure experienced by hospitals can be anticipated according to models incorporating systematic temporal patterns. In the context of finite resources for healthcare services, these findings could optimise staffing schedules and inform resource utilisation.
A Balanced Diaphragm Type of Maximum Cylinder Pressure Indicator
NASA Technical Reports Server (NTRS)
Spanogle, J A; Collins, John H , Jr
1930-01-01
A balanced diaphragm type of maximum cylinder pressure indicator was designed to give results consistent with engine operating conditions. The apparatus consists of a pressure element, a source of controlled high pressure and a neon lamp circuit. The pressure element, which is very compact, permits location of the diaphragm within 1/8 inch of the combustion chamber walls without water cooling. The neon lamp circuit used for indicating contact between the diaphragm and support facilitates the use of the apparatus with multicylinder engines.
Lithium-Inorganic Electrolyte Batteries
1975-01-01
soluble and therefore would not cause large pressure increases. Analysis by gas chromatography and cyclic voltametry is in progress. The fact that no...the large peak at 2.2 V again appears. Following a cathodic sweep , the Ni electrode is covered with a film which, after washing with SOC12 and drying
Mathematical modelling of cyclic pressure swing adsorption processes
NASA Astrophysics Data System (ADS)
Skvortsov, S. A.; Akulinin, E. I.; Golubyatnikov, O. O.; Dvoretsky, D. S.; Dvoretsky, S. I.
2018-05-01
The paper discusses the results of a numerical analysis of the properties and regimes of the adsorption air separation and oxygen concentration process with a purity of ∼ 40-60%, carried out in a 2-adsorption vacuum-pressure plant with a granular zeolite adsorbent 13X with a productivity of 1.6 · 10-5 m3/s. Computational experiments were carried out using the developed mathematical model and the influence of temperature, pressure, reflux ratio, the duration of the adsorption and desorption stages, the harmonic fluctuations of the inlet pressure during the adsorption stage and the outlet pressure during the desorption stage on the kinetics, and the efficiency of the air separation process by the PSA method were investigated. It is established that the specially organized harmonic fluctuations of the inlet pressure at the stage of adsorption and outlet pressure during the desorption stage lead to an increase in the purity of product oxygen by 4% (vol.).
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Flitney, F W; Singh, J
1980-07-01
1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are complex, but the accompanying change in isometric twitch tension is paralleled closely by corresponding changes in the ratio 3',5'cyclic AMP:3',5'-cyclic GMP. 5. It is concluded that ATP exerts a dual effect on the ventricle and that the contractile response is regulated by changes in the metabolism of 3',5'-cyclic nucleotides. The effects of indomethacin indicate a possible involvement of prostaglandins in mediating the ATP response. It is suggested that the initial effect of ATP on the ventricle is to increase the permeability of the fibres to Ca2+. 6. The relationship between 3',5' cyclic nucleotide levels and ventricular contractility is discussed. It is postulated that the antagonistic effects of 3',5'-cyclic AMP and 3',5'-cyclic GMP are expressed at the level of certain phosphoproteins which regulate both the availability of Ca2+ and the sensitivity of the contractile proteins to Ca2+.
Ristow, Oliver; Koerdt, Steffen; Stelzner, Ruben; Stelzner, Matthias; Johannes, Christoph; Ristow, Melanie; Hohlweg-Majert, Bettina; Pautke, Christoph
2015-02-11
Anecdotal reports assert a relationship between weather and lunar activity and the odontogenic abscess (OA) incidence, but this relationship has not been validated. Therefore, the present study investigated the relationship between oral pain caused by OA and a variety of meteorological parameters and cyclic lunar activity. The records of all dental emergency patients treated at the AllDent Zahnzentrum Emergency Unit in Munich, Germany during 2012 were retrospectively reviewed. Patients with oral pain who were diagnosed with OA and treated surgically (n = 1211) were included in the analysis. The OA incidence was correlated to daily meteorological data, biosynoptic weather analysis, and cyclic lunar activity. There was no seasonal variation in the OA incidence. None of the meteorological parameters, lunar phase, or biosynoptic weather class were significantly correlated with the OA incidence, except the mean barometric pressure, which was weakly correlated (rho = -0.204). The OA incidence showed a decreasing trend as barometric pressure increased (p < 0.001). On multiple linear regression, the barometric pressure accounted for approximately 4% of the OA incidence. There is no evidence supporting a correlation between the incidence of odontogenic abscess and the weather and lunar activities.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1976-01-01
The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.
Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility
NASA Astrophysics Data System (ADS)
Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.
2009-04-01
The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
NASA Technical Reports Server (NTRS)
Butze, H. F.; Liebert, C. H.
1976-01-01
The effect of ceramic coating of a JT8D combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons, CO, and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.
The impact law of confining pressure and plastic parameter on Dilatancy of rock
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing
2017-08-01
Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.
Endotracheal Tube Cuff Pressures in Patients Intubated Prior to Helicopter EMS Transport.
Tennyson, Joseph; Ford-Webb, Tucker; Weisberg, Stacy; LeBlanc, Donald
2016-11-01
Endotracheal intubation is a common intervention in critical care patients undergoing helicopter emergency medical services (HEMS) transportation. Measurement of endotracheal tube (ETT) cuff pressures is not common practice in patients referred to our service. Animal studies have demonstrated an association between the pressure of the ETT cuff on the tracheal mucosa and decreased blood flow leading to mucosal ischemia and scarring. Cuff pressures greater than 30 cmH 2 O impede mucosal capillary blood flow. Multiple prior studies have recommended 30 cmH 2 O as the maximum safe cuff inflation pressure. This study sought to evaluate the inflation pressures in ETT cuffs of patients presenting to HEMS. We enrolled a convenience sample of patients presenting to UMass Memorial LifeFlight who were intubated by the sending facility or emergency medical services (EMS) agency. Flight crews measured the ETT cuff pressures using a commercially available device. Those patients intubated by the flight crew were excluded from this analysis as the cuff was inflated with the manometer to a standardized pressure. Crews logged the results on a research form, and we analyzed the data using Microsoft Excel and an online statistical analysis tool. We analyzed data for 55 patients. There was a mean age of 57 years (range 18-90). The mean ETT cuff pressure was 70 (95% CI= [61-80]) cmH 2 O. The mean lies 40 cmH 2 O above the maximum accepted value of 30 cmH 2 O (p<0.0001). Eighty-four percent (84%) of patients encountered had pressures above the recommended maximum. The most frequently recorded pressure was >120 cmH 2 O, the maximum pressure on the analog gauge. Patients presenting to HEMS after intubation by the referral agency (EMS or hospital) have ETT cuffs inflated to pressures that are, on average, more than double the recommended maximum. These patients are at risk for tracheal mucosal injury and scarring from decreased mucosal capillary blood flow. Hospital and EMS providers should use ETT cuff manometry to ensure that they inflate ETT cuffs to safe pressures.
Endotracheal Tube Cuff Pressures in Patients Intubated Prior to Helicopter EMS Transport
Tennyson, Joseph; Ford-Webb, Tucker; Weisberg, Stacy; LeBlanc, Donald
2016-01-01
Introduction Endotracheal intubation is a common intervention in critical care patients undergoing helicopter emergency medical services (HEMS) transportation. Measurement of endotracheal tube (ETT) cuff pressures is not common practice in patients referred to our service. Animal studies have demonstrated an association between the pressure of the ETT cuff on the tracheal mucosa and decreased blood flow leading to mucosal ischemia and scarring. Cuff pressures greater than 30 cmH2O impede mucosal capillary blood flow. Multiple prior studies have recommended 30 cmH2O as the maximum safe cuff inflation pressure. This study sought to evaluate the inflation pressures in ETT cuffs of patients presenting to HEMS. Methods We enrolled a convenience sample of patients presenting to UMass Memorial LifeFlight who were intubated by the sending facility or emergency medical services (EMS) agency. Flight crews measured the ETT cuff pressures using a commercially available device. Those patients intubated by the flight crew were excluded from this analysis as the cuff was inflated with the manometer to a standardized pressure. Crews logged the results on a research form, and we analyzed the data using Microsoft Excel and an online statistical analysis tool. Results We analyzed data for 55 patients. There was a mean age of 57 years (range 18–90). The mean ETT cuff pressure was 70 (95% CI= [61–80]) cmH2O. The mean lies 40 cmH2O above the maximum accepted value of 30 cmH2O (p<0.0001). Eighty-four percent (84%) of patients encountered had pressures above the recommended maximum. The most frequently recorded pressure was >120 cmH2O, the maximum pressure on the analog gauge. Conclusion Patients presenting to HEMS after intubation by the referral agency (EMS or hospital) have ETT cuffs inflated to pressures that are, on average, more than double the recommended maximum. These patients are at risk for tracheal mucosal injury and scarring from decreased mucosal capillary blood flow. Hospital and EMS providers should use ETT cuff manometry to ensure that they inflate ETT cuffs to safe pressures. PMID:27833679
Patterson, Bradley M; Davis, Greg B
2009-02-01
Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway.
Cyclic and Torsional Fatigue Resistance of XP-endo Shaper and TRUShape Instruments.
Silva, Emmanuel João Nogueira Leal; Vieira, Victor Talarico Leal; Belladonna, Felipe Gonçalves; Zuolo, Arthur de Siqueira; Antunes, Henrique Dos Santos; Cavalcante, Daniele Moreira; Elias, Carlos Nelson; De-Deus, Gustavo
2018-01-01
The purpose of this study was to evaluate the cyclic and torsional fatigue resistance of the XP-endo Shaper (FKG Dentaire, La Chaux-de-Fonds, Switzerland) and TRUShape (Dentsply Tulsa Dental Specialties, Tulsa, OK) instruments. Twenty XP-endo Shaper (30/0.01) instruments and 20 TRUShape (30/0.06v) instruments were used. Cyclic fatigue resistance was tested by measuring the number of cycles and time to fracture in an artificial stainless steel canal with a 60° angle and a 5-mm radius of curvature (n = 10). The torque and angle of rotation at failure of new instruments (n = 10) were measured according to ISO 3630-1. The fracture surface of all fragments was examined with a scanning electron microscope. Results were statistically analyzed using the Student t test at a significance level of P < .05. The XP-endo Shaper instruments showed a significantly longer number of cycles to fracture and time to failure in seconds than the TRUShape instruments (P < .05). The XP-endo Shaper also presented a lower maximum torque load (P < .05) but a significantly higher angular rotation to fracture than TRUShape (P < .05). The XP-endo Shaper instruments showed a higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than TRUShape instruments. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
Lagier, Aude; Legou, Thierry; Galant, Camille; Amy de La Bretèque, Benoit; Meynadier, Yohann; Giovanni, Antoine
2017-12-01
The objective was to study the behavior of the larynx during shouted voice production, when the larynx is exposed to extremely high subglottic pressure. The study involved electroglottographic, acoustic, and aerodynamic analyses of shouts produced at maximum effort by three male participants. Under a normal speaking voice, the voice sound pressure level (SPL) is proportional to the subglottic pressure. However, when the subglottic pressure reached high levels, the voice SPL reached a maximum value and then decreased as subglottic pressure increased further. Furthermore, the electroglottographic signal sometimes lost its periodicity during the shout, suggesting irregular vocal fold vibration.
Magnetization at high pressure in CeP
NASA Astrophysics Data System (ADS)
Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.
1995-02-01
We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.
Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki
2017-12-01
This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p < 0.05). There were no significant differences in MTJ displacement between SS and CS. CS was associated with significantly higher NPT values than SS. This study suggests that SS of 2 minutes' hold duration significantly affected muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.
Lima Neto, M C; Cerqueira, J V A; da Cunha, J R; Ribeiro, R V; Silveira, J A G
2017-07-01
Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (V cmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (J max ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cyclic Thermal Stress-Induced Degradation of Cu Metallization on Si3N4 Substrate at -40°C to 300°C
NASA Astrophysics Data System (ADS)
Lang, Fengqun; Yamaguchi, Hiroshi; Nakagawa, Hiroshi; Sato, Hiroshi
2015-01-01
The high-temperature reliability of active metal brazed copper (AMC) on Si3N4 ceramic substrates used for fabricating SiC high-temperature power modules was investigated under harsh environments. The AMC substrate underwent isothermal storage at 300°C for up to 3000 h and a thermal cycling test at -40°C to 300°C for up to 3000 cycles. During isothermal storage at 300°C, the AMC substrate exhibited high reliability, characterized by very little deformation of the copper (Cu) layer, low crack growth, and low oxidation rate of the Cu layer. Under thermal cycling conditions at -40°C to 300°C, no detachment of the Cu layer was observed even after the maximum 3000 cycles of the experiment. However, serious deformation of the Cu layer occurred and progressed as the number of thermal cycles increased, thus significantly roughening the surface of the Cu metallized layer. The cyclic thermal stress led to a significant increase in the crack growth and oxidation of the Cu layer. The maximum depth of the copper oxides reached up to 5/6 of the Cu thickness. The deformation of the Cu layer was the main cause of the decrease of the bond strength under thermal cycling conditions. The shear strength of the SiC chips bonded on the AMC substrate with a Au-12 wt.%Ge solder decreased from the original 83 MPa to 14 MPa after 3000 cycles. Therefore, the cyclic thermal stress destroyed the Cu oxides and enhanced the oxidation of the Cu layer.
Fatigue delamination onset prediction in tapered composite laminates
NASA Technical Reports Server (NTRS)
Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin
1989-01-01
Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
2013-03-01
intermediate frequency LFM linear frequency modulation MAP maximum a posteriori MATLAB® matrix laboratory ML maximun likelihood OFDM orthogonal frequency...spectrum, frequency hopping, and orthogonal frequency division multiplexing ( OFDM ) modulations. Feature analysis would be a good research thrust to...determine feature relevance and decide if removing any features improves performance. Also, extending the system for simulations using a MIMO receiver or
Design and Evaluation for the End-to-End Detection of TCP/IP Header Manipulation
2014-06-01
Cooperative Association for Internet Data Analysis CDN content delivery network CE congestion encountered CRC cyclic redundancy check CWR congestion...Switzerland was primarily developed as a network neutrality analysis tool to detect when internet service providers (ISPs) were interfering with...maximum 200 words) Understanding, measuring, and debugging IP networks , particularly across administrative domains, is challenging. One aspect of the
Charge transfer from TiO2 into adsorbed benzene diazonium compounds
NASA Astrophysics Data System (ADS)
Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram
2004-08-01
Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.
Studies on droplet evaporation and combustion in high pressures
NASA Technical Reports Server (NTRS)
Sato, J.
1993-01-01
High pressure droplet evaporation and combustion have been studied up to 15 MPa under normal and microgravity fields. From the evaporation studies, it has been found that in the supercritical environments, the droplet evaporation rate and lifetime take a maximum and a minimum at an ambient pressure over the critical pressure. Its maximum and minimum points move toward the lower ambient pressures if the ambient temperature is increased. It has been found from the combustion studies that the burning life time takes a minimum at an ambient pressure being equal to the critical pressure. It is attributable to both the pressure dependency of the diffusion rate and the droplet evaporation characteristics described above.
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Feng, Pengfei; Li, Xiaona; Chen, Weiyi; Liu, Chengxing; Rong, Shuo; Wang, Xiaojun; Du, Genlai
2016-06-10
Corneal tensile strain increases if the cornea becomes thin or if intraocular pressure increases. However, the effects of mechanical stress on extracellular matrix (ECM) remodelling in the corneal repair process and the corneal anomalies are unknown. In this study, the combined effects of interleukin-1β (IL-1β) on matrix metalloproteinases (MMPs) in corneal fibroblasts under cyclic stretching were investigated in vitro. Cultured rabbit corneal fibroblasts were subjected to 5, 10 or 15 % cyclic equibiaxial stretching at 0.1 Hz for 36 h in the presence of IL-1β. Conditioned medium was harvested for the analysis of MMP2 and MMP9 protein production using the gelatin zymography and western blot techniques. Cyclic equibiaxial stretching changed the cell morphology by increasing the contractility of F-actin fibres. IL-1β alone induced the expression of MMP9 and increased the production of MMP2, and 5 % stretching alone decreased the production of MMP2, which indicates that a low stretching magnitude can reduce ECM degradation. In the presence of IL-1β, 5 and 10 % stretching increased the production of MMP2, whereas 15 % stretching increased the production of MMP9. These results indicate that MMP expression is enhanced by cyclic mechanical stimulation in the presence of IL-1β, which is expected to contribute to corneal ECM degradation, leading to the development of post-refractive surgery keratectasia.
Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haijun; Cui, Qun, E-mail: cuiqun@njtech.edu.cn; Wu, Juan
Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between thatmore » on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.« less
Small, high-pressure liquid hydrogen turbopump
NASA Technical Reports Server (NTRS)
Csomor, A.; Sutton, R.
1977-01-01
A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.
Goldstein, F.J.; Weight, W.D.
1982-01-01
The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Julie Knibloe
2015-08-01
Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutesmore » at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep fatigue data are calculated for the creep fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.« less
Strong environmental tolerance of moss Venturiella under very high pressure
NASA Astrophysics Data System (ADS)
Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.
2010-03-01
It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.
Cyclic loading of simulated fault gouge to large strains
NASA Astrophysics Data System (ADS)
Jones, Lucile M.
1980-04-01
As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).
Adverse Heart-Lung Interactions in Ventilator-induced Lung Injury.
Katira, Bhushan H; Giesinger, Regan E; Engelberts, Doreen; Zabini, Diana; Kornecki, Alik; Otulakowski, Gail; Yoshida, Takeshi; Kuebler, Wolfgang M; McNamara, Patrick J; Connelly, Kim A; Kavanagh, Brian P
2017-12-01
In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high Vt with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H 2 O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). The original Webb and Tierney results were replicated in terms of lung/body weight ratio (45/0 > 45/10 ≈ 30/0 ≈ 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure and dilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.
Water-Pressure Distribution on Seaplane Float
NASA Technical Reports Server (NTRS)
Thompson, F L
1929-01-01
The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)
Song, Qing-Wen; Chen, Wei-Qiang; Ma, Ran; Yu, Ao; Li, Qiu-Yue; Chang, Yao; He, Liang-Nian
2015-03-01
The chemical conversion of CO2 at atmospheric pressure and room temperature remains a great challenge. The triphenylphosphine complex of silver(I) carbonate was proved to be a robust bifunctional catalyst for the carboxylative cyclization of propargylic alcohols and CO2 at ambient conditions leading to the formation of α-methylene cyclic carbonates in excellent yields. The unprecedented performance of [(PPh3)2Ag]2CO3 is presumably attributed to the simultaneous activation of CO2 and propargylic alcohol. Moreover, the highly compatible basicity of the catalytic species allows propargylic alcohol to react with CO2 leading to key silver alkylcarbonate intermediates: the bulkier [(Ph3P)2Ag(I)](+) effectively activates the carbon-carbon triple bond and enhances O-nucleophilicity of the alkylcarbonic anion, thereby greatly promoting the intramolecular nucleophilic cyclization. Notably, this catalytic protocol also worked well for the reaction of propargylic alcohols, secondary amines, and CO2 (at atmospheric pressure) to afford β-oxopropylcarbamates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites
NASA Technical Reports Server (NTRS)
Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.
1993-01-01
The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.
A spectral-finite difference solution of the Navier-Stokes equations in three dimensions
NASA Astrophysics Data System (ADS)
Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico
1998-07-01
A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.
Numerical Modeling of Fluid Flow in Solid Tumors
Soltani, M.; Chen, P.
2011-01-01
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952
Effects of EVA gloves on grip strength and fatigue under low temperature and low pressure.
Tian, Yinsheng; Ding, Li; Liu, Heqing; Li, Yan; Li, Deyu; Wang, Li
2016-03-01
To study the effects of wearing extravehicular activity (EVA) gloves on grip strength and fatigue in low temperature, low pressure and mixing of two factors (low temperature and low pressure). The maximum grip strength and fatigue tests were performed with 10 healthy male subjects wearing gloves in a variety of simulated environments. The data was analysed using the normalization method. The results showed that wearing gloves significantly affected the maximum grip strength and fatigue. Pressure (29.6, 39.2 kPa) had more influence on the maximum grip compared with control group while low temperatures (-50, -90, -110 °C) had no influence on grip but affected fatigue dramatically. The results also showed that the maximum grip strength and fatigue were influenced significantly in a compound environment. Space environment remarkably reduced strength and endurance of the astronauts. However, the effects brought by the compound environment cannot be understood as the superimposition of low temperature and pressure effects. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Brush seals for turbine engine fuel conservation
NASA Astrophysics Data System (ADS)
Sousa, Mike
1994-07-01
The program objective is to demonstrate brush seals for replacing labyrinth seals in turboprop engines. The approach taken was to design and procure brush seals with assistance from Sealol, modify and instrument an existing T407 low pressure turbine test rig, replace inner balance piston and outer balance piston labyrinth seals with brush seals, conduct cyclic tests to evaluate seal leakage at operating pressures and temperatures, and evaluate effect of seal pack width and rotor eccentricity. Results are presented in viewgraph format and show that brush seals offer performance advantages over labyrinth seals.
NASA Technical Reports Server (NTRS)
Mickelsen, William R
1957-01-01
Vapor fuel-oxidant mixing is analyzed for standing transverse acoustic fields simulating those existing in screeching or screaming combustors. The additional mixing due to the acoustic field is shown to be a function of sound pressure and frequency, stream velocity, and turbulence. The effects of these parameters are shown graphically for a realistic range of combustor conditions. The fuel-oxidant ratio at various combustor stations is shown to have a cyclic fluctuation which is in phase with the pressure fluctuations. Possible mechanisms contributing to screech and scream are discussed.
Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Zhang; Paul A. Webley
CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less
Liao, Donghua; Lottrup, Christian; Fynne, Lotte; McMahon, Barry P; Krogh, Klaus; Drewes, Asbjørn M; Zhao, Jingbo; Gregersen, Hans
2018-01-01
Background/Aims Efficient transport through the esophago-gastric junction (EGJ) requires synchronized circular and longitudinal muscle contraction of the esophagus including relaxation of the lower esophageal sphincter (LES). However, there is a scarcity of technology for measuring esophagus movements in the longitudinal (axial) direction. The aim of this study is to develop new analytical tools for dynamic evaluation of the length change and axial movement of the human LES based on the functional luminal imaging probe (FLIP) technology and to present normal signatures for the selected parameters. Methods Six healthy volunteers without hiatal hernia were included. Data were analyzed from stepwise LES distensions at 20, 30, and 40 mL bag volumes. The bag pressure and the diameter change were used for motion analysis in the LES. The cyclic bag pressure frequency was used to distinguish dynamic changes of the LES induced by respiration and secondary peristalsis. Results Cyclic fluctuations of the LES were evoked by respiration and isovolumetric distension, with phasic changes of bag pressure, diameter, length, and axial movement of the LES narrow zone. Compared to the respiration-induced LES fluctuations, peristaltic contractions increased the contraction pressure amplitude (P < 0.001), shortening (P < 0.001), axial movement (P < 0.001), and diameter change (P < 0.01) of the narrow zone. The length of the narrow zone shortened as function of the pressure increase. Conclusions FLIP can be used for evaluation of dynamic length changes and axial movement of the human LES. The method may shed light on abnormal longitudinal muscle activity in esophageal disorders. PMID:29605981
Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.
Zhang, Jun; Webley, Paul A
2008-01-15
CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.
Extracting maximum power from active colloidal heat engines
NASA Astrophysics Data System (ADS)
Martin, D.; Nardini, C.; Cates, M. E.; Fodor, É.
2018-03-01
Colloidal heat engines extract power out of a fluctuating bath by manipulating a confined tracer. Considering a self-propelled tracer surrounded by a bath of passive colloids, we optimize the engine performances based on the maximum available power. Our approach relies on an adiabatic mean-field treatment of the bath particles which reduces the many-body description into an effective tracer dynamics. It leads us to reveal that, when operated at constant activity, an engine can only produce less maximum power than its passive counterpart. In contrast, the output power of an isothermal engine, operating with cyclic variations of the self-propulsion without any passive equivalent, exhibits an optimum in terms of confinement and activity. Direct numerical simulations of the microscopic dynamics support the validity of these results even beyond the mean-field regime, with potential relevance to the design of experimental engines.
Maximum efficiency of state-space models of nanoscale energy conversion devices
NASA Astrophysics Data System (ADS)
Einax, Mario; Nitzan, Abraham
2016-07-01
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
Maximum efficiency of state-space models of nanoscale energy conversion devices.
Einax, Mario; Nitzan, Abraham
2016-07-07
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
Simulation of Unique Pressure Changing Steps and Situations in Psa Processes
NASA Technical Reports Server (NTRS)
Ebner, Armin D.; Mehrotra, Amal; Knox, James C.; LeVan, Douglas; Ritter, James A.
2007-01-01
A more rigorous cyclic adsorption process simulator is being developed for use in the development and understanding of new and existing PSA processes. Unique features of this new version of the simulator that Ritter and co-workers have been developing for the past decade or so include: multiple absorbent layers in each bed, pressure drop in the column, valves for entering and exiting flows and predicting real-time pressurization and depressurization rates, ability to account for choked flow conditions, ability to pressurize and depressurize simultaneously from both ends of the columns, ability to equalize between multiple pairs of columns, ability to equalize simultaneously from both ends of pairs of columns, and ability to handle very large pressure ratios and hence velocities associated with deep vacuum systems. These changes to the simulator now provide for unique opportunities to study the effects of novel pressure changing steps and extreme process conditions on the performance of virtually any commercial or developmental PSA process. This presentation will provide an overview of the cyclic adsorption process simulator equations and algorithms used in the new adaptation. It will focus primarily on the novel pressure changing steps and their effects on the performance of a PSA system that epitomizes the extremes of PSA process design and operation. This PSA process is a sorbent-based atmosphere revitalization (SBAR) system that NASA is developing for new manned exploration vehicles. This SBAR system consists of a 2-bed 3-step 3-layer system that operates between atmospheric pressure and the vacuum of space, evacuates from both ends of the column simultaneously, experiences choked flow conditions during pressure changing steps, and experiences a continuously changing feed composition, as it removes metabolic CO2 and H20 from a closed and fixed volume, i.e., the spacecraft cabin. Important process performance indicators of this SBAR system are size, and the corresponding CO2 and H20 removal efficiencies, and N2 and O2 loss rates. Results of the fundamental behavior of this PSA process during extreme operating conditions will be presented and discussed.
Brown, Daniel J; Gibson, William P R
2011-12-01
We have cyclically suppressed the 2f1-f2 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Ménière's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Ménière's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative of the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Ménière's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Ménière's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Ménière's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Ménière's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Ménière's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this syndrome. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Studies on unsteady pressure fields in the region of separating and reattaching flows
NASA Astrophysics Data System (ADS)
Govinda Ram, H. S.; Arakeri, V. H.
1990-12-01
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Nguyen, Harrison H; Fong, Hanson; Paranjpe, Avina; Flake, Natasha M; Johnson, James D; Peters, Ove A
2014-08-01
The purpose of this study was to compare the fracture resistance to cyclic fatigue of ProTaper Next (PTN; Dentsply Tulsa Dental Specialties, Tulsa, OK), ProTaper Universal (PTU, Dentsply Tulsa Dental Specialties), and Vortex Blue (VB, Dentsply Tulsa Dental Specialties) rotary instruments. Twenty instruments each of PTN X1-X5, PTU S1-F5, and VB 20/04-50/04 were rotated until fracture in a simulated canal of 90° and a 5-mm radius using a custom-made testing platform. The number of cycles to fracture (NCF) was calculated. Weibull analysis was used to predict the maximum number of cycles when 99% of the instrument samples survive. VB 20/04-30/04 had significantly higher NCF than PTU S1-F5 and PTN X1-X5. VB 35/04-45/04 had significantly higher NCF than PTU S2-F5 and PTN X2-X5. PTN X1 had higher NCF than PTU S1-F5. PTN X2 had higher NCF than PTU F2-F5. The Weibull distribution predicted the highest number of cycles at which 99% of instruments survive to be 766 cycles for VB 25/04 and the lowest to be 50 cycles for PTU F2. Under the limitations of this study, VB 20/04-45/04 were more resistant to cyclic fatigue than PTN X2-X5 and PTU S2-F5. PTN X1 and X2 were more resistant to cyclic fatigue than PTU F2-F5. The Weibull distribution appears to be a feasible and potentially clinically relevant model to predict resistance to cyclic fatigue. Copyright © 2014 American Association of Endodontists. All rights reserved.
Pedullà, E; Lo Savio, F; Boninelli, S; Plotino, G; Grande, N M; Rapisarda, E; La Rosa, G
2015-11-01
To evaluate the effect of different torsional preloads on cyclic fatigue resistance of endodontic rotary instruments constructed from conventional nickel-titanium (NiTi), M-Wire or CM-Wire. Eighty new size 25, 0.06 taper Mtwo instruments (Sweden & Martina), size 25, 0.06 taper HyFlex CM (Coltene/Whaledent, Inc) and X2 ProTaper Next (Dentsply Maillefer) were used. The Torque and distortion angles at failure of new instruments (n = 10) were measured, and 0% (n = 10), 25%, 50% and 75% (n = 20) of the mean ultimate torsional strength as preloading condition were applied according to ISO 3630-1 for each brand. The twenty files tested for every extent of preload were subjected to 20 or 40 torsional cycles (n = 10). After torsional preloading, the number of cycles to failure was evaluated in a simulated canal with 60° angle of curvature and 5 mm of radius of curvature. Data were analysed using two-way analysis of variance. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). Data were analysed by two-way analyses of variance. Preload repetitions did not influence the cyclic fatigue of the three brands; however, the 25%, 50% and 75% torsional preloading significantly reduced the fatigue resistance of all instruments tested (P < 0.01, P < 0.001 and P < 0.0001, respectively) except for the HyFlex CM preloaded with 25% of the maximum torsional strength (P > 0.05). Torsional preloads reduced the cyclic fatigue resistance of conventional and treated (M-wire and CM-wire) NiTi rotary instruments except for size 25, 0.06 taper HyFlex CM instruments with a 25% of torsional preloading. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowska, Paulina; Klozinski, Arkadiusz
The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO{sub 3}) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break wasmore » also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated.« less
The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness.
Le Guen, Morgan; Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Brollo, Marion; Longchampt, Elisabeth; Kleinmann, Philippe; Devillier, Philippe; Faisy, Christophe
2016-11-14
In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca 2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved in the response; cyclic stretching up-regulated the early mRNA expression of MMP9 only, and was not associated with changes in organ bath levels of pro-inflammatory mediators. Low-frequency, low-force cyclic stretching of whole human bronchi induced a myogenic response rather than activation of the pro-inflammatory signaling pathways mediated by mechanotransduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
....7895(a) for Tanks Managing Remediation Material With a Maximum HAP Vapor Pressure Less Than 76.6 kPa 2... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Site Remediation Pt. 63... Tanks Managing Remediation Material With a Maximum HAP Vapor Pressure Less Than 76.6 kPa If your tank...
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
Two optimal working regimes of the ”long” Iguasu gas centrifuge
NASA Astrophysics Data System (ADS)
Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.
2016-09-01
We argue on the basis of the results of optimization calculations that the dependence of the optimal separative power of the Iguasu gas centrifuge with 2 m rotor has two local maxima,corresponding pressures of p max1 = 35 mmHg and p max2 = 350 mmHg. The optimal separative power values in these maxima differ by the value of 0.6%. Low pressure maximum is caused by the thermal drive, whereas high pressure maximum is caused by both thermal and mechanical drives. High pressure maximum is located on wide ’’plateau” from p 1 = 200 mmHg to p 2 = 500 mmHg, where the optimal separative power changes in the range of 0.7%. In this way, Iguasu gas centrifuge has two optimal working regimes with different sets of working parameters and close slightly different values of the separative power. Calculations show that high pressure regime is less sensitive to the parameters change than low pressure one.
Performance of a green propellant thruster with discharge plasma
NASA Astrophysics Data System (ADS)
Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki
2017-02-01
A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.
NASA Technical Reports Server (NTRS)
Porter, T. R.
1979-01-01
The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.
NASA Astrophysics Data System (ADS)
Li, Xiao-hong; Yin, Geng-xin; Zhang, Xian-zhou
2012-10-01
Based on the full optimized molecular geometrical structures at the DFT-B3LYP/6-311+G** level, there exists intramolecular hydrogen bond interaction for cyclic 2-diazo-4,6-dinitrophenol. The assigned infrared spectrum is obtained and used to compute the thermodynamic properties. The results show that there are four main characteristic regions in the calculated IR spectra of the title compound. The detonation velocities and pressures are also evaluated by using Kamlet-Jacobs equations based on the calculated density and condensed phase heat of formation. Thermal stability and the pyrolysis mechanism of 2-diazo-4,6-dinitrophenol are investigated by calculating the bond dissociation energies at the B3LYP/6-311+G** level.
NASA Astrophysics Data System (ADS)
Plesuma, Renate; Malers, Laimonis
2015-04-01
The present article is dedicated to the determination of a possible connection between the composition, specific properties of the composite material and molding pressure as an important technological parameter. Apparent density, Shore C hardness, compressive modulus of elasticity and compressive stress at 10% deformation was determined for composite material samples. Definite formation conditions - varying molding pressure conditions at ambient temperature and corresponding relative air humiditywere realized. The results obtained showed a significant effect of molding pressure on the apparent density, mechanical properties of composite material as well as on the compressive stress change at a cyclic mode of loading. Some general regularities were determined - mechanical properties of the composite material, as well as values of Shore C hardness increases with an increase of molding pressure.
A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy
NASA Astrophysics Data System (ADS)
Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.
2015-02-01
Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.
Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.
Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao
2017-12-07
In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.
Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F
2010-09-01
This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (P<.001). Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved canal segment. SEM analysis revealed that fractured surfaces exhibited characteristics of the ductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Plasma potassium and diurnal cyclic potassium excretion in the rat.
Rabinowitz, L; Berlin, R; Yamauchi, H
1987-12-01
The relation of the plasma potassium concentration to the daily cyclic variation in potassium excretion was examined in undisturbed, unanesthetized male Sprague-Dawley rats maintained on a liquid diet in a 12-h light-dark environment. Potassium excretion increased from a light-phase minimum of 16 mu eq/h to a peak of 256 mu eq/h 3 h after the beginning of the dark phase. Plasma potassium concentration in arterial blood, sampled in rats at 90-min intervals during these changes in potassium excretion, showed no significant change and was in the range 4.50-4.99 meq/liter. In adrenalectomized rats receiving aldosterone and dexamethasone at constant basal rates by implanted pumps, the daily cycle of potassium excretion was the same as in the intact rats, and plasma potassium was not significantly different when measured at the time of minimum and maximum rates of potassium excretion (4.79 +/- 0.42 vs 5.16 +/- 0.47 meq/liter, mean +/- SD). These results indicate that plasma potassium concentration is not the efferent factor controlling diurnal cyclic changes in potassium excretion in adrenal intact rats and may not be the only significant factor in adrenalectomized-steroid replaced rats.
Guizhen H. Xu; Jinping Dong; Steven J. Severtson; Carl J. Houtman; Larry E. Gwin
2009-01-01
Migration of surfactants in water-based, pressure-sensitive adhesive (PSA) films exposed to static and cyclic relative humidity conditions was investigated using confocal Raman microscopy (CRM) and atomic force microscopy (AFM). Studied PSA films contain monomers n-butyl acrylate, vinyl acetate, and methacrylic acid and an equal mass mixture of anionic and nonionic...
14 CFR Appendix C to Part 135 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
... Maximum range +5% 1 1% 2 Engine torque Maximum range ±5% 1 1% 2 Flight Control—Hydraulic Pressure Primary... kts., whichever is greater 1 1 kt. Altitude −1,000 ft. to 20,000 ft. pressure altitude ±100 to ±700 ft...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
ANF-RGC gene motif 669WTAPELL675 is vital for blood pressure regulation: Biochemical mechanism
Duda, Teresa; Pertzev, Alexandre; Sharma, Rameshwar K.
2013-01-01
ANF-RGC is the prototype membrane guanylate cyclase, both the receptor and the signal transducer of the hormones ANF and BNP. After binding them at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates production of the second messenger, cyclic GMP. This, in turn, controls the physiological processes of blood pressure, cardiovascular function, and fluid secretion, and others: metabolic syndrome, obesity and apoptosis. What is the biochemical mechanism by which this single molecule controls these diverse processes, explicitly of the blood pressure regulation is the subject of the present study. In line with the concept that the structural modules of ANF-RGC are designed to respond to more than one, yet distinctive signals, the study demonstrates the construction of a novel ANF-RGC-In-gene-669WTAPELL675 mouse model. Through this model, the study establishes that 669WTAPELL675 is a vital ANF signal transducer motif of the guanylate cyclase. Its striking physiological features linked with their biochemistry are that (1) it controls the hormonally-dependent cyclic GMP production in the kidney and the adrenal gland; (3) its deletion causes hypertension, and (3) cardiac hypertrophy; and (4) these mice show higher levels of the plasma aldosterone. For the first time, a mere 7-amino acid encoded motif of the mouse gene has been directly linked with the physiological control of the blood pressure regulation, a detailed biochemistry of this linkage has been established and a model for this linkage has been offered. PMID:23464624
Zhao, Qun; Pan, Luqing; Ren, Qin; Wang, Lin; Miao, Jingjing
2016-02-01
The effects of low salinity (transferred from 31‰ to 26‰, 21‰, and 16‰) on the regulation pathways of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that the hormones (corticotrophin-releasing hormone, adrenocorticotropic hormone) and biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in lower salinity groups increased significantly within 12 h. The gene expression of biogenic amine receptors showed that dopamine receptor D4 and α2 adrenergic receptor in lower salinity groups decreased significantly within 12 h, whereas the 5-HT7 receptor significantly increased within 1d. The second messenger synthetases (adenylyl cyclase, phospholipase C) and the second messengers (cyclic adenosine monophosphate, cyclic guanosine monophosphate) of lower salinity groups shared a similar trend in which adenylyl cyclase and cyclic adenosine monophosphate reached the maximum at 12 h, whereas phospholipase C and cyclic guanosine monophosphate reached the minimum. The immune parameters (total hemocyte count, phenoloxidase activity, phagocytic activity, crustin expression, antibacterial activity, C-type lectin expression, hemagglutinating activity) in lower salinity groups decreased significantly within 12 h. Except for the total hemocyte count, all the parameters recovered to the control levels afterwards. Therefore, it may be concluded that the neuroendocrine-immunoregulatory network plays a principal role in adapting to salinity changes as the main center for sensing the stress and causes immune response in L. vannamei. Copyright © 2016 Elsevier Ltd. All rights reserved.
High temperature fatigue behavior of Haynes 188
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh
1988-01-01
The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.
Pessoa, Isabela M B S; Houri Neto, Miguel; Montemezzo, Dayane; Silva, Luisa A M; Andrade, Armèle Dornelas De; Parreira, Verônica F
2014-01-01
The maximum static respiratory pressures, namely the maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP), reflect the strength of the respiratory muscles. These measures are simple, non-invasive, and have established diagnostic and prognostic value. This study is the first to examine the maximum respiratory pressures within the Brazilian population according to the recommendations proposed by the American Thoracic Society and European Respiratory Society (ATS/ERS) and the Brazilian Thoracic Association (SBPT). To establish reference equations, mean values, and lower limits of normality for MIP and MEP for each age group and sex, as recommended by the ATS/ERS and SBPT. We recruited 134 Brazilians living in Belo Horizonte, MG, Brazil, aged 20-89 years, with a normal pulmonary function test and a body mass index within the normal range. We used a digital manometer that operationalized the variable maximum average pressure (MIP/MEP). At least five tests were performed for both MIP and MEP to take into account a possible learning effect. We evaluated 74 women and 60 men. The equations were as follows: MIP=63.27-0.55 (age)+17.96 (gender)+0.58 (weight), r(2) of 34% and MEP= - 61.41+2.29 (age) - 0.03(age(2))+33.72 (gender)+1.40 (waist), r(2) of 49%. In clinical practice, these equations could be used to calculate the predicted values of MIP and MEP for the Brazilian population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Fatigue of cord-rubber composites for tires
NASA Astrophysics Data System (ADS)
Song, Jaehoon
Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.
High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer
NASA Astrophysics Data System (ADS)
Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo
2018-02-01
We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
Velaei, Kobra; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-01-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm2), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group. PMID:23091522
Velaei, Kobra; Bayat, Mohammad; Torkman, Giti; Rezaie, Fatemealsadat; Amini, Abdollah; Noruzian, Mohsen; Tavassol, Azaedh; Bayat, Mehernoush
2012-09-01
This study used a biomechanical test to evaluate the effects of pentoxifylline administration on the wound healing process of an experimental pressure sore induced in rats. Under general anesthesia and sterile conditions, experimental pressure sores generated by no. 25 Halsted mosquito forceps were inflicted on 12 adult male rats. Pentoxifylline was injected intraperitoneally at a dose of 50 mg/kg daily from the day the pressure sore was generated, for a period of 20 days. At the end of 20 days, rats were sacrificed and skin samples extracted. Samples were biomechanically examined by a material testing instrument for maximum stress (N mm(2)), work up to maximum force (N), and elastic stiffness (N/mm). In the experimental group, maximum stress (2.05±0.15) and work up to maximum force (N/mm) (63.75±4.97) were significantly higher than the control group (1.3±0.27 and 43.3±14.96, P=0.002 and P=0.035, respectively). Pentoxifylline administration significantly accelerated the wound healing process in experimental rats with pressure sores, compared to that of the control group.
Geyer, Michael; Büschken, Meike; Buchhorn, Gottfried H.; Spahn, Gunter; Klinger, Hans-Michael
2009-01-01
The aim of the study was to evaluate the time-zero mechanical and footprint properties of a suture-bridge technique for rotator cuff repair in an animal model. Thirty fresh-frozen sheep shoulders were randomly assigned among three investigation groups: (1) cyclic loading, (2) load-to-failure testing, and (3) tendon–bone interface contact pressure measurement. Shoulders were cyclically loaded from 10 to 180 N and displacement to gap formation of 5- and 10-mm at the repair site. Cycles to failure were determined. Additionally, the ultimate tensile strength and stiffness were verified along with the mode of failure. The average contact pressure and pressure pattern were investigated using a pressure-sensitive film system. All of the specimens resisted against 3,000 cycles and none of them reached a gap formation of 10 mm. The number of cycles to 5-mm gap formation was 2,884.5 ± 96.8 cycles. The ultimate tensile strength was 565.8 ± 17.8 N and stiffness was 173.7 ± 9.9 N/mm. The entire specimen presented a unique mode of failure as it is well known in using high strength sutures by pulling them through the tendon. We observed a mean contact pressure of 1.19 ± 0.03 MPa, applied on the footprint area. The fundamental results of our study support the use of a suture-bridge technique for optimising the conditions of the healing biology of a reconstructed rotator cuff tendon. Nevertheless, an individual estimation has to be done if using the suture-bridge technique clinically. Further investigation is necessary to evaluate the cell biological healing process in order to achieve further sufficient advancements in rotator cuff repair. PMID:19826786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for certain steel pipelines. 192.620 Section 192.620 Transportation Other Regulations Relating to... STANDARDS Operations § 192.620 Alternative maximum allowable operating pressure for certain steel pipelines..., 2, or 3 location; (2) The pipeline segment is constructed of steel pipe meeting the additional...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin
2011-02-01
Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
Increased in-shoe lateral plantar pressures with chronic ankle instability.
Schmidt, Heather; Sauer, Lindsay D; Lee, Sae Yong; Saliba, Susan; Hertel, Jay
2011-11-01
Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% +/- 10.1, p = 0.001) and time-to-maximum force (16.8% +/- 11.3, p = 0.001) compared to controls (6.5% +/- 3.7 and 6.6% +/- 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N +/- 174.5, p = 0.008) and peak pressure (211.4 kPa +/- 57.7, p = 0.008) compared to controls (191.6 N +/- 74.5 and 161.3 kPa +/- 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s +/- 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s +/- 12.0, p = 0.005) compared to controls (23.3 N/s +/- 10.9 and 24.5 kPa/s +/- 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N +/- 81.2, p = 0.004), force-time integral (37.0 N/s +/- 14.9, p = 0.003), and time-to-peak pressure (51.1% +/- 10.9, p = 0.007) compared to controls (170.6 N +/- 49.3, 24.3 N/s +/- 7.2 and 43.8% +/- 4.3). Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. These findings may have implications in the etiology and treatment of chronic ankle instability.
Cyclic Dinitroureas As Self-Remediating Munition Charges
2009-02-26
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine NAWCWD Naval Air Warfare Center Weapons Division NMR Nuclear magnetic resonance PBXN Plastic Bonded...problems as UXO. A typical submunition fill, such as PBXN -107 in the BLU- 97/B, employs RDX as the main explosive charge. RDX is known to exhibit... 106 ; “maximum lambda” 1050; “lambda factor” 10. Results and Accomplishments As kinetic runs under the various conditions of humidity and soil
Integrated Data and Control Level Fault Tolerance Techniques for Signal Processing Computer Design
1990-09-01
TOLERANCE TECHNIQUES FOR SIGNAL PROCESSING COMPUTER DESIGN G. Robert Redinbo I. INTRODUCTION High-speed signal processing is an important application of...techniques and mathematical approaches will be expanded later to the situation where hardware errors and roundoff and quantization noise affect all...detect errors equal in number to the degree of g(X), the maximum permitted by the Singleton bound [13]. Real cyclic codes, primarily applicable to
Systemic glyceryl trinitrate reduces anal sphincter tone: is there a therapeutic indication?
Connolly, C; Tierney, S; Grace, P
2018-05-01
Nitric oxide (NO) has diverse roles as a biological messenger. [1] Topically applied nitrate donors cause relaxation of the internal anal sphincter (IAS) and facilitate healing of anal fissures [2,3]. Systemic nitrates are commonly used for the treatment of ischaemic heart disease, yet the effects of systemically administered nitrates on the smooth muscle of the IAS are unknown. Our aim was to test the hypothesis that systemically administered nitrates at a normal dose, cause inhibition of anal sphincter activity. With fully informed consent, anal manometry was performed on nine volunteers. Maximum and mean anal resting pressure (representing the IAS), maximum squeeze pressure (representing the external anal sphincter), heart rate and blood pressure were measured, before and after administration of a normal 400 μg dose of sublingual glyceryl trinitrate spray. Data are expressed as mean (± standard error of the mean (SEM)). In four females and five males ranging from 19 to 50 years of age, administration of GTN resulted in a significant reduction in systolic blood pressure from 138 ± 5 to 127 ± 4 mmHg, P < 0.01. Mean resting pressure, over 5 min, was significantly reduced from 70 ± 10 to 62 ± 10 mmHg P < 0.05. The maximum resting pressure was also significantly reduced from 109 ± 12 to 86 ± 10 mmHg P = 0.04. Maximum squeeze pressure, heart rate and diastolic blood pressure were not significantly reduced. Systemic nitrates significantly inhibit internal anal sphincter function.
Design of a Two-Stage Light Gas Gun for Muzzle Velocities of 10 - 11 kms
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
2016-01-01
Space debris poses a major risk to spacecraft. In low earth orbit, impact velocities can be 10 11 kms and as high as 15 kms. For debris shield design, it would be desirable to be able to launch controlled shape projectiles to these velocities. The design of the proposed 10 11 kmsec gun uses, as a starting point, the Ames 1.280.22 two stage gun, which has achieved muzzle velocities of 10 11.3 kmsec. That gun is scaled up to a 0.3125 launch tube diameter. The gun is then optimized with respect to maximum pressures by varying the pump tube length to diameter ratio (LD), the piston mass and the hydrogen pressure. A pump tube LD of 36.4 is selected giving the best overall performance. Piezometric ratios for the optimized guns are found to be 2.3, much more favorable than for more traditional two stage light gas guns, which range from 4 to 6. The maximum powder chamber pressures are 20 to 30 ksi. To reduce maximum pressures, the desirable range of the included angle of the cone of the high pressure coupling is found to be 7.3 to 14.6 degrees. Lowering the break valve rupture pressure is found to lower the maximum projectile base pressure, but to raise the maximum gun pressure. For the optimized gun with a pump tube LD of 36.4, increasing the muzzle velocity by decreasing the projectile mass and increasing the powder loads is studied. It appears that saboted spheres could be launched to 10.25 and possibly as high as 10.7 10.8 kmsec, and that disc-like plastic models could be launched to 11.05 kms. The use of a tantalum liner to greatly reduce bore erosion and increase muzzle velocity is discussed. With a tantalum liner, CFD code calculations predict muzzle velocities as high as 12 to 13 kms.
Cader, Samária Ali; de Souza Vale, Rodrigo Gomes; Zamora, Victor Emmanuel; Costa, Claudia Henrique; Dantas, Estélio Henrique Martin
2012-01-01
The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT) and identify predictors of successful weaning. Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14) that received conventional physiotherapy plus IMT with a Threshold IMT(®) device or to a control group (n = 14) that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients' Tobin index values were measured using a ventilometer. The maximum inspiratory pressure increased significantly (by 7 cm H(2)O, 95% confidence interval [CI] 4-10), and the Tobin index decreased significantly (by 16 breaths/ min/L, 95% CI -26 to 6) in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (χ(2) = 1.47; P = 0.20). However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08-18.06). The receiver-operating characteristic curve showed an area beneath the curve of 0.877 ± 0.06 for the Tobin index and 0.845 ± 0.07 for maximum inspiratory pressure. The IMT intervention significantly increased maximum inspiratory pressure and significantly reduced the Tobin index; both measures are considered to be good extubation indices. IMT was associated with a reduction in noninvasive positive pressure time in the experimental group.
NASA Astrophysics Data System (ADS)
Justham, T.; Jarvis, S.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.
2006-07-01
Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations.
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
A physiological basis for variation in the contractile properties of isolated rat heart.
Lin, L E; McClellan, G; Weisberg, A; Winegrad, S
1991-01-01
1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism. Images Fig. 4 Fig. 7 PMID:1667804
Application of Chaboche Model in Rocket Thrust Chamber Analysis
NASA Astrophysics Data System (ADS)
Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba
2017-06-01
Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.
Computational Study of Axial Fatigue for Peripheral Nitinol Stents
NASA Astrophysics Data System (ADS)
Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo
2014-07-01
Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.
Cardiovascular effects of pimobendan in healthy mature horses.
Afonso, T; Giguère, S; Rapoport, G; Barton, M H; Coleman, A E
2016-05-01
Pimobendan is an inodilator used in dogs for the management of heart failure due to myxomatous valve disease or dilated cardiomyopathy. The lack of data regarding the effects of pimobendan in horses prevents the rational use of this drug. To determine the cardiovascular effects of pimobendan in healthy mature horses. Randomised experimental study. Five horses were fasted overnight prior to receiving i.v. pimobendan (0.25 mg/kg bwt), intragastric (i.g.) pimobendan (0.25 mg/kg bwt) or i.g. placebo with a washout period of one week between each administration. Horses were instrumented for the measurement of right ventricular (RV) minimum pressure, RV maximum pressure, RV end diastolic pressure, and maximum rate of increase and decrease in RV pressure before and 0.5, 1, 2, 4, and 8 h after drug administration. Arterial blood pressure, central venous pressure, cardiac output and heart rate were measured at the same time points. Data were expressed as a maximum percentage of change over baseline values. There were no adverse effects associated with administration of pimobendan. The percentage increase in heart rate was significantly greater for horses given pimobendan i.g. (33 ± 4%) and i.v. (36 ± 14%) than for those given a placebo (-2 ± 7%). The percentage increase in maximum rate of increase in RV pressure (35 ± 36%) and the percentage decrease in minimum pressure (47 ± 24%) and end diastolic pressure (34 ± 13%) were significantly greater in horses given pimobendan i.v. than in those given placebo. Other variables measured were not significantly different between treatment groups. Pimobendan administered i.v. has positive chronotropic and inotropic effects in healthy mature horses and warrants further investigation for the treatment of heart failure in horses. © 2015 EVJ Ltd.
Modeling internal ballistics of gas combustion guns.
Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2016-05-01
Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.
Burst pressure investigation of filament wound type IV composite pressure vessel
NASA Astrophysics Data System (ADS)
Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff
2017-12-01
Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.
NASA Astrophysics Data System (ADS)
Kyrychok, Vladyslav; Torop, Vasyl
2018-03-01
The present paper is devoted to the problem of the assessment of probable crack growth at pressure vessel nozzles zone under the cyclic seismic loads. The approaches to creating distributed pipeline systems, connected to equipment are being proposed. The possibility of using in common different finite element program packages for accurate estimation of the strength of bonded pipelines and pressure vessels systems is shown and justified. The authors propose checking the danger of defects in nozzle domain, evaluate the residual life of the system, basing on the developed approach.
Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues
NASA Technical Reports Server (NTRS)
2010-01-01
This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.
Performance evaluation of SPE electrolyzer for Space Station life support
NASA Technical Reports Server (NTRS)
Erickson, A. C.; Puskar, M. C.; Zagaja, J. A.; Miller, P. S.
1987-01-01
An static water-vapor feed electrolyzer has been developed as a candidate for Space Station life-support oxygen generation. The five-cell electrolysis module has eliminated the need for phase separation devices, pumps, and deionizers by transporting only water vapor to the solid polymer electrolyte cells. The introduction of an innovative electrochemical hydrogen pump allows the use of low-pressure reclaimed water to generate gas pressures of up to 230 psia. The electrolyzer has been tested in a computer-controlled test stand featuring continuous, cyclic, and standby operation (including automatic shutdown with fault detection).
Shah, Dignesh; Alderson, Andrew; Corden, James; Satyadas, Thomas; Augustine, Titus
2018-02-01
This study undertook the in vivo measurement of surface pressures applied by the fingers of the surgeon during typical representative retraction movements of key human abdominal organs during both open and hand-assisted laparoscopic surgery. Surface pressures were measured using a flexible thin-film pressure sensor for 35 typical liver retractions to access the gall bladder, 36 bowel retractions, 9 kidney retractions, 8 stomach retractions, and 5 spleen retractions across 12 patients undergoing open and laparoscopic abdominal surgery. The maximum and root mean square surface pressures were calculated for each organ retraction. The maximum surface pressures applied to these key abdominal organs are in the range 1 to 41 kPa, and the average maximum surface pressure for all organs and procedures was 14 ± 3 kPa. Surface pressure relaxation during the retraction hold period was observed. Generally, the surface pressures are higher, and the rate of surface pressure relaxation is lower, in the more confined hand-assisted laparoscopic procedures than in open surgery. Combined video footage and pressure sensor data for retraction of the liver in open surgery enabled correlation of organ retraction distance with surface pressure application. The data provide a platform to design strategies for the prevention of retraction injuries. They also form a basis for the design of next-generation organ retraction and space creation surgical devices with embedded sensors that can further quantify intraoperative retraction forces to reduce injury or trauma to organs and surrounding tissues.
Morrell, Kjirste C; Hodge, W Andrew; Krebs, David E; Mann, Robert W
2005-10-11
Pressures on normal human acetabular cartilage have been collected from two implanted instrumented femoral head hemiprostheses. Despite significant differences in subjects' gender, morphology, mobility, and coordination, in vivo pressure measurements from both subjects covered similar ranges, with maximums of 5-6 MPa in gait, and as high as 18 MPa in other movements. Normalized for subject weight and height (nMPa), for free-speed walking the maximum pressure values were 25.2 for the female subject and 24.5 for the male subject. The overall maximum nMPa values were 76.2 for the female subject during rising from a chair at 11 months postoperative and 82.3 for the male subject while descending steps at 9 months postoperative. These unique in vivo data are consistent with corresponding cadaver experiments and model analyses. The collective results, in vitro data, model studies, and now corroborating in vivo data support the self-pressurizing "weeping" theory of synovial joint lubrication and provide unique information to evaluate the influence of in vivo pressure regimes on osteoarthritis causation and the efficacy of augmentations to, and substitutions for, natural cartilage.
NASA Technical Reports Server (NTRS)
Moore, C S; Collins, J H
1932-01-01
Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, J.; Kesterson, M.; Hensel, S.
The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporationmore » of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.« less
Physical understanding of the tropical cyclone wind-pressure relationship.
Chavas, Daniel R; Reed, Kevin A; Knaff, John A
2017-11-08
The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Cullen, Joshua A; Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W
2013-01-01
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an "inching" behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai'i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.
Cullen, Joshua A.; Maie, Takashi; Schoenfuss, Heiko L.; Blob, Richard W.
2013-01-01
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an “inching” behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai’i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats. PMID:23308184
Tierney, Áine P; Callanan, Anthony; McGloughlin, Timothy M
2012-02-01
To investigate the use of regional variations in the mechanical properties of abdominal aortic aneurysms (AAA) in finite element (FE) modeling of AAA rupture risk, which has heretofore assumed homogeneous mechanical tissue properties. Electrocardiogram-gated computed tomography scans from 3 male patients with known infrarenal AAA were used to characterize the behavior of the aneurysm in 4 different segments (posterior, anterior, and left and right lateral) at maximum diameter and above the infrarenal aorta. The elasticity of the aneurysm (circumferential cyclic strain, compliance, and the Hudetz incremental modulus) was calculated for each segment and the aneurysm as a whole. The FE analysis inclusive of prestress (pre-existing tensile stress) produced a detailed stress pattern on each of the aneurysm models under pressure loading. The 4 largest areas of stress in each region were considered in conjunction with the local regional properties of the segment to define a specific regional prestress rupture index (RPRI). In terms of elasticity, there were average reductions of 68% in circumferential cyclic strain and 63% in compliance, with a >5-fold increase in incremental modulus, between the healthy and the aneurysmal aorta for each patient. There were also regional variations in all elastic properties in each individual patient. The average difference in total stress inclusive of prestress was 59%, 67%, and 15%, respectively, for the 3 patients. Comparing the strain from FE models with the CT scans revealed an average difference in strain of 1.55% for the segmented models and 3.61% for the homogeneous models, which suggests that the segmented models more accurately reflect in vivo behavior. RPRI values were calculated for each segment for all patients. A greater understanding of the local material properties and their use in FE models is essential for greater accuracy in rupture prediction. Quantifying the regional behavior will yield insight into the changes in patient-specific aneurysms and increase understanding about the progression of aneurysmal disease.
Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1
NASA Technical Reports Server (NTRS)
Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.
2014-01-01
To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.
Dedrick, D F; Sherer, Y D; Biebuyck, J F
1975-06-01
A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.
2018-05-01
A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.
Advanced Environmental Barrier Coatings Development for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.
2005-01-01
Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.
Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.
2007-10-23
An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.
46 CFR 61.15-5 - Steam piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hydrostatic test equal to 11/4 times the maximum allowable working pressure at the same periods prescribed for boilers in § 61.05-10. The hydrostatic test shall be applied from the boiler drum to the throttle valve... should be subjected to a hydrostatic test at a pressure of 11/4 times the maximum allowable working...
Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki
2014-01-01
[Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
Muharam, Yuswan; Warnatz, Jürgen
2007-08-21
A mechanism generator code to automatically generate mechanisms for the oxidation of large hydrocarbons has been successfully modified and considerably expanded in this work. The modification was through (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formations and additional reactions of alkenes, (3) inclusion of small oxygenates, produced by the code but not included in the handwritten C(1)-C(4) sub-mechanism yet, to the handwritten C(1)-C(4) sub-mechanism. In order to evaluate mechanisms generated by the code, simulations of observed results in different experimental environments have been carried out. Experimentally derived and numerically predicted ignition delays of n-heptane-air and n-decane-air mixtures in high-pressure shock tubes in a wide range of temperatures, pressures and equivalence ratios agree very well. Concentration profiles of the main products and intermediates of n-heptane and n-decane oxidation in jet-stirred reactors at a wide range of temperatures and equivalence ratios are generally well reproduced. In addition, the ignition delay times of different normal alkanes was numerically studied.
Modelling the effects of vascular stress in mesangial cells.
Riser, B L; Cortes, P; Yee, J
2000-01-01
It has recently been shown that mesangial cells are subjected to multiple forms of mechanical strain (fluid shear, hydrostatic pressure, and triaxial stretch) as a result of forces exerted by the vasculature. Nevertheless, the exact nature and the relative response to these stimuli have not been clarified. Although it is now well established that cyclic stretching of mesangial cells in culture results in the overproduction of extracellular matrix, indicating how intraglomerular hypertension may lead to glomerular scar formation, the contribution of different intracellular signalling mechanisms and extracellular mediators of the response are only now being identified. Recent studies point to a role for high glucose concentrations, transforming growth factor beta and its receptors, vascular endothelial growth factor, and connective tissue growth factor as important mediators, or modifiers of the response to mechanical strain. Although evidence exists for a role for protein kinase C, recent studies also implicate the mitogen-activated protein kinases along with enhanced DNA-binding activity of AP-1 as part of the signalling cascade altering matrix synthesis and cell proliferation in response to stretch. Finally, recent studies examining the effects of oscillating hyperbaric pressure demonstrate similarities, as well as differences, in comparison to those of cyclic stretch.
Making Activated Carbon for Storing Gas
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.
2005-01-01
Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.
NASA Technical Reports Server (NTRS)
Cook, Harvey A; Heinicke, Orville H; Haynie, William H
1947-01-01
An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.
Evaluation of an active seating system for pressure relief.
Koo, T K; Mak, A F; Lee, Y L
1995-01-01
In the first part of this study, the inflation-pressure and interface-pressure profiles of an active cushion system, the Talley active air bellows cushion, were examined continuously for one complete working cycle using the dynamic pressure monitor. The relationship between the inflation pressure and the interface pressure was explored. A well-defined relationship was found in the areas directly over the air bellows. In the second part of this study, the pressure-relieving characteristics of the active cushion were assessed quantitatively and compared to two types of passive cushions--the Roho high-profile air floatation cushion and the polyurethane (PU) foam cushion. Eight non-disabled subjects were positioned on the active cushion at two inflation-pressure levels--30 mmHg and 60 mmHg, or on the Roho or the PU foam cushions. Interface pressures were recorded using the Oxford pressure monitor. For the active cushion it was shown that the higher the inflation pressure was, the better the pressure-relieving characteristics seemed to be. In general, the pressure-relieving characteristics of the active cushion were not as good as those of the passive cushions being tested. The active cushion could alter the pressures over the ischial tuberosities cyclically but the amount of pressure alternation depended on the relative position of the ischial tuberosities and the air bellows.
Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; ...
2015-04-13
The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.
The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less
46 CFR 58.30-25 - Accumulators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pressure vessel in which energy is stored under high pressure in the form of a gas or a gas and hydraulic... pressures not exceeding the maximum allowable working pressures. When an accumulator forms an integral part...
NASA Technical Reports Server (NTRS)
Fisher, David F.; Banks, Daniel W.; Richwine, David M.
1990-01-01
Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.
Dome of magnetic order inside the nematic phase of sulfur-substituted FeSe under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Li; Kaluarachchi, Udhara; Bohmer, Anna
2017-07-18
The pressure dependence of the structural, magnetic, and superconducting transitions and of the superconducting upper critical field were studied in sulfur-substituted Fe ( Se 1 - x S x ) . We performed resistance measurements on single crystals with three substitution levels ( x = 0.043 , 0.096, 0.12) under hydrostatic pressures up to 1.8 GPa and in magnetic fields up to 9 T and were compared to data on pure FeSe. Our results illustrate the effects of chemical and physical pressure on Fe ( Se 1 - x S x ). Furthermore, on increasing sulfur content, magnetic order inmore » the low-pressure range is strongly suppressed to a small domelike region in the phase diagrams. But, T s is much less suppressed by sulfur substitution, and T c of Fe ( Se 1 - x S x ) exhibits similar nonmonotonic pressure dependence with a local maximum and a local minimum present in the low-pressure range for all x . The local maximum in T c coincides with the emergence of the magnetic order above T c . At this pressure the slope of the upper critical field decreases abruptly, which may indicate a Fermi-surface reconstruction. The minimum of T c correlates with a broad maximum of the upper critical field slope normalized by T c .« less
Pressure-induced superconductivity in a three-dimensional topological material ZrTe5
Zhou, Yonghui; Wu, Juefei; Ning, Wei; Li, Nana; Du, Yongping; Chen, Xuliang; Zhang, Ranran; Chi, Zhenhua; Wang, Xuefei; Zhu, Xiangde; Lu, Pengchao; Ji, Cheng; Wan, Xiangang; Yang, Zhaorong; Sun, Jian; Yang, Wenge; Tian, Mingliang; Zhang, Yuheng; Mao, Ho-kwang
2016-01-01
As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments. PMID:26929327
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
14 CFR 29.1521 - Powerplant limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R
2017-07-24
Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence
2018-01-01
The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.
Pneumatic Control Device for the Pershing 2 Adaption Kit
1979-03-14
forward force to main- tain a pressure seal (this, versus an-I6-to 25 pound maximum reverse .force component due to pressure). In all probability, initial...stem forward force to main- tain a pressure seal (this, versus an 48-to-25-pound maximum " reverse.force, component due-topressue). In-all probability...PII Li L! Ramn Eniern Inc Contrato . 2960635 GAS GENERATOR COMPATIBILITY U TEST REPORT 1.j Requirement s The requirements for the Pershing II, Phase I
Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarcelli, Riccardo; Sevik, James; Wallner, Thomas
Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less