Sample records for cyclic peptide based

  1. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    PubMed Central

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  2. Efficient synthesis of cysteine-rich cyclic peptides through intramolecular native chemical ligation of N-Hnb-Cys peptide crypto-thioesters.

    PubMed

    Terrier, Victor P; Delmas, Agnès F; Aucagne, Vincent

    2017-01-04

    We herein introduce a straightforward synthetic route to cysteine-containing cyclic peptides based on the intramolecular native chemical ligation of in situ generated thioesters. Key precursors are N-Hnb-Cys crypto-thioesters, easily synthesized by Fmoc-based SPPS. The strategy is applied to a representative range of naturally occurring cyclic disulfide-rich peptide sequences.

  3. Toward structure prediction of cyclic peptides.

    PubMed

    Yu, Hongtao; Lin, Yu-Shan

    2015-02-14

    Cyclic peptides are a promising class of molecules that can be used to target specific protein-protein interactions. A computational method to accurately predict their structures would substantially advance the development of cyclic peptides as modulators of protein-protein interactions. Here, we develop a computational method that integrates bias-exchange metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component analysis and a modified density peak-based cluster analysis to provide a converged structural description for cyclic peptides. Using this method, we evaluate the performance of a number of popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear peptides and proteins. Our findings suggest that re-parameterization of a force field that well describes the full Ramachandran plot is necessary to accurately model cyclic peptides.

  4. Synthesis and screening of one-bead-one-compound cyclic peptide libraries.

    PubMed

    Qian, Ziqing; Upadhyaya, Punit; Pei, Dehua

    2015-01-01

    Cyclic peptides have been a rich source of biologically active molecules. Herein we present a method for the combinatorial synthesis and screening of large one-bead-one-compound (OBOC) libraries of cyclic peptides against biological targets such as proteins. Up to ten million different cyclic peptides are rapidly synthesized on TentaGel microbeads by the split-and-pool synthesis method and subjected to a multistage screening protocol which includes magnetic sorting, on-bead enzyme-linked and fluorescence-based assays, and in-solution binding analysis of cyclic peptides selectively released from single beads by fluorescence anisotropy. Finally, the most active hit(s) is identified by the partial Edman degradation-mass spectrometry (PED-MS) method. This method allows a single researcher to synthesize and screen up to ten million cyclic peptides and identify the most active ligand(s) in ~1 month, without the time-consuming and expensive hit resynthesis or the use of any special equipment.

  5. Multiplex De Novo Sequencing of Peptide Antibiotics

    NASA Astrophysics Data System (ADS)

    Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.

    Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.

  6. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulman, Jane A.; Childs, Kevin L.; Sgambelluri, R. Michael

    Here, the cyclic peptide toxins of Amanita mushrooms, such as α-amanitin and phalloidin, are encoded by the “MSDIN” gene family and ribosomally biosynthesized. Based on partial genome sequence and PCR analysis, some members of the MSDIN family were previously identified in Amanita bisporigera, and several other members are known from other species of Amanita. However, the complete complement in any one species, and hence the genetic capacity for these fungi to make cyclic peptides, remains unknown. As a result, draft genome sequences of two cyclic peptide-producing mushrooms, the “Death Cap” A. phalloides and the “Destroying Angel” A. bisporigera, were obtained.more » Each species has ~30 MSDIN genes, most of which are predicted to encode unknown cyclic peptides. Some MSDIN genes were duplicated in one or the other species, but only three were common to both species. A gene encoding cycloamanide B, a previously described nontoxic cyclic heptapeptide, was also present in A. phalloides, but genes for antamanide and cycloamanides A, C, and D were not. In A. bisporigera, RNA expression was observed for 20 of the MSDIN family members. Based on their predicted sequences, novel cyclic peptides were searched for by LC/MS/MS in extracts of A. phalloides. The presence of two cyclic peptides, named cycloamanides E and F with structures cyclo(SFFFPVP) and cyclo(IVGILGLP), was thereby demonstrated. Of the MSDIN genes reported earlier from another specimen of A. bisporigera, 9 of 14 were not found in the current genome assembly. Differences between previous and current results for the complement of MSDIN genes and cyclic peptides in the two fungi probably represents natural variation among geographically dispersed isolates of A. phalloides and among the members of the poorly defined A. bisporigera species complex. Both A. phalloides and A. bisporigera contain two prolyl oligopeptidase genes, one of which (POPB) is probably dedicated to cyclic peptide biosynthesis as it is in Galerina marginata. Finally, the MSDIN gene family has expanded and diverged rapidly in Amanita section Phalloideae. Together, A. bisporigera and A. phalloides are predicted to have the capacity to make more than 50 cyclic hexa-, hepta-,octa-, nona- and decapeptides.« less

  7. Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera

    DOE PAGES

    Pulman, Jane A.; Childs, Kevin L.; Sgambelluri, R. Michael; ...

    2016-12-15

    Here, the cyclic peptide toxins of Amanita mushrooms, such as α-amanitin and phalloidin, are encoded by the “MSDIN” gene family and ribosomally biosynthesized. Based on partial genome sequence and PCR analysis, some members of the MSDIN family were previously identified in Amanita bisporigera, and several other members are known from other species of Amanita. However, the complete complement in any one species, and hence the genetic capacity for these fungi to make cyclic peptides, remains unknown. As a result, draft genome sequences of two cyclic peptide-producing mushrooms, the “Death Cap” A. phalloides and the “Destroying Angel” A. bisporigera, were obtained.more » Each species has ~30 MSDIN genes, most of which are predicted to encode unknown cyclic peptides. Some MSDIN genes were duplicated in one or the other species, but only three were common to both species. A gene encoding cycloamanide B, a previously described nontoxic cyclic heptapeptide, was also present in A. phalloides, but genes for antamanide and cycloamanides A, C, and D were not. In A. bisporigera, RNA expression was observed for 20 of the MSDIN family members. Based on their predicted sequences, novel cyclic peptides were searched for by LC/MS/MS in extracts of A. phalloides. The presence of two cyclic peptides, named cycloamanides E and F with structures cyclo(SFFFPVP) and cyclo(IVGILGLP), was thereby demonstrated. Of the MSDIN genes reported earlier from another specimen of A. bisporigera, 9 of 14 were not found in the current genome assembly. Differences between previous and current results for the complement of MSDIN genes and cyclic peptides in the two fungi probably represents natural variation among geographically dispersed isolates of A. phalloides and among the members of the poorly defined A. bisporigera species complex. Both A. phalloides and A. bisporigera contain two prolyl oligopeptidase genes, one of which (POPB) is probably dedicated to cyclic peptide biosynthesis as it is in Galerina marginata. Finally, the MSDIN gene family has expanded and diverged rapidly in Amanita section Phalloideae. Together, A. bisporigera and A. phalloides are predicted to have the capacity to make more than 50 cyclic hexa-, hepta-,octa-, nona- and decapeptides.« less

  8. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Dit Fouque, Kevin Jeanne; Moreno, Javier; Hegemann, Julian D; Zirah, Séverine; Rebuffat, Sylvie; Fernandez-Lima, Francisco

    2018-04-17

    Lasso peptides are a fascinating class of bioactive ribosomal natural products characterized by a mechanically interlocked topology. In contrast to their branched-cyclic forms, lasso peptides have higher stability and have become a scaffold for drug development. However, the identification and separation of lasso peptides from their unthreaded topoisomers (branched-cyclic peptides) is analytically challenging since the higher stability is based solely on differences in their tertiary structures. In the present work, a fast and effective workflow is proposed for the separation and identification of lasso from branched cyclic peptides based on differences in their mobility space under native nanoelectrospray ionization-trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS). The high mobility resolving power ( R) of TIMS resulted in the separation of lasso and branched-cyclic topoisomers ( R up to 250, 150 needed on average). The advantages of alkali metalation reagents (e.g., Na, K, and Cs salts) as a way to increase the analytical power of TIMS is demonstrated for topoisomers with similar mobilities as protonated species, efficiently turning the metal ion adduction into additional separation dimensions.

  9. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    PubMed Central

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2007-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124

  10. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications.

    PubMed

    Lee, Yeji; Phat, Chanvorleak; Hong, Soon-Cheol

    2017-09-01

    Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of galerina marginata genes and proteins for peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  12. Use of Galerina marginata genes and proteins for peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  14. Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198.

    PubMed

    Cirac, Anna D; Torné, Maria; Badosa, Esther; Montesinos, Emilio; Salvador, Pedro; Feliu, Lidia; Planas, Marta

    2017-06-24

    A strategy for the design of antimicrobial cyclic peptides derived from the lead compounds c(KKLKKFKKLQ) ( BPC194 ) and c(KLKKKFKKLQ) ( BPC198 ) is reported. First, the secondary β-structure of BPC194 and BPC198 was analyzed by carrying out molecular dynamics (MD) simulations. Then, based on the sequence pattern and the β-structure of BPC194 or BPC198 , fifteen analogues were designed and synthesized on solid-phase. The best peptides ( BPC490 , BPC918, and BPC924 ) showed minimum inhibitory concentration (MIC) values <6.2 μM against Pseudomonas syringae pv. syringae and Xanthomonas axonopodis pv. vesicatoria , and an MIC value of 12.5 to 25 μM against Erwinia amylovora , being as active as BPC194 and BPC198 . Interestingly, these three analogues followed the structural pattern defined from the MD simulations of the parent peptides. Thus, BPC490 maintained the parallel alignment of the hydrophilic pairs K¹-K⁸, K²-K⁷, and K⁴-K⁵, whereas BPC918 and BPC924 included the two hydrophilic interactions K³-Q 10 and K⁵-K⁸. In short, MD simulations have proved to be very useful for ascertaining the structural features of cyclic peptides that are crucial for their biological activity. Such approaches could be further employed for the development of new antibacterial cyclic peptides.

  15. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    PubMed

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  16. Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1.

    PubMed

    Durek, Thomas; Cromm, Philipp M; White, Andrew M; Schroeder, Christina I; Kaas, Quentin; Weidmann, Joachim; Ahmad Fuaad, Abdullah; Cheneval, Olivier; Harvey, Peta J; Daly, Norelle L; Zhou, Yang; Dellsén, Anita; Österlund, Torben; Larsson, Niklas; Knerr, Laurent; Bauer, Udo; Kessler, Horst; Cai, Minying; Hruby, Victor J; Plowright, Alleyn T; Craik, David J

    2018-04-26

    Ultrastable cyclic peptide frameworks offer great potential for drug design due to their improved bioavailability compared to their linear analogues. Using the sunflower trypsin inhibitor-1 (SFTI-1) peptide scaffold in combination with systematic N-methylation of the grafted pharmacophore led to the identification of novel subtype selective melanocortin receptor (MCR) agonists. Multiple bicyclic peptides were synthesized and tested toward their activity at MC1R and MC3-5R. Double N-methylated compound 18 showed a p K i of 8.73 ± 0.08 ( K i = 1.92 ± 0.34 nM) and a pEC 50 of 9.13 ± 0.04 (EC 50 = 0.75 ± 0.08 nM) at the human MC1R and was over 100 times more selective for MC1R. Nuclear magnetic resonance structural analysis of 18 emphasized the role of peptide bond N-methylation in shaping the conformation of the grafted pharmacophore. More broadly, this study highlights the potential of cyclic peptide scaffolds for epitope grafting in combination with N-methylation to introduce receptor subtype selectivity in the context of peptide-based drug discovery.

  17. Synthesis and evaluation of two NIR fluorescent cyclic RGD penta-peptides for targeting integrins

    NASA Astrophysics Data System (ADS)

    Ye, Yunpeng; Bloch, Sharon; Xu, Baogang; Achilefu, Samuel

    2006-02-01

    Interest in novel RGD peptides has been increasingly growing as the interactions between RGD peptides and integrins are the basis for a variety of cellular functions and medical applications such as modulation of cell adhesion, invasion, tumor angiogenesis, and metastasis. In particular, we have been interested in novel NIR fluorescent RGD peptides as potential optical contrast agents for in vivo tumor optical imaging. Therefore, two cyclic RGD penta-peptides conjugated with a NIR fluorescent carbocyanine (Cypate), i.e. lactam-based cyclo[RGDfK(Cypate)] (1) and disulfide-containing Cypate-cyclo(CRGDC)-NH II (2), were designed and synthesized. The competitive binding assay between the purified α vβ 3 integrin and the peptide ligands using 125I-echistatin as a tracer showed that 1 had a higher receptor binding affinity (IC 50~10 -7 M) than 2 (IC 50~10 -6 M). Furthermore, the internalization of 1 in A549 cells in vitro was less than 2, as revealed by fluorescence microscopy. These results suggest that both the lactam- and disulfide-based cyclic RGD penta-peptides should be further studied structurally and functionally to elucidate the advantages of each class of compounds.

  18. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    PubMed

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  19. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    PubMed Central

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-01-01

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168

  20. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  1. Sulfonation of Tyrosine as a Method To Improve Biodistribution of Peptide-Based Radiotracers: Novel 18F-Labeled Cyclic RGD Analogues.

    PubMed

    Haskali, Mohammad B; Denoyer, Delphine; Noonan, Wayne; Culinane, Carleen; Rangger, Christine; Pouliot, Normand; Haubner, Roland; Roselt, Peter D; Hicks, Rodney J; Hutton, Craig A

    2017-04-03

    Control of the biodistribution of radiolabeled peptides has proven to be a major challenge in their application as imaging agents for positron emission tomography (PET). Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[ 18 F]fluoropropionate, and the biodistribution of the radiolabeled peptides was compared with that of their nonsulfonated, clinically relevant counterparts, [ 18 F]GalactoRGD and [ 18 F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da toward the MW, compared with 189 Da for both the "Galacto" and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabeled peptides.

  2. Cyclic peptides as potential therapeutic agents for skin disorders.

    PubMed

    Namjoshi, Sarika; Benson, Heather A E

    2010-01-01

    There is an increasing understanding of the role of peptides in normal skin function and skin disease. With this knowledge, there is significant interest in the application of peptides as therapeutics in skin disease or as cosmeceuticals to enhance skin appearance. In particular, antimicrobial peptides and those involved in inflammatory processes provide options for the development of new therapeutic directions in chronic skin conditions such as psoriasis and dermatitis. To exploit their potential, it is essential that these peptides are delivered to their site of action in active form and in sufficient quantity to provide the desired effect. Many polymers permeate the skin poorly and are vulnerable to enzymatic degradation. Synthesis of cyclic peptide derivatives can substantially alter the physicochemical characteristics of the peptide with the potential to improve its skin permeation. In addition, cyclization can stabilize the peptide structure and thereby increase its stability. This review describes the role of cyclic peptides in the skin, examples of current cyclic peptide therapeutic products, and the potential for cyclic peptides as dermatological therapeutics and cosmeceuticals.

  3. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide Comprising Alternate Biphenyl-Cored ζ-Amino Acids.

    PubMed

    Tashiro, Shohei; Chiba, Masayuki; Shionoya, Mitsuhiko

    2017-05-18

    Aiming at precisely arranging several proteinogenic α-amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl-cored ζ-amino acids and proteinogenic α-amino acids such as l-leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl 3 . The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ-alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    PubMed

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  5. Sequence Elucidation of an Unknown Cyclic Peptide of High Doping Potential by ETD and CID Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guan, Fuyu; Uboh, Cornelius E.; Soma, Lawrence R.; Rudy, Jeffrey

    2011-04-01

    Identification of an unknown substance without any information remains a daunting challenge despite advances in chemistry and mass spectrometry. However, an unknown cyclic peptide in a sample with very limited volume seized at a Pennsylvania racetrack has been successfully identified. The unknown sample was determined by accurate mass measurements to contain a small unknown peptide as the major component. Collision-induced dissociation (CID) of the unknown peptide revealed the presence of Lys (not Gln, by accurate mass), Phe, and Arg residues, and absence of any y-type product ion. The latter, together with the tryptic digestion results of the unusual deamidation and absence of any tryptic cleavage, suggests a cyclic structure for the peptide. Electron-transfer dissociation (ETD) of the unknown peptide indicated the presence of Gln (not Lys, by the unusual deamidation), Phe, and Arg residues and their connectivity. After all the results were pieced together, a cyclic tetrapeptide, cyclo[Arg-Lys-N(C6H9)Gln-Phe], is proposed for the unknown peptide. Observations of different amino acid residues from CID and ETD experiments for the peptide were interpreted by a fragmentation pathway proposed, as was preferential CID loss of a Lys residue from the peptide. ETD was used for the first time in sequencing of a cyclic peptide; product ions resulting from ETD of the peptide identified were categorized into two types and named pseudo-b and pseudo-z ions that are important for sequencing of cyclic peptides. The ETD product ions were interpreted by fragmentation pathways proposed. Additionally, multi-stage CID mass spectrometry cannot provide complete sequence information for cyclic peptides containing adjacent Arg and Lys residues. The identified cyclic peptide has not been documented in the literature, its pharmacological effects are unknown, but it might be a "designer" drug with athletic performance-enhancing effects.

  6. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    PubMed

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less

  8. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    PubMed

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.

  9. Improving oral bioavailability of cyclic peptides by N-methylation.

    PubMed

    Räder, Andreas F B; Reichart, Florian; Weinmüller, Michael; Kessler, Horst

    2018-06-01

    The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization - biological activity and oral availability - is required to overcome this problem. Moreover, most simple "rules" for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Antifungal and Antiviral Cyclic Peptides from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020.

    PubMed

    Liang, Xiao; Nong, Xu-Hua; Huang, Zhong-Hui; Qi, Shu-Hua

    2017-06-28

    A new linear peptide simplicilliumtide I (1) and four new cyclic peptides simplicilliumtides J-M (2-5) together with known analogues verlamelins A and B (6 and 7) were isolated from the deep-sea-derived fungal strain Simplicillium obclavatum EIODSF 020. Their structures were elucidated by spectroscopic analysis, and their absolute configurations were further confirmed by chemical structural modification, Marfey's and Mosher's methods. Compounds 2, 6, and 7 showed significant antifungal activity toward Aspergillus versicolor and Curvularia australiensis and also had obvious antiviral activity toward HSV-1 with IC 50 values of 14.0, 16.7, and 15.6 μM, respectively. The structure-bioactivity relationship of this type of cyclic peptide was also discussed. This is the first time to discuss the effects of the lactone linkage and the substituent group of the fatty acid chain fragment on the bioactivity of this type of cyclic peptides. This is also the first time to report the antiviral activity of these cyclic peptides.

  11. A density functional theory study on peptide bond cleavage at aspartic residues: direct vs cyclic intermediate hydrolysis.

    PubMed

    Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya

    2013-12-01

    In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.

  12. Interaction of Gramicidin S and its Aromatic Amino-Acid Analog with Phospholipid Membranes

    PubMed Central

    Jelokhani-Niaraki, Masoud; Hodges, Robert S.; Meissner, Joseph E.; Hassenstein, Una E.; Wheaton, Laura

    2008-01-01

    To investigate the mechanism of interaction of gramicidin S-like antimicrobial peptides with biological membranes, a series of five decameric cyclic cationic β-sheet-β-turn peptides with all possible combinations of aromatic D-amino acids, Cyclo(Val-Lys-Leu-D-Ar1-Pro-Val-Lys-Leu-D-Ar2-Pro) (Ar ≡ Phe, Tyr, Trp), were synthesized. Conformations of these cyclic peptides were comparable in aqueous solutions and lipid vesicles. Isothermal titration calorimetry measurements revealed entropy-driven binding of cyclic peptides to POPC and POPE/POPG lipid vesicles. Binding of peptides to both vesicle systems was endothermic—exceptions were peptides containing the Trp-Trp and Tyr-Trp pairs with exothermic binding to POPC vesicles. Application of one- and two-site binding (partitioning) models to binding isotherms of exothermic and endothermic binding processes, respectively, resulted in determination of peptide-lipid membrane binding constants (Kb). The Kb1 and Kb2 values for endothermic two-step binding processes corresponded to high and low binding affinities (Kb1 ≥ 100 Kb2). Conformational change of cyclic peptides in transferring from buffer to lipid bilayer surfaces was estimated using fluorescence resonance energy transfer between the Tyr-Trp pair in one of the peptide constructs. The cyclic peptide conformation expands upon adsorption on lipid bilayer surface and interacts more deeply with the outer monolayer causing bilayer deformation, which may lead to formation of nonspecific transient peptide-lipid porelike zones causing membrane lysis. PMID:18621820

  13. Highly sensitive immunoassay of anti-cyclic citrullinated peptide marker using surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Chon, H.; Lee, S.; Wang, R.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-C.; Hong, S. H.; Yoon, Y. H.; Lim, D.; Choo, J.

    2015-07-01

    We report a highly sensitive anti-cyclic citrullinated peptide (anti-CCP) detection method for early diagnosis of rheumatoid arthritis (RA) using surface-enhanced Raman scattering (SERS)-based immunoassay. Herein, cyclic citrullinated peptide (CCP)-conjugated magnetic beads and anti-human IgG-conjugated hollow gold nanospheres (HGNs) were used as substrates and SERS nano-tags, respectively. First, its detection sensitivity was evaluated using anti-CCP standard solutions. Then quantitative anti-CCP levels, determined by the SERS-based assay, were compared with those obtained from three commercially available anti-CCP assay kits (Immunoscan CCPlus, ImmunnLisa™ CCP and BioPlex™ 2200) to assess its potential utility as a clinical tool. Finally, clinical samples from 20 RA patients were investigated using them. In the SERS-based assay, the anti-CCP level in human serum was successfully determined by monitoring the characteristic Raman peak intensity of SERS nano-tags. The diagnostic performance of our SERS-based immunoassay for clinical samples shows a good agreement with those measured by three commercial anti-CCP kits. In addition, our SERS-based assay results are more consistent in the low concentration range (0-25 U/mL) than those achieved by the commercial kits. Accordingly, it is estimated that the SERS-based assay is a potentially useful diagnostic tool for early diagnosis of RA.

  14. Design, synthesis and biological evaluation of (S)-valine thiazole-derived cyclic and non-cyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1)

    PubMed Central

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E.; Patel, Bhargav A.; Ambudkar, Suresh V.; Talele, Tanaji T.

    2014-01-01

    Multidrug resistance (MDR) caused by ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure to cancer chemotherapy. Previously, selenazole containing cyclic peptides were reported as P-gp inhibitors and these were also used for co-crystallization with mouse P-gp, which has 87% homology to human P-gp. It has been reported that human P-gp, can simultaneously accommodate 2-3 moderate size molecules at the drug binding pocket. Our in-silico analysis based on the homology model of human P-gp spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at drug-binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity and the structural form (linear and cyclic) of valine-derived thiazole peptides that can accommodate well in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear- (13) and cyclic-trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 = 1.5 μM). Cyclic trimer and linear trimer being equipotent, future studies can be focused on non-cyclic counterparts of cyclic peptides maintaining linear trimer length. Binding model of the linear trimer (13) within the drug-binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the non-cyclic form. PMID:24288265

  15. The role of anti-cyclic citrullinated peptide antibodies in predicting rheumatoid arthritis.

    PubMed

    Rexhepi, Sylejman; Rexhepi, Mjellma; Sahatçiu-Meka, Vjollca; Tafaj, Argjend; Izairi, Remzi; Rexhepi, Blerta

    2011-01-01

    The study presents the results of predicting role of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis, compared to rheumatoid factor. 32 patients with rheumatoid arthritis were identified from a retrospective chart review. The results of our study show that presence of the rheumatoid factor has less diagnostic and prognostic significance than the anti-cyclic citrullinated peptide, and suggests its superiority in predicting an erosive disease course.

  16. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis.

    PubMed

    Emmanouil, Mary; Tseveleki, Vivian; Triantafyllakou, Iro; Nteli, Agathi; Tselios, Theodore; Probert, Lesley

    2018-01-31

    In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP 87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP 72-85 -induced EAE in Lewis rats. The Lys 91 and Pro 96 of MBP 87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala 96 ]MBP 87-99 , cyclo(87-99)[Ala 91,96 ]MBP 87-99 and cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 , but not wild-type linear MBP 87-99 , strongly inhibited MBP 72-85 -induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.

  17. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L.

    PubMed

    Mishra, Abheepsa; Gauri, Samiran S; Mukhopadhyay, Sourav K; Chatterjee, Soumya; Das, Shibendu S; Mandal, Santi M; Dey, Satyahari

    2014-04-01

    Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides

    NASA Astrophysics Data System (ADS)

    Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.

    2016-05-01

    A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.

  19. Extensive reprogramming of the genetic code for genetically encoded synthesis of highly N-alkylated polycyclic peptidomimetics.

    PubMed

    Kawakami, Takashi; Ishizawa, Takahiro; Murakami, Hiroshi

    2013-08-21

    Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.

  20. Cyclic peptides and their interaction with peptide coated surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, F.; Tünnemann, R.; Leipert, D.; Stingel, C.; Jung, G.; Hoffmann, V.

    2001-05-01

    Focusing on biochemical and pharmaceutical inhibitor systems the interaction of cyclic peptides with model peptides have been investigated by ATR-FTIR-spectroscopy. Information about the participation of special functional groups e.g. COOH, COO -, NH 3+ or peptide backbone was gathered by observing cyclohexapeptides (c(X 1LX 2LX 3)) which are interacting with covalently coated Si-ATR-crystals ( L-arginine, tripeptide I (aNS), tripeptide II (SNa)). To determine the interaction, further studies about the band sequence (1800-1500 cm -1) for non-adsorbed cyclohexapeptides and for the interaction with the silicon surface (SiOH) were necessary. The spectra of the interacting cyclohexapeptides with the SiOH-groups were treated like reference spectra for the evaluation of the peptide-peptide interaction. Based on these spectra, we can conclude that there is peptide-peptide interaction with the coating and not with the residual OH-groups. Determination of interaction mechanisms was done by spectra which represent adsorbed molecules only. The amount of adsorbed molecules was considerably less than a monolayer. Therefore the intensities of the spectra are about 10 -4 absorbance units. The spectra contain information about both changes of the coating and of the cyclohexapeptide.

  1. Cyclic Peptides Arising by Evolutionary Parallelism via Asparaginyl-Endopeptidase–Mediated Biosynthesis[C][W

    PubMed Central

    Mylne, Joshua S.; Chan, Lai Yue; Chanson, Aurelie H.; Daly, Norelle L.; Schaefer, Hanno; Bailey, Timothy L.; Nguyencong, Philip; Cascales, Laura; Craik, David J.

    2012-01-01

    The cyclic miniprotein Momordica cochinchinensis Trypsin Inhibitor II (MCoTI-II) (34 amino acids) is a potent trypsin inhibitor (TI) and a favored scaffold for drug design. We have cloned the corresponding genes and determined that each precursor protein contains a tandem series of cyclic TIs terminating with the more commonly known, and potentially ancestral, acyclic TI. Expression of the precursor protein in Arabidopsis thaliana showed that production of the cyclic TIs, but not the terminal acyclic TI, depends on asparaginyl endopeptidase (AEP) for maturation. The nature of their repetitive sequences and the almost identical structures of emerging TIs suggest these cyclic peptides evolved by internal gene amplification associated with recruitment of AEP for processing between domain repeats. This is the third example of similar AEP-mediated processing of a class of cyclic peptides from unrelated precursor proteins in phylogenetically distant plant families. This suggests that production of cyclic peptides in angiosperms has evolved in parallel using AEP as a constraining evolutionary channel. We believe this is evolutionary evidence that, in addition to its known roles in proteolysis, AEP is especially suited to performing protein cyclization. PMID:22822203

  2. Liquid crystal organization of self-assembling cyclic peptides.

    PubMed

    Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa

    2014-01-21

    Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.

  3. Computational and experimental investigations into the conformations of cyclic tetra-α/β-peptides.

    PubMed

    Oakley, Mark T; Oheix, Emmanuel; Peacock, Anna F A; Johnston, Roy L

    2013-07-11

    We present a combined computational and experimental study of the energy landscapes of cyclic tetra-α/β-peptides. We have performed discrete path sampling calculations on a series of cyclic tetra-α/β-peptides to obtain the relative free energies and barriers to interconversion of their conformers. The most stable conformers of cyclo-[(β-Ala-Gly)2] contain all-trans peptide groups. The relative energies of the cis isomers and the cis-trans barriers are lower than in acyclic peptides but not as low as in the highly strained cyclic α-peptides. For cyclic tetra-α/β-peptides containing a single proline residue, of the type cyclo-[β-Ala-Xaa-β-Ala-Pro], the energy landscapes show that the most stable isomers containing cis and trans β-Ala-Pro have similar free energies and are separated by barriers of approximately 15 kcal mol(-1). We show that the underlying energy landscapes of cyclo-[β-Ala-Lys-β-Ala-Pro] and cyclo-[β-Ala-Ala-β-Ala-Pro] are similar, allowing the substitution of the flexible side chain of Lys with Ala to reduce the computational demand of our calculations. However, the steric bulk of the Val side chain in cyclo-[β-Ala-Val-β-Ala-Pro] affects the conformations of the ring, leading to significant differences between its energy landscape and that of cyclo-[β-Ala-Ala-β-Ala-Pro]. We have synthesized the cyclic peptide cyclo-[β-Ala-Lys-β-Ala-Pro], and NMR spectroscopy shows the presence of conformers that interconvert slowly on the NMR time scale at temperatures up to 80 °C. Calculated circular dichroism (CD) spectra for the proposed major isomer of cyclo-[β-Ala-Ala-β-Ala-Pro] are in good agreement with the experimental spectra of cyclo-[β-Ala-Lys-β-Ala-Pro], suggesting that the Ala cyclic tetrapeptide is a viable model for the Lys analogue.

  4. Melanoma targeting with alpha-melanocyte stimulating hormone analogs labeled with fac-[99mTc(CO)3]+: effect of cyclization on tumor-seeking properties.

    PubMed

    Raposinho, Paula D; Xavier, Catarina; Correia, João D G; Falcão, Soraia; Gomes, Paula; Santos, Isabel

    2008-03-01

    Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized alpha-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of alpha-MSH (Ac-Nle-cyclo[Asp-His-DPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of alpha-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide betaAla-Nle-cyclo[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog betaAla-Nle-Asp-His-DPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of betaAla, and the resulting pz-peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 degrees C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 +/- 0.83 and 11.31 +/- 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz-peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,DPhe7)-alphaMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).

  5. Synthesis and Biological Evaluation of Cyclic [99mTc]-HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP.

    PubMed

    Rezaeianpour, Sedigheh; Bozorgi, Atefeh Hajiagha; Moghimi, Abolghasem; Almasi, Ameneh; Balalaie, Saeed; Ramezanpour, Sorour; Nasoohi, Sanaz; Mazidi, Seyed Mohammad; Geramifar, Parham; Bitarafan-Rajabi, Ahmad; Shahhosseini, Soraya

    2017-04-01

    Many patients worldwide suffer from cardiovascular diseases for which an underlying factor is thrombosis. Devising a molecular imaging technique for early detection of thrombosis in a clinical setting is highly recommended. Because fibrin is a major constituent of clots and is present in all types of thrombi but absent in circulation, it is a highly specific and sensitive target for molecular imaging of thrombi. It is assumed that cyclization of peptides will improve the receptor binding affinity and stability of the peptide. In the present study, we have developed linear and cyclic fibrin-binding peptides for thrombus imaging and compared their biological properties. Linear HYNIC-GPRPP and cyclic HYNIC-CGPRPPC peptides were synthesized using a standard Fmoc strategy and radiolabeled with Tc-99m. The stability of the radiolabeled peptides in human plasma and their affinity for fibrin and blood clots were determined. Blood clearance and biodistribution were evaluated in rats and mice, respectively. The peptide with the highest affinity was injected to a live rabbit femoral thrombosis model, and scintigraphic images were obtained. In vitro studies show that peptides are stable in human plasma and have a high affinity for human fibrin. They also demonstrated fast blood clearance in rats and high thrombus uptake in the Balb/c mice femoral thrombosis model. Femoral thrombosis was visualized 30 min postinjection of cyclic peptide in a live rabbit model using single photon emission computed tomography (SPECT)/X-ray computed tomography. The results indicate that the cyclic peptide is a promising agent for molecular imaging of fibrin using SPECT.

  6. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    PubMed Central

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  7. Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics.

    PubMed

    Falanga, Annarita; Nigro, Ersilia; De Biasi, Margherita Gabriella; Daniele, Aurora; Morelli, Giancarlo; Galdiero, Stefania; Scudiero, Olga

    2017-07-20

    Cyclic peptides are receiving significant attention thanks to their antimicrobial activity and high serum stability, which is useful to develop and design novel antimicrobial agents. Antimicrobial peptides appear to be key components of innate defences against bacteria, viruses, and fungi. Among the others, defensins possess a strong microbicidial activity. Defensins are cationic and amphipathic peptides with six cysteine residues connected by three disulfide bonds found in plants, insects, and mammals; they are divided in three families: α-, β-, and θ-defensins. α-Defensins are contained in the primary granules of human neutrophils; β-defensins are expressed in human epithelia; and θ-defensins are pseudo-cyclic defensins not found in humans, but in rhesus macaques. The structural diversities among the three families are reflected in a different antimicrobial action as well as in serum stability. The engineering of these peptides is an exciting opportunity to obtain more functional antimicrobial molecules highlighting their potential as therapeutic agents. The present review reports the most recent advances in the field of cyclic peptides with a specific regard to defensin analogs.

  8. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    EPA Science Inventory

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  9. Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility-Mass Spectrometry: Lessons from a Collection of Representatives

    NASA Astrophysics Data System (ADS)

    Fouque, Kevin Jeanne Dit; Lavanant, Hélène; Zirah, Séverine; Hegemann, Julian D.; Zimmermann, Marcel; Marahiel, Mohamed A.; Rebuffat, Sylvie; Afonso, Carlos

    2017-02-01

    Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.

  10. Cyclic interconversion of methionine containing peptide between oxidized and reduced phases monitored by reversed-phase HPLC and ESI-MS/MS.

    PubMed

    Jin, Yulong; Huang, Yanyan; Xie, Yunfeng; Hu, Wenbing; Wang, Fuyi; Liu, Guoquan; Zhao, Rui

    2012-01-30

    The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Purification of human erythropoietin by affinity chromatography using cyclic peptide ligands.

    PubMed

    Kish, William S; Roach, Matthew K; Sachi, Hiroyuki; Naik, Amith D; Menegatti, Stefano; Carbonell, Ruben G

    2018-05-15

    Prior work described the identification and characterization of erythropoietin-binding cyclic peptides SLFFLH, VVFFVH, FSLLHH and FSLLSH (all of the form cyclo[(N α -Ac)Dap(A)-X 1 -X 6 -AE], wherein X 1 -X 6 is the listed sequences). In this work, the peptide ligands were synthesized on Toyopearl chromatographic resins and utilized for purifying recombinant human erythropoietin (rHuEPO) from complex sources. Elution buffer pH and composition were optimized to maximize the recovery of standard rHuEPO from the peptide resins. The peptide-based adsorbents were employed for separating rHuEPO from a mixture of albumin, myoglobin, and IgG to examine their selectivity. When using FSLLHH, the inclusion of low amounts of surfactants in the wash and elution buffers facilitated the recovery of rHuEPO with high yield and purity. Specifically, FSLLSH and VVFFVH afforded the most efficient separation of rHuEPO, with yield and purity of 85% and 95-97%, respectively. The affinity resins were also utilized to purify rHuEPO from spiked CHO cell culture fluid. In particular, FSLLSH provided the most successful separation from CHO, with yield and purity above 90%, and 1.0 log 10 reduction of host cell proteins. The influence of conductivity and pH in the CHO-rHuEPO load was investigated. Finally, FSLLSH-based resins were used to purify rHuEPO spiked into a Pichia pastoris cell culture fluid, resulting in product yield and purity of 96% and 84%, respectively, and 1.3 log 10 reduction of host DNA. These results compare well with values obtained using wheat germ agglutinin agarose and clearly indicate the potential of the cyclic peptide resins as a viable tool for rHuEPO purification. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Kinetic Landscape of a Peptide Bond-Forming Prolyl Oligopeptidase

    PubMed Central

    2017-01-01

    Prolyl oligopeptidase B from Galerina marginata (GmPOPB) has recently been discovered as a peptidase capable of breaking and forming peptide bonds to yield a cyclic peptide. Despite the relevance of prolyl oligopeptidases in human biology and disease, a kinetic analysis pinpointing rate-limiting steps for a member of this enzyme family is not available. Macrocyclase enzymes are currently exploited to produce cyclic peptides with potential therapeutic applications. Cyclic peptides are promising druglike molecules because of their stability and conformational rigidity. Here we describe an in-depth kinetic characterization of a prolyl oligopeptidase acting as a macrocyclase enzyme. By combining steady-state and pre-steady-state kinetics, we propose a kinetic sequence in which a step after macrocyclization limits steady-state turnover. Additionally, product release is ordered, where the cyclic peptide departs first followed by the peptide tail. Dissociation of the peptide tail is slow and significantly contributes to the turnover rate. Furthermore, trapping of the enzyme by the peptide tail becomes significant beyond initial rate conditions. The presence of a burst of product formation and a large viscosity effect further support the rate-limiting nature of a physical step occurring after macrocyclization. This is the first detailed description of the kinetic sequence of a macrocyclase enzyme from this class. GmPOPB is among the fastest macrocyclases described to date, and this work is a necessary step toward designing broad-specificity efficient macrocyclases. PMID:28332820

  13. Peptide nanotube-modified electrodes for enzyme-biosensor applications.

    PubMed

    Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith

    2005-08-15

    The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.

  14. Lipopolysaccharide and cAMP modify placental calcitriol biosynthesis reducing antimicrobial peptides gene expression.

    PubMed

    Olmos-Ortiz, Andrea; García-Quiroz, Janice; Avila, Euclides; Caldiño-Soto, Felipe; Halhali, Ali; Larrea, Fernando; Díaz, Lorenza

    2018-06-01

    Calcitriol, the hormonal form of vitamin D 3 (VD), stimulates placental antimicrobial peptides expression; nonetheless, the regulation of calcitriol biosynthesis in the presence of bacterial products and its consequence on placental innate immunity have scarcely been addressed. We investigated how some bacterial products modify placental VD metabolism and its ability to induce antimicrobial peptides gene expression. Cultured human trophoblasts biosynthesized calcitriol only in the presence of its precursor calcidiol, a process that was inhibited by cyclic-AMP but stimulated by lipopolysaccharide (LPS). Intracrine calcitriol upregulated cathelicidin, S100A9, and β-defensins (HBDs) gene expression, while LPS further stimulated HBD2 and S100A9. Unexpectedly, LPS significantly repressed cathelicidin basal mRNA levels and drastically diminished calcidiol ability to induce it. Meanwhile, cyclic-AMP, which is used by many microbes to avoid host defenses, suppressed calcitriol biosynthesis, resulting in significant inhibition of most VD-dependent microbicidal peptides gene expression. While LPS stimulated calcitriol biosynthesis, cyclic-AMP inhibited it. LPS downregulated cathelicidin mRNA expression, whereas cyclic-AMP antagonized VD-dependent-upregulation of most antimicrobial peptides. These findings reveal LPS and cyclic-AMP involvement in dampening placental innate immunity, highlighting the importance of cyclic-AMP in the context of placental infection and suggesting its participation to facilitate bacterial survival. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  16. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly.

    PubMed

    Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena

    2017-01-01

    To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.

  17. Design, synthesis, and biological evaluation of (S)-valine thiazole-derived cyclic and noncyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1).

    PubMed

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E; Patel, Bhargav A; Ambudkar, Suresh V; Talele, Tanaji T

    2014-01-03

    Multidrug resistance caused by ATP binding cassette transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole-containing cyclic peptides were reported as P-gp inhibitors and were also used for co-crystallization with mouse P-gp, which has 87 % homology to human P-gp. It has been reported that human P-gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P-gp, spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine-derived thiazole peptides that can be accommodated in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear (13) and cyclic trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 =1.5 μM). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Membrane-targeted self-assembling cyclic peptide nanotubes.

    PubMed

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.

  19. A lead (II) 3D coordination polymer based on a marine cyclic peptide motif.

    PubMed

    Chakraborty, Subrata; Tyagi, Pooja; Tai, Dar-Fu; Lee, Gene-Hsiang; Peng, Shie-Ming

    2013-04-26

    The crystal structure of a naturally occurring cyclic tetrapeptide cyclo(Gly-L-Ser-L-Pro-L-Glu) [cyclo(GSPE)] was obtained. The conformation of synthesized cyclo(GSPE) fixes the coordination to lead ion in a 1:1 ratio. This cyclo(GSPE)-Pb complex was constructed as an asymmetric 3D network in the crystalline state. The polymerization of a heavy metal ion with a rigid asymmetric cyclic tetrapeptide represents the first example of a new class of macrocyclic complexes.

  20. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs.

    PubMed

    Arias, Mauricio; McDonald, Lindsey J; Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2014-10-01

    Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.

  1. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent.

    PubMed

    Doll, Stephanie; Woolum, Karen; Kumar, Krishan

    2016-09-01

    A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A simple protocol for combinatorial cyclic depsipeptide libraries sequencing by matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Gurevich-Messina, Juan M; Giudicessi, Silvana L; Martínez-Ceron, María C; Acosta, Gerardo; Erra-Balsells, Rosa; Cascone, Osvaldo; Albericio, Fernando; Camperi, Silvia A

    2015-01-01

    Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of 'one-bead-one-peptide' combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4-hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc-Asp[2-phenylisopropyl (OPp)]-OH to Ala-Gly-oxymethylbenzamide-ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N-terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N-Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one-bead-one-cyclic depsipeptide libraries that can be easily open for its sequencing by matrix-assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  3. Structure-activity relationship of cyclic peptide penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2) at the human melanocortin-1 and -4 receptors: His(6) substitution.

    PubMed

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-04-07

    A series of MT-II related cyclic peptides, based on potent but non-selective hMC4R agonist (Penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2)) was prepared in which His(6) residue was systematically substituted. Two of the most interesting peptides identified in this study are Penta-c[Asp-5-ClAtc-DPhe-Arg-Trp-Lys]-NH(2) and Penta-c[Asp-5-ClAtc-DPhe-Cit-Trp-Lys]-NH(2) which are potent hMC4R agonists and are either inactive or weak partial agonists (not tested for their antagonist activities) in hMC1R, hMC3R and hMC5R agonist assays.

  4. Insight of Transmembrane Processes of Self-Assembling Nanotubes Based on a Cyclic Peptide Using Coarse Grained Molecular Dynamics Simulation.

    PubMed

    Fu, Yankai; Yan, Tingxuan; Xu, Xia

    2017-09-28

    Transmembrane self-assembling cyclic peptide (SCP) nanotubes are promising candidates for delivering specific molecules through cell membranes. The detailed mechanisms behind the transmembrane processes, as well as stabilization factors of transmembrane structures, are difficult to elucidate through experiments. In this study, the effects of peptide sequence and oligomeric state on the transmembrane capabilities of SCP nanotubes and the perturbation of embedded SCP nanotubes acting on the membrane were investigated based on coarse grained molecular dynamics simulation. The simulation results reveal that hydrophilic SCP oligomers result in the elevation of the energy barrier while the oligomerization of hydrophobic SCPs causes the reduction of the energy barrier, further leading to membrane insertion. Once SCP nanotubes are embedded, membrane properties such as density, thickness, ordering state and lateral mobility are adjusted along the radial direction. This study provides insight into the transmembrane strategy of SCP nanotubes and sheds light on designing novel transport systems.

  5. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  6. Template Based Design of Anti-Metastatic Drugs from the Active Conformation of Laminin Peptide 11

    DTIC Science & Technology

    2002-01-01

    spectrometry, and the success of refolding column, lane D = molecular weight markers. the domain by circular dichroism (CD) spectroscopy . The recombinant...determine the active conformation of peptide 11 utilized Tr-NOESY (Transferred Nuclear Overhauser Effect Spectroscopy ) experiments where the peptide...activity. RNAase Nothing activity assayed for 20 hours of refolding using 2’:3’-cyclic cytidine monophosphate 0 01𔃺 1,5 2𔃺 Time, hrs A Final report

  7. Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids

    NASA Astrophysics Data System (ADS)

    Rogers, Joseph M.; Kwon, Sunbum; Dawson, Simon J.; Mandal, Pradeep K.; Suga, Hiroaki; Huc, Ivan

    2018-03-01

    Translation, the mRNA-templated synthesis of peptides by the ribosome, can be manipulated to incorporate variants of the 20 cognate amino acids. Such approaches for expanding the range of chemical entities that can be produced by the ribosome may accelerate the discovery of molecules that can perform functions for which poorly folded, short peptidic sequences are ill suited. Here, we show that the ribosome tolerates some artificial helical aromatic oligomers, so-called foldamers. Using a flexible tRNA-acylation ribozyme—flexizyme—foldamers were attached to tRNA, and the resulting acylated tRNAs were delivered to the ribosome to initiate the synthesis of non-cyclic and cyclic foldamer-peptide hybrid molecules. Passing through the ribosome exit tunnel requires the foldamers to unfold. Yet foldamers encode sufficient folding information to influence the peptide structure once translation is completed. We also show that in cyclic hybrids, the foldamer portion can fold into a helix and force the peptide segment to adopt a constrained and stretched conformation.

  8. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors

    PubMed Central

    Xu, Peng; Andreasen, Peter A.; Huang, Mingdong

    2017-01-01

    This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases. PMID:29104489

  9. Accurate de novo design of hyperstable constrained peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D.

    Covalently-crosslinked peptides present attractive opportunities for developing new therapeutics. Lying between small molecule and protein therapeutics in size, natural crosslinked peptides play critical roles in signaling, virulence and immunity. Engineering novel peptides with precise control over their three-dimensional structures is a significant challenge. Here we describe the development of computational methods for de novo design of conformationally-restricted peptides, and the use of these methods to design hyperstable disulfide-stabilized miniproteins, heterochiral peptides, and N-C cyclic peptides. Experimentally-determined X-ray and NMR structures for 12 of the designs are nearly identical to the computational models. The computational design methods and stable scaffolds providemore » the basis for a new generation of peptide-based drugs.« less

  10. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis ofmore » C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.« less

  11. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  12. Biologically relevant conformational features of linear and cyclic proteolipid protein (PLP) peptide analogues obtained by high-resolution nuclear magnetic resonance and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kordopati, Golfo G.; Tzoupis, Haralambos; Troganis, Anastassios N.; Tsivgoulis, Gerasimos M.; Golic Grdadolnik, Simona; Simal, Carmen; Tselios, Theodore V.

    2017-09-01

    Proteolipid protein (PLP) is one of the main proteins of myelin sheath that are destroyed during the progress of multiple sclerosis (MS). The immunodominant PLP139-151 epitope is known to induce experimental autoimmune encephalomyelitis (EAE, animal model of MS), wherein residues 144 and 147 are recognized by T cell receptor (TCR) during the formation of trimolecular complex with peptide-antigen and major histocompability complex. The conformational behavior of linear and cyclic peptide analogues of PLP, namely PLP139-151 and cyclic (139-151) (L144, R147) PLP139-151, have been studied in solution by means of nuclear magnetic resonance (NMR) methods in combination with unrestrained molecular dynamics simulations. The results indicate that the side chains of mutated amino acids in the cyclic analogue have different spatial orientation compared with the corresponding side chains of the linear analogue, which can lead to reduced affinity to TCR. NMR experiments combined with theoretical calculations pave the way for the design and synthesis of potent restricted peptides of immunodominant PLP139-151 epitope as well as non peptide mimetics that rises as an ultimate goal.

  13. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    PubMed

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  14. Continuum modeling investigation of gigahertz oscillators based on a C60 fullerene inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-02-01

    Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.

  15. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus.

    PubMed

    Tong, Yun; Luo, Jian-Guang; Wang, Rui; Wang, Xiao-Bing; Kong, Ling-Yi

    2012-03-01

    Two new cyclic peptides, dianthins G-H (1 and 2), together with the known dianthin E (3), were isolated from the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1 and 2 were elucidated as cyclo (-Gly(1)-Pro(2)-Leu(3)-Thr(4)-Leu(5)-Phe(6)-) and cyclo (-Gly(1)-Pro(2)-Val(3)-Thr(4)-Ile(5)-Phe(6)-), on the basis of ESI tandem mass fragmentation analysis, extensive 2D NMR methods and X-ray diffraction. The isolated three compounds all increase proliferation of MC3T3-E1 cells in vitro using MTT method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    NASA Astrophysics Data System (ADS)

    Sayeh, Naser Ali

    Intracellular delivery of cell-impermeable compounds in a variety cells using delivery systems have been extensively studied in recent years. Obtaining desirable cellular uptake levels often requires the administration of high quantities of drugs to achieve the expected intracellular biological effect. Thus, improving the translocation process across the plasma membrane will significantly reduce the quantity of required administered drug and consequently minimize the side effects in most of the cases. Efficient delivery of these molecules to the cells and tissues is a difficult challenge. Compounds with low cellular permeability are commonly considered to be of limited therapeutic value. Over the past few decades, several biomedical carriers, such as polymers, nanospheres, nanocapsules, liposomes, micelles, peptides and dendrimers have been widely used to deliver therapeutic and diagnostic agents to the cells. Biomaterials generated from nano-scale compounds have shown some promising data for delivery of many compounds in a number of diseases, such as viral infections, cancer, and genetic disorders. Although much progress has been achieved in this field, many challenges still remain, such as toxicity and limited stability. Liposomes suffer from poor stability in the bloodstream and leakage during storage. They tend to aggregate and fuse with or leak entrapped drugs, especially highly hydrophilic small molecules. For solid lipid nanoparticles (SLNs), drug expulsion after polymorphic transition during storage, inadequate loading capacity, and relatively high water content of the dispersions have been observed. Poly(lactic-coglycolic acid (PLGA) degrades in the body producing its original monomers of lactic acid and glycolic acid, which are the by-products of various metabolic pathways. However, this acidic microenvironment that occurs during degradation could negatively affect the stability of the loaded compound. Dendrimers can carry drugs as complexes or as conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the cellular uptake is predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic CPPs are, therefore not ideal small molecule drug delivery vehicles. Linear CPPs are susceptible to hydrolysis by endogenous peptidases. Conjugation to cationic CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the cellular uptake occurs predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic linear CPPs are, therefore, have not become optimized as small molecule drug delivery vehicles. On the other hand, cyclic peptides containing hydrophilic and hydrophobic amino acids have shown greater potential as drug delivery tools due to their enhanced chemical and enzymatic stability. Parang's laboratory has reported that Amphiphilic Cyclic Peptides (ACPs) containing positively charged arginine and hydrophobic tryptophan residues as potential candidates for drug delivery. Cyclic peptides have several benefits compared to linear peptides, such as rigidness of structure and stability against proteolytic enzymes. The rigidity of the structure can enhance the binding affinity of ligands toward receptors by reducing the freedom of possible structural conformations. Cyclic peptides are also present in nature and have been developed as therapeutics. Cyclosporine, gramicidin S, polymoxin B, and daptomycin are well-known examples of cyclic peptide drugs. Parang's laboratory designed amphiphilic cyclic CPPs containing alternative tryptophan and arginine residues as the positively charged and hydrophobic residues, respectively. The peptides were efficient in improving the cellular delivery of anticancer and antiviral drugs. The cellular uptake mechanism of CPPs into cells is still a matter of some debate. The cellular entry of CPP can be influenced by the type of CPP, the cell line, the nature of the cargo, and the conditions of incubation. As described above, linear CPPs pass through the plasma membrane mostly via an energy-independent or endocytosis pathway. Moreover, the cellular delivery of CPP-conjugated molecules also occurs through endosomal pathway and a strong enzymatic degradation and an inadequate cytoplasmic release of intact molecules from the conjugates are expected, thus leading to an inefficient transfer into the cytoplasm. The best strategy to overcome this issue is to designing CPP that by pass the endosomal uptake or by increasing the escape rate from the endosome to improve the intracellular delivery of CPP-attached molecules. Parang laboratory has reported the cellular uptake of a number of cyclic peptides independent of endocytotic pathway. The extraordinary ability of cyclic peptides containing tryptophan and arginine, [WR]4 and [WR] 5 to spontaneously translocate across bilayers independent of an energy source is distinctly different from the behavior of the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow us to explore requirements for generating peptides with optimized drug encapsulation and to establish correlations between the structure of peptides with their drug entrapment properties. Thus, the general objective of this dissertation was to design and evaluate additional cyclic or amphiphilic peptides as nanostructures, compare their efficiency in delivery of small molecules with the previously reported cyclic peptides containing tryptophan and arginine residues. This dissertation consists of three chapters. Chapter 1. MANUSCRIPT (published in Current Organic Chemistry 2014). The objective of this work was to design amphiphilic linear and cyclic peptides containing hydrophobic tryptophan W residues that were linked through a triazole ring to positively charged arginine R and lysine (K) residues. The peptides were synthesized through click chemistry between hydrophobic peptides containing alkyne and positively charged peptides containing azide groups. Characterization of their structures like solubility, CD, TEM, cytotoxicity were investigated. The conjugates were showed minimal cytotoxicity at two cell lines. The secondary structures of both peptides were similar to a distorted α-helix as shown by CD spectroscopy. TEM imaging also showed that linear-linear (WG(triazole-KR-NH2))3 and cyclic-linear [WG(triazole-KR-NH2)]3 peptides formed nano-sized structures. Chapter 2. MANUSCRIPT I (Submitted to Journal of Molecular Modeling). In this work, we investigated the structural and dynamical aspects of cyclic-linear peptide ([WG(triazole-KR-NH2)] 3 and linear-linear peptide (WG(triazole-KR-NH2))3) formed nanostructures compared to a drug delivery system with [WR]4. While [WR]4 was found to be an efficient molecular transporter for small molecule drugs, such as lamivudine and dasatinib, cyclic-linear peptide ([WG(triazole-KR-NH2)]3 was inefficient. Molecular modeling was used to explain the differential behavior of these peptides. We showed how the morphology of these systems can affect the drug delivery efficiency. The result of this work provided insights about optimizing the amphiphilic cyclic-linear trizaolyl peptides can be used to design compounds with more efficient drug delivery capabilities. Chapter 3. MANUSCRIPT II. The objective of this Chapter was to synthesize a different series of amphiphilic peptides for different objectives. First, the amphiphilic trizaolyl peptides in Chapter I were systematically modified by increasing the number of arginine and tryptophan sequence in cyclic and linear peptides. The rationale for the modification was to enhance the possibility of interaction with the cell membrane and therefore improving the cellular uptake process. Moreover, a new class of amphiphilic peptides consist of tryptophan and glutamic acid were conjugated with a peptide containing arginine and lysine residues using Fmoc chemistry. These peptides have an amide bond that generates more flexibility compared to a triazole ring. The chemical and biological properties will be evaluated in future and compared with amphiphilic triazolyl peptides. Finally, additional fatty acids with different length chains were conjugated with positively charged peptides to be evaluated as antibacterial agents. Stearic acid (C16) and myristic acid (C14) were conjugated with a peptides consisting of arginine azide and lysine amino acids to enhance the antibacterial activity. In summary, the work in this dissertation provided insights about the synthesis and characterization of a new class of amphiphilic triazolyl peptides as drug delivery carriers and amphiphilic peptides as antibacterial agents. Molecular modeling was used to explain why triazolyl peptides were unable to enhance the delivery of small molecule drugs compared to the previously synthesized cyclic peptides [WR]4 (Chapter 2) Modification of synthesized peptides in Chapter 1, by addition of more positively charged amino acids or reducing the rigidity by incorporating amide bonds instead of triazoly groups can be used to improve the cell penetrating properties. Finally, we conjugated amphiphilic peptides with different fatty acids (Chapter 3) to investigate their application as antibacterial agents.

  17. Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction.

    PubMed

    Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng

    2018-05-10

    Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.

  18. The Development of Antimicrobial α-AApeptides that Suppress Pro-inflammatory Immune Responses

    PubMed Central

    Padhee, Shruti; Smith, Christina; Wu, Haifan; Li, Yaqiong; Manoj, Namitha; Qiao, Qiao; Khan, Zoya; Cao, Chuanhai

    2014-01-01

    Herein we describe the development of a new class of antimicrobial and anti-infective peptidomimetics – cyclic lipo-α-AApeptides. They have potent and broad-spectrum antibacterial activity against a range of clinically relevant pathogens, including both multidrug-resistant Gram-positive and Gram-negative bacteria. Fluorescence microscopy suggests that cyclic lipo-α-AApeptides kill bacteria by disrupting bacterial membranes, possibly through a mechanism similar to that of cationic host defense peptides (HDPs). Furthermore, the cyclic lipo-α-AApeptide can mimic cationic host-defense peptides by antagonizing Toll-Like Receptor 4 (TLR4) signaling responses and suppressing pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). Our results suggest that by mimicking host-defense peptides (HDPs), cyclic lipo-α-AApeptides may emerge to be a new class of antibiotic agents through direct bacteria killing, as well as novel anti-infective agents through immunomodulation. PMID:24677440

  19. Structure-Activity Relationships of Bifunctional Cyclic Disulfide Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors

    PubMed Central

    Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2008-01-01

    Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541

  20. Folding control in cyclic peptides through N-methylation pattern selection: formation of antiparallel beta-sheet dimers, double reverse turns and supramolecular helices by 3alpha,gamma cyclic peptides.

    PubMed

    Amorín, Manuel; Castedo, Luis; Granja, Juan R

    2008-01-01

    Peptide foldamers constitute a growing class of nanomaterials with potential applications in a wide variety of chemical, medical and technological fields. Here we describe the preparation and structural characteristics of a new class of cyclic peptide foldamers (3alpha,gamma-CPs) that, depending on their backbone N-methylation patterns and the medium, can either remain as flat rings that dimerize through arrays of hydrogen bonds of antiparallel beta-sheet type, or can fold into twisted double reverse turns that, in the case of double gamma-turns, associate in nonpolar solvents to form helical supramolecular structures. A 3alpha,gamma-CP consists of a number of multiples of a repeat unit made up of four amino acid residues of alternating chirality: three corresponding to alpha-amino acids and one to a gamma-amino acid (a cis-3-aminocycloalkanecarboxylic acid).

  1. Coupling of carbon and peptide nanotubes.

    PubMed

    Montenegro, Javier; Vázquez-Vázquez, Carlos; Kalinin, Arseny; Geckeler, Kurt E; Granja, Juan R

    2014-02-12

    Two of the main types of nanotubular architectures are the single-walled carbon nanotubes (SWCNTs) and the self-assembling cyclic peptide nanotubes (SCPNs). We here report the preparation of the dual composite resulting from the ordered combination of both tubular motifs. In the resulting architecture, the SWCNTs can act as templates for the assembly of SCPNs that engage the carbon nanotubes noncovalently via pyrene "paddles", each member of the resulting hybrid stabilizing the other in aqueous solution. The particular hybrids obtained in the present study formed highly ordered oriented arrays and display complementary properties such as electrical conductivity. Furthermore, a self-sorting of the cyclic peptides toward semiconducting rather than metallic SWCNTs is also observed in the aqueous dispersions. It is envisaged that a broad range of exploitable properties may be achieved and/or controlled by varying the cyclic peptide components of similar SWCNT/SCPN hybrids.

  2. Norbornene-constrained cyclic peptides with hairpin architecture: design, synthesis, conformation, and membrane ion transport.

    PubMed

    Ranganathan, D; Haridas, V; Kurur, S; Nagaraj, R; Bikshapathy, E; Kunwar, A C; Sarma, A V; Vairamani, M

    2000-01-28

    A novel family of hairpin cyclic peptides has been designed on the basis of the use of norbornene units as the bridging ligands. The design is flexible with respect to the choice of an amino acid, the ring size, and the nature of the second bridging ligand as illustrated here with the preparation of a large number of norborneno cyclic peptides containing a variety of amino acids in ring sizes varying from 12- to 29-membered, with the choice of the second bridging ligand being a rigid norbornene (11, 13a,b), an adamantane unit (7a,b and 8), or a flexible cystine residue (4a,b and 10). The presence of built-in handles (as protected COOH groups) permits the attachment of a variety of subunits as shown here with the ligation of Leu-Leu, Val-Val, or Aib-Aib pendants in 4b, 7b, and 13b, respectively. This novel class of constrained cyclic peptides are demonstrated to adopt beta-sheet- or hairpin-like conformation as shown by (1)H NMR and CD spectra. Membrane ion-transport studies have shown that the norborneno cyclic peptides 4b and 7b containing Leu-Leu or Val-Val pendants symmetrically placed on the exterior of the ring show high efficiency and selectivity in the transport of specifically monovalent cations. This property can be attributed to the hairpin-like architecture induced by the norbornene unit since the bis-adamantano peptide 15 containing two pairs of Leu-Leu pendants on the exterior is able to transport both monovalent (Na(+), K(+)) and divalent (Mg(2+)/Ca(2+)) cations.

  3. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  5. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1.

    PubMed

    Chalasani, Ajay Ghosh; Roy, Utpal; Nema, Sushma

    2018-01-01

    A strong antistaphylococcal peptide (ASP-1) from Bacillus subtilis URID 12.1 strain that is active against cefoxitin- and methicillin-resistant Staphylococcus aureus clinical isolates was purified to homogeneity by solvent extraction, silica gel-based adsorption chromatography and reversed-phase high-performance liquid chromatography. The peptide sequence of ASP-1 as determined by MALDI-TOF/MS and ESI-FTICR-MS was acetylated Phe-Thr-Ala-Val-Dhb-Phe-Ile/Leu. The peptide was further analysed by alkaline hydrolysis, ESI-Q-TOF-MS and an ion mobility assay, which detected the presence of a lactone ring in the intact peptide and a cyclic nature, subsequently revealing the linearised peptide sequence as acPhe-Leu-Phe-Thr-Val-Ala-Dhb. Based on the molecular mass (804.5 Da), peptide sequence and amino acid composition, ASP-1 was identified as a lactone ring-containing peptide similar to TL-119, a poorly studied cyclic depsipeptide. Circular dichroism spectroscopy revealed its predominantly random structure in aqueous solution and its β-sheet conformation in methanol. Minimum inhibitory concentrations (MICs) of the purified peptide against S. aureus and methicillin-resistant S. aureus (MRSA) ranged from 2 µg/mL to 64 µg/mL. At sub-MICs and 1× MIC, ASP-1 showed a strong antibiofilm characteristic. ASP-1 at a concentration of 128 µg/mL did not show haemolytic activity, and no cytotoxicity was observed against hepatic carcinoma and breast carcinoma cell lines at the same concentration. Peptide ASP-1 with anti-MRSA and antibiofilm abilities and non-haemolytic and non-cytotoxic properties has not been reported previously. These findings suggest that it may serve as a lead molecule for developing alternative topical antibacterial agents. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions

    PubMed Central

    Aimetti, Alex A.; Feaver, Kristen R.

    2014-01-01

    A unique method has been developed for the formation of multivalent cyclic peptides. This procedure exploits on-resin peptide cyclization using a photoinitiated thiol-ene click reaction and subsequent clustering using thiol-yne photochemistry. Both reactions utilize the sulfhydryl group on natural cysteine amino acids to participate in the thiol-mediated reactions. PMID:20552127

  7. Molecular Docking Simulation of Neuraminidase Influenza A Subtype H1N1 with Potential Inhibitor of Disulfide Cyclic Peptide (DNY, NNY, LRL)

    NASA Astrophysics Data System (ADS)

    Putra, R. P.; Imaniastuti, R.; Nasution, M. A. F.; Kerami, Djati; Tambunan, U. S. F.

    2018-04-01

    Oseltamivir resistance as an inhibitor of neuraminidase influenza A virus subtype H1N1 has been reported lately. Therefore, to solve this problem, several kinds of research has been conducted to design and discover disulfide cyclic peptide ligands through molecular docking method, to find the potential inhibitors for neuraminidase H1N1 which then can disturb the virus replication. This research was studied and evaluated the interaction of ligands toward enzyme using molecular docking simulation, which was performed on three disulfide cyclic peptide inhibitors (DNY, LRL, and NNT), along with oseltamivir and zanamivir as the standard ligands using MOE 2008.10 software. The docking simulation shows that all disulfide cyclic peptide ligands have lower Gibbs free binding energies (ΔGbinding) than the standard ligands, with DNY ligand has the lowest ΔGbinding at -7.8544 kcal/mol. Furthermore, these ligands were also had better molecular interactions with neuraminidase than the standards, owing by the hydrogen bonds that were formed during the docking simulation. In the end, we concluded that DNY, LRL and NNT ligands have the potential to be developed as the inhibitor of neuraminidase H1N1.

  8. Structural Insights into the Role of the Cyclic Backbone in a Squash Trypsin Inhibitor*

    PubMed Central

    Daly, Norelle L.; Thorstholm, Louise; Greenwood, Kathryn P.; King, Gordon J.; Rosengren, K. Johan; Heras, Begoña; Martin, Jennifer L.; Craik, David J.

    2013-01-01

    MCoTI-II is a head-to-tail cyclic peptide with potent trypsin inhibitory activity and, on the basis of its exceptional proteolytic stability, is a valuable template for the design of novel drug leads. Insights into inhibitor dynamics and interactions with biological targets are critical for drug design studies, particularly for protease targets. Here, we show that the cyclization and active site loops of MCoTI-II are flexible in solution, but when bound to trypsin, the active site loop converges to a single well defined conformation. This finding of reduced flexibility on binding is in contrast to a recent study on the homologous peptide MCoTI-I, which suggested that regions of the peptide are more flexible upon binding to trypsin. We provide a possible explanation for this discrepancy based on degradation of the complex over time. Our study also unexpectedly shows that the cyclization loop, not present in acyclic homologues, facilitates potent trypsin inhibitory activity by engaging in direct binding interactions with trypsin. PMID:24169696

  9. Scaffold optimization in discontinuous epitope containing protein mimics of gp120 using smart libraries.

    PubMed

    Mulder, Gwenn E; Quarles van Ufford, H Linda C; van Ameijde, Jeroen; Brouwer, Arwin J; Kruijtzer, John A W; Liskamp, Rob M J

    2013-04-28

    A diversity of protein surface discontinuous epitope mimics is now rapidly and efficiently accessible. Despite the important role of protein-protein interactions involving discontinuous epitopes in a wide range of diseases, mimicry of discontinuous epitopes using peptide-based molecules remains a major challenge. Using copper(I) catalyzed azide-alkyne cycloaddition (CuAAC), we have developed a general and efficient method for the synthesis of collections of discontinuous epitope mimics. Up to three different cyclic peptides, representing discontinuous epitopes in HIV-gp120, were conjugated to a selection of scaffold molecules. Variation of the scaffold molecule, optimization of the ring size of the cyclic peptides and screening of the resulting libraries for successful protein mimics led to an HIV gp120 mimic with an IC50 value of 1.7 μM. The approach described here provides rapid and highly reproducible access to clean, smart libraries of very complex bio-molecular constructs representing protein mimics for use as synthetic vaccines and beyond.

  10. Cyclotide isolation and characterization.

    PubMed

    Craik, David J; Henriques, Sonia Troeira; Mylne, Joshua S; Wang, Conan K

    2012-01-01

    Cyclotides are disulfide-rich cyclic peptides produced by plants with the presumed natural function of defense agents against insect pests. They are present in a wide range of plant tissues, being ribosomally synthesized via precursor proteins that are posttranslationally processed to produce mature peptides with a characteristic cyclic backbone and cystine knot motif associated with their six conserved cysteine residues. Their processing is not fully understood but involves asparaginyl endoproteinase activity. In addition to interest in their defense roles and their unique topologies, cyclotides have attracted attention as potential templates in peptide-based drug design applications. This chapter provides protocols for the isolation of cyclotides from plants, their detection and sequencing by mass spectrometry, and their structural analysis by NMR, as well as describing methods for the isolation of nucleic acid sequences that encode their precursor proteins. Assays to assess their membrane-binding interactions are also described. These protocols provide a "starter kit" for researchers entering the cyclotide field. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DockoMatic: automated peptide analog creation for high throughput virtual screening.

    PubMed

    Jacob, Reed B; Bullock, Casey W; Andersen, Tim; McDougal, Owen M

    2011-10-01

    The purpose of this manuscript is threefold: (1) to describe an update to DockoMatic that allows the user to generate cyclic peptide analog structure files based on protein database (pdb) files, (2) to test the accuracy of the peptide analog structure generation utility, and (3) to evaluate the high throughput capacity of DockoMatic. The DockoMatic graphical user interface interfaces with the software program Treepack to create user defined peptide analogs. To validate this approach, DockoMatic produced cyclic peptide analogs were tested for three-dimensional structure consistency and binding affinity against four experimentally determined peptide structure files available in the Research Collaboratory for Structural Bioinformatics database. The peptides used to evaluate this new functionality were alpha-conotoxins ImI, PnIA, and their published analogs. Peptide analogs were generated by DockoMatic and tested for their ability to bind to X-ray crystal structure models of the acetylcholine binding protein originating from Aplysia californica. The results, consisting of more than 300 simulations, demonstrate that DockoMatic predicts the binding energy of peptide structures to within 3.5 kcal mol(-1), and the orientation of bound ligand compares to within 1.8 Å root mean square deviation for ligand structures as compared to experimental data. Evaluation of high throughput virtual screening capacity demonstrated that Dockomatic can collect, evaluate, and summarize the output of 10,000 AutoDock jobs in less than 2 hours of computational time, while 100,000 jobs requires approximately 15 hours and 1,000,000 jobs is estimated to take up to a week. Copyright © 2011 Wiley Periodicals, Inc.

  12. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    PubMed Central

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines. PMID:26819303

  13. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  14. Simulation-based Discovery of Cyclic Peptide Nanotubes

    NASA Astrophysics Data System (ADS)

    Ruiz Pestana, Luis A.

    Today, there is a growing need for environmentally friendly synthetic membranes with selective transport capabilities to address some of society's most pressing issues, such as carbon dioxide pollution, or access to clean water. While conventional membranes cannot stand up to the challenge, thin nanocomposite membranes, where vertically aligned subnanometer pores (e.g. nanotubes) are embedded in a thin polymeric film, promise to overcome some of the current limitations, namely, achieving a monodisperse distribution of subnanometer size pores, vertical pore alignment across the membrane thickness, and tunability of the pore surface chemistry. Self-assembled cyclic peptide nanotubes (CPNs), are particularly promising as selective nanopores because the pore size can be controlled at the subnanometer level, exhibit high chemical design flexibility, and display remarkable mechanical stability. In addition, when conjugated with polymer chains, the cyclic peptides can co-assemble in block copolymer domains to form nanoporous thin films. CPNs are thus well positioned to tackle persistent challenges in molecular separation applications. However, our poor understanding of the physics underlying their remarkable properties prevents the rational design and implementation of CPNs in technologically relevant membranes. In this dissertation, we use a simulation-based approach, in particular molecular dynamics (MD) simulations, to investigate the critical knowledge gaps hindering the implementation of CPNs. Computational mechanical tests show that, despite the weak nature of the stabilizing hydrogen bonds and the small cross section, CPNs display a Young's modulus of approximately 20 GPa and a maximum strength of around 1 GPa, placing them among the strongest proteinaceous materials known. Simulations of the self-assembly process reveal that CPNs grow by self-similar coarsening, contrary to other low-dimensional peptide systems, such as amyloids, that are believed to grow through nucleation and elongation. We also establish a generic route that does not require complex chemical synthesis pathways or elaborated design rules to direct the self-assembly of binary mixtures of polymer conjugated cyclic peptides towards nanotubes with specific stripped patterns. The study of the molecular transport properties shows that bioinspired single point amino acid mutations can be effectively used to regulate the ion flow rate over an order of magnitude depending on the size and polarity of the functional groups inserted in the nanotube lumen. Our computational framework circumvents synthetic challenges, and lays the foundation for developing artificial nanochannels for separation applications.

  15. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, R.; Ross, P.; Weinhouse, H.

    1991-06-15

    To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less

  16. Effects of the amphiphilic peptides mastoparan and adenoregulin on receptor binding, G proteins, phosphoinositide breakdown, cyclic AMP generation, and calcium influx.

    PubMed

    Shin, Y; Moni, R W; Lueders, J E; Daly, J W

    1994-04-01

    1. The amphiphilic peptide mastoparan is known to affect phosphoinositide breakdown, calcium influx, and exocytosis of hormones and neurotransmitters and to stimulate the GTPase activity of guanine nucleotide-binding regulatory proteins. Another amphiphilic peptide, adenoregulin was recently identified based on stimulation of agonist binding to A1-adenosine receptors. 2. A comparison of the effects of mastoparan and adenoregulin reveals that these peptides share many properties. Both stimulate binding of agonists to receptors and binding of GTP gamma S to G proteins in brain membranes. The enhanced guanyl nucleotide exchange may be responsible for the complete conversion of receptors to a high-affinity state, complexed with guanyl nucleotide-free G proteins. 3. Both peptides increase phosphoinositide breakdown in NIH 3T3 fibroblasts. Pertussis toxin partially inhibits the phosphoinositide breakdown elicited by mastoparan but has no effect on the response to adenoregulin. N-Ethylmaleimide inhibits the response to both peptides. 4. In permeabilized 3T3 cells, both adenoregulin and mastoparan inhibit GTP gamma S-stimulated phosphoinositide breakdown. Mastoparan slightly increases basal cyclic AMP levels in cultured cells, followed at higher concentrations by an inhibition, while adenoregulin has minimal effects. 5. Both peptides increase calcium influx in cultured cells and release of norepinephrine in pheochromocytoma PC12 cells. The calcium influx elicited by the peptides in 3T3 cells is not markedly altered by N-ethylmaleimide. 6. Multiple sites of action appear likely to underlie the effects of mastoparan/adenoregulin on receptors, G proteins, phospholipase C, and calcium.

  17. [The metabolites of cyclic peptides from three endophytic mangrove fungi].

    PubMed

    Guo, Zhi-yong; Huang, Zhong-jing; Wen, Lu; Wan, Qiao; Liu, Fan; She, Zhi-gang; Lin, Yong-cheng; Zhou, Shi-ning

    2007-12-01

    Nine secondary metaboites of cyclic peptide were isolated from three mangrove endophytic fungi Paecilomyces sp. (treel-7), 4557,ZZF65. They were viscumamide(1),cyclo(Pro-Iso)(2),cyclo(Phe-Gly)(3),cyclo(Phe-Ana)(4),cyclo(Gly-Pro) (5),cyclo(Gly-Leu)(6), cyclo(Trp-Ana)(7),neoechinulin A(8),cyclo(Pro-Thr)(9). The compounds 1,7,8,9 were firstly isolated from marine fungus.

  18. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.

    PubMed

    Chekan, Jonathan R; Estrada, Paola; Covello, Patrick S; Nair, Satish K

    2017-06-20

    Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.

  19. Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide [Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly

    NASA Astrophysics Data System (ADS)

    Buono, Ronald A.; Kucharczyk, Nathalie; Neuenschwander, Magrit; Kemmink, Johan; Hwang, Lih-Yueh; Fauchère, Jean-Luc; Venanzi, Carol A.

    1996-06-01

    The design of enzyme mimics with therapeutic and industrial applications has interested both experimental and computational chemists for several decades. Recent advances in the computational methodology of restrained molecular dynamics, used in conjunction with data obtained from two-dimensional 1H NMR spectroscopy, make it a promising method to study peptide and protein structure and function. Several issues, however, need to be addressed in order to assess the validity of this method for its explanatory and predictive value. Among the issues addressed in this study are: the accuracy and generizability of the GROMOS peptide molecular mechanics force field; the effect of inclusion of solvent on the simulations; and the effect of different types of restraining algorithms on the computational results. The decapeptide Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly, which corresponds to the sequence of ACTH1-10, has been synthesized, cyclized, and studied by two-dimensional 1H NMR spectroscopy. Restrained molecular dynamics (RMD) and time-averaged restrained molecular dynamics (TARMD) simulations were carried out on four different distance-geometry starting structures in order to determine and contrast the behavior of cyclic ACTH1-10 in vacuum and in solution. For the RMD simulations, the structures did not fit the NOE data well, even at high values of the restraining potential. The TARMD simulation method, however, was able to give structures that fit the NOE data at high values of the restraining potential. In both cases, inclusion of explicit solvent molecules in the simulation had little effect on the quality of the fit, although it was found to dampen the motion of the cyclic peptide. For both simulation techniques, the number and size of the NOE violations increased as the restraining potential approached zero. This is due, presumably, to inadequacies in the force field. Additional TARMD vacuum-phase simulations, run with a larger memory length or with a larger sampling size (16 additional distance-geometry structures), yielded no significantly different results. The computed data were then analyzed to help explain the sparse NOE data and poor chymotryptic activity of the cyclic peptide. Cyclic ACTH1-10, which contains the functional moieties of the catalytic triad of chymotrypsin, was evaluated as a potential mimic of chymotrypsin by measurement of the rate of hydrolysis of esters of L-and d-phenylalanine. The poor rate of hydrolysis is attributed to the flexibility of the decapeptide, the motion of the side chains, which result in the absence of long-range NOEs, the small size of the macrocycle relative to that of the substrate, and the inappropriate orientation of the Gly, His, and Ser residues. The results demonstrate the utility of this method in computer-aided molecular design of cyclic peptides and suggest structural modifications for future work based on a larger and more rigid peptide framework.

  20. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    NASA Astrophysics Data System (ADS)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  1. Highly sensitive SERS analysis of the cyclic Arg-Gly-Asp peptide ligands of cells using nanogap antennas.

    PubMed

    Portela, Alejandro; Yano, Taka-Aki; Santschi, Christian; Martin, Olivier J F; Tabata, Hitoshi; Hara, Masahiko

    2017-02-01

    The cyclic RGD (cRGD) peptide ligands of cells have become widely used for treating several cancers. We report a highly sensitive analysis of c(RGDfC) using surface enhanced Raman spectroscopy (SERS) using single dimer nanogap antennas in aqueous environment. Good agreement between characteristic peaks of the SERS and the Raman spectra of bulk c(RGDfC) with its peptide's constituents were observed. The exhibited blinking of the SERS spectra and synchronization of intensity fluctuations, suggest that the SERS spectra acquired from single dimer nanogap antennas was dominated by the spectrum of single to a few molecules. SERS spectra of c(RGDfC) could be used to detect at the nanoscale, the cells' transmembrane proteins binding to its ligand. SERS of cyclic RGD on nanogap antenna. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus.

    PubMed

    Hsieh, Pei-Wen; Chang, Fang-Rong; Wu, Ching-Chung; Wu, Kuen-Yuh; Li, Chien-Ming; Chen, Su-Li; Wu, Yang-Chang

    2004-09-01

    Four new cyclic peptides, dianthins C-F (1-4), and a new dianthramide, 4-methoxydianthramide B (5), were isolated from the MeOH extract of the traditional Chinese medicinal plant Dianthus superbus. The sequences of cyclic peptides 1-4 were elucidated as cyclo(Gly(1)-Pro(2)-Phe(3)-Tyr(4)-Val(5)-Ile(6)-), cyclo(Gly(1)-Ser(2)-Leu(3)-Pro(4)-Pro(5)-Ile(6)-Phe(7)-), cyclo(Gly(1)-Pro(2)-Ile(3)-Ser(4)-Phe(5)-Val(6)-), and cyclo(Gly(1)-Pro(2)-Phe(3)-Val(4)-Phe(5)-) on the basis of ESI tandem mass fragmentation analysis, chemical evidence, and extensive 2D NMR methods. The conformation of compound 1 was established as an alpha-helix by CD analysis. Furthermore, compounds 3 and 5 showed cytotoxicities toward the Hep G2 cancer cell line with IC(50) values of 2.37 and 4.08, respectively.

  3. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules.

    PubMed Central

    Bouvier, M; Wiley, D C

    1996-01-01

    Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447

  4. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

    PubMed

    Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2018-05-01

    Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

  5. Structure investigation of maltacine B1a, B1b, B2a and B2b: cyclic peptide lactones of the maltacine complex from Bacillus subtilis.

    PubMed

    Hagelin, Gunnar

    2005-04-01

    A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named maltacines, has recently been described. The structure elucidation of four of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MSn of the ring-opened linear peptides that gave uninterrupted sequences of Bn and Y''n ions. The identities of three unknown residues in the sequences were solved by a combination of derivatization with phenyl isothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure were revealed by a chemoselective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2+ ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesized. The structures of the four peptides were found to be as follows: B1a/B2a, cyclo-4,12(P-Q-Y-HNLeu-A-E-T-Y-Orn-103-Y-I-OH); and B1b/B2b, cyclo-4,12(P-Q-Y-HNLeu-A-E-T-Y-K-103-Y-I-OH). Copyright 2005 John Wiley & Sons, Ltd.

  6. Cyclic citrullinated MBP87-99 peptide stimulates T cell responses: Implications in triggering disease.

    PubMed

    Apostolopoulos, Vasso; Deraos, George; Matsoukas, Minos-Timotheos; Day, Stephanie; Stojanovska, Lily; Tselios, Theodore; Androutsou, Maria-Eleni; Matsoukas, John

    2017-01-15

    Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP 87-99 ) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K 91 ,P 96 (TCR contact residues) to R 91 ,A 96 ; [R 91 ,A 96 ]MBP 87-99 ) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R 91 ,A 96 ]MBP 87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 and its cyclic analog - cyclo(87-99)[Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit 91 ,A 96 ,Cit 97 ]MBP 87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IA s ) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP 87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Unexpected opioid activity profiles of analogues of the novel peptide kappa opioid receptor ligand CJ-15,208.

    PubMed

    Aldrich, Jane V; Kulkarni, Santosh S; Senadheera, Sanjeewa N; Ross, Nicolette C; Reilley, Kate J; Eans, Shainnel O; Ganno, Michelle L; Murray, Thomas F; McLaughlin, Jay P

    2011-09-05

    An alanine scan was performed on the novel κ opioid receptor (KOR) peptide ligand CJ-15,208 to determine which residues contribute to the potent in vivo agonist activity observed for the parent peptide. These cyclic tetrapeptides were synthesized by a combination of solid-phase peptide synthesis of the linear precursors, followed by cyclization in solution. Like the parent peptide, each of the analogues exhibited agonist activity and KOR antagonist activity in an antinociceptive assay in vivo. Unlike the parent peptide, the agonist activity of the potent analogues was mediated predominantly, if not exclusively, by μ opioid receptors (MOR). Thus analogues 2 and 4, in which one of the phenylalanine residues was replaced by alanine, exhibited both potent MOR agonist activity and KOR antagonist activity in vivo. These peptides represent novel lead compounds for the development of peptide-based opioid analgesics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    PubMed

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  9. Computational design of cyclic peptides for the customized oriented immobilization of globular proteins.

    PubMed

    Soler, Miguel A; Rodriguez, Alex; Russo, Anna; Adedeji, Abimbola Feyisara; Dongmo Foumthuim, Cedrix J; Cantarutti, Cristina; Ambrosetti, Elena; Casalis, Loredana; Corazza, Alessandra; Scoles, Giacinto; Marasco, Daniela; Laio, Alessandro; Fortuna, Sara

    2017-01-25

    The oriented immobilization of proteins, key for the development of novel responsive biomaterials, relies on the availability of effective probes. These are generally provided by standard approaches based on in vivo maturation and in vitro selection of antibodies and/or aptamers. These techniques can suffer technical problems when a non-immunogenic epitope needs to be targeted. Here we propose a strategy to circumvent this issue by in silico design. In our method molecular binders, in the form of cyclic peptides, are computationally evolved by stochastically exploring their sequence and structure space to identify high-affinity peptides for a chosen epitope of a target globular protein: here a solvent-exposed site of β2-microglobulin (β2m). Designed sequences were screened by explicit solvent molecular dynamics simulations (MD) followed by experimental validation. Five candidates gave dose-response surface plasmon resonance signals with dissociation constants in the micromolar range. One of them was further analyzed by means of isothermal titration calorimetry, nuclear magnetic resonance, and 250 ns of MD. Atomic-force microscopy imaging showed that this peptide is able to immobilize β2m on a gold surface. In short, we have shown by a variety of experimental techniques that it is possible to capture a protein through an epitope of choice by computational design.

  10. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .

  11. Discovering Peptide Inhibitors of Human Squalene Synthase Through Screening the Phage-Displayed Cyclic Peptide c7c Library.

    PubMed

    Shiuan, David; Chen, Yue-Hao; Lin, Hwan-Kang; Huang, Kao-Jean; Tai, Da-Fu; Chang, Ding-Kwo

    2016-06-01

    Many drugs for the treatment of hypercholesterolemia are targeting the enzymes involved in human cholesterol biosynthesis pathway. Squalene synthase, the rate-limiting enzyme located at the downstream of cholesterol synthesis pathway, has become a better candidate to develop next-generation hypocholesterolemia drugs. In the present study, we cloned and expressed the recombinant human squalene synthase (hSQS) as the lure to isolate potential peptide inhibitors from screening the conformation-constrained phage-displayed cyclic peptide c7c library. Their binding capabilities were further estimated by ELISA. Their pharmaceutical potentials were then analyzed through molecular modeling and the ADMET property evaluations. Four ennea-peptides and nine tetra-peptides were finally synthesized to evaluate their inhibitory potentials toward hSQS. The results indicate that the ennea-peptide CLSPHSMFC, tetra-peptides SMFC, CKTE, and WHQW can effectively inhibit hSQS activities (IC50 values equal to 64, 76, 87, and 90 μM, respectively). These peptides may have potentials to develop future cholesterol-lowering therapeutics. The ligand-protein interaction analysis also reveals that the inner hydrophobic pocket could be a more critical site of hSQS.

  12. Blood Culture Test

    MedlinePlus

    ... Mutation Testing Breast Cancer Gene Expression Tests C-peptide C-Reactive Protein (CRP) CA 15-3 CA- ... Kinase (CK) Creatinine Creatinine Clearance Cryoglobulins Cyclic Citrullinated Peptide Antibody Cyclosporine Cystatin C Cystic Fibrosis (CF) Gene ...

  13. Synovial Fluid Analysis

    MedlinePlus

    ... Mutation Testing Breast Cancer Gene Expression Tests C-peptide C-Reactive Protein (CRP) CA 15-3 CA- ... Kinase (CK) Creatinine Creatinine Clearance Cryoglobulins Cyclic Citrullinated Peptide Antibody Cyclosporine Cystatin C Cystic Fibrosis (CF) Gene ...

  14. Pericardial Fluid Analysis

    MedlinePlus

    ... Mutation Testing Breast Cancer Gene Expression Tests C-peptide C-Reactive Protein (CRP) CA 15-3 CA- ... Kinase (CK) Creatinine Creatinine Clearance Cryoglobulins Cyclic Citrullinated Peptide Antibody Cyclosporine Cystatin C Cystic Fibrosis (CF) Gene ...

  15. Design, Synthesis, and Actions of a Novel Chimeric Natriuretic Peptide: CD-NP

    PubMed Central

    Lisy, Ondrej; Huntley, Brenda K.; McCormick, Daniel J.; Kurlansky, Paul A.; Burnett, John C.

    2008-01-01

    Objectives Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Background Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Methods Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Results Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. Conclusions The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides. PMID:18582636

  16. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    PubMed

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  17. HIV Genotypic Resistance Testing

    MedlinePlus

    ... Mutation Testing Breast Cancer Gene Expression Tests C-peptide C-Reactive Protein (CRP) CA 15-3 CA- ... Kinase (CK) Creatinine Creatinine Clearance Cryoglobulins Cyclic Citrullinated Peptide Antibody Cyclosporine Cystatin C Cystic Fibrosis (CF) Gene ...

  18. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong

    2018-05-01

    New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.

  19. Cyclic azole-homologated peptides from Marine sponges.

    PubMed

    Molinski, Tadeusz F

    2017-12-19

    This review discusses the chemistry of cyclic azole-homologated peptides (AHPs) from the marine sponges, Theonella swinhoei, other Theonella species, Calyx spp. and Plakina jamaicensis. The origin, distribution of AHPs and molecular structure elucidations of AHPs are described followed by their biosynthesis, bioactivity, and synthetic efforts towards their total synthesis. Reports of partial and total synthesis of AHPs extend beyond peptide coupling reactions and include creative construction of the non-proteinogenic amino acid components, mainly the homologated heteroaromatic and α-keto-β-amino acids. A useful conclusion is drawn regarding AHPs: despite their rarity, exotic structures and the potent protease inhibitory properties of some members, their synthesis is under-developed and beckons solutions for outstanding problems towards their efficient assembly.

  20. Investigation of the Enzymes Involved in Lantibiotic Biosynthesis: Lacticin 481 and Haloduracin

    ERIC Educational Resources Information Center

    Ihnken, Leigh Anne Furgerson

    2009-01-01

    Lantibiotics are cyclic peptides that exhibit a range of biological properties, including antimicrobial activity. They are ribosomally-synthesized as linear precursor peptides that consist of two regions, an N-terminal leader peptide and a C-terminal propeptide (or structural) region. The structural region undergoes extensive enzyme-catalyzed…

  1. A proposal for the molecular basis of μ and δ opiate receptor differentiation based on modeling of two types of cyclic enkephalins and a narcotic alkaloid

    NASA Astrophysics Data System (ADS)

    Michel, André; Villeneuve, Gérald; DiMaio, John

    1991-12-01

    The molecular basis underlying the divergent receptor selectivity of two cyclic opioid peptides Tyr-c[ N δ- d-Orn2-Gly-Phe-Leu-] (c-ORN) and [ d-Pen2, l-Cys5]-enkephalinamide (c-PEN) was investigated using a molecular modeling approach. Ring closure and conformational searching procedures were used to determine low-energy cyclic backbone conformers. Following reinsertion of amino acid side chains, the narcotic alkaloid 7α-[(1R)-1-methyl-1-hydroxy-3-phenylpropyl]-6,14-endoethenotetrahydro oripavine (PEO) was used as a flexible template for bimolecular superpositions with each of the determined peptide ring conformers using the coplanarity and cocentricity of the phenolic rings as the minimum constraint. A vector space of PEO, accounting for all possible orientations for the C21-aromatic ring of PEO served as a geometrical locus for the aromatic ring of the Phe4 residue in the opioid peptides. Although a vast number of polypeptide conformations satisfied the criteria of the opiate pharmacophore, they could be grouped into three classes differing in magnitude and sign of the torsional angle values of the tyrosyl side chain. Only class III conformers for both c-ORN and c-PEN, having tyramine dihedral angles χ1 =-150° ± 30° and χ2=-155° ± 20°, had significant structural and conformational properties that were mutually compatible while respecting the PEO vector space. Comparison of these properties in the context of the divergent receptor selectivity of the studied opioid peptides suggests that the increased distortion of the peptide backbone in the closure region of c-PEN together with the pendant β,β-dimethyl group, combine to generate a steric volume which is absent in c-ORN and that may be incompatible with a restrictive topography of the μ receptor. The nature and stereo-chemistry of substituents adjacent to the closure region of the peptides could also modulate receptor selection by interacting with a charged (δ) or neutral (μ) subsite.

  2. Effects of Cationic Antimicrobial Peptides on Liquid-Preserved Boar Spermatozoa

    PubMed Central

    Schulze, Martin; Junkes, Christof; Mueller, Peter; Speck, Stephanie; Ruediger, Karin; Dathe, Margitta; Mueller, Karin

    2014-01-01

    Antibiotics are mandatory additives in semen extenders to control bacterial contamination. The worldwide increase in resistance to conventional antibiotics requires the search for alternatives not only for animal artificial insemination industries, but also for veterinary and human medicine. Cationic antimicrobial peptides are of interest as a novel class of antimicrobial additives for boar semen preservation. The present study investigated effects of two synthetic cyclic hexapeptides (c-WFW, c-WWW) and a synthetic helical magainin II amide derivative (MK5E) on boar sperm during semen storage at 16°C for 4 days. The standard extender, Beltsville Thawing Solution (BTS) containing 250 µg/mL gentamicin (standard), was compared to combinations of BTS with each of the peptides in a split-sample procedure. Examination revealed peptide- and concentration-dependent effects on sperm integrity and motility. Negative effects were more pronounced for MK5E than in hexapeptide-supplemented samples. The cyclic hexapeptides were partly able to stimulate a linear progressive sperm movement. When using low concentrations of cyclic hexapeptides (4 µM c-WFW, 2 µM c-WWW) sperm quality was comparable to the standard extender over the course of preservation. C-WFW-supplemented boar semen resulted in normal fertility rates after AI. In order to investigate the interaction of peptides with the membrane, electron spin resonance spectroscopic measurements were performed using spin-labeled lipids. C-WWW and c-WFW reversibly immobilized an analog of phosphatidylcholine (PC), whereas MK5E caused an irreversible increase of PC mobility. These results suggest testing the antimicrobial efficiency of non-toxic concentrations of selected cyclic hexapeptides as potential candidates to supplement/replace common antibiotics in semen preservation. PMID:24940997

  3. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa.

    PubMed

    Schulze, Martin; Junkes, Christof; Mueller, Peter; Speck, Stephanie; Ruediger, Karin; Dathe, Margitta; Mueller, Karin

    2014-01-01

    Antibiotics are mandatory additives in semen extenders to control bacterial contamination. The worldwide increase in resistance to conventional antibiotics requires the search for alternatives not only for animal artificial insemination industries, but also for veterinary and human medicine. Cationic antimicrobial peptides are of interest as a novel class of antimicrobial additives for boar semen preservation. The present study investigated effects of two synthetic cyclic hexapeptides (c-WFW, c-WWW) and a synthetic helical magainin II amide derivative (MK5E) on boar sperm during semen storage at 16 °C for 4 days. The standard extender, Beltsville Thawing Solution (BTS) containing 250 µg/mL gentamicin (standard), was compared to combinations of BTS with each of the peptides in a split-sample procedure. Examination revealed peptide- and concentration-dependent effects on sperm integrity and motility. Negative effects were more pronounced for MK5E than in hexapeptide-supplemented samples. The cyclic hexapeptides were partly able to stimulate a linear progressive sperm movement. When using low concentrations of cyclic hexapeptides (4 µM c-WFW, 2 µM c-WWW) sperm quality was comparable to the standard extender over the course of preservation. C-WFW-supplemented boar semen resulted in normal fertility rates after AI. In order to investigate the interaction of peptides with the membrane, electron spin resonance spectroscopic measurements were performed using spin-labeled lipids. C-WWW and c-WFW reversibly immobilized an analog of phosphatidylcholine (PC), whereas MK5E caused an irreversible increase of PC mobility. These results suggest testing the antimicrobial efficiency of non-toxic concentrations of selected cyclic hexapeptides as potential candidates to supplement/replace common antibiotics in semen preservation.

  4. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sun, Leming

    In this dissertation, we first reviewed the naturally occurring nanoparticles and their limitations (Chapter 1). We then discussed the need and the parameters to design and fabricate bio-inspired tunable nanoparticles for wound healing, Alzheimer's disease (AD) diagnosis and progression monitoring. Tunable nanoparticles enhanced adhesive was inspired from the self-assembly processes, nanocomposite and chemical structures. Fluorescent peptide nanoparticles were inspired from the biological peptide self-assembly and naturally occurring fluorescent proteins. Then we reported the development of an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives inspired from the strong adhesive produced by English ivy in Chapter 2. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive were proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. Using a bio-inspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels in Chapter 3. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing; when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites; which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose derived stem cells (ADSCs), and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. While tremendous efforts have been spent in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesizing cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In Chapter 4, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods were proposed and investigated. The goal is for scalable nano-manufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. The dimensions of self-assembled nanostructures were found to be strongly influenced by the cyclic peptides concentration, side chains modification, pH value, reaction time, stirring intensity, and sonication time. This study proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. AD is associated with the accumulation of insoluble forms of amyloid-beta (Abeta) in plaques in extracellular spaces, as well as in the walls of blood vessels, and aggregation of microtubule protein tau in neurofibrillary tangles in neurons. In Chapter 5, we designed and synthesized a series of fluorescent cyclic peptide nanoparticles that can be used to detect Abeta aggregates in both the cerebrospinal fluid (CSF) and serum, which were obtained from healthy people and AD patients in different disease stages. Our experimental studies indicate that the fluorescence intensities and wavelengths generated from the interactions between the negatively charged fluorescent cyclic peptide nanoparticles and Abeta aggregates in both the CSF and serum changed with disease status, as compared to healthy individuals. The morphological and cytotoxicity studies demonstrated a potential inhibitory effect of the negatively charged nanoparticles on amyloid fibril growth. The underlying mechanisms leading to these changes are interpreted based on the aromatic, hydrophobic, and electrostatic interactions between c-PNPs and Abeta peptides. There is a critical need to diagnose and monitor the progression of AD using blood-based biomarkers. At present, it is believed that no single biomarker can be utilized to reliably detect AD. Combined biomarkers using multimodal techniques are highly sought after for AD diagnosis and progression monitoring. For this purpose, we developed a fluorescent peptide nanoparticles arrayed microfluidic chip that is capable of detecting multiple blood-based AD biomarkers simultaneously in Chapter 6. The concentration, aggregation stages, and Young's modulus of biomarkers could be analyzed by monitoring the changes of multimodal fluorescence intensity, nano-morphological, and nano-mechanical properties of the f-PNPs array. In this study, Abeta polypeptides and tau proteins were used to verify the proposed idea. To conclude, we demonstrate that how to design and fabrication of tunable nanoparticles for biomedical applications. Inspired from English ivy and sundew nanoadhesive, tunable nanoparticles enhanced adhesive hydrogels were prepared and validated for wound healing applications. Moreover, fluorescent peptide nanoparticles were designed, synthesized, characterized, and validated for AD diagnosis and progression monitoring. (Abstract shortened by ProQuest.).

  5. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    PubMed Central

    Solarte, Víctor A.; Rosas, Jaiver E.; Rivera, Zuly J.; Arango-Rodríguez, Martha L.; García, Javier E.; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC. PMID:26609531

  6. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    USDA-ARS?s Scientific Manuscript database

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  7. The use of chimeric vimentin citrullinated peptides for the diagnosis of rheumatoid arthritis.

    PubMed

    Malakoutikhah, Morteza; Gómara, María J; Gómez-Puerta, José A; Sanmartí, Raimon; Haro, Isabel

    2011-11-10

    Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and, in many cases, destruction of the joints. To prevent progressive and irreversible structural damage, early diagnosis of RA is of paramount importance. The present study addresses the search of new RA citrullinated antigens that could supplement or complement diagnostic/prognostic existing tests. With this aim, the epitope anticitrullinated vimentin antibody response was mapped using synthetic peptides. To improve the sensitivity/specificity balance, a vimentin peptide that was selected, and its cyclic analogue, were combined with fibrin- and filaggrin-related peptides to render chimeric peptides. Our findings highlight the putative application of these chimeric peptides for the design of RA diagnosis systems and imply that more than one serological test is required to classify RA patients based on the presence or absence of ACPAs. Each of the target molecules reported here (fibrin, vimentin, filaggrin) has a specific utility in the identification of a particular subset of RA patients.

  8. Design and characterization of the anion-sensitive coiled-coil peptide.

    PubMed Central

    Hoshino, M.; Yumoto, N.; Yoshikawa, S.; Goto, Y.

    1997-01-01

    As a model for analyzing the role of charge repulsion in proteins and its shielding by the solvent, we designed a peptide of 27 amino acid residues that formed a homodimeric coiled-coil. The interface between the coils consisted of hydrophobic Leu and Val residues, and 10 Lys residues per monomer were incorporated into the positions exposed to solvent. During the preparation of a disulfide-linked dimer in which the two peptides were linked in parallel by the two disulfide bonds located at the N and C terminals, a cyclic monomer with an intramolecular disulfide bond was also obtained. On the basis of CD and 1H-NMR, the conformational stabilities of these isomers and several reference peptides were examined. Whereas all these peptides were unfolded in the absence of salt at pH 4.7 and 20 degrees C, the addition of NaClO4 cooperatively stabilized the alpha-helical conformation. The crosslinking of the peptides by disulfide bonds significantly decreased the midpoint salt concentration of the transition. The 1H-NMR spectra in the presence of NaClO4 suggested that, whereas the disulfide-bonded dimer assumed a native-like conformation, the cyclic monomer assumed a molten globule-like conformation with disordered side chains. However, the cyclic monomer exhibited cooperative transitions against temperature and Gdn-HCl that were only slightly less cooperative than those of the disulfide-bonded parallel dimer. These results indicate that the charge repulsion critically destabilizes the native-like state as well as the molten globule-like state, and that the solvent-dependent charge repulsion may be useful for controlling the conformation of designed peptides. PMID:9232640

  9. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

    PubMed Central

    2018-01-01

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495

  10. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.

    PubMed

    Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R

    2018-05-29

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.

  11. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    PubMed

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2.

    PubMed

    Shi, Yan; Challa, Sridevi; Sang, Peng; She, Fengyu; Li, Chunpu; Gray, Geoffrey M; Nimmagadda, Alekhya; Teng, Peng; Odom, Timothy; Wang, Yan; van der Vaart, Arjan; Li, Qi; Cai, Jianfeng

    2017-11-22

    Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (K d = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.

  13. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.

    PubMed

    Rabanal, Francesc; Grau-Campistany, Ariadna; Vila-Farrés, Xavier; Gonzalez-Linares, Javier; Borràs, Miquel; Vila, Jordi; Manresa, Angeles; Cajal, Yolanda

    2015-05-29

    Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallen, Heather E.; Walton, Jonathan D.; Luo, Hong

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptide toxins and toxin production in mushrooms. In particular, the present invention relates to using genes and proteins from Amanita species encoding Amanita peptides, specifically relating to amatoxins and phallotoxins. In a preferred embodiment, the present invention also relates to methods for detecting Amanita peptide toxin genes for identifying Amanita peptide-producing mushrooms and for diagnosing suspected cases of mushroom poisoning. Further, the present inventions relate to providing kits for diagnosing and monitoring suspected cases of mushroom poisoning in patients.

  15. Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.

    PubMed

    Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice

    2015-03-19

    Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL.

    PubMed

    Hsieh, Pei-Wen; Chang, Fang-Rong; Wu, Ching-Chung; Li, Chien-Ming; Wu, Kuen-Yuh; Chen, Su-Li; Yen, Hsin-Fu; Wu, Yang-Chang

    2005-03-01

    A new cyclic peptide, longicalycinin A (1), and six known compounds, vaccaroside A, dianoside A, dianoside G, 3-(4-hydroxy-3-methoxy-phenyl)propionic acid methyl ester, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde were isolated from the MeOH extract of Dianthus superbus var. longicalycinus. The amino acid sequences of 1 was elucidated as cyclo(Gly(1)-Phe(2)-Tyr(3)-Pro(4)-Phe(5)-) on the basis of ESI tandem mass fragmentation analysis, chemical evidence, and extensive 2D NMR methods. Furthermore, compound 1 showed cytotoxicity to Hep G2 cancer cell line.

  17. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    PubMed

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  18. Affinity Maturation of a Cyclic Peptide Handle for Therapeutic Antibodies Using Deep Mutational Scanning*

    PubMed Central

    van Rosmalen, Martijn; Janssen, Brian M. G.; Hendrikse, Natalie M.; van der Linden, Ardjan J.; Pieters, Pascal A.; Wanders, Dave; de Greef, Tom F. A.; Merkx, Maarten

    2017-01-01

    Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging, and therapeutic drug monitoring. Here we show that the affinity of a recently reported meditope for cetuximab can be substantially enhanced using a combination of yeast display and deep mutational scanning. Deep sequencing was used to construct a fitness landscape of this protein-peptide interaction, and four mutations were identified that together improved the affinity for cetuximab 10-fold to 15 nm. Importantly, the increased affinity translated into enhanced cetuximab-mediated recruitment to EGF receptor-overexpressing cancer cells. Although in silico Rosetta simulations correctly identified positions that were tolerant to mutation, modeling did not accurately predict the affinity-enhancing mutations. The experimental approach reported here should be generally applicable and could be used to develop meditope peptides with low nanomolar affinity for other therapeutic antibodies. PMID:27974464

  19. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    PubMed

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarero, J A; Hackel, B J; de Yoreo, J J

    C-terminal peptide thioesters are key intermediates for the synthesis/semisynthesis of proteins and for the production of cyclic peptides by native chemical ligation. They can be synthetically prepared by solid-phase peptide synthesis (SPPS) methods or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal a-thioester peptides by SPPS was largely restricted to the Boc/Benzyl methodology because of the poor stability of the thioester bond to the basic conditions employed for the deprotection of the N{sup {alpha}}-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters by Fmoc/t-Bu chemistry. This method ismore » based on the use of an aryl hydrazide linker, which is totally stable to the Fmoc-SPPS conditions. Once the peptide synthesis has been completed, activation of the linker can be achieved by mild oxidation. This step transforms the hydrazide group into a highly reactive diazene intermediate which can react with different H-AA-SEt to yield the corresponding {alpha}-thioester peptide in good yields. This method has been successfully used for the generation of different thioester peptides, circular peptides and a fully functional SH3 protein domain.« less

  1. Early Endosomal Escape of a Cyclic Cell-Penetrating Peptide Allows Effective Cytosolic Cargo Delivery

    PubMed Central

    2015-01-01

    Cyclic heptapeptide cyclo(FΦRRRRQ) (cFΦR4, where Φ is l-2-naphthylalanine) was recently found to be efficiently internalized by mammalian cells. In this study, its mechanism of internalization was investigated by perturbing various endocytic events through the introduction of pharmacologic agents and genetic mutations. The results show that cFΦR4 binds directly to membrane phospholipids, is internalized into human cancer cells through endocytosis, and escapes from early endosomes into the cytoplasm. Its cargo capacity was examined with a wide variety of molecules, including small-molecule dyes, linear and cyclic peptides of various charged states, and proteins. Depending on the nature of the cargos, they may be delivered by endocyclic (insertion of cargo into the cFΦR4 ring), exocyclic (attachment of cargo to the Gln side chain), or bicyclic approaches (fusion of cFΦR4 and cyclic cargo rings). The overall delivery efficiency (i.e., delivery of cargo into the cytoplasm and nucleus) of cFΦR4 was 4–12-fold higher than those of nonaarginine, HIV Tat-derived peptide, or penetratin. The higher delivery efficiency, coupled with superior serum stability, minimal toxicity, and synthetic accessibility, renders cFΦR4 a useful transporter for intracellular cargo delivery and a suitable system for investigating the mechanism of endosomal escape. PMID:24896852

  2. Cherimolacyclopeptide D, a novel cycloheptapeptide from the seeds of Annona cherimola.

    PubMed

    Wélé, Alassane; Ndoye, Idrissa; Zhang, Yanjun; Brouard, Jean-Paul; Bodo, Bernard

    2005-03-01

    In a chemical investigation of the seeds of Annona cherimola, a natural cyclic heptapeptide, cherimolacyclopeptide D, were isolated and purified by HPLC with three known cyclic peptides, cherimolacyclopeptides A, B and C. The structure was established by various analyses including MS/MS fragmentation, spectroscopic and chemical evidences.

  3. Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition.

    PubMed

    Zhang, Jing; Woodruff, Trent M; Clark, Richard J; Martin, Darren J; Minchin, Rodney F

    2016-09-01

    Thermoplastic polyurethanes (TPUs) are widely used in biomedical applications due to their excellent biocompatibility. Their role as matrices for the delivery of small molecule therapeutics has been widely reported. However, very little is known about the release of bioactive peptides from this class of polymers. Here, we report the release of linear and cyclic peptides from TPUs with different hard and soft segments. Solvent casting of the TPU at room temperature mixed with the different peptides resulted in reproducible efflux profiles with no evidence of drug degradation. Peptide release was dependent on the size as well as the composition of the TPU. Tecoflex 80A (T80A) showed more extensive release than ElastEon 5-325, which correlated with a degree of hydration. It was also shown that the composition of the medium influenced the rate and extent of peptide efflux. Blending the different TPUs allowed for better control of peptide efflux, especially the initial burst effect. Peptide-loaded TPU prolonged the plasma levels of the anti-inflammatory cyclic peptide PMX53, which normally has a plasma half-life of less than 30min. Using a blend of T80A and E5-325, therapeutic plasma levels of PMX53 were observed up to 9days following a single intraperitoneal implantation of the drug-loaded film. PMX53 released from the blended TPUs significantly inhibited B16-F10 melanoma tumor growth in mice demonstrating its bioactivity in vivo. This study provides important findings for TPU-based therapeutic peptide delivery that could improve the pharmacological utility of peptides as therapeutics. Therapeutic peptides can be highly specific and potent pharmacological agents, but are poorly absorbed and rapidly degraded in the body. This can be overcome by using a matrix that protects the peptide in vivo and promotes its slow release so that a therapeutic effect can be achieved over days or weeks. Thermoplastic polyurethanes are a versatile family of polymers that are biocompatible and used for medical implants. Here, the release of several peptides from a range of polyurethanes was shown to depend on the type of polymer used in the polyurethane. This is the first study to examine polyurethane blends for peptide delivery and shows that the rate and extent of peptide release can be fine-tuned using different hard and soft segment mixtures in the polymer. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

    PubMed Central

    Khalilzadeh, Balal; Shadjou, Nasrin; Afsharan, Hadi; Eskandani, Morteza; Nozad Charoudeh, Hojjatollah; Rashidi, Mohammad-Reza

    2016-01-01

    Introduction:Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase enzyme (HRP) as ECL intensity enhancing agent. Methods: The ECL intensity of the luminol was improved by using the streptavidin coated magnetic beads and HRP in the presence of hydrogen peroxide. The cleavage behavior of caspase-3 was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques using biotinylated peptide (DEVD containing peptide) which was coated on reduced graphene oxide decorated with gold nanoparticle. The surface modification of graphene oxide was successfully confirmed by FTIR, UV-vis and x-ray spectroscopy. Results: ECL based biosensor showed that the linear dynamic range (LDR) and the lower limit of quantification (LLOQ) were 0.5-100 and 0.5 femtomolar (fM), respectively. Finally, the performance of the engineered peptide based biosensor was validated in the A549 cell line as real samples. Conclusion: The prepared peptide based biosensor could be considered as an excellent candidate for early detection of apoptosis, cell turnover, and cancer related diseases. PMID:27853677

  5. A combinatorial approach for the design of complementarity-determining region-derived peptidomimetics with in vitro anti-tumoral activity.

    PubMed

    Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J; Höppener, Jo W M; Monasterio, Alberto; Casal, J Ignacio; Meloen, Rob H

    2009-12-04

    The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.

  6. A Combinatorial Approach for the Design of Complementarity-determining Region-derived Peptidomimetics with in Vitro Anti-tumoral Activity*

    PubMed Central

    Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J.; Höppener, Jo W. M.; Monasterio, Alberto; Casal, J. Ignacio; Meloen, Rob H.

    2009-01-01

    The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH2) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (Kd values in micromolar range) and the parental monoclonal antibodies (Kd values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity. PMID:19808684

  7. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos

    PubMed Central

    David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick

    2018-01-01

    Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998

  8. Effects of endopeptidase inhibition on the relaxation response of isolated human penile erectile tissue to vasoactive peptides.

    PubMed

    Rahardjo, H E; Reichelt, K; Sonnenberg, J E; Sohn, M; Kuczyk, M A; Ückert, S

    2016-12-01

    Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides. © 2016 Blackwell Verlag GmbH.

  9. Cyclic-RGD penta-peptides cRGDyK derivatized with cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes.

    PubMed

    Nadeem, Qaisar; Shen, Yunjun; Warsi, Muhammad Farooq; Nasar, Gulfam; Qadir, Muhammad Abdul; Alberto, Roger

    2017-07-01

    The present study reports the syntheses of half-sandwich complexes of the type [M(η 5 -C 5 H 4 CONH-R)(CO) 3 ] (M═Re, 99m Tc;R═cyclic RGD peptide (cRGDyK) for potential imaging of α v β 3 integrin expression. The 99m Tc complex was prepared directly from the reaction of [ 99m Tc(OH 2 ) 3 (CO) 3 ] + with cRGDyK, doubly conjugated to Thiele's acid [(C 5 H 5 COOH) 2 ] in water. This approach extends the viability of metal-mediated retro Diels-Alder reactions for the preparation of small molecules such as linear tripeptides to a more complex cyclic peptide carrying a [(η 5 -C 5 H 4 ) 99m Tc(CO) 3 ] tag. The Diels-Alder product [(C 5 H 5 CONH-cRGDyK) 2 ] was prepared from Thiele's acid via double peptide coupling. The Re-complex [Re(η 5 -C 5 H 4 CONH-cRGDyK)(CO) 3 ] was obtained by attaching [Re(η 5 -C 5 H 4 COOH)(CO) 3 ] directly to the N-terminus of cRGDyK. The identity of the 99m Tc-complex is confirmed by chromatographic comparison with the corresponding rhenium complex, fully characterized by spectroscopic techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Translocation Thermodynamics of Linear and Cyclic Nonaarginine into Model DPPC Bilayer via Coarse-Grained Molecular Dynamics Simulation: Implications of Pore Formation and Nonadditivity

    PubMed Central

    2015-01-01

    Structural mechanisms and underlying thermodynamic determinants of efficient internalization of charged cationic peptides (cell-penetrating peptides, CPPs) such as TAT, polyarginine, and their variants, into cells, cellular constructs, and model membrane/lipid bilayers (large and giant unilamellar or multilamelar vesicles) continue to garner significant attention. Two widely held views on the translocation mechanism center on endocytotic and nonendocytotic (diffusive) processes. Espousing the view of a purely diffusive internalization process (supported by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of the translocation of a nonaarginine peptide (Arg9) into a model DPPC bilayer. In the case of the Arg9 cationic peptide, recent experiments indicate a higher internalization efficiency of the cyclic structure (cyclic Arg9) relative to the linear conformer. Furthermore, recent all-atom resolution molecular dynamics simulations of cyclic Arg9 [Huang, K.; et al. Biophys. J., 2013, 104, 412–420] suggested a critical stabilizing role of water- and lipid-constituted pores that form within the bilayer as the charged Arg9 translocates deep into the bilayer center. Herein, we use umbrella sampling molecular dynamics simulations with coarse-grained Martini lipids, polarizable coarse-grained water, and peptide to explore the dependence of translocation free energetics on peptide structure and conformation via calculation of potentials of mean force along preselected reaction paths allowing and preventing membrane deformations that lead to pore formation. Within the context of the coarse-grained force fields we employ, we observe significant barriers for Arg9 translocation from bulk aqueous solution to bilayer center. Moreover, we do not find free-energy minima in the headgroup–water interfacial region, as observed in simulations using all-atom force fields. The pore-forming paths systematically predict lower free-energy barriers (ca. 90 kJ/mol lower) than the non pore-forming paths, again consistent with all-atom force field simulations. The current force field suggests no preference for the more compact or covalently cyclic structures upon entering the bilayer. Decomposition of the PMF into the system’s components indicates that the dominant stabilizing contribution along the pore-forming path originates from the membrane as both layers of it deformed due to the formation of pore. Furthermore, our analysis revealed that although there is significant entropic stabilization arising from the enhanced configurational entropy exposing more states as the peptide moves through the bilayer, the enthalpic loss (as predicted by the interactions of this coarse-grained model) far outweighs any former stabilization, thus leading to significant barrier to translocation. Finally, we observe reduction in the translocation free-energy barrier for a second Arg9 entering the bilayer in the presence of an initial peptide restrained at the center, again, in qualitative agreement with all-atom force fields. PMID:24506488

  11. A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide.

    PubMed

    Liu, Xiang; Fang, Chen; Yan, Jilin; Li, Huiling; Tu, Yifeng

    2018-05-23

    The C-peptide is a co-product of pancreatic β-cells during insulin secretion; its content in body fluid is closely related to diabetes. This paper reports an immune-sensing strategy for a simple and effective assay of C-peptide based on label-free electrochemiluminescent (ECL) signaling, with high sensitivity and specificity. The basal electrode was constructed of an indium tin oxide (ITO) glass as a conductive substrate, which was decorated by Au nanoparticles (AuNPs) with hydrolysed (3-aminopropyl)trimethoxysilane as the linker. The characteristics of the fabricated electrode were investigated by electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. After immobilizing the C-peptide antibody, which takes great advantage of AuNPs' binding capacity, this immunosensor can quantify C-peptide using luminol as the ECL probe. By measuring ECL inhibition, calibration can be established to report the C-peptide concentration between 0.05 ng mL -1 and 100 ng mL -1 with a detection limit of 0.0142 ng mL -1 . As a proof of concept, the proposed strategy is a promising and versatile platform for the clinical diagnosis, classification, and research of diabetes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone.

    PubMed

    Ji, Guangyong; Pei, Wuhong; Zhang, Linsheng; Qiu, Rongde; Lin, Jianqun; Benito, Yvonne; Lina, Gerard; Novick, Richard P

    2005-05-01

    The agr system is a global regulator of accessory functions in staphylococci, including genes encoding exoproteins involved in virulence. The agr locus contains a two-component signal transduction module that is activated by an autoinducing peptide (AIP) encoded within the agr locus and is conserved throughout the genus. The AIP has an unusual partially cyclic structure that is essential for function and that, in all but one case, involves an internal thiolactone bond between a conserved cysteine and the C-terminal carboxyl group. The exceptional case is a strain of Staphylococcus intermedius that has a serine in place of the conserved cysteine. We demonstrate here that the S. intermedius AIP is processed by the S. intermedius AgrB protein to generate a cyclic lactone, that it is an autoinducer as well as a cross-inhibitor, and that all of five other S. intermedius strains examined also produce serine-containing AIPs.

  13. Heterocyclic HIV-protease inhibitors.

    PubMed

    Calugi, C; Guarna, A; Trabocchi, A

    2013-01-01

    In the panorama of HIV protease inhibitors (HIV PIs), many efforts have been devoted to the development of new compounds with reduced peptidic nature in order to improve pharmacokinetics and pharmacodynamics features. The introduction of cyclic scaffolds in the design of new chemical entities reduces flexibility and affords more rigid inhibitors. Specifically, common dipeptide isosteres are replaced by a central cyclic scaffold designed to address the key interactions with catalytic aspartic acids and residues belonging to the flap region of the active site. The current interest in cyclic chemotypes addressing key interactions of HIV protease is motivated by the different nature of interactions formed with the enzyme, although maintaining key structural resemblance to a peptide substrate, hopefully giving rise to novel HIV-1 PIs displaying an improved profile towards multidrug resistant strains. This approach has been demonstrated for Tipranavir, which is a potent FDA approved HIV-1 PI representing the most famous example of heterocyclic aspartic protease inhibitors.

  14. RP-1776, a novel cyclic peptide produced by Streptomyces sp., inhibits the binding of PDGF to the extracellular domain of its receptor.

    PubMed

    Toki, S; Agatsuma, T; Ochiai, K; Saitoh, Y; Ando, K; Nakanishi, S; Lokker, N A; Giese, N A; Matsuda, Y

    2001-05-01

    RP-1776, a novel cyclic peptide, was isolated from the culture broth of Streptomyces sp. KY11784. RP-1776 selectively inhibited the binding of PDGF BB to the extracellular domain of the PDGF beta-receptor with an IC50 value of 11 +/- 6 microM. Detailed binding experiments suggested that RP-1776 directly interacts with PDGF BB. RP-1776 inhibited the phosphorylation of the PDGF beta-receptor induced by PDGF BB. These results suggested that RP-1776 antagonizes the signaling of PDGF BB probably through the inhibition of PDGF BB binding to the PDGF beta-receptor.

  15. Structure of the cyclic peptide [W8S]contryphan Vn: effect of the tryptophan/serine substitution on trans-cis proline isomerization.

    PubMed

    Nepravishta, Ridvan; Mandaliti, Walter; Melino, Sonia; Eliseo, Tommaso; Paci, Maurizio

    2014-12-01

    The structural characterization of [W8S]contryphan Vn, an analogue of Contryphan Vn with tryptophan 8 substituted with a serine residue (W8S), was performed by NMR spectroscopy, molecular dynamics simulations and fluorescence spectroscopy. Contryphan Vn, a bioactive cyclic peptide from the venom of the cone snail Conus ventricosus, contains an S-S bridge between two cysteines and a D-tryptophan. Like other Contryphans, [W8S]contryphan Vn has proline 7 isomerized trans, while the proline 4 has nearly equivalent populations of cis and trans configurations. The thermodynamic and kinetic parameters of the trans-cis isomerization of proline 4 were measured. The isomers of [W8S]contryphan Vn with proline 4 in cis and trans show structural differences. The absence of the salt bridge between the same Asp2 and Lys6, present in Contryphan Vn, may be attributed to the lack of the hydrophobic side chain of Trp8 where it likely protects the electrostatic interactions. These results may contribute to identifying, in these cyclic peptides, the structural determinants of the mechanism of proline trans-cis isomerization, this being also an important step in protein folding.

  16. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging.

    PubMed

    Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik

    2016-09-10

    A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations.

    PubMed

    Alaofi, Ahmed; Farokhi, Elinaz; Prasasty, Vivitri D; Anbanandam, Asokan; Kuczera, Krzysztof; Siahaan, Teruna J

    2017-01-01

    The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH 2 ) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1 H,- 15 N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (K d values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated K d s are in the range of .5 × 10 -5 -7.0 × 10 -5  M.

  19. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits.

    PubMed

    Kivi, Rait; Solovjova, Karina; Haljasorg, Tõiv; Arukuusk, Piret; Järv, Jaak

    2016-12-01

    The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.

  20. Chemical proteomics for target discovery of head-to-tail cyclized mini-proteins

    NASA Astrophysics Data System (ADS)

    Hellinger, Roland; Thell, Kathrin; Vasileva, Mina; Muhammad, Taj; Gunasekera, Sunithi; Kümmel, Daniel; Göransson, Ulf; Becker, Christian W.; Gruber, Christian W.

    2017-10-01

    Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomal synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target of the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.

  1. Peptidomic Identification of Cysteine-Rich Peptides from Plants.

    PubMed

    Hemu, Xinya; Serra, Aida; Darwis, Dina A; Cornvik, Tobias; Sze, Siu Kwan; Tam, James P

    2018-01-01

    Plant cysteine-rich peptides (CRPs) constitute a majority of plant-derived peptides with high molecular diversity. This protocol describes a rapid and efficient peptidomic approach to identify a whole spectrum of CRPs in a plant extract and decipher their molecular diversity and bioprocessing mechanism. Cyclotides from C. ternatea are used as the model CRPs to demonstrate our methodology. Cyclotides exist naturally in both cyclic and linear forms, although the linear forms (acyclotide) are generally present at much lower concentrations. Both cyclotides and acyclotides require linearization of their backbone prior to fragmentation and sequencing. A novel and practical three-step chemoenzymatic treatment was developed to linearize and distinguish both forms: (1) N-terminal acetylation that pre-labels the acyclotides; (2) conversion of Cys into pseudo-Lys through aziridine-mediated S-alkylation to reduce disulfide bonds and to increase the net charge of peptides; and (3) opening of cyclic backbones by the novel asparaginyl endopeptidase butelase 2 that cleaves at the native bioprocessing site. The treated peptides are subsequently analyzed by liquid chromatography coupled to mass spectrometry using electron transfer dissociation fragmentation and sequences are identified by matching the MS/MS spectra directly with the transcriptomic database.

  2. Growth promoting in vitro effect of synthetic cyclic RGD-peptides on human osteoblast-like cells attached to cancellous bone.

    PubMed

    Magdolen, Ursula; Auernheimer, Jörg; Dahmen, Claudia; Schauwecker, Johannes; Gollwitzer, Hans; Tübel, Jutta; Gradinger, Reiner; Kessler, Horst; Schmitt, Manfred; Diehl, Peter

    2006-06-01

    In tissue engineering, the application of biofunctional compounds on biomaterials such as integrin binding RGD-peptides has gained growing interest. Anchorage-dependent cells like osteoblasts bind to these peptides thus ameliorating the integration of a synthetic implant. In case sterilized bone grafts are used as substitutes for reconstruction of bone defects, the ingrowth of the implanted bone is often disturbed because of severe pretreatment such as irradiation or autoclaving, impairing the biological and mechanical properties of the bone. We report for the first time on the in vitro coating of the surface of freshly resected, cleaned bone discs with synthetic, cyclic RGD-peptides. For this approach, two different RGD-peptides were used, one containing two phosphonate anchors, the other peptide four of these binding moieties to allow efficient association of these reactive RGD-peptides to the inorganic bone matrix. Human osteoblast-like cells were cultured on RGD-coated bone discs and the adherence and growth of the cells were analyzed. Coating of bone discs with RGD-peptides did not improve the adhesion rate of osteoblast-like cells to the discs but significantly (up to 40%) accelerated growth of these cells within 8 days after attachment. This effect points to pretreatment of bone implants, especially at the critical interface area between the implanted bone and the non-resected residual bone structure, before re-implantation in order to stimulate and enhance osteointegration of a bone implant.

  3. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.

    An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented.more » The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex.« less

  4. Challenges and Limits Using Antimicrobial Peptides in Boar Semen Preservation.

    PubMed

    Schulze, M; Grobbel, M; Müller, K; Junkes, C; Dathe, M; Rüdiger, K; Jung, M

    2015-07-01

    Antibiotics are of great importance for the preservation of ejaculates for livestock breading. The use of antibiotics, however, is not an appropriate compensation for a lack of hygiene standards in artificial insemination (AI) centres. Sophisticated hygiene management and the proper identification of hygienic critical control points (HCCPs) at AI centres provide the basis for counteracting the development of antibiotic resistance in contaminant bacteria and their settlement in AI centres. In recent years, efforts have been made to use antimicrobial peptides (AMPs) in the preservation of boar semen. Investigations have included the testing of synthetic magainin derivatives and cyclic hexapeptides. One prerequisite for the application of AMPs is that they have a minor impact on eukaryotic cells. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and mechanisms including synergistic interaction with conventional antibiotics have made cyclic hexapeptides highly promising candidates for potential application as peptide antibiotics for semen preservation. © 2015 Blackwell Verlag GmbH.

  5. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2

    PubMed Central

    Gavrish, Ekaterina; Sit, Clarissa S.; Cao, Shugeng; Kandror, Olga; Spoering, Amy; Peoples, Aaron; Ling, Losee; Fetterman, Ashley; Hughes, Dallas; Bissell, Anthony; Torrey, Heather; Akopian, Tatos; Mueller, Andreas; Epstein, Slava; Goldberg, Alfred; Clardy, Jon; Lewis, Kim

    2014-01-01

    Summary Languishing antibiotic discovery and flourishing antibiotic resistance have prompted development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against M. tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally-encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2 catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for lassomycin's bacteriocidal activity. PMID:24684906

  6. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line,more » indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.« less

  7. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    NASA Astrophysics Data System (ADS)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  8. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    PubMed

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  9. Label-free electrochemical detection of botulinum neurotoxin type E based on its enzymatic activity using interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Hyun, Sang Hwa; Park, Dae Keun; Kang, Aeyeon; Kim, Soohyun; Kim, Daehee; Shin, Yu Mi; Song, Ji-Joon; Yun, Wan Soo

    2016-02-01

    We report a simple label-free electrochemical method of detecting low concentrations of botulinum neurotoxin type E light chain (BoNT/E LC) based on its peptide cleavage activity. Dual-mode cyclic voltammetry was employed to observe changes in the redox signal of ferri-/ferro-cyanide on interdigitated microelectrodes, whose surfaces were covered by peptides designed from synaptosomal-associated protein 25 to be cleaved by BoNT/E LC. With the introduction of BoNT/E LC, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide molecules. In addition to the increased redox signal intensity, its time-dependence can be considered as a strong evidence of BoNT/E sensing, since the time-dependent increase can only result from the enzymatic activity of BoNT/E LC. Using this method, BoNT/E LC, at concentrations as low as 5 pg/ml, was readily measurable with only an hour of incubation.

  10. Regulation of natriuretic peptide receptor A and B expression by transforming growth factor-beta 1 in cultured aortic smooth muscle cells.

    PubMed

    Fujio, N; Gossard, F; Bayard, F; Tremblay, J

    1994-06-01

    Two types of natriuretic peptide receptors (NPR-A and NPR-B) are membrane guanylate cyclases whose relative expression varies in different tissues. Because natriuretic peptides have been shown to inhibit aortic smooth muscle proliferation, we investigated the regulation of NPR-A and NPR-B in these cells under different proliferative conditions. NPR subtype mRNA levels were measured by our newly developed quantitative reverse transcription-polymerase chain reaction assay using mutated NPR-A and NPR-B cRNA as internal standards. The functional impact of their expression was determined by atrial natriuretic peptide (ANP)- and C-type natriuretic peptide (CNP)-induced stimulation of cyclic GMP production. In the intact aorta, NPR-B mRNA levels were found to be 10-fold higher than those of NPR-A. This dominance was further amplified (1000-fold) in long-term cultures (10 to 15 passages) of aortic smooth muscle cells (ASMC). Higher cyclic GMP production with CNP than with ANP was observed in cultured ASMC from Wistar-Kyoto (WKY) rats. Similar stimulation by the two agonists was noted in spontaneously hypertensive rat (SHR) cells, paralleled by a 10-fold increase in NPR-A mRNA levels and ANP stimulation of cyclic GMP in hypertensive cells. The present study also evaluated NPR-A and NPR-B mRNA control by transforming growth factor-beta 1 (TGF-beta 1), an important regulator of cell proliferation that is overexpressed in SHR ASMC. TGF-beta 1 decreased both NPR-A and NPR-B mRNA levels with a predominant effect in SHR cells at high cell density.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Antigen-specific therapy of Graves´ disease and orbitopathy by induction of tolerance.

    PubMed

    Ungerer, Martin; Fabbender, Julia; Holthoff, Hans-Peter

    2018-06-01

    Graves´ disease is an autoimmune disorder, which is characterized by stimulatory antibodies targeting the human thyrotropin receptor (TSHR), resulting in hyperthyroidism and multiple organ damage. The disease can be modelled in mice using adenoviral immunizations with the extracellular A subunit of the TSHR, which induces a long-term stable disease state. TSHR binding cAMP-stimulatory antibodies, thyroid enlargement, elevated serum thyroxin levels, tachycardia, cardiac hypertrophy and orbitopathy are observed in these Ad-TSHR-immunized mice. T cell epitope-derived linear peptides have been identified using immunized HLA-DR3 transgenic mice, which may induce tolerance towards TSHR. A combination of such peptides are being investigated in a first clinical phase I trial in patients with Graves´ disease. Alternatively, intravenous administration of cyclic peptides derived from the interaction site of the TSHR A domain with stimulatory anti-TSHR antibodies can re-establish tolerance towards the antigen in immunized mice, improving symptoms of Graves´ disease within 3 - 4 months after starting these therapies. In immunologically naïve mice, administration of the cyclic peptides did not induce any immune response.

  12. Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH. Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs.

    PubMed

    Aletras, A; Barlos, K; Gatos, D; Koutsogianni, S; Mamos, P

    1995-05-01

    N alpha-9-Fluorenylmethoxycarbonyl-N epsilon-4=methyltrityl-lysine, [Fmoc-Lys(Mtt)-OH], was prepared in two steps from lysine, in 42% overall yield. The N epsilon-Mtt function can be quantitatively removed upon treatment with 1% TFA in dichloromethane or with a 1:2:7 mixture of acetic acid/trifluoroethanol/dichloromethane for 30 min and 1 h at room temperature, respectively. Under these conditions, groups of the tert-butyl type and peptide ester bonds to TFA-labile resins, such as the 2-chlorodiphenylmethyl- and the Wang-resin, remained intact. The utility of the new derivative in peptide synthesis has been exemplified with the synthesis of a cyclic cholecystokinin analog. As an example of further application, five types of lysine cores suitable for the solid-phase synthesis of one, two or three epitopes containing antigenic peptides or template-assembled synthetic proteins have been synthesized on Merrifield, Wang and 2-chlorodiphenylmethyl resin.

  13. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  14. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP. PMID:21185863

  15. Isolation and Characterization of Marine Brevibacillus sp. S-1 Collected from South China Sea and a Novel Antitumor Peptide Produced by the Strain

    PubMed Central

    Zheng, Lanhong; Yi, Yao; Liu, Jia; Lin, Xiukun; Yang, Kangli; Lv, Mei; Zhou, Xinwen; Hao, Jianhua; Liu, Junzhong; Zheng, Yuan; Sun, Mi

    2014-01-01

    A Gram-positive, rod-shaped bacterium, designated as S-1, was isolated from a marine sediment sample collected from South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence showed that S-1 belongs to the genus Brevibacillus. A novel cytotoxic peptide was isolated from the fermentation broth of the marine-derived bacterium Brevibacillus sp. S-1, using ion-exchange chromatography and reverse-phase HPLC chromatography. The molecular weight of this peptide was determined as 1570 Da by MALDI-TOF mass spectrometry, and its structure was proposed as a cyclic peptide elucidated by MALDI-TOF/TOF mass spectrometry and de novo sequencing. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that this peptide exhibited cytotoxicity against BEL-7402 human hepatocellular carcinoma cells, RKO human colon carcinoma cells, A549 human lung carcinoma cells, U251 human glioma cells and MCF-7 human breast carcinoma cells. Additionally, SBP exhibited low cytotoxicity against HFL1 human normal fibroblast lung cells. The result suggested that the cytotoxic effect of the peptide is specific to tumor cells. PMID:25372839

  16. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    PubMed

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  17. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  18. A Tetrazine-Labile Vinyl Ether Benzyloxycarbonyl Protecting Group (VeZ): An Orthogonal Tool for Solid-Phase Peptide Chemistry.

    PubMed

    Staderini, Matteo; Gambardella, Alessia; Lilienkampf, Annamaria; Bradley, Mark

    2018-06-01

    The vinyl ether benzyloxycarbonyl (VeZ) protecting group is selectively cleaved by treatment with tetrazines via an inverse electron-demand Diels-Alder reaction. This represents a new orthogonal protecting group for solid-phase peptide synthesis, with Fmoc-Lys(VeZ)-OH as a versatile alternative to Fmoc-Lys(Alloc)-OH and Fmoc-Lys(Dde)-OH, as demonstrated by the synthesis of two biologically relevant cyclic peptides.

  19. Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin[C][W

    PubMed Central

    Elliott, Alysha G.; Delay, Christina; Liu, Huanle; Phua, Zaiyang; Rosengren, K. Johan; Benfield, Aurélie H.; Panero, Jose L.; Colgrave, Michelle L.; Jayasena, Achala S.; Dunse, Kerry M.; Anderson, Marilyn A.; Schilling, Edward E.; Ortiz-Barrientos, Daniel; Craik, David J.; Mylne, Joshua S.

    2014-01-01

    The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1’s additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure. PMID:24681618

  20. Identification of peptide sequences that target to the brain using in vivo phage display.

    PubMed

    Li, Jingwei; Zhang, Qizhi; Pang, Zhiqing; Wang, Yuchen; Liu, Qingfeng; Guo, Liangran; Jiang, Xinguo

    2012-06-01

    Phage display technology could provide a rapid means for the discovery of novel peptides. To find peptide ligands specific for the brain vascular receptors, we performed a modified phage display method. Phages were recovered from mice brain parenchyma after administrated with a random 7-mer peptide library intravenously. A longer circulation time was arranged according to the biodistributive brain/blood ratios of phage particles. Following sequential rounds of isolation, a number of phages were sequenced and a peptide sequence (CTSTSAPYC, denoted as PepC7) was identified. Clone 7-1, which encodes PepC7, exhibited translocation efficiency about 41-fold higher than the random library phage. Immunofluorescence analysis revealed that Clone 7-1 had a significant superiority on transport efficiency into the brain compared with native M13 phage. Clone 7-1 was inhibited from homing to the brain in a dose-dependent fashion when cyclic peptides of the same sequence were present in a competition assay. Interestingly, the linear peptide (ATSTSAPYA, Pep7) and a scrambled control peptide PepSC7 (CSPATSYTC) did not compete with the phage at the same tested concentration (0.2-200 pg). Labeled by Cy5.5, PepC7 exhibited significant brain-targeting capability in in vivo optical imaging analysis. The cyclic conformation of PepC7 formed by disulfide bond, and the correct structure itself play a critical role in maintaining the selectivity and affinity for the brain. In conclusion, PepC7 is a promising brain-target motif never been reported before and it could be applied to targeted drug delivery into the brain.

  1. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation

    PubMed Central

    Knetsch, Peter A.; Zhai, Chuangyan; Rangger, Christine; Blatzer, Michael; Haas, Hubertus; Kaeopookum, Piriya; Haubner, Roland; Decristoforo, Clemens

    2015-01-01

    Over the last years Gallium-68 (68Ga) has received tremendous attention for labeling of radiopharmaceuticals for positron emission tomography (PET). 68Ga labeling of biomolecules is currently based on bifunctional chelators containing aminocarboxylates (mainly DOTA and NOTA). We have recently shown that cyclic peptide siderophores have very good complexing properties for 68Ga resulting in high specific activities and excellent metabolic stabilities, in particular triacetylfusarinine-C (TAFC). We postulated, that, starting from its deacetylated form (Fusarinine-C (FSC)) trimeric bioconjugates are directly accessible to develop novel targeting peptide based 68Ga labeled radiopharmaceuticals. As proof of principle we report on the synthesis and 68Ga-radiolabeling of a trimeric FSC-RGD conjugate, [68Ga]FSC-(RGD)3, targeting αvβ3 integrin, which is highly expressed during tumor-induced angiogenesis. Synthesis of the RGD peptide was carried out applying solid phase peptide synthesis (SPPS), followed by the coupling to the siderophore [Fe]FSC via in situ activation using HATU/HOAt and DIPEA. Subsequent demetalation allowed radiolabeling of FSC-(RGD)3 with 68Ga. The radiolabeling procedure was optimized regarding peptide amount, reaction time, temperature as well buffer systems. For in vitro evaluation partition coefficient, protein binding, serum stability, αvβ3 integrin binding affinity, and tumor cell uptake were determined. For in vitro tests as well as for the biodistribution studies αvβ3 positive human melanoma M21 and αvβ3 negative M21-L cells were used. [68Ga]FSC-(RGD)3 was prepared with high radiochemical yield (> 98%). Distribution coefficient was − 3.6 revealing a hydrophilic character, and an IC50 value of 1.8 ± 0.6 nM was determined indicating a high binding affinity for αvβ3 integrin. [68Ga]FSC-(RGD)3 was stable in PBS (pH 7.4), FeCl3- and DTPA-solution as well as in fresh human serum at 37 °C for 2 hours. Biodistribution assay confirmed the receptor specific uptake found in vitro. Uptake in the αvβ3 positive tumor was 4.3% ID/g 60 min p.i. which was 3-fold higher than the monomeric [68Ga]NODAGA-RGD. Tumor to blood ratio of approx. 8 and tumor to muscle ratio of approx. 7 were observed. [68Ga]FSC-(RGD)3 serves as an example for the feasibility of a novel class of bifunctional chelators based on cyclic peptide siderophores and shows excellent targeting properties for αvβ3 integrin in vivo for imaging tumor-induced neovascularization. PMID:25459110

  2. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration.

    PubMed

    Perlikowska, Renata; Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Cerlesi, Maria Camilla; Calo, Girolamo; Artali, Roberto; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna

    2016-02-15

    Cyclic pentapeptide Tyr-c[D-Lys-Phe-Phe-Asp]NH2, based on the structure of endomorphin-2 (EM-2), which shows high affinity to the μ-opioid receptor (MOR) and a very strong antinociceptive activity in mice was used as a parent compound for the structure-activity relationship studies. In this report we synthesized analogs of a general sequence Dmt-c[D-Lys-Xaa-Yaa-Asp]NH2, with D-1- or D-2-naphthyl-3-alanine (D-1-Nal or D-2-Nal) in positions 3 or 4. In our earlier papers we have indicated that replacing a phenylalanine residue by the more extended aromatic system of naphthylalanines may result in increased bioactivities of linear analogs. The data obtained here showed that only cyclopeptides modified in position 4 retained the sub-nanomolar MOR and nanomolar κ-opioid receptor (KOR) affinity, similar but not better than that of a parent cyclopeptide. In the in vivo mouse hot-plate test, the most potent analog, Dmt-c[D-Lys-Phe-D-1-Nal-Asp]NH2, exhibited higher than EM-2 but slightly lower than the cyclic parent peptide antinociceptive activity after peripheral (ip) and also central administration (icv). Conformational analyses in a biomimetic environment and molecular docking studies disclosed the structural determinants responsible for the different pharmacological profiles of position 3- versus position 4-modified analogs. Copyright © 2015. Published by Elsevier Masson SAS.

  4. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2.

    PubMed

    Gavrish, Ekaterina; Sit, Clarissa S; Cao, Shugeng; Kandror, Olga; Spoering, Amy; Peoples, Aaron; Ling, Losee; Fetterman, Ashley; Hughes, Dallas; Bissell, Anthony; Torrey, Heather; Akopian, Tatos; Mueller, Andreas; Epstein, Slava; Goldberg, Alfred; Clardy, Jon; Lewis, Kim

    2014-04-24

    Languishing antibiotic discovery and flourishing antibiotic resistance have prompted the development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against Mycobacterium tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2-catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for the bactericidal activity of lassomycin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2013-09-23

    A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.

  7. Alkynyl-Containing Peptides of Marine Origin: A Review

    PubMed Central

    Chai, Qiu-Ye; Yang, Zhen; Lin, Hou-Wen; Han, Bing-Nan

    2016-01-01

    Since the 1990s, a number of terminal alkynyl residue-containing cyclic/acyclic peptides have been identified from marine organisms, especially cyanobacteria and marine mollusks. This review has presented 66 peptides, which covers over 90% marine peptides with terminal alkynyl fatty acyl units. In fact, more than 90% of these peptides described in the literature are of cyanobacterial origin. Interestingly, all the linear peptides featured with terminal alkyne were solely discovered from marine cyanobacteria. The objective of this article is to provide an overview on the types, structural characterization of these unusual terminal alkynyl fatty acyl units, as well as the sources and biological functions of their composed peptides. Many of these peptides have a variety of biological activities, including antitumor, antibacterial, antimalarial, etc. Further, we have also discussed the evident biosynthetic origin responsible for formation of terminal alkynes of natural PKS (polyketide synthase)/NRPS (nonribosome peptide synthetase) hybrids. PMID:27886049

  8. Solid-phase total synthesis of cherimolacyclopeptide E and discovery of more potent analogues by alanine screening.

    PubMed

    Shaheen, Farzana; Rizvi, Tania S; Musharraf, Syed G; Ganesan, A; Xiao, Kai; Townsend, Jared B; Lam, Kit S; Choudhary, M Iqbal

    2012-11-26

    Cherimolacyclopeptide E (1) is a cyclic hexapeptide obtained from Annona cherimola, reported to be cytotoxic against the KB (human nasopharyngeal carcinoma) cell line. The solid-phase total syntheses of this cyclic peptide and its analogues were accomplished by employing FMOC/tert-butyl-protected amino acids and the Kenner sulfonamide safety-catch linker. The synthetic peptide 1 was found to be weakly cytotoxic against four cell lines (MOLT-4, Jurkat T lymphoma, MDA-MB-231, and KB). Analogues 3 and 7, where glycine at positions 2 and 6 of the parent compound was replaced by Ala, exhibited enhanced cytotoxicity against KB (3, IC50 6.3 μM; 7, IC50 7.8 μM) and MDA-MB-231 breast cancer cells (3, IC50 10.2 μM; 7, IC50 7.7 μM), thereby suggesting possible selective targeting of these cancer cells by these peptides. The spectral data of synthetic peptide 1 was found to be similar to that reported for the natural product. However, a striking difference in biological activity was noted, which warrants the re-evaluation of the original natural product for purity and the existence of conformational differences.

  9. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis.

    PubMed

    Wang, Jia-Xing; Fang, Ge-Min; He, Yao; Qu, Da-Liang; Yu, Min; Hong, Zhang-Yong; Liu, Lei

    2015-02-09

    Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites

    NASA Astrophysics Data System (ADS)

    Sugahara, Haruna; Mimura, Koichi

    2015-09-01

    We performed shock experiments simulating natural comet impacts in an attempt to examine the role that comet impacts play in peptide synthesis. In the present study, we selected a mixture of alanine (DL-alanine), water ice, and silicate (forsterite) to make a starting material for the experiments. The shock experiments were conducted under cryogenic conditions (77 K), and the shock pressure range achieved in the experiments was 4.8-25.8 GPa. The results show that alanine is oligomerized into peptides up to tripeptides due to the impact shock. The synthesized peptides were racemic, indicating that there was no enantioselective synthesis of peptides from racemic amino acids due to the impact shock. We also found that the yield of linear peptides was a magnitude higher than those of cyclic diketopiperazine. Furthermore, we estimated the amount of cometary-derived peptides to the early Earth based on two models (the Lunar Crating model and the Nice model) during the Late Heavy Bombardment (LHB) using our experimental data. The estimation based on the Lunar Crating model gave 3 × 109 mol of dialanine, 4 × 107 mol of trialanine, and 3 × 108 mol of alanine-diketopiperazine. Those based on the Nice model, in which the main impactor of LHB is comets, gave 6 × 1010 mol of dialanine, 1 × 109 mol of trialanine, and 8 × 109 mol of alanine-diketopiperazine. The estimated amounts were comparable to those originating from terrestrial sources (Cleaves, H.J., Aubrey, A.D., Bada, J.L. [2009]. Orig. Life Evol. Biosph. 39, 109-126). Our results indicate that comet impacts played an important role in chemical evolution as a supplier of linear peptides, which are important for further chemical evolution on the early Earth. Our study also highlights the importance of icy satellites, which were formed by comet accumulation, as prime targets for missions searching for extraterrestrial life.

  11. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering.

    PubMed

    Borcard, Françoise; Staedler, Davide; Comas, Horacio; Juillerat, Franziska Krauss; Sturzenegger, Philip N; Heuberger, Roman; Gonzenbach, Urs T; Juillerat-Jeanneret, Lucienne; Gerber-Lemaire, Sandrine

    2012-09-27

    To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

  12. [Natriuretic peptides. History of discovery, chemical structure, mechanism of action and the removal routes. Basis of diagnostic and therapeutic use].

    PubMed

    Stryjewski, Piotr J; Nessler, Bohdan; Cubera, Katarzyna; Nessler, Jadwiga

    2013-01-01

    Natriuretic peptides (NP) are the group of proteins synthesized and secreted by the mammalian heart. All the NP are synthesized from prohormones and have 17-amino acid cyclic structures containing two cysteine residues linked by internal disulphide bond. They are characterized by a wide range of actions, mainly through their membrane receptors. The NP regulate the water and electrolyte balance, blood pressure through their diuretic, natriuretic, and relaxating the vascular smooth muscles effects. They also affect the endocrine system and the nervous system. The neurohormonal regulation of blood circulation results are mainly based on antagonism with renin--angiotensin--aldosterone system. The NP representatives are: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), urodilatine and (DNP) Dendroaspis natriuretic peptide, not found in the human body. According to the guidelines of the European Society of Cardiology determination of NT-proBNP level have found a use in the diagnosis of acute and chronic heart failure, risk stratification in acute coronary syndromes and pulmonary embolism. There are reports found in the literature, that demonstrate the usefulness of NT-proBNP determination in valvular, atrial fibrillation, and syncopes. Recombinant human ANP--Carperitid and BNP--Nesiritid, have already found a use in the adjunctive therapy of dyspnea in acute heart failure.

  13. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  14. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition ofmore » G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.« less

  15. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.

    PubMed

    Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit

    2006-06-01

    Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.

  16. De novo design and engineering of non-ribosomal peptide synthetases

    NASA Astrophysics Data System (ADS)

    Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.

    2018-03-01

    Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.

  17. Cyclic guanosine monophosphate responses to atrial natriuretic factor, brain natriuretic peptide, but not C-type natriuretic peptide, and the characterization of their receptors in rat medullary thick ascending limb.

    PubMed

    Luk, J K; Wong, E F; Sun, A; Wong, N L

    1994-12-01

    The effects of atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) on renal medullary thick ascending limb (mTAL) have not been fully understood. The aim of this study is to examine the second-messenger responses of rat mTAL to ANF, BNP, and CNP. Characterizations of the ANF, BNP, and CNP receptors in mTAL were also performed by radioligand studies. Results showed that ANF and BNP were both capable of eliciting cyclic guanosine monophosphate (cGMP) responses in mTAL. Conversely, no cGMP response was observed upon stimulation by CNP in mTAL. The presence of ANF receptors was demonstrated by radioligand studies. One receptor site was found, and the Kd and maximum binding capacity were 4.0 +/- 0.45 nmol/L and 277.8 +/- 47.7 fmol/mg protein, respectively. BNP receptors were also found in mTAL, and ANF and BNP were sharing the same receptor. On the contrary, no CNP receptor could be shown by radioligand studies. These results suggest that guanylyl cyclase-coupled receptors (atrial natriuretic peptide receptor-A [ANPR-A]) specific for ANF and BNP are present in rat mTAL, while those for CNP (ANPR-B) are absent. ANF and BNP but not CNP act on mTAL to control water excretion.

  18. Isolation and identification of a cardioactive peptide from Tenebrio molitor and Spodoptera eridania.

    PubMed

    Furuya, K; Liao, S; Reynolds, S E; Ota, R B; Hackett, M; Schooley, D A

    1993-12-01

    We isolated several cardioactive peptides from extracts of whole heads of the mealworm, Tenebrio molitor, and the southern armyworm, Spodoptera eridania, using a semi-isolated heart of Manduca sexta for bioassay. We have now isolated from each species the peptide with the strongest effect on rate of contraction of the heart. The peptides were identified using micro Edman sequencing and mass spectrometric methods. This cardioactive peptide has the same primary structure from both species: Pro-Phe-Cys-Asn-Ala-Phe-Thr-Gly-Cys-NH2, a cyclic nonapeptide which is identical to crustacean cardioactive peptide (CCAP) originally isolated from the shore crab, Carcinus maenas, and subsequently isolated from Locusta migratoria and Manduca sexta. This is additional evidence that CCAP has widespread occurrence in arthropoda.

  19. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  20. A global assembly line to cyanobactins

    PubMed Central

    Donia, Mohamed S.; Ravel, Jacques; Schmidt, Eric W.

    2009-01-01

    More than 100 cyclic peptides harboring heterocyclized residues are known from marine ascidians, sponges and different genera of cyanobacteria. Here, we report an assembly line responsible for the biosynthesis of these diverse peptides, now called cyanobactins, both in symbiotic and free-living cyanobacteria. By comparing five new cyanobactin biosynthetic clusters, we could produce the prenylated antitumor preclinical candidate, trunkamide, in E. coli culture using genetic engineering. PMID:18425112

  1. Characterization of C-type natriuretic peptide receptors in human mesangial cells.

    PubMed

    Zhao, J; Ardaillou, N; Lu, C Y; Placier, S; Pham, P; Badre, L; Cambar, J; Ardaillou, R

    1994-09-01

    Our aim was to examine whether the human glomerulus was a target for C-type natriuretic peptide (CNP) and how A, B and C receptors of natriuretic peptides (ANPR-A, ANPR-B, ANPR-C) were distributed in glomerular mesangial and epithelial cells. CNP stimulated cyclic GMP production in cultured human mesangial and epithelial cells with similar threshold concentrations (1 nM) and maximum effects (basal value x 30 at 1 microM). In contrast, atrial natriuretic peptide (ANP) was only stimulatory in epithelial cells. [125I] CNP bound specifically to mesangial cells with a Kd of 0.47 nM and Bmax of 42 fmol/mg. Equilibrium of binding was obtained after four to five hours at +4 degrees C and nonspecific binding represented 10 to 20% of total binding. HS142-1 (100 micrograms/ml), a specific inhibitor of ANPR-A and ANPR-B, suppressed 90% of CNP-dependent cyclic GMP production whereas it had little effect on [125I]-CNP binding, suggesting that C receptors were largely predominant in mesangial cells. No biological effect of CNP on mesangial cells, including change in basal or angiotensin II-induced contractility and inhibition of basal or serum-dependent proliferation, could be demonstrated. Similar results were obtained with 8-bromo-cyclic GMP and sodium nitroprusside. Intraglomerular localization of ANPR-A, ANPR-B and ANPR-C mRNA was studied using reverse transcriptase-polymerase chain reaction with amplification of their corresponding cDNA by different primers. Amplification products were identified on gel electrophoresis by their predicted sizes and sequencing. ANPR-A, ANPR-B and ANPR-C mRNA were present in epithelial cells whereas only ANPR-B and ANPR-C mRNA were detected in mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Huang, Yiqun; O'Connor, Peter B.; Lin, Cheng

    2011-02-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ɛ-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing.

  3. Structural Heterogeneity of Doubly-Charged Peptide b-Ions

    PubMed Central

    Li, Xiaojuan; Huang, Yiqun; O’Connor, Peter B.; Lin, Cheng

    2011-01-01

    Performing collisionally activated dissociation (CAD) and electron capture dissociation (ECD) in tandem has shown great promise in providing comprehensive sequence information that was otherwise unobtainable by using either fragmentation method alone or in duet. However, the general applicability of this MS3 approach in peptide sequencing may be undermined by the formation of non-direct sequence ions, as sometimes observed under CAD, particularly when multiple stages of CAD are involved. In this study, varied-sized doubly-charged b-ions from three tachykinin peptides were investigated by ECD. Sequence scrambling was observed in ECD of all b-ions from neurokinin A (HKTDSFVGLM-NH2), suggesting the presence of N- and C-termini linked macro-cyclic conformers. On the contrary, none of the b-ions from eledoisin (pEPSKDAFIGLM-NH2) produced non-direct sequence ions under ECD, as it does not contain a free N-terminal amino group. ECD of several b-ions from Substance P (RPKPQQFFGLM-NH2) showed series of cm-Lys fragment ions which suggested that the macro-cyclic structure may also be formed by connecting the C-terminal carbonyl group and the ε-amino group of the lysine side chain. Theoretical investigation of selected Substance P b-ions revealed several low energy conformers, including both linear oxazolones and macro-ring structures, in corroboration with the experimental observation. This study showed that a b-ion may exist as a mixture of several forms, with their propensities influenced by its N-terminus, length, and certain side-chain groups. Further, the presence of several macro-cyclic structures may result in erroneous sequence assignment when the combined CAD and ECD methods are used in peptide sequencing. PMID:21472584

  4. Self-assembling cyclic systems as drug carriers

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Yadav, A.

    2013-12-01

    Self-assembling cyclic systems have been of interest to researchers for over a decade now, and their wide variety applications have been explored from electronic devices to medicinal purposes. But still their discovery for newer innovative applications remains as valuable as before. In this study, ab initio Hartree-Fock molecular orbital calculations have been performed on peptidic and peptidomimetic cyclic compounds to identify characteristics required in compounds for efficient self-aggregation. The effect of these characteristics in determining the pore size and length of nanotube has been studied. Effect of backbone and substituents on environment of outer and inner surface and carriage properties has been studied in detail. Self-aggregating compounds (Ala)12 and (Ala)10 have been predicted to form a tubular structure with dimensions in nanoscale. They have been predicted to work as novel drug carriers having inert outer wall and inner pore. A peptidic self-aggregating compound (Ala)12 has been studied and suggested as carrier for antibiotic gentamicin to exemplify carriage properties of the designed compound. Such novel self-aggregatory systems are expected to help simplify the drug delivery process and increase bioavailability of various drugs.

  5. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    PubMed

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mode of action and synergistic effect of valinomycin and cereulide with amphotericin B against Candida albicans and Cryptococcus albidus.

    PubMed

    Makarasen, A; Reukngam, N; Khlaychan, P; Chuysinuan, P; Isobe, M; Techasakul, S

    2018-03-01

    Both valinomycin and cereulide are cyclic depsipeptides and are known K + ion-selective ionophores. Valinomycin and cereulide feature low minimum inhibitory concentration (MIC) values against Candida albicans and Cryptococcus albidus. This study aims at investigating the mode of action and verifying the efficacy of valinomycin or cereulide alone and in combination with amphotericin B (AmB) in vitro against both microorganisms. Based on the results from membrane permeability and fluidity assays for detection of plasma membrane permeabilization and membrane dynamics, the present study demonstrated that valinomycin and cereulide exhibit antifungal activity against C. albicans and C. albidus by interrupting membrane-associated function. The mode of action of both valinomycin and cereulide are similar with that of AmB. Time-kill kinetics assay showed that valinomycin and cereulide exhibit fungistatic activity, whereas AmB features fungicidal activity. Additionally, the combination of compounds between each cyclic peptide and AmB reached maximal fungicidal activity more rapidly than AmB alone. This result corresponded with findings of scanning electron microscopy, fractional inhibitory concentration index and minimum fungicidal concentration (MFC)/MIC ratio, indicating that combinations of the drugs show synergistic effects for inhibiting the growth of these fungal strains. Sorbitol and ergosterol assays showed that both cyclic peptides affected cell wall and membrane components due to increases in MIC value, as observed in medium with sorbitol and ergosterol. Valinomycin and cereulide may promote permeability of fungal cell wall and cell membrane when used in combination with AmB. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Thalassospiramides A and B, immunosuppressive peptides from the marine bacterium Thalassospira sp.

    PubMed

    Oh, Dong-Chan; Strangman, Wendy K; Kauffman, Christopher A; Jensen, Paul R; Fenical, William

    2007-04-12

    [structure: see text] Two new cyclic peptides, thalassospiramides A and B (1 and 2), were isolated from a new member of the marine alpha-proteobacterium Thalassospira. The thalassospiramides, the structures of which were assigned by combined spectral and chemical methods, bear unusual gamma-amino acids and show immunosuppressive activity in an interleukin-5 production inhibition assay (IC50 = 5 muM for thalassospiramide B).

  8. Synthesis of Natural Cyclopentapeptides Isolated from Dianthus chinensis.

    PubMed

    Zhang, Shengping; Amso, Zaid; De Leon Rodriguez, Luis M; Kaur, Harveen; Brimble, Margaret A

    2016-07-22

    The first syntheses of the naturally occurring cyclic peptides dianthin I (1), pseudostellarin A (2), and heterophyllin J (3) are described. The linear protected peptide precursors were prepared efficiently via Fmoc-solid-phase synthesis and subsequently cyclized in solution under dilute conditions. The structures of the synthetic cyclopentapeptides were confirmed by NMR spectroscopy and mass spectrometry and were in agreement with the literature data reported for the natural products.

  9. Small cationic antimicrobial peptides delocalize peripheral membrane proteins

    PubMed Central

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-01-01

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874

  10. Self-Assembled Peptide-Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery.

    PubMed

    Yan, Jin; He, Wangxiao; Yan, Siqi; Niu, Fan; Liu, Tianya; Ma, Bohan; Shao, Yongping; Yan, Yuwei; Yang, Guang; Lu, Wuyuan; Du, Yaping; Lei, Bo; Ma, Peter X

    2018-02-27

    Developing a sophisticated nanomedicine platform to deliver therapeutics effectively and safely into tumor/cancer cells remains challenging in the field of nanomedicine. In particular, reliable peptide drug delivery systems capable of overcoming biological barriers are still lacking. Here, we developed a simple, rapid, and robust strategy to manufacture nanoclusters of ∼90 nm in diameter that are self-assembled from lanthanide-doped nanoparticles (5 nm), two anticancer peptides with different targets (BIM and PMI), and one cyclic peptide iNGR targeted to cancer cells. The peptide-lanthanide nanoclusters (LDC-PMI-BIM-iNGR) enhanced the resistance of peptide drugs to proteolysis, disassembled in response to reductive conditions that are present in the tumor microenvironment and inhibited cancer cell growth in vitro and in vivo. Notably, LDC-PMI-BIM-iNGR exhibited extremely low systemic toxicity and side effects in vivo. Thus, the peptide-lanthanide nanocluster may serve as an ideal multifunctional platform for safe, targeted, and efficient peptide drug delivery in cancer therapy.

  11. The conformation of cyclo(-D-Pro-Ala4-) as a model for cyclic pentapeptides of the DL4 type.

    PubMed

    Heller, Markus; Sukopp, Martin; Tsomaia, Natia; John, Michael; Mierke, Dale F; Reif, Bernd; Kessler, Horst

    2006-10-25

    The conformation of the cyclic pentapeptide cyclo(-D-Pro-Ala(4)-) in solution and in the solid state was reinvestigated using modern NMR techniques. To allow unequivocal characterization of hydrogen bonds, relaxation behavior, and intramolecular distances, differently labeled isotopomers were synthesized. The NMR results, supported by extensive MD simulations, demonstrate unambiguously that the preferred conformation previously described by us, but recently questioned, is indeed correct. The validation of the conformational preferences of this cyclic peptide is important given that this system is a template for several bioactive compounds and for controlled "spatial screening" for the search of bioactive conformations.

  12. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes.

    PubMed

    Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien

    2018-01-08

    Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.

  13. Role of manganese oxides in peptide synthesis: implication in chemical evolution

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2017-10-01

    During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization-mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.

  14. The Role of the Local Conformation of a Cyclically Constrained β-AMINO Acid in the Secondary Structures of a Mixed α/β Diastereomer Pair

    NASA Astrophysics Data System (ADS)

    Blodgett, Karl N.; Zwier, Timothy S.

    2017-06-01

    Synthetic foldamers are non-natural polymers designed to fold into unique secondary structures that either mimic nature's preferred secondary structures, or expand their possibilities. Among the most studied synthetic foldamers are β-peptides, which lengthen the distance between amide groups from the single substituted carbon spacer in α-peptides by one (β) additional carbon. Cyclically constrained β-amino acids can impart rigidity to the secondary structure of oligomers by locking in a particular conformation. The β-residue cis-2-aminocyclohexanecarboxylic acid (cis-ACHC) is one such amino acid which has been shown to drive vastly different secondary structures as a function of the local conformation of the cyclohexane ring. We present data on two diastereomers of the mixed α/β tri-peptide Ac-Ala-β_{ACHC}-Ala-NHBn which differ from one another by the chirality along the ACHC residue (SRSS vs. SSRS). The first oligomer is known to crystallize to a 9/11 mixed helix while the second forms no intramolecular hydrogen bonds in the crystal state. This talk will describe the conformation-specific IR and UV spectroscopy of the above two diastereomers under jet cooled conditions in the gas phase. Assignments based on comparison with calculations show the presence of incipient 9/11 mixed helices and competing structures containing more tightly folded hydrogen-bonded networks. The calculated global minimum structures are observed in each case, and in each case these folded structures are reminiscent of a β-turn.

  15. Design of cyclic peptides featuring proline predominantly in the cis conformation under physiological conditions.

    PubMed

    Malešević, Miroslav; Schumann, Michael; Jahreis, Günther; Fischer, Gunter; Lücke, Christian

    2012-09-24

    Turns are secondary-structure elements that are omnipresent in natively folded polypeptide chains. A large variety of four-residue β-turns exist, which differ mainly in the backbone dihedral angle values of the two central residues i+1 and i+2. The βVI-type turns are of particular biological interest because the i+2 residue is always a proline in the cis conformation and might thus serve as target of peptidyl prolyl cis/trans isomerases (PPIases). We have designed cyclic hexapeptides containing two proline residues that predominantly adopt the cis conformation in aqueous solution. NMR data and MD calculations indicated that the cyclic peptide sequences c-(-DXaa-Ser-Pro-DXaa-Lys-Pro-) result in highly symmetric backbone structures when both prolines are in the cis conformation and the D-amino acids are either alanine or phenylalanine residues. Replacement of the serine residue either by phosphoserine or by tyrosine compromises this symmetry, but further increases the cis conformation content of both prolines. As a result, we obtained a cyclic hexapeptide that exists almost exclusively as the cis-Pro/cis-Pro conformer but shows no cis/trans interconversion even in the presence of the PPIase Pin1, apparently due to an energetically quite favorable but highly restricted conformational space. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Protease-Resistant Peptide Ligands from a Knottin Scaffold Library

    PubMed Central

    Getz, Jennifer A.; Rice, Jeffrey J.; Daugherty, Patrick S.

    2011-01-01

    Peptides within the knottin family have been shown to possess inherent stability, making them attractive scaffolds for the development of therapeutic and diagnostic agents. Given its remarkable stability to proteases, the cyclic peptide kalata B1 was employed as a scaffold to create a large knottin library displayed on the surface of E. coli. A library exceeding 109 variants was constructed by randomizing seven amino acids within a loop of the kalata B1 scaffold and screened using fluorescence-activated cell sorting to identify peptide ligands specific for the active site of human thrombin. Refolded thrombin binders exhibited high nanomolar affinities in solution, slow dissociation rates, and were able to inhibit thrombin’s enzymatic activity. Importantly, 80% of a knottin-based thrombin inhibitor remained intact after a two hour incubation both with trypsin and with chymotrypsin, demonstrating that modifying the kalata B1 sequence did not compromise its stability properties. In addition, the knottin variant mediated 20-fold enhanced affinity for thrombin, when compared to the same seven residue binding epitope constrained by a single disulfide bond. Our results indicate that peptide libraries derived from the kalata B1 scaffold can yield high affinity protein ligands that retain the remarkable protease resistance associated with the parent scaffold. More generally, this strategy may prove useful in the development of stable peptide ligands suitable for in vivo applications. PMID:21615106

  17. pH-regulated formation of side products in the reductive amination approach for differential labeling of peptides in relative quantitative experiments.

    PubMed

    Levi Mortera, Stefano; Dioni, Ilaria; Greco, Viviana; Neri, Cristina; Rovero, Paolo; Urbani, Andrea

    2014-05-01

    Among the most common stable-isotope labeling strategies, the reaction of formaldehyde with peptides in the presence of NaCNBH₃ features many attractive aspects that are conducive to its employment in quantitation experiments in proteomics. Reductive amination, with formaldehyde and d(2)-formaldehyde, is reported to be a fast, easy, and specific reaction, undoubtedly inexpensive if compared with commercially available kits for differential isotope coding. Acetaldehyde and d(4)-acetaldehyde could be employed as well without a substantial increase in terms of cost, and should provide a wider spacing between the differentially tagged peptides in the mass spectrum. Nevertheless, only a single paper reports about a diethylation approach for quantitation. We undertook a systematic analytical investigation on the reductive amination of some standard peptides pointing out the occasional occurrence of side reactions in dependence of pH or reagents order of addition, particularly observing the formation of cyclic adducts ascribable to rearrangements involving the generated Schiff-base and all the nucleophilic sites of its chemical environment. We also tried to evaluate how much this side-products amount may impair isotope coded relative quantitation.

  18. Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities.

    PubMed

    Barbie, Philipp; Kazmaier, Uli

    2016-07-07

    Cyclomarins are cyclic heptapeptides containing four unusual amino acids. New synthetic protocols toward their synthesis have been developed, leading to the synthesis and biological evaluation of three natural occurring cyclomarins. Interestingly, cyclomarins address two completely different targets: Clp C1, a subunit of the caseinolytic protease of Mycobacterium tuberculosis (MTB), as well as PfAp3Ase of Plasmodium falciparum. Therefore, cyclomarins are interesting lead structures for the development of drugs against tuberculosis and malaria.

  19. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors provide novel scaffolds that enable exploiting the prime side of the protease active site, with the aim of achieving better specificity and lower hydrophilicity than those of current scaffolds in the design of antiflaviviral inhibitors. Copyright © 2017 American Society for Microbiology.

  20. INVESTIGATOIN OF CYANOBACTERIA TOXINS IN WATER

    EPA Science Inventory

    Introduction:

    Approximately 80 alkaloid and cyclic peptide toxins produced by various freshwater and marine cyanobacteria (blue-green algae) have been identified and their structures determined. The U. S. Environmental Protection Agency has identified two neurotoxin alkalo...

  1. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  2. Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: A clinical-grade anticancer synthetic peptide.

    PubMed

    Garay, Hilda; Espinosa, Luis Ariel; Perera, Yasser; Sánchez, Aniel; Diago, David; Perea, Silvio E; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier

    2018-04-20

    CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met 17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  3. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.

    PubMed

    Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi

    2017-02-16

    The Asn-Gly-Arg (NGR) motif and its deamidation product iso Asp-Gly-Arg ( iso DGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding iso DGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH₂CO-NGRC]-NH₂, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H₂PO₄ - ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H₂PO₄ - ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH₂ group on the five-membered ring, was shown to easily undergo NH₃ elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.

  4. Gene coevolution and regulation lock cyclic plant defence peptides to their targets.

    PubMed

    Gilding, Edward K; Jackson, Mark A; Poth, Aaron G; Henriques, Sónia Troeira; Prentis, Peter J; Mahatmanto, Tunjung; Craik, David J

    2016-04-01

    Plants have evolved many strategies to protect themselves from attack, including peptide toxins that are ribosomally synthesized and thus adaptable directly by genetic polymorphisms. Certain toxins in Clitoria ternatea (butterfly pea) are cyclic cystine-knot peptides of c. 30 residues, called cyclotides, which have co-opted the plant's albumin-1 gene family for their production. How butterfly pea albumin-1 genes were commandeered and how these cyclotides are utilized in defence remain unclear. The role of cyclotides in host plant ecology and biotechnological applications requires exploration. We characterized the sequence diversity and expression dynamics of precursor and processing proteins implicated in butterfly pea cyclotide biosynthesis by expression profiling through RNA-sequencing (RNA-seq). Peptide-enriched extracts from various organs were tested for activity against insect-like membranes and the model nematode Caenorhabditis elegans. We found that the evolution and deployment of cyclotides involved their diversification to exhibit different chemical properties and expression between organs facing different defensive challenges. Cyclotide-enriched fractions from soil-contacting organs were effective at killing nematodes, whereas similar enriched fractions from aerial organs contained cyclotides that exhibited stronger interactions with insect-like membrane lipids. Cyclotides are employed as versatile and combinatorial mediators of defence in C. ternatea and have specialized to affect different classes of attacking organisms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Refractoriness of the gravid rat uterus to tocolytic and biochemical effects of atrial natriuretic peptide.

    PubMed Central

    Potvin, W.; Varma, D. R.

    1990-01-01

    1. Effects of atrial natriuretic peptide (ANP) on tension development, particulate guanylate cyclase activity and guanosine 3':5'-cyclic monophosphate (cyclic GMP) concentrations of uteri from oestrogen-treated, progesterone-treated, ovariectomized and pregnant rats were determined in vitro. 2. ANP inhibited the tension development by myometrial tissues from oestrogen-treated virgin rats and the sterile horn of 10 to 14 day pregnant rats but not of the uterus from pregnant and progesterone-treated rats. 3. Inhibition of cyclo-oxygenase and lipoxygenase activities did not restore the tocolytic activity of ANP on gravid uterus. ANP exerted a tocolytic effect on nongravid uterus submaximally stimulated by prostaglandin F2 alpha (PGF2 alpha), oxytocin, vasopressin, angiotensin II or 5-hydroxytryptamine (5-HT). 4. Ovariectomy decreased the tocolytic effects of ANP, which could be restored by oestrogen treatment. 5. The refractoriness to the tocolytic effect of ANP in pregnant rats was not accompanied by a decrease in its relaxant effects on isolated aortic strips. 6. Tocolytic effects of isoprenaline, isobutylmethyl xanthine and hydroxylamine were not influenced by pregnancy or progesterone treatment. Up to a concentration of 3 mM, sodium nitroprusside did not affect myometrial tension development. 7. Pregnancy and progesterone treatment markedly inhibited ANP-induced increases in myometrial particulate guanylate cyclase activity and cyclic GMP concentrations but did not influence the effects of ANP on aortic cyclic GMP concentrations. 8. It is concluded that exposure of the myometrium to circulating and placentally-produced progesterone is responsible for the pregnancy-induced decrease in the effects of ANP on myometrial particulate guanylate cyclase activity and cyclic GMP concentrations and in turn on myometrial tension development. PMID:1974161

  6. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    NASA Astrophysics Data System (ADS)

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  7. THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR

    PubMed Central

    FORREST, JOHN N.

    2016-01-01

    The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051

  8. Identification and characterization of antimicrobial peptides from the skin of the endangered frog Odorrana ishikawae.

    PubMed

    Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi; Okimoto, Aiko; Soga, Miyuki; Okada, Genya; Sano, Naomi; Fujii, Tamotsu; Sugawara, Yoshiaki; Sumida, Masayuki

    2011-04-01

    The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    NASA Astrophysics Data System (ADS)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06335c

  10. Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation

    PubMed Central

    Hodgson-Zingman, Denice M.; Karst, Margaret L.; Zingman, Leonid V.; Heublein, Denise M.; Darbar, Dawood; Herron, Kathleen J.; Ballew, Jeffrey D.; de Andrade, Mariza; Burnett, John C.; Olson, Timothy M.

    2008-01-01

    Summary Atrial fibrillation is a common arrhythmia that is hereditary in a small subgroup of patients. In a family with 11 clinically affected members, we mapped an atrial fibrillation locus to chromosome 1p36-p35 and identified a heterozygous frameshift mutation in the gene encoding atrial natriuretic peptide. Circulating chimeric atrial natriuretic peptide (ANP) was detected in high concentration in subjects with the mutation, and shortened atrial action potentials were seen in an isolated heart model, creating a possible substrate for atrial fibrillation. This report implicates perturbation of the atrial natriuretic peptide–cyclic guanosine monophosphate (cGMP) pathway in cardiac electrical instability. PMID:18614783

  11. (R-X-R)4 -Motif Peptides Containing Conformationally Constrained Cyclohexane-Derived Spacers: Effect on Cellular Uptake.

    PubMed

    Bhosle, Govind S; Fernandes, Moneesha

    2017-11-08

    Arginine-rich peptides having the (R-X-R) n motif are among the most effective cell-penetrating peptides (CPPs). Herein we report a several-fold increase in the efficacy of such CPPs if the linear flexible spacer (-X-) in the (R-X-R) motif is replaced by constrained cyclic 1,4-substituted-cyclohexane-derived spacers. Internalization of these oligomers in mammalian cell lines was found to be an energy-dependent process. Incorporation of these constrained, non-proteinogenic amino acid spacers in the CPPs is shown to enhance their proteolytic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization.

    PubMed

    Shilling, F M; Krätzschmar, J; Cai, H; Weskamp, G; Gayko, U; Leibow, J; Myles, D G; Nuccitelli, R; Blobel, C P

    1997-06-15

    Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.

  14. Rapid development of new protein biosensors utilizing peptides obtained via phage display.

    PubMed

    Wu, Jun; Park, Jong Pil; Dooley, Kevin; Cropek, Donald M; West, Alan C; Banta, Scott

    2011-01-01

    There is a consistent demand for new biosensors for the detection of protein targets, and a systematic method for the rapid development of new sensors is needed. Here we present a platform where short unstructured peptides that bind to a desired target are selected using M13 phage display. The selected peptides are then chemically synthesized and immobilized on gold, allowing for detection of the target using electrochemical techniques such as electrochemical impedance spectroscopy (EIS). A quartz crystal microbalance (QCM) is also used as a diagnostic tool during biosensor development. We demonstrate the utility of this approach by creating a novel peptide-based electrochemical biosensor for the enzyme alanine aminotransferase (ALT), a well-known biomarker of hepatotoxicity. Biopanning of the M13 phage display library over immobilized ALT, led to the rapid identification of a new peptide (ALT5-8) with an amino acid sequence of WHWRNPDFWYLK. Phage particles expressing this peptide exhibited nanomolar affinity for immobilized ALT (K(d,app) = 85±20 nM). The newly identified ALT5-8 peptide was then chemically synthesized with a C-terminal cysteine for gold immobilization. The performance of the gold-immobilized peptides was studied with cyclic voltammetry (CV), QCM, and EIS. Using QCM, the sensitivity for ALT detection was 8.9±0.9 Hz/(µg/mL) and the limit of detection (LOD) was 60 ng/mL. Using EIS measurements, the sensitivity was 142±12 impedance percentage change %/(µg/mL) and the LOD was 92 ng/mL. In both cases, the LOD was below the typical concentration of ALT in human blood. Although both QCM and EIS produced similar LODs, EIS is preferable due to a larger linear dynamic range. Using QCM, the immobilized peptide exhibited a nanomolar dissociation constant for ALT (K(d) = 20.1±0.6 nM). These results demonstrate a simple and rapid platform for developing and assessing the performance of sensitive, peptide-based biosensors for new protein targets.

  15. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    PubMed

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cyclic Dipeptides: Secondary Metabolites Isolated from Different Microorganisms with Diverse Biological Activities.

    PubMed

    Ortiz, Aurelio; Sansinenea, Estibaliz

    2017-01-01

    Cyclic dipeptides are the simplest peptide derivatives commonly found in nature. These chiral molecules are easily synthesized from readily available α-amino acids using a simple methodology. They are privileged structures with the ability to bind to a wide range of receptors and have a broad variety of biological and pharmacological activities. We will give a brief overview of their status giving and interesting reference list about the last works. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The crucial role of cyclic GMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses.

    PubMed

    Shibanaka, Y; Hayashi, H; Okada, N; Fujita, N

    1991-10-31

    The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.

  18. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development

    PubMed Central

    Becker, Jason R.; Chatterjee, Sneha; Robinson, Tamara Y.; Bennett, Jeffrey S.; Panáková, Daniela; Galindo, Cristi L.; Zhong, Lin; Shin, Jordan T.; Coy, Shannon M.; Kelly, Amy E.; Roden, Dan M.; Lim, Chee Chew; MacRae, Calum A.

    2014-01-01

    Organ development is a highly regulated process involving the coordinated proliferation and differentiation of diverse cellular populations. The pathways regulating cell proliferation and their effects on organ growth are complex and for many organs incompletely understood. In all vertebrate species, the cardiac natriuretic peptides (ANP and BNP) are produced by cardiomyocytes in the developing heart. However, their role during cardiogenesis is not defined. Using the embryonic zebrafish and neonatal mammalian cardiomyocytes we explored the natriuretic peptide signaling network during myocardial development. We observed that the cardiac natriuretic peptides ANP and BNP and the guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2 are functionally redundant during early cardiovascular development. In addition, we demonstrate that low levels of the natriuretic peptides preferentially activate Npr3, a receptor with Gi activator sequences, and increase cardiomyocyte proliferation through inhibition of adenylate cyclase. Conversely, high concentrations of natriuretic peptides reduce cardiomyocyte proliferation through activation of the particulate guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2, and activation of protein kinase G. These data link the cardiac natriuretic peptides in a complex hierarchy modulating cardiomyocyte numbers during development through opposing effects on cardiomyocyte proliferation mediated through distinct cyclic nucleotide signaling pathways. PMID:24353062

  19. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines.

    PubMed

    Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-09-29

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.

  20. Comparison of Two Assays to Determine Anti-Citrullinated Peptide Antibodies in Rheumatoid Arthritis in relation to Other Chronic Inflammatory Rheumatic Diseases: Assaying Anti-Modified Citrullinated Vimentin Antibodies Adds Value to Second-Generation Anti-Citrullinated Cyclic Peptides Testing

    PubMed Central

    Díaz-Toscano, Miriam Lizette; Olivas-Flores, Eva Maria; Zavaleta-Muñiz, Soraya Amali; Gamez-Nava, Jorge Ivan; Cardona-Muñoz, Ernesto German; Ponce-Guarneros, Manuel; Castro-Contreras, Uriel; Nava, Arnulfo; Salazar-Paramo, Mario; Celis, Alfredo; Fajardo-Robledo, Nicte Selene; Corona-Sanchez, Esther Guadalupe; Gonzalez-Lopez, Laura

    2014-01-01

    Determination of anti-citrullinated peptide antibodies (ACPA) plays a relevant role in the diagnosis of rheumatoid arthritis (RA). To date, it is still unclear if the use of several tests for these autoantibodies in the same patient offers additional value as compared to performing only one test. Therefore, we evaluated the performance of using two assays for ACPA: second-generation anti-citrullinated cyclic peptides antibodies (anti-CCP2) and anti-mutated citrullinated vimentin (anti-MCV) antibodies for the diagnosis of RA. We compared three groups: RA (n = 142), chronic inflammatory disease (CIRD, n = 86), and clinically healthy subjects (CHS, n = 56) to evaluate sensitivity, specificity, predictive values, and likelihood ratios (LR) of these two assays for the presence of RA. A lower frequency of positivity for anti-CCP2 was found in RA (66.2%) as compared with anti-MCV (81.0%). When comparing RA versus other CIRD, sensitivity increased when both assays were performed. This strategy of testing both assays had high specificity and LR+. We conclude that adding the assay of anti-MCV antibodies to the determination of anti-CCP2 increases the sensitivity for detecting seropositive RA. Therefore, we propose the use of both assays in the initial screening of RA in longitudinal studies, including early onset of undifferentiated arthritis. PMID:25025037

  1. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  2. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    PubMed

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. RGD based peptide amphiphiles as drug carriers for cancer targeting

    NASA Astrophysics Data System (ADS)

    Saraf, Poonam S.

    Specific interactions of ligands with receptors is one of the approaches for active targeting of anticancer drugs to cancer cells. Over expression of integrin receptors is a physiological manifestation in several cancers and is associated with cancer progression and metastasis, which makes it an attractive target for cancer chemotherapy. The peptide sequence for this integrin recognition is the Arg-Gly-Asp (RGD). Self-assembly offers a unique way of presenting ligands to target receptors for recognition and binding. This study focuses on development of integrin specific peptide amphiphile self-assemblies as carriers for targeted delivery of paclitaxel to αvbeta 3 integrin overexpressing cancers. Amphiphiles composed of conjugates of different analogs of RGD (linear, cyclic or glycosylated) and aliphatic fatty acid with or without 8-amino-3,6-dioxaoctanoic acid (ADA) as linker were synthesized and characterized. The amphiphiles exhibited Critical Micellar Concentration in the range of 7-30 μM. Transmission electron microscopy images revealed the formation of spherical micelles in the size range of 10-40 nm. Forster Resonance Energy Transfer studies revealed entrapment of hydrophobic dyes within a tight micellar core and provided information regarding the cargo exchange within micelles. The RGD micelles exhibited competitive binding with 55% displacement of a bound fluorescent probe by the cyclic RGD micelles. The internalization of fluorescein isothiocynate (FITC) loaded RGD micelles was significantly higher in A2058 melanoma cells compared to free FITC within 20 minutes of incubation at 37°C. The same micelles showed significantly lower internalization at 4°C and on pretreatment with 0.45M sucrose confirming endocytotic uptake of the RGD micellar carriers. The IC50 of paclitaxel in A2058 melanoma cells was lower when treated within RGD micelles as compared to treatment of free drug. On the other hand, IC50 values increased by 2 to 9 fold for micellar treatment in comparison to free drug in Detroit 551 cells. In A2058 melanoma xenograft mice model, the Paclitaxel-RGD micelles exhibited a significant inhibition of tumor growth in comparison to control treatment for both alternate day and twice weekly treatments. The studies showed the feasibility of using the non covalent peptide based self-assemblies as vehicles for targeted delivery in cancer.

  4. Stereochemistry Balances Cell Permeability and Solubility in the Naturally Derived Phepropeptin Cyclic Peptides.

    PubMed

    Schwochert, Joshua; Lao, Yongtong; Pye, Cameron R; Naylor, Matthew R; Desai, Prashant V; Gonzalez Valcarcel, Isabel C; Barrett, Jaclyn A; Sawada, Geri; Blanco, Maria-Jesus; Lokey, R Scott

    2016-08-11

    Cyclic peptide (CP) natural products provide useful model systems for mapping "beyond-Rule-of-5" (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by solvent-dependent conformational flexibility among the natural compounds. When analyzing the polarity of the solution structures we found that neither the number of hydrogen bonds nor the total polar surface area accurately represents the solvation energies of the high and low dielectric conformations. This work adds to a growing number of natural CPs whose solvent-dependent conformational behavior allows for a balance between aqueous solubility and cell permeability, highlighting structural flexibility as an important consideration in the design of molecules in bRo5 chemical space.

  5. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  6. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    PubMed

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  7. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  8. A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses.

    PubMed

    Johnson, Richard D; Lane, Geoffrey A; Koulman, Albert; Cao, Mingshu; Fraser, Karl; Fleetwood, Damien J; Voisey, Christine R; Dyer, Jolon M; Pratt, Jennifer; Christensen, Michael; Simpson, Wayne R; Bryan, Gregory T; Johnson, Linda J

    2015-12-01

    Fungal endophytes belonging to the genus Epichloë form associations with temperate grasses belonging to the sub-family Poöideae that range from mutualistic through to pathogenic. We previously identified a novel endophyte gene (designated gigA for grass induced gene) that is one of the most abundantly expressed fungal transcripts in endophyte-infected grasses and which is distributed and highly expressed in a wide range of Epichloë grass associations. Molecular and biochemical analyses indicate that gigA encodes a small secreted protein containing an imperfect 27 amino acid repeat that includes a kexin protease cleavage site. Kexin processing of GigA liberates within the plant multiple related products, named here as epichloëcyclins, which we have demonstrated by MS/MS to be cyclic peptidic in nature. Gene deletion of gigA leads to the elimination of all epichloëcyclins with no conspicuous phenotypic impact on the host grass, suggesting a possible bioactive role. This is a further example of a ribosomal peptide synthetic (RiPS) pathway operating within the Ascomycetes, and is the first description of such a pathway from a mutualistic symbiotic fungus from this Phylum. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate

    PubMed Central

    Eaholtz, Galen; Colvin, Anita; Leonard, Daniele; Taylor, Charles; Catterall, William A.

    1999-01-01

    Inactivation of sodium channels is thought to be mediated by an inactivation gate formed by the intracellular loop connecting domains III and IV. A hydrophobic motif containing the amino acid sequence isoleucine, phenylalanine, and methionine (IFM) is required for the inactivation process. Peptides containing the IFM motif, when applied to the cytoplasmic side of these channels, produce two types of block: fast block, which resembles the inactivation process, and slow, use-dependent block stimulated by strong depolarizing pulses. Fast block by the peptide ac-KIFMK-NH2, measured on sodium channels whose inactivation was slowed by the α-scorpion toxin from Leiurus quinquestriatus (LqTx), was reversed with a time constant of 0.9 ms upon repolarization. In contrast, control and LqTx-modified sodium channels were slower to recover from use-dependent block. For fast block, linear peptides of three to six amino acid residues containing the IFM motif and two positive charges were more effective than peptides with one positive charge, whereas uncharged IFM peptides were ineffective. Substitution of the IFM residues in the peptide ac-KIFMK-NH2 with smaller, less hydrophobic residues prevented fast block. The positively charged tripeptide IFM-NH2 did not cause appreciable fast block, but the divalent cation IFM-NH(CH2)2NH2 was as effective as the pentapeptide ac-KIFMK-NH2. The constrained peptide cyclic KIFMK containing two positive charges did not cause fast block. These results indicate that the position of the positive charges is unimportant, but flexibility or conformation of the IFM-containing peptide is important to allow fast block. Slow, use-dependent block was observed with IFM-containing peptides of three to six residues having one or two positive charges, but not with dipeptides or phenylalanine-amide. In contrast to its lack of fast block, cyclic KIFMK was an effective use-dependent blocker. Substitutions of amino acid residues in the tripeptide IFM-NH2 showed that large hydrophobic residues are preferred in all three positions for slow, use-dependent block. However, substitution of the large hydrophobic residue diphenylalanine or the constrained residues phenylglycine or tetrahydroisoquinoline for phe decreased potency, suggesting that this phe residue must be able to enter a restricted hydrophobic pocket during the binding of IFM peptides. Together, the results on fast block and slow, use-dependent block indicate that IFM peptides form two distinct complexes of different stability and structural specificity with receptor site(s) on the sodium channel. It is proposed that fast block represents binding of these peptides to the inactivation gate receptor, while slow, use-dependent block represents deeper binding of the IFM peptides in the pore. PMID:9925825

  10. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients

    PubMed Central

    Wang, Conan K.; Northfield, Susan E.; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S.; Schroeder, Christina I.; Liras, Spiros; Price, David A.; Fairlie, David P.; Craik, David J.

    2014-01-01

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog. PMID:25416591

  11. Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients.

    PubMed

    Wang, Conan K; Northfield, Susan E; Colless, Barbara; Chaousis, Stephanie; Hamernig, Ingrid; Lohman, Rink-Jan; Nielsen, Daniel S; Schroeder, Christina I; Liras, Spiros; Price, David A; Fairlie, David P; Craik, David J

    2014-12-09

    Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.

  12. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs.

    PubMed

    Wang, Jie; Yadav, Vipul; Smart, Alice L; Tajiri, Shinichiro; Basit, Abdul W

    2015-03-02

    A major barrier to successful oral delivery of peptide and protein molecules is their inherent instability in the lumen of the gastrointestinal tract. The aim of this study was to determine the stability of 17 disparate peptide drugs (insulin, calcitonin, glucagon, secretin, somatostatin, desmopressin, oxytocin, [Arg(8)]-vasopressin, octreotide, ciclosporin, leuprolide, nafarelin, buserelin, histrelin, [d-Ser](4)-gonadorelin, deslorelin, and goserelin) in gastric and small intestinal fluids from both humans and pigs, and in simulated gastric and intestinal fluids. In human gastric fluid, the larger peptides including somatostatin, calcitonin, secretin, glucagon, and insulin were metabolized rapidly, while the smaller peptides showed good stability. In human small intestinal fluid, however, both small and large peptides degraded rapidly with the exception of the cyclic peptide ciclosporin and the disulfide-bridge containing peptides octreotide and desmopressin, which showed good stability. The stability of peptides in both simulated gastric fluid and pig gastric fluid correlated well with stability in human gastric fluid. However, it was not possible to establish such a correlation with the small intestinal fluids because of the rapid rate of peptide degradation. This work has identified the molecular features in the structure of a wide range of peptides that influence their stability in the environment of the gastrointestinal tract, which in turn will allow for better selection of peptide candidates for oral delivery.

  13. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry.

    PubMed

    Ngambenjawong, Chayanon; Pineda, Julio Marco B; Pun, Suzie H

    2016-12-21

    Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (K D ) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2 macrophages and the incorporation of diphenylalanine to the original sequence improves binding activity at the expense of solubility and increased toxicity. In conclusion, we report development of cyclic M2pep(RY) analogs with diverse cyclization strategies leading to the discovery of DFBP-cyclized M2pep(RY) with enhanced M2 macrophage-binding activity.

  14. Possible role of bioactive peptides in the regulation of human detrusor smooth muscle - functional effects in vitro and immunohistochemical presence.

    PubMed

    Uckert, Stefan; Stief, Christian G; Lietz, Burckhard; Burmester, Martin; Jonas, Udo; Machtens, Stefan A

    2002-09-01

    Results from basic research implicate a role for bioactive peptides in controlling the mammalian lower urinary tract. Although various peptides are assumed to be involved in the potentiaton or inhibition of cholinergic or purinergic activity in the urinary bladder, there is still much controversy regarding the mode of action and functional significance of such peptides in detrusor smooth muscle. Thus, we evaluated the functional effects of atrial natriuretic peptide (ANP), calcitonin gene related peptide (CGRP), endothelin 1 (ET-1), substance P (SP) and vasoactive intestinal polypeptide (VIP) on isolated strip preparations of human detrusor smooth muscle and determined the presence of those peptides in the human detrusor by means of immunohistochemistry. The effects of peptides on isometric tension of isolated detrusor strip preparations and on tissue levels of cyclic nucleotides cAMP and cGMP were compared to those of adenylyl cyclase activator forskolin (F), nitric oxide donor Na(+)-nitroprusside (SNP) and non-specific phosphodiesterase (PDE) inhibitor papaverine (P). The effects of the compounds on isometric tension of isolated human detrusor smooth muscle were examined using the organ bath technique. To determine time- and dose-dependent effects on cyclic nucleotide levels, bladder strips were exposed to increasing doses of F, SNP, P, ANP, CGRP and VIP, then rapidly frozen in liquid nitrogen and homogenised in the frozen state. cAMP and cGMP were extracted and assayed using specific radioimmunoassays. The presence of peptides was investigated by light microscopy using the Avidin-Biotin-Complex (ABC) method. F, P and VIP most effectively reversed the carbachol-induced tension of isolated human detrusor strips. Relaxing effects of ANP, CGRP and SNP were negligible. In contrast, ET-1 and SP elicited dose-dependent contractions of the tissue. The relaxing effects of F, P and VIP were accompanied by an increase in cAMP and cGMP levels, respectively. Light microscopy revealed positive immunostaining for CGRP, ET 1, VIP and SP in sections of the detrusor muscle coat. Our results suggest a possible importance of ET 1, SP and VIP in regulating detrusor smooth muscle contraction and relaxation. Even if a peptide is not synthesised, stored or released in a smooth muscle tissue and is, therefore, unable to reach its target cells under physiologic conditions, a functional effect on the tissue might be mediated by peptide-binding to specific cell surface receptors.

  15. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    PubMed

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  16. Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis.

    PubMed

    Akone, Sergi H; Daletos, Georgios; Lin, Wenhan; Proksch, Peter

    2016-01-01

    The new cyclic heptapeptide unguisin F (1) and the known congener unguisin E (2), were obtained from the endophytic fungus Mucor irregularis, isolated from the medicinal plant Moringa stenopetala, collected in Cameroon. The structure of the new compound was unambiguously determined on the basis of one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configuration of the amino acid residues of 1 and 2 was determined using Marfey's analysis. Compounds 1 and 2 were evaluated for their antibacterial and antifungal potential, but failed to display significant activities.

  17. Synthesis of new Cα-tetrasubstituted α-amino acids

    PubMed Central

    Grauer, Andreas A

    2009-01-01

    Summary Cα-Tetrasubstituted α-amino acids are important building blocks for the synthesis of peptidemimetics with stabilized secondary structure, because of their ability to rigidify the peptide backbone. Recently our group reported a new class of cyclic Cα-tetrasubstituted tetrahydrofuran α-amino acids prepared from methionine and aromatic aldehydes. We now report the extension of this methodology to aliphatic aldehydes. Although such aldehydes are prone to give aldol products under the reaction conditions used, we were able to obtain the target cyclic amino acids in low to moderate yields and in some cases with good diastereoselectivity. PMID:19259341

  18. Cyclic peptide unguisin A is an anion receptor with high affinity for phosphate and pyrophosphate.

    PubMed

    Daryl Ariawan, A; Webb, James E A; Howe, Ethan N W; Gale, Philip A; Thordarson, Pall; Hunter, Luke

    2017-04-05

    Unguisin A (1) is a marine-derived, GABA-containing cyclic heptapeptide. The biological function of this flexible macrocycle is obscure. Here we show that compound 1 lacks any detectable activity in antimicrobial growth inhibition assays, a result that runs contrary to a previous report. However, we find that 1 functions as a promiscuous host molecule in a variety of anion-binding interactions, with high affinity particularly for phosphate and pyrophosphate. We also show that a series of rigidified, backbone-fluorinated analogues of 1 displays altered affinity for chloride ions.

  19. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures).more » In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays RGD receptor with higher density. The results have indicated good diagnostic potential for their use in this clinical situation, as an imaging agent to diagnose ischemic renal injury and differentiate from other causes. Very promising results were obtained with newly developed tuftsin related metallopeptides. A number of these peptides displayed high potency (nM range) in imaging infection. Antagonists were successfully used to image experimentally induced abscesses in rodents. One of the antagonists, termed 99mTc-RMT-1, was evaluated in rabbits and dogs for its applicability as infection/inflammation imaging agent. Both in dog and rabbit infection/inflammation models 99mTc-RMT-1 could be used for rapid scintigraphic diagnosis. A very high and rapid uptake was observed in both soft tissue and bone infection providing a good target to background contrast. The agent also allowed distinction between bone fracture and osteomyelitis. All these results warrant human clinical trials with 99mTc-RMT-1 which may help replace hazardous ex-vivo WBC labeling procedures that are current clincial modality for imaging infection foci.« less

  20. Peptide-Drug Conjugate: A Novel Drug Design Approach.

    PubMed

    Ma, Liang; Wang, Chao; He, Zihao; Cheng, Biao; Zheng, Ling; Huang, Kun

    2017-01-01

    More than 100 years ago, German physician Paul Ehrlich first proposed the concept of selectively delivering "magic bullets" to tumors through targeting agents. The targeting therapy with antibody-drug conjugates (ADCs) and peptide-drug conjugate (PDCs), which are usually composed of monoclonal antibodies or peptides, toxic payloads and cleavage/ noncleavage linkers, has been extensively studied for decades. The conjugates enable selective delivery of cytotoxic payloads to target cells, which results in improved efficacy, reduced systemic toxicity and improved pharmacokinetics (PK)/pharmacodynamics (PD) compared with traditional chemotherapy. PDC and ADC share similar concept, but with vastly different structures and properties. Humanized antibodies introduce high specificity and prolonged half-life, while small molecule weight peptides exhibit higher drug loading and enhanced tissue penetration capacity, and the flexible linear or cyclic peptides are also modified more easily. In this review, the principles of design, synthesis approaches and the latest advances of PDCs are summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Myristoylated peptides potentiate the funny current (If) in sinoatrial myocytes

    PubMed Central

    Liao, Zhandi; St Clair, Joshua R; Larson, Eric D

    2011-01-01

    The funny current, If, in sinoatrial myocytes is thought to contribute to the sympathetic fight-or-flight increase in heart rate. If is produced by hyperpolarization-activated cyclic nucleotide sensitive-4 (HCN4) channels, and it is widely believed that sympathetic regulation of If occurs via direct binding of cAMP to HCN4, independent of phosphorylation. However, we have recently shown that Protein Kinase A (PKA) activity is required for sympathetic regulation of If, and that PKA can directly phosphorylate HCN4.1 In the present study, we examined the effects of a myristoylated PKA inhibitory peptide (myr-PKI) on If in mouse sinoatrial myocytes. We found that myr-PKI and another myristoylated peptide potently and specifically potentiated If via a mechanism that did not involve PKA inhibition and that was independent of the peptide sequence, Protein Kinase C or phosphatidylinositol-4,5-bisphosphate. The off-target activation of If by myristoylated peptides limits their usefulness for studies of pacemaker mechanisms in sinoatrial myocytes. PMID:21150293

  2. Molecular specialization of breast vasculature: A breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature

    NASA Astrophysics Data System (ADS)

    Essler, Markus; Ruoslahti, Erkki

    2002-02-01

    In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here we report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the breast-homing peptide. The cDNA insert was homologous to a fragment of aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatography. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.

  3. Regulation of Nutrient Transport in Quiescent, Lactating, and Neoplastic Mammary Epithelia.

    DTIC Science & Technology

    1996-10-01

    cells after addition of serum, peptide growth factors, and agents which increase intracellular cAMP concentration( Hiraki , et al., 1989). The two...Histol. 14:433-445. Hiraki , Y., I. M. McMorrow and M. J. Birnbaum. 1989. The regulation of glucose transporter gene expression by cyclic adenosine

  4. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, P.; Stoff, J.S.; Solomon, R.J.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallelmore » with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.« less

  5. Cell attachment functionality of bioactive conducting polymers for neural interfaces.

    PubMed

    Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A

    2009-08-01

    Bioactive coatings for neural electrodes that are tailored for cell interactions have the potential to produce superior implants with improved charge transfer capabilities. In this study synthetically produced anionically modified laminin peptides DEDEDYFQRYLI and DCDPGYIGSR were used to dope poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum (Pt) electrodes. Performance of peptide doped films was compared to conventional polymer PEDOT/paratoluene sulfonate (pTS) films using SEM, XPS, cyclic voltammetry, impedance spectroscopy, mechanical hardness and adherence. Bioactivity of incorporated peptides and their affect on cell growth was assessed using a PC12 neurite outgrowth assay. It was demonstrated that large peptide dopants produced softer PEDOT films with a minimal decrease in electrochemical stability, compared to the conventional dopant, pTS. Cell studies revealed that the YFQRYLI ligand retained neurite outgrowth bioactivity when DEDEDYFQRYLI was used as a dopant, but the effect was strongly dependant on initial cell attachment. Alternate peptide dopant, DCDPGYIGSR was found to impart superior cell attachment properties when compared to DEDEDYFQRYLI, but attachment on both peptide doped polymers could be enhanced by coating with whole native laminin.

  6. Combined nuclear magnetic resonance spectroscopy and molecular dynamics study of growth hormone releasing hexapeptide GHRP-6 and a cyclic analogue.

    PubMed

    Fernández-Oliva, Miguel; Santana, Héctor; Suardíaz, Reynier; Gavín, José A; Pérez, Carlos S

    2012-05-01

    The Growth Hormone Releasing Hexapeptide, GHRP-6 was the first of a family of synthetic peptides that enhance the release of the Growth Hormone by the pituitary gland in a dose-dependent manner. Since its discovery, it has been used as a benchmark and starting point in numerous researches aiming to obtain new drugs. Complete resonance assignment of GHRP-6 NMR spectra in both open and cyclic forms are reported, showing some differences to random coil chemical shifts. Connectivities observed in the ROESY spectra indicate spatial proximity between the aromatic residues side-chains in both molecules, as well as between residues DPhe5 and Lys6 sidechains. An ensemble of 10 structures was generated for each one of the molecules, showing RMSD values indicative of nonrandom structures. Molecular Dynamics simulations, both with and without explicit solvent, were carried out for GHRP-6 and its cyclic analogue. Conformational analysis performed on the trajectories showed a nonrandom structure with a well preserved backbone. The presence of geometrical patterns resembling those typical of π-π interactions in both peptides, suggest that this kind of interactions may be relevant for the biological activity of GHRP-6. Same conclusion can be drawn from the spatial proximity of residues DPhe5 and Lys6 sidechains. Copyright © 2012 John Wiley & Sons, Ltd.

  7. The Use of AlphaScreen Technology in HTS: Current Status

    PubMed Central

    Eglen, Richard M; Reisine, Terry; Roby, Philippe; Rouleau, Nathalie; Illy, Chantal; Bossé, Roger; Bielefeld, Martina

    2008-01-01

    AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) is versatile assay technology developed to measuring analytes using a homogenous protocol. This technology is an example of a bead-based proximity assay and was developed from a diagnostic assay technology known as LOCI (Luminescent Oxygen Channeling Assay). Here, singlet oxygen molecules, generated by high energy irradiation of Donor beads, travel over a constrained distance (approx. 200 nm) to Acceptor beads. This results in excitation of a cascading series of chemical reactions, ultimately causing generation of a chemiluminescent signal. In the past decade, a wide variety of applications has been reported, ranging from detection of analytes involved in cell signaling, including protein:protein, protein:peptide, protein:small molecule or peptide:peptide interactions. Numerous homogeneous HTS-optimized assays have been reported using the approach, including generation of second messengers (such as accumulation of cyclic AMP, cyclic GMP, inositol [1, 4, 5] trisphosphate or phosphorylated ERK) from liganded GPCRs or tyrosine kinase receptors, post-translational modification of proteins (such as proteolytic cleavage, phosphorylation, ubiquination and sumoylation) as well as protein-protein and protein-nucleic acid interactions. Recently, the basic AlphaScreen technology was extended in that the chemistry of the Acceptor bead was modified such that emitted light is more intense and spectrally defined, thereby markedly reducing interference from biological fluid matrices (such as trace hemolysis in serum and plasma). In this format, referred to as AlphaLISA, it provides an alternative technology to classical ELISA assays and is suitable for high throughput automated fluid dispensing and detection systems. Collectively, AlphaScreen and AlphaLISA technologies provide a facile assay platform with which one can quantitate complex cellular processes using simple no-wash microtiter plate based assays. They provide the means by which large compound libraries can be screened in a high throughput fashion at a diverse range of therapeutically important targets, often not readily undertaken using other homogeneous assay technologies. This review assesses the current status of the technology in drug discovery, in general, and high throughput screening (HTS), in particular. PMID:20161822

  8. Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery.

    PubMed

    Gupta, Madhu; Chashoo, Gousia; Sharma, Parduman Raj; Saxena, Ajit Kumar; Gupta, Prem Narayan; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2014-03-03

    Some specific types of tumor cells and tumor endothelial cells represented CD13 proteins and act as receptors for Asn-Gly-Arg (NGR) motifs containing peptide. These CD13 receptors can be specifically recognized and bind through the specific sequence of cyclic NGR (cNGR) peptide and presented more affinity and specificity toward them. The cNGR peptide was conjugated to the poly(ethylene glycol) (PEG) terminal end in the poly(lactic-co-glycolic) acid PLGA-PEG block copolymer. Then, the ligand conjugated nanoparticles (cNGR-DNB-NPs) encapsulating docetaxel (DTX) were synthesized from preformed block copolymer by the emulsion/solvent evaporation method and characterized for different parameters. The various studies such as in vitro cytotoxicity, cell apoptosis, and cell cycle analysis presented the enhanced therapeutic potential of cNGR-DNB-NPs. The higher cellular uptake was also found in cNGR peptide anchored NPs into HUVEC and HT-1080 cells. However, free cNGR could inhibit receptor mediated intracellular uptake of NPs into both types of cells at 37 and 4 °C temperatures, revealing the involvement of receptor-mediated endocytosis. The in vivo biodistribution and antitumor efficacy studies indicated that targeted NPs have a higher therapeutic efficacy through targeting the tumor-specific site. Therefore, the study exhibited that cNGR-functionalized PEG-PLGA-NPs could be a promising approach for therapeutic applications to efficient antitumor drug delivery.

  9. Structure-Function Analysis of Peptide Signaling in the Clostridium perfringens Agr-Like Quorum Sensing System

    PubMed Central

    Ma, Menglin; Li, Jihong

    2015-01-01

    ABSTRACT The accessory growth regulator (Agr)-like quorum sensing (QS) system of Clostridium perfringens controls the production of many toxins, including beta toxin (CPB). We previously showed (J. E. Vidal, M. Ma, J. Saputo, J. Garcia, F. A. Uzal, and B. A. McClane, Mol Microbiol 83:179–194, 2012, http://dx.doi.org/10.1111/j.1365-2958.2011.07925.x) that an 8-amino-acid, AgrD-derived peptide named 8-R upregulates CPB production by this QS system. The current study synthesized a series of small signaling peptides corresponding to sequences within the C. perfringens AgrD polypeptide to investigate the C. perfringens autoinducing peptide (AIP) structure-function relationship. When both linear and cyclic ring forms of these peptides were added to agrB null mutants of type B strain CN1795 or type C strain CN3685, the 5-amino-acid peptides, whether in a linear or ring (thiolactone or lactone) form, induced better signaling (more CPB production) than peptide 8-R for both C. perfringens strains. The 5-mer thiolactone ring peptide induced faster signaling than the 5-mer linear peptide. Strain-related variations in sensing these peptides were detected, with CN3685 sensing the synthetic peptides more strongly than CN1795. Consistent with those synthetic peptide results, Transwell coculture experiments showed that CN3685 exquisitely senses native AIP signals from other isolates (types A, B, C, and D), while CN1795 barely senses even its own AIP. Finally, a C. perfringens AgrD sequence-based peptide with a 6-amino-acid thiolactone ring interfered with CPB production by several C. perfringens strains, suggesting potential therapeutic applications. These results indicate that AIP signaling sensitivity and responsiveness vary among C. perfringens strains and suggest C. perfringens prefers a 5-mer AIP to initiate Agr signaling. IMPORTANCE Clostridium perfringens possesses an Agr-like quorum sensing (QS) system that regulates virulence, sporulation, and toxin production. The current study used synthetic peptides to identify the structure-function relationship for the signaling peptide that activates this QS system. We found that a 5-mer peptide induces optimal signaling. Unlike other Agr systems, a linear version of this peptide (in addition to thiolactone and lactone versions) could induce signaling. Two C. perfringens strains were found to vary in sensitivity to these peptides. We also found that a 6-mer peptide can inhibit toxin production by some strains, suggesting therapeutic applications. PMID:25777675

  10. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    PubMed

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-04-14

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.

  11. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy

    PubMed Central

    Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji

    2012-01-01

    Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290

  12. Probing the Interaction between Cyclic ADTC1 Ac-CADTPPVC-NH2) Peptide with EC1-EC2 domain of E-cadherin using Molecular Docking Approach

    NASA Astrophysics Data System (ADS)

    Siahaan, P.; Wuning, S.; Manna, A.; Prasasty, V. D.; Hudiyanti, D.

    2018-04-01

    Deeply understanding that intermolecular interaction between molecules on the paracellular pathway has given insight to its microscopic and macroscopic properties. In the paracellular pathway, synthetic cyclic ADTC1 (Ac-CADTPPVC-NH2) peptide has been studied to modulate EC1-EC2 domain, computationally using molecular docking method. The aim of this research is to probe the effect of amino acid alanine (A) of ADTC1 on its interaction properties. The study carried out in two steps: 1. the optimization using GROMACS v4.6.5 program and; 2. Determination of the interaction properties using AutoDock 4.2 program. The interaction was done for A-J box, and the best position of the binding site and binding energy on the OC and CC ADTC1 peptides against the EC1-EC2 domain of E-cadherin was selected. The result showed that the CC of the F box ADTC1 has the best interaction with binding energy of - 26.36 kJ/mol and its energy was lower than ADTC5 without alanine amino acid. ADTC1 interacted with EC1 of EC1-EC2 on Asp1, Trp2, Val3, Ile4, Ile24, Lys25, Ser26, Asn27, and Met92 residues.

  13. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  14. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  15. Three molecular forms of atrial natriuretic peptides: quantitative analysis and biological characterization.

    PubMed

    Nagai-Okatani, Chiaki; Kangawa, Kenji; Minamino, Naoto

    2017-07-01

    Atrial natriuretic peptide (ANP) is primarily produced in the heart tissue and plays a pivotal role in maintaining cardiovascular homeostasis in endocrine and autocrine/paracrine systems and has clinical applications as a biomarker and a therapeutic agent for cardiac diseases. ANP is synthesized by atrial cardiomyocytes as a preprohormone that is processed by a signal peptidase and stored in secretory granules as a prohormone. Subsequent proteolytic processing of ANP by corin during the secretion process results in a bioactive form consisting of 28 amino acid residues. Mechanical stretch of the atrial wall and multiple humoral factors directly stimulates the transcription and secretion of ANP. Secreted ANP elicits natriuretic and diuretic effects via cyclic guanosine monophosphate produced through binding to the guanylyl cyclase-A/natriuretic peptide receptor-A. Circulating ANP is subjected to rapid clearance by a natriuretic peptide receptor-C-mediated mechanism and proteolytic degradation by neutral endopeptidase. In humans, ANP is present as three endogenous molecular forms: bioactive α-ANP, a homodimer of α-ANP designated as β-ANP, and an ANP precursor designated as proANP (also referred to as γ-ANP). The proANP and especially β-ANP, as minor forms in circulation, are notably increased in patients with cardiac diseases, suggesting the utility of monitoring the pathophysiological conditions that result in abnormal proANP processing that cannot be monitored by inactive N-terminal proANP-related fragments. Emerging plate-based sandwich immunoassays for individual quantitation of the three ANP forms enables evaluation of diagnostic implications and net ANP bioactivity. This new tool may provide further understanding in the pathophysiology of cardiac diseases. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  16. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strainsmore » enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.« less

  17. Modulation of cGMP in Heart Failure

    PubMed Central

    Boerrigter, Guido; Lapp, Harald; Burnett, John C.

    2009-01-01

    Heart failure (HF) is a common disease that continues to be associated with high morbidity and mortality warranting novel therapeutic strategies. Cyclic guanosine monophosphate (cGMP) is the second messenger of several important signaling pathways based on distinct guanylate cyclases (GCs) in the cardiovascular system. Both the nitric oxide/soluble GC (NO/sGC) as well as the natriuretic peptide/GC-A (NP/GC-A) systems are disordered in HF, providing a rationale for their therapeutic augmentation. Soluble GC activation with conventional nitrovasodilators has been used for more than a century but is associated with cGMP-independent actions and the development of tolerance, actions which novel NO-independent sGC activators now in clinical development lack. Activation of GC-A by administration of naturally occurring or designer natriuretic peptides is an emerging field, as is the inhibition of enzymes that degrade endogenous NPs. Finally, inhibition of cGMP-degrading phosphodiesterases, particularly phosphodiesterase 5 provides an additional strategy to augment cGMP-signaling. PMID:19089342

  18. Use of synthetic analogues in confirmation of structure of the peptide antibiotics Maltacines

    NASA Astrophysics Data System (ADS)

    Hagelin, Gunnar; Indrevoll, Bård; Hoeg-Jensen, Thomas

    2007-12-01

    Maltacines comprise a family of cyclic peptide lactone antibiotics produced by a strain of Bacillus subtilis. The previously proposed amino acid sequences of the linear ring-opened molecules show similarity to the lipopeptide antibiotic Fengycin IX that is also produced by a strain of B. subtilisE There were some discrepancies in the Maltacin data that could not be explained. To address this and gain more information into the structure of the linear ring-opened Maltacines, the two members D1c, E1b and Fengycin IX acid were synthesised and their MS2, MS3 and MS4 spectra compared. The similarity of the product ion spectra of Maltacin and Fengycin IX acid revealed that proline occupies an internal position in Maltacin. This finding led to revision of the interpretation of the amino acid sequences of the Maltacines. The proposed new structures of the Maltacines shows that the cyclic part of the molecules is the same as in Fengycin IX acid and Fengycin XII acid, but they have unique N-terminal sequences not found in Fengycins, and thus represent novel lipopeptide antibiotics.

  19. Stabilization of Angiotensin-(1-7) by key substitution with a cyclic non-natural amino acid.

    PubMed

    Wester, Anita; Devocelle, Marc; Tallant, E Ann; Chappell, Mark C; Gallagher, Patricia E; Paradisi, Francesca

    2017-10-01

    Angiotensin-(1-7) [Ang-(1-7)], a heptapeptide hormone of the renin-angiotensin-aldosterone system, is a promising candidate as a treatment for cancer that reflects its anti-proliferative and anti-angiogenic properties. However, the peptide's therapeutic potential is limited by the short half-life and low bioavailability resulting from rapid enzymatic metabolism by peptidases including angiotensin-converting enzyme (ACE) and dipeptidyl peptidase 3 (DPP 3). We report the facile assembly of three novel Ang-(1-7) analogues by solid-phase peptide synthesis which incorporates the cyclic non-natural δ-amino acid ACCA. The analogues containing the ACCA substitution at the site of ACE cleavage exhibit complete resistance to human ACE, while substitution at the DDP 3 cleavage site provided stability against DPP 3 hydrolysis. Furthermore, the analogues retain the anti-proliferative properties of Ang-(1-7) against the 4T1 and HT-1080 cancer cell lines. These results suggest that ACCA-substituted Ang-(1-7) analogues which show resistance against proteolytic degradation by peptidases known to hydrolyze the native heptapeptide may be novel therapeutics in the treatment of cancer.

  20. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1

    PubMed Central

    Torres, Nicolás I.; Noll, Katia Sutyak; Xu, Shiqi; Li, Ji; Huang, Qingrong; Sinko, Patrick J.; Wachsman, Mónica B.; Chikindas, Michael L.

    2013-01-01

    In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. PMID:23637711

  1. Electrospray ionization tandem mass spectrometric study of protonated and alkali- cationized α/ε-hybrid peptides: differentiation of a pair of dipeptide positional isomers.

    PubMed

    Ramesh Babu, A; Raju, G; Purna Chander, C; Shoban Babu, B; Srinivas, R; Sharma, G V M

    A new class of Boc-N-protected hybrid peptides derived from L- Ala and ε 6 -Caa (L-Ala = L-Alanine, Caa = C-linked carboamino acid derived from D-xylose) have been studied by positive ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). MS n spectra of protonated and alkali-cationized hybrid peptides produce characteristic fragmentation involving the peptide backbone, the tert-butyloxycarbonyl (Boc) group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated and alkali-cationized peptides. The CID of [M + H] + ion of Boc-NH-L-Ala-ε-Caa- OCH 3 (1) shows a prominent [M + H - C 4 H 8 ] + ion, which is totally absent for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH 3 (6), which instead shows significant loss of t-butanol. The formation of the [M + Cat - C 4 H 8 ] + ion is totally absent and [M + Cat - Boc + H] + is prominent in the CID of the [M + Cat] + ion of Boc-NH-L-Ala-ε-Caa- OCH 3 (1), whereas the former is highly abundant and the latter is of low abundance for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH 3 (6). It is observed that 'b' ions are abundant when oxazolone structures are formed through a five-membered cyclic transition state in tetra-, penta-, and hexapeptides and the cyclization process for larger 'b' ions led to an insignificant abundance. However, the significant 'b' ion is formed in ε,α-dipeptide, which may have a seven-membered substituted 2-oxoazepanium ion structure. The MS n spectra of [M + Cat - Boc + H] + ions of these peptides are found to be significantly different to those of [M + H - Boc + H] + ions. The CID spectra of [M + Cat - Boc + H] + ions of peptide acids containing L-Ala at the C-terminus show an abundant N-terminal rearrangement ion, [b n  + 17 + Cat] + , which is absent for the peptide acids containing ε-Caa at the C-terminus. Thus, the results of these hybrid peptides provide sequencing information, the structure of the cyclic intermediate involved in the formation of the rearrangement ion, and distinguish a pair of dipeptide positional isomers.

  2. Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA Reductase.

    PubMed

    Chakraborty, Subrata; Lin, Shih-Hung; Shiuan, David; Tai, Dar-Fu

    2015-08-01

    α-Cyclic tripeptides (CtPs) are the most rigid members of the cyclic peptide family. However, due to their synthetic difficulty, biological activity has remained undisclosed. The incorporation of side-chain-protected natural amino acids into functional CtPs was performed to explore the potential biological functions. Several novel CtPs that consist of protected serine (S(Bn)) and/or glutamate (E(OBn)) were prepared from corresponding linear tripeptides by chemical synthesis. There is a strong possibility for CtPs that contain 3 phenyl groups to correlate with atorvastatin structure. The binding effects in human HMG-CoA reductase (hHMGR) activities were first evaluated by molecular docking. High docking scores were received with these CtPs for enzyme. Therefore, enzymatic assays were carried out and the compound cyclo(S(Bn))3 was indeed able to moderately inhibit hHMGR (IC50 = 110 μM).

  3. Cyclotides Associate with Leaf Vasculature and Are the Products of a Novel Precursor in Petunia (Solanaceae)*

    PubMed Central

    Poth, Aaron G.; Mylne, Joshua S.; Grassl, Julia; Lyons, Russell E.; Millar, A. Harvey; Colgrave, Michelle L.; Craik, David J.

    2012-01-01

    Cyclotides are a large family of plant peptides that are structurally defined by their cyclic backbone and a trifecta of disulfide bonds, collectively known as the cyclic cystine knot (CCK) motif. Structurally similar cyclotides have been isolated from plants within the Rubiaceae, Violaceae, and Fabaceae families and share the CCK motif with trypsin-inhibitory knottins from a plant in the Cucurbitaceae family. Cyclotides have previously been reported to be encoded by dedicated genes or as a domain within a knottin-encoding PA1-albumin-like gene. Here we report the discovery of cyclotides and related non-cyclic peptides we called “acyclotides” from petunia of the agronomically important Solanaceae plant family. Transcripts for petunia cyclotides and acyclotides encode the shortest known cyclotide precursors. Despite having a different precursor structure, their sequences suggest that petunia cyclotides mature via the same biosynthetic route as other cyclotides. We assessed the spatial distribution of cyclotides within a petunia leaf section by MALDI imaging and observed that the major cyclotide component Phyb A was non-uniformly distributed. Dissected leaf midvein extracts contained significantly higher concentrations of this cyclotide compared with the lamina and outer margins of leaves. This is the third distinct type of cyclotide precursor, and Solanaceae is the fourth phylogenetically disparate plant family to produce these structurally conserved cyclopeptides, suggesting either convergent evolution upon the CCK structure or movement of cyclotide-encoding sequences within the plant kingdom. PMID:22700981

  4. Incorporation of a Bio-Active Reverse-Turn Heterocycle into a Peptide Template Using Solid-Phase Synthesis to Probe Melanocortin Receptor Selectivity and Ligand Conformations by 2D 1H NMR

    PubMed Central

    Singh, Anamika; Wilczynski, Andrzej; Holder, Jerry R.; Witek, Rachel M.; Dirain, Marvin L.; Xiang, Zhimin; Edison, Arthur S.; Haskell-Luevano, Carrie

    2011-01-01

    Using a solid-phase synthetic approach, a bioactive reverse turn heterocyclic was incorporated into a cyclic peptide template to probe melanocortin receptor potency and ligand structural conformations. The five melanocortin receptor isoforms (MC1R-MC5R) are G-protein coupled receptors (GPCRs) that are regulated by endogenous agonists and antagonists. This pathway is involved in pigmentation, weight, and energy homeostasis. Herein, we report novel analogues of the chimeric AGRP-melanocortin peptide template integrated with a small molecule moiety to probe the structural and functional consequences of the core His-Phe-Arg-Trp peptide domain using a reverse-turn heterocycle. A series of six compounds are reported that result in inactive to full agonists with nM potency. Biophysical structural analysis [2D 1H NMR and computer-assisted molecular modeling (CAMM)] were performed on selected analogues, resulting in the identification that these peptide-small molecule hybrids possessed increased flexibility and fewer discrete conformational families as compared to the reference peptide and result in a novel template for further structure-function studies. PMID:21306168

  5. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanismmore » placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.« less

  6. Cross-reactivity of a human IgG1 anticitrullinated fibrinogen monoclonal antibody to a citrullinated profilaggrin peptide

    PubMed Central

    Trier, Nicole Hartwig; Leth, Maria Louise; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Rheumatoid arthritis (RA) is the most common autoimmune rheumatic disease. It is characterized by persistent joint inflammation, resulting in loss of joint function, morbidity and premature mortality. The presence of antibodies against citrullinated proteins is a characteristic feature of RA and up to 70% of RA patients are anticitrullinated protein antibody (ACPA) positive. ACPA responses have been widely studied and are suggested to be heterogeneous, favoring antibody cross-reactivity to citrullinated proteins. In this study, we examined factors that may influence cross-reactivity between a commercial human anticitrullinated fibrinogen monoclonal antibody and a citrullinated peptide. Using a citrullinated profilaggrin sequence (HQCHQEST- Cit-GRSRGRCGRSGS) as template, cyclic and linear truncated peptide versions were tested for reactivity to the monoclonal antibody. Factors such as structure, peptide length and flanking amino acids were found to have a notable impact on antibody cross-reactivity. The results achieved contribute to the understanding of the interactions between citrullinated peptides and ACPA, which may aid in the development of improved diagnostics of ACPA. PMID:23076998

  7. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    PubMed

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  8. Inhibitory and antimicrobial activities of OGTI and HV-BBI peptides, fragments and analogs derived from amphibian skin.

    PubMed

    Dębowski, Dawid; Łukajtis, Rafał; Łęgowska, Anna; Karna, Natalia; Pikuła, Michał; Wysocka, Magdalena; Maliszewska, Irena; Sieńczyk, Marcin; Lesner, Adam; Rolka, Krzysztof

    2012-06-01

    A series of linear and cyclic fragments and analogs of two peptides (OGTI and HV-BBI) isolated from skin secretions of frogs were synthesized by the solid-phase method. Their inhibitory activity against several serine proteinases: bovine β-trypsin, bovine α-chymotypsin, human leukocyte elastase and cathepsin G from human neutrophils, was investigated together with evaluation of their antimicrobial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive species isolated from patients (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus sp., Streptococcus sp.). The cytotoxicity of the selected peptides toward an immortal human skin fibroblast cell line was also determined. Three peptides: HV-BBI, its truncated fragment HV-BBI(3-18) and its analog [Phe(8)]HV-BBI can be considered as bifunctional compounds with inhibitory as well as antibacterial properties. OGTI, although it did not display trypsin inhibitory activity as previously reported in the literature, exerted antimicrobial activity toward S. epidermidis. In addition, under our experimental conditions, this peptide did not show cytotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    PubMed

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  10. De Novo Design of Skin-Penetrating Peptides for Enhanced Transdermal Delivery of Peptide Drugs.

    PubMed

    Menegatti, Stefano; Zakrewsky, Michael; Kumar, Sunny; De Oliveira, Joshua Sanchez; Muraski, John A; Mitragotri, Samir

    2016-03-09

    Skin-penetrating peptides (SPPs) are attracting increasing attention as a non-invasive strategy for transdermal delivery of therapeutics. The identification of SPP sequences, however, currently performed by experimental screening of peptide libraries, is very laborious. Recent studies have shown that, to be effective enhancers, SPPs must possess affinity for both skin keratin and the drug of interest. We therefore developed a computational process for generating and screening virtual libraries of disulfide-cyclic peptides against keratin and cyclosporine A (CsA) to identify SPPs capable of enhancing transdermal CsA delivery. The selected sequences were experimentally tested and found to bind both CsA and keratin, as determined by mass spectrometry and affinity chromatography, and enhance transdermal permeation of CsA. Four heptameric sequences that emerged as leading candidates (ACSATLQHSCG, ACSLTVNWNCG, ACTSTGRNACG, and ACSASTNHNCG) were tested and yielded CsA permeation on par with previously identified SPP SPACE (TM) . An octameric peptide (ACNAHQARSTCG) yielded significantly higher delivery of CsA compared to heptameric SPPs. The safety profile of the selected sequences was also validated by incubation with skin keratinocytes. This method thus represents an effective procedure for the de novo design of skin-penetrating peptides for the delivery of desired therapeutic or cosmetic agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from jatropha: review.

    PubMed

    Devappa, Rakshit K; Makkar, Harinder P S; Becker, Klaus

    2010-06-09

    Increased bioenergy consciousness and high demand for animal products have propelled the search for alternative resources that could meet the dual demands. Jatropha seeds have potential to fit these roles in view of their multipurpose uses, broad climatic adaptability features, and high oil and protein contents. During the past five years many large-scale cultivation projects have been undertaken to produce jatropha seed oil as a feedstock for the biodiesel industry. The present review aims at providing biological significance of jatropha proteins and peptides along with their nutritional and therapeutic applications. The nutritional qualities of the kernel meal and protein concentrates or isolates prepared from seed cake are presented, enabling their efficient use in animal nutrition. In addition, (a) biologically active proteins involved in plant protection, for example, aquaporin and betaine aldehyde dehydrogenase, which have roles in drought resistance, and beta-glucanase, which has antifungal activity, as well as those having pharmaceutical properties, and (b) cyclic peptides with various biological activities such as antiproliferative, immunomodulatory, antifungal, and antimalarial activity are discussed. It is expected that the information collated will open avenues for new applications of proteins present in jatropha plant, thereby contributing to enhance the financial viability and sustainability of a jatropha-based biodiesel industry.

  12. General chemoselective and redox-responsive ligation and release strategy.

    PubMed

    Park, Sungjin; Westcott, Nathan P; Luo, Wei; Dutta, Debjit; Yousaf, Muhammad N

    2014-03-19

    We report a switchable redox click and cleave reaction strategy for conjugating and releasing a range of molecules on demand. This chemoselective redox-responsive ligation (CRRL) and release strategy is based on a redox switchable oxime linkage that is controlled by mild chemical or electrochemical redox signals and can be performed at physiological conditions without the use of a catalyst. Both conjugation and release reactions are kinetically well behaved and quantitative. The CRRL strategy is synthetically modular and easily monitored and characterized by routine analytical techniques. We demonstrate how the CRRL strategy can be used for the dynamic generation of cyclic peptides and the ligation of two different peptides that are stable but can be selectively cleaved upon changes in the redox environment. We also demonstrate a new redox based delivery of cargoes to live cells strategy via the CRRL methodology by synthesizing a FRET redox-responsive probe that is selectively activated within a cellular environment. We believe the ease of the CRRL strategy should find wide use in a range of applications in biology, tissue engineering, nanoscience, synthetic chemistry, and material science and will expand the suite of current conjugation and release strategies.

  13. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  14. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.

    PubMed

    Arasteh, Shima; Bagheri, Mojtaba

    2017-01-01

    A great deal of research has been undertaken in order to discover antimicrobial peptides (AMPs) with unexploited mechanisms of action to counteract the health-threatening issues associated with bacterial resistance. The intrinsic effectiveness of AMPs is strongly influenced by their initial interactions with the bacterial cell membrane. Understanding these interactions in the atomistic details is important for the design of the less prone bacteria-resistant peptides. However, these studies always require labor-intensive and difficult steps. With this regard, modeling studies of the AMPs binding to simple lipid membrane systems, e.g., lipid bilayers, is of great advantage. In this chapter, we present an applicable step-by-step protocol to run the molecular dynamics (MD) simulation of the interaction between cyclo-RRWFWR (c-WFW) (a small cyclic AMP) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer using the Groningen machine for chemical simulations (GROMACS) package. The protocol as described here may simply be optimized for other peptide-lipid systems of interest.

  15. Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein.

    PubMed

    Urban, Johannes H; Moosmeier, Markus A; Aumüller, Tobias; Thein, Marcus; Bosma, Tjibbe; Rink, Rick; Groth, Katharina; Zulley, Moritz; Siegers, Katja; Tissot, Kathrin; Moll, Gert N; Prassler, Josef

    2017-11-15

    Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products with drug-like properties. To fully exploit the potential of RiPPs as peptide drug candidates, tools for their systematic engineering are required. Here we report the engineering of lanthipeptides, a subclass of RiPPs characterized by multiple thioether cycles that are enzymatically introduced in a regio- and stereospecific manner, by phage display. This was achieved by heterologous co-expression of linear lanthipeptide precursors fused to the widely neglected C-terminus of the bacteriophage M13 minor coat protein pIII, rather than the conventionally used N-terminus, along with the modifying enzymes from distantly related bacteria. We observe that C-terminal precursor peptide fusions to pIII are enzymatically modified in the cytoplasm of the producing cell and subsequently displayed as mature cyclic peptides on the phage surface. Biopanning of large C-terminal display libraries readily identifies artificial lanthipeptide ligands specific to urokinase plasminogen activator (uPA) and streptavidin.

  16. Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.

    PubMed

    Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung

    2013-11-14

    Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.

  17. Abiotic formation of valine peptides under conditions of high temperature and high pressure.

    PubMed

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  18. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  19. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  20. Identification and Structural Characterization of Novel Cyclotide with Activity against an Insect Pest of Sugar Cane*

    PubMed Central

    Pinto, Michelle F. S.; Fensterseifer, Isabel C. M.; Migliolo, Ludovico; Sousa, Daniel A.; de Capdville, Guy; Arboleda-Valencia, Jorge W.; Colgrave, Michelle L.; Craik, David J.; Magalhães, Beatriz S.; Dias, Simoni C.; Franco, Octávio L.

    2012-01-01

    Cyclotides are a family of plant-derived cyclic peptides comprising six conserved cysteine residues connected by three intermolecular disulfide bonds that form a knotted structure known as a cyclic cystine knot (CCK). This structural motif is responsible for the pronounced stability of cyclotides against chemical, thermal, or proteolytic degradation and has sparked growing interest in this family of peptides. Here, we isolated and characterized a novel cyclotide from Palicourea rigida (Rubiaceae), which was named parigidin-br1. The sequence indicated that this peptide is a member of the bracelet subfamily of cyclotides. Parigidin-br1 showed potent insecticidal activity against neonate larvae of Lepidoptera (Diatraea saccharalis), causing 60% mortality at a concentration of 1 μm but had no detectable antibacterial effects. A decrease in the in vitro viability of the insect cell line from Spodoptera frugiperda (SF-9) was observed in the presence of parigidin-br1, consistent with in vivo insecticidal activity. Transmission electron microscopy and fluorescence microscopy of SF-9 cells after incubation with parigidin-br1 or parigidin-br1-fluorescein isothiocyanate, respectively, revealed extensive cell lysis and swelling of cells, consistent with an insecticidal mechanism involving membrane disruption. This hypothesis was supported by in silico analyses, which suggested that parigidin-br1 is able to complex with cell lipids. Overall, the results suggest promise for the development of parigidin-br1 as a novel biopesticide. PMID:22074926

  1. Design-Based Peptidomimetic Ligand Discovery to Target HIV TAR RNA Using Comparative Analysis of Different Docking Methods.

    PubMed

    Fu, Junjie; Xia, Amy; Dai, Yao; Qi, Xin

    2016-01-01

    Discovering molecules capable of binding to HIV trans-activation responsive region (TAR) RNA thereby disrupting its interaction with Tat protein is an attractive strategy for developing novel antiviral drugs. Computational docking is considered as a useful tool for predicting binding affinity and conducting virtual screening. Although great progress in predicting protein-ligand interactions has been achieved in the past few decades, modeling RNA-ligand interactions is still largely unexplored due to the highly flexible nature of RNA. In this work, we performed molecular docking study with HIV TAR RNA using previously identified cyclic peptide L22 and its analogues with varying affinities toward HIV-1 TAR RNA. Furthermore, sarcosine scan was conducted to generate derivatives of CGP64222, a peptide-peptoid hybrid with inhibitory activity on Tat/TAR RNA interaction. Each compound was docked using CDOCKER, Surflex-Dock and FlexiDock to compare the effectiveness of each method. It was found that FlexiDock energy values correlated well with the experimental Kd values and could be used to predict the affinity of the ligands toward HIV-1 TAR RNA with a superior accuracy. Our results based on comparative analysis of different docking methods in RNA-ligand modeling will facilitate the structure-based discovery of HIV TAR RNA ligands for antiviral therapy.

  2. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    PubMed

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. Copyright © 2011 John Wiley & Sons, Ltd.

  3. The inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant, carbohydrate chains, and proteinaceous components are all responsible for the cross-reactivity of trypanosome variant surface glycoproteins.

    PubMed

    Escalona, José L; Uzcanga, Graciela L; Carrasquel, Liomary M; Bubis, José

    2018-01-24

    Salivarian trypanosomes evade the host immune system by continually swapping their protective variant surface glycoprotein (VSG) coat. Given that VSGs from various trypanosome stocks exhibited cross-reactivity (Camargo et al., Vet. Parasitol. 207, 17-33, 2015), we analyzed here which components are the antigenic determinants for this cross-reaction. Soluble forms of VSGs were purified from four Venezuelan animal trypanosome isolates: TeAp-N/D1, TeAp-ElFrio01, TeAp-Mantecal01, and TeGu-Terecay323. By using the VSG soluble form from TeAp-N/D1, we found that neither the inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant nor the carbohydrate chains were exclusively responsible for its cross-reactivity. Then, all four purified glycoproteins were digested with papain and the resulting peptides were separated by high-performance liquid chromatography. Dot blot evaluation of the fractions using sera from trypanosome-infected animals yielded peptides that possessed cross-reaction activity, demonstrating for the first time that proteinaceous epitopes are also responsible for the cross-reactivity of trypanosome VSGs.

  4. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways.

    PubMed

    Kawagoe, Yumi; Shiraishi, Soma; Kondo, Hiroko; Yamamoto, Shoko; Aoki, Yoshinao; Suzuki, Shunji

    2015-05-15

    Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. An exploratory study to determine whether infliximab modifies levels of rheumatoid factor and antibodies to cyclic citrullinated peptides in rheumatoid arthritis patients.

    PubMed

    Martínez-Estupiñán, Lina; Hernández-Flórez, Diana; Janta, Iustina; Ovalles-Bonilla, Juan Gabriel; Nieto, Juan Carlos; González-Fernández, Carlos M; Del Río, Tamara; Monteagudo, Indalecio; López-Longo, Francisco Javier; Naredo, Esperanza; Valor, Lara

    2018-01-01

    The aim of this study was to investigate the relationship between serum infliximab (IFX) levels and changes of RF and ACPA levels in patients with rheumatoid arthritis (RA). Enzyme-linked immunosorbent assays (ELISA) [Promonitor® IFX R1 (version 2) (Progenika Biopharma, Spain)] were used to measure drug levels and antidrug-antibodies (ADAb) in IFX RA-treated patients (n=19). Disease activity was assessed using DAS28. IgM rheumatoid factor (RF) and IgM, IgA and IgG anti-cyclic citrullinated peptide (ACPA) were determined through ELISA. A significant decrease in RF (p=0.01), ACPA IgG (p=0.007), IgM (p=0.01) and IgA (p=0.03) was observed in patients presenting adequate levels of serum IFX. No significant changes to RF or ACPA were observed in patients with undetectable IFX. Data from this study support the hypothesis that the anti-TNF antagonist IFX downregulates autoantibody levels in RA patients when IFX levels are detectable. Larger-scale studies need to be performed to establish RF and ACPA presence as therapeutic response predictive factors.

  6. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.

    PubMed

    Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang

    2016-10-01

    Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water.

  7. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity.

    PubMed

    Huang, En; Yang, Xu; Zhang, Liwen; Moon, Sun Hee; Yousef, Ahmed E

    2017-04-01

    A new bacterial isolate, Paenibacillus sp. OSY-N, showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria. Antimicrobials produced by this strain were purified by reverse-phase high-performance liquid chromatography. Structural analysis, using mass spectrometry, of a single active HPLC fraction revealed two known cyclic lipopeptides (BMY-28160 and permetin A), a new cyclic lipopeptide, and the linear counterparts of these cyclic compounds. The latter were designated as paenipeptins A, B and C, respectively. The paenipeptins have not been reported before as naturally occurring products. Paenipeptins B and C differ at the acyl side chain; paenipeptin C contains a C8-, instead of C7-fatty acyl side chain. To demonstrate unequivocally the antimicrobial activity of the linear forms of this family of cyclic lipopeptides, analogs of the paenipeptins were synthesized chemically and their antimicrobial activity was tested individually. The synthetic linear lipopeptide with an octanoic acid side chain (designated as paenipeptin C΄) showed potent antimicrobial activity with minimum inhibitory concentrations of 0.5-4.0 μg/mL for Gram-negative and 0.5-32 μg/mL for Gram-positive bacteria. Findings demonstrated that peptide cyclization in this lipopeptide family is not essential for their antimicrobial activity. Most importantly, linear lipopeptides are more accessible than their cyclic counterparts through chemical synthesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach.

    PubMed

    Khavani, Mohammad; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2015-10-14

    In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups.

  10. Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus.

    PubMed

    Tsuchikama, Kyoji; Shimamoto, Yasuhiro; Anami, Yasuaki

    2017-06-09

    The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.

  11. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.

    PubMed

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-21

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  12. Thioamide Substitution Selectively Modulates Proteolysis and Receptor Activity of Therapeutic Peptide Hormones.

    PubMed

    Chen, Xing; Mietlicki-Baase, Elizabeth G; Barrett, Taylor M; McGrath, Lauren E; Koch-Laskowski, Kieran; Ferrie, John J; Hayes, Matthew R; Petersson, E James

    2017-11-22

    Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower β-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.

  13. Identification of protein–protein interfaces by decreased amide proton solvent accessibility

    PubMed Central

    Mandell, Jeffrey G.; Falick, Arnold M.; Komives, Elizabeth A.

    1998-01-01

    Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry was used to identify peptic fragments from protein complexes that retained deuterium under hydrogen exchange conditions due to decreased solvent accessibility at the interface of the complex. Short deuteration times allowed preferential labeling of rapidly exchanging surface amides so that primarily solvent accessibility changes and not conformational changes were detected. A single mass spectrum of the peptic digest mixture was analyzed to determine the deuterium content of all proteolytic fragments of the protein. The protein–protein interface was reliably indicated by those peptides that retained more deuterons in the complex compared with control experiments in which only one protein was present. The method was used to identify the kinase inhibitor [PKI(5–24)] and ATP-binding sites in the cyclic-AMP-dependent protein kinase. Three overlapping peptides identified the ATP-binding site, three overlapping peptides identified the glycine-rich loop, and two peptides identified the PKI(5–24)-binding site. A complex of unknown structure also was analyzed, human α-thrombin bound to an 83-aa fragment of human thrombomodulin [TMEGF(4–5)]. Five peptides from thrombin showed significantly decreased solvent accessibility in the complex. Three peptides identified the anion-binding exosite I, confirming ligand competition experiments. Two peptides identified a new region of thrombin near the active site providing a potential mechanism of how thrombomodulin alters thrombin substrate specificity. PMID:9843953

  14. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  15. Evaluation of 111In-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake, Excretion Kinetics and Metabolic Stability

    PubMed Central

    Shi, Jiyun; Zhou, Yang; Chakraborty, Sudipta; Kim, Young-Seung; Jia, Bing; Wang, Fan; Liu, Shuang

    2011-01-01

    Purpose: The purpose of this study was to demonstrate the valence of cyclic RGD peptides, P-RGD (PEG4-c(RGDfK): PEG4 = 15-amino-4,710,13-tetraoxapentadecanoic acid), P-RGD2 (PEG4-E[c(RGDfK)]2, 2P-RGD4 (E{PEG4-E[c(RGDfK)]2}2, 2P4G-RGD4 (E{PEG4-E[G3-c(RGDfK)]2}2: G3 = Gly-Gly-Gly) and 6P-RGD4 (E{PEG4-E[PEG4-c(RGDfK)]2}2) in binding to integrin αvβ3, and to assess the impact of peptide and linker multiplicity on biodistribution properties, excretion kinetics and metabolic stability of their corresponding 111In radiotracers. Methods: Five new RGD peptide conjugates (DOTA-P-RGD (DOTA =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid), DOTA-P-RGD2, DOTA-2P-RGD4, DOTA-2P4G-RGD4, DOTA-6P-RGD4), and their 111In complexes were prepared. The integrin αvβ3 binding affinity of cyclic RGD conjugates were determined by a competitive displacement assay against 125I-c(RGDyK) bound to U87MG human glioma cells. Biodistribution, planar imaging and metabolism studies were performed in athymic nude mice bearing U87MG human glioma xenografts. Results: The integrin αvβ3 binding affinity of RGD conjugates follows the order of: DOTA-6P-RGD4 (IC50 = 0.3 ± 0.1 nM) ~ DOTA-2P4G-RGD4 (IC50 = 0.2 ± 0.1 nM) ~ DOTA-2P-RGD4 (IC50 = 0.5 ± 0.1 nM) > DOTA-3P-RGD2 (DOTA-PEG4-E[PEG4-c(RGDfK)]2: IC50 = 1.5 ± 0.2 nM) > DOTA-P-RGD2 (IC50 = 5.0 ± 1.0 nM) >> DOTA-P-RGD (IC50 = 44.3 ± 3.5 nM) ~ c(RGDfK) (IC50 = 49.9 ± 5.5 nM) >> DOTA-6P-RGK4 (IC50 = 437 ± 35 nM). The fact that DOTA-6P-RGK4 had much lower integrin αvβ3 binding affinity than DOTA-6P-RGD4 suggests that the binding of DOTA-6P-RGD4 to integrin αvβ3 is RGD-specific. This conclusion is consistent with the lower tumor uptake for 111In(DOTA-6P-RGK4) than that for 111In(DOTA-6P-RGD4). It was also found that the G3 and PEG4 linkers between RGD motifs have a significant impact on the integrin αvβ3-targeting capability, biodistribution characteristics, excretion kinetics and metabolic stability of 111In-labeled cyclic RGD peptides. Conclusion: On the basis of their integrin αvβ3 binding affinity and tumor uptake of their corresponding 111In radiotracers, it was conclude that 2P-RGD4, 2P4G-RGD4 and 6P-RGD4 are most likely bivalent in binding to integrin αvβ3, and extra RGD motifs might contribute to the long tumor retention times of 111In(DOTA-2P-RGD4), 111In(DOTA-2P4G-RGD4) and 111In(DOTA-6P-RGD4) than that of 111In(DOTA-3P-RGD3) at 72 h p.i. Among the 111In-labeled cyclic RGD tetramers evaluated in the glioma model, 111In(DOTA-2P4G-RGD4) has very high tumor uptake with the best tumor/kidney and tumor/liver ratios, suggesting that 90Y(DOTA-2P4G-RGD4) and 177Lu(DOTA-2P4G-RGD4) might have the potential for targeted radiotherapy of integrin αvβ3-positive tumors. PMID:21850213

  16. Multiple loop conformations of peptides predicted by molecular dynamics simulations are compatible with nuclear magnetic resonance.

    PubMed

    Carstens, Heiko; Renner, Christian; Milbradt, Alexander G; Moroder, Luis; Tavan, Paul

    2005-03-29

    The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.

  17. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry.

    PubMed

    Mandal, Amit Kumar; Ramasamy, Mani Ramakrishnan Santhana; Sabareesh, Varatharajan; Openshaw, Matthew E; Krishnan, Kozhalmannom S; Balaram, Padmanabhan

    2007-08-01

    De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

  18. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer's disease.

    PubMed

    Perez-Gonzalez, Rocio; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Redondo, Miriam; Perez, Daniel I; Pérez-Grijalba, Virginia; Krzyzanowska, Agnieszka; Sarasa, Manuel; Gil, Carmen; Ferrer, Isidro; Martinez, Ana; Carro, Eva

    2013-09-01

    Elevated levels of amyloid beta (Aβ) peptide, hyperphosphorylation of tau protein, and inflammation are pathological hallmarks in Alzheimer's disease (AD). Phosphodiesterase 7 (PDE7) regulates the inflammatory response through the cyclic adenosine monophosphate signaling cascade, and thus plays a central role in AD. The aim of this study was to evaluate the efficacy of an inhibitor of PDE7, named S14, in a mouse model of AD. We report that APP/Ps1 mice treated daily for 4 weeks with S14 show: (1) significant attenuation in behavioral impairment; (2) decreased brain Aβ deposition; (3) enhanced astrocyte-mediated Aβ degradation; and (4) decreased tau phosphorylation. These effects are mediated via the cyclic adenosine monophosphate/cyclic adenosine monophosphate response element-binding protein signaling pathway, and inactivation of glycogen synthase kinase (GSK)3. Our data support the use of PDE7 inhibitors, and specifically S14, as effective therapeutic agents for the prevention and treatment of AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Peptides whose uptake by cells is controllable

    DOEpatents

    Jiang, Tao; Olson, Emilia S.; Whitney, Michael; Tsien, Roger

    2015-07-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  20. Peptides whose uptake by cells is controllable

    DOEpatents

    Jiang, Tao [San Diego, CA; Olson, Emilia S [La Jolla, CA; Whitney, Michael [San Diego, CA; Tsien, Roger [La Jolla, CA

    2011-07-26

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  1. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene) (TPX) with cRGD pentapeptide

    PubMed Central

    Möller, Lena; Hess, Christian; Paleček, Jiří; Su, Yi; Haverich, Axel

    2013-01-01

    Summary Covalent multistep coating of poly(methylpentene), the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene) surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells. PMID:23504394

  2. [Diagnostic difficulties in polymyositis].

    PubMed

    Majewski, Dominik; Puszczewicz, Mariusz; Tuchocka-Piotrowska, Aleksandra; Kołczewska, Aleksandra

    2006-01-01

    Polymyositis is a connective tissue disease. Although myositis is the dominant clinical manifestation, internal organs may also be affected. Arthritis occurs in 30% of patients, especially in the course of the anti-synthetase syndrome. We report on a case of a woman with polymyositis and interstitial lung disease. Arthritis and the presence of anti-cyclic citrullinated peptide antibodies in the patient's serum may suggest the diagnosis of the overlap syndrome.

  3. Pharmacokinetic, pharmacodynamic, and antihypertensive effects of the neprilysin inhibitor LCZ-696: sacubitril/valsartan.

    PubMed

    Chrysant, Steven G

    2017-07-01

    LCZ-696, sacubitril/valsartan, is a dual-acting molecule consisting of the angiotensin II (Ang II) receptor blocker valsartan and the neprilysin (neutral endopeptidase) inhibitor AHU-377 with significant beneficial effects in patients with hypertension and heart failure (HF). Several recent studies have demonstrated a higher effectiveness of LCZ-696 compared to valsartan in the treatment of hypertension and HF. The rationale for the development and the Food and Drug Administration approval of LCZ-696 was based on the concept of an additive effect of the Ang II receptor blocker valsartan and the neutral endopeptidase (neprilysin) inhibitor AHU-377 for the treatment of hypertension and HF. The synergism from these drugs arises from the vasodilating effects of valsartan through its blockade of Ang II type 1 receptor and the action of natriuretic peptides atrial natriuretic peptide and B-type natriuretic peptide (BNP) by preventing their catabolism with neprilysin resulting in increase of cyclic guanosine monophosphate. This action of neprilysin is associated with increased natriuresis, diuresis, and systemic vasodilation, since these peptides have been shown to have potent diuretic, natriuretic, and vasodilating effects. In addition, it reduces the levels of N terminal pro-BNP. Therefore, administration of LCZ-696 results in significant reduction of wall stress from pressure and volume overload of the left ventricle as demonstrated by the reduction of N terminal pro-BNP, both significant constituents of hypertension and HF, and it is safe, well tolerated and is almost free of cough and angioedema. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Conformational diversity in contryphans from Conus venom: cis-trans isomerisation and aromatic/proline interactions in the 23-membered ring of a 7-residue peptide disulfide loop.

    PubMed

    Sonti, Rajesh; Gowd, Konkallu Hanumae; Rao, K N Shashanka; Ragothama, Srinivasarao; Rodriguez, Alex; Perez, Juan Jesus; Balaram, Padmanabhan

    2013-11-04

    Conformational diversity or "shapeshifting" in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis↔trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Roles of CLR/RAMP Receptor Signaling in Reproduction and Development

    PubMed Central

    Chang, Chia Lin; Hsu, Sheau Yu Teddy

    2016-01-01

    Adrenomedullin (ADM), calcitonin gene-related peptides (α- and β-CGRPs), and intermedin/adrenomedullin 2 (IMD/ADM2) are major regulators of vascular tone and cardiovascular development in vertebrates. Recent research into their functions in reproduction has illuminated the role of these peptides and their cognate receptors (calcitonin receptor-like receptor/receptor activity-modifying protein (CLR/RAMP) receptors) in fetal–maternal blood circulation, feto-placental development, female gamete development, and gamete movement in the oviduct. Although ADM family peptides function in a temporally and spatially specific manner in various reproductive processes, they appear to act via a similar set of second messengers, including nitric oxide, cyclic GMP, cyclic AMP, and calcium-activated potassium channels in different tissues. These discoveries supported the view that CLR/RAMP receptors were recruited to perform a variety of newly evolved reproductive functions during the evolution of internal reproduction in mammals. These advances also provided insight into how CLR/RAMP receptor signaling pathways coordinate with other physiological adaptions to accommodate the extra metabolic needs during pregnancy, and captured some important details as to how fetal–maternal vascular communications are generated in the first place. Furthermore, these findings have revealed novel, promising opportunities for the prevention and treatment of aberrant pregnancies such as pregnancy-induced hypertension, preeclampsia, and tubal ectopic pregnancy. However, significant efforts are still needed to clarify the relationships between certain components of the CLR/RAMP signaling pathway and aberrant pregnancies before CLR/RAMP receptors can become targets for clinical management. With this understanding, this review summarizes recent progresses with particular focus on clinical implications. PMID:23745703

  6. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains.

    PubMed

    Garcia-Ratés, Sara; Morrill, Paul; Tu, Henry; Pottiez, Gwenael; Badin, Antoine-Scott; Tormo-Garcia, Cristina; Heffner, Catherine; Coen, Clive W; Greenfield, Susan A

    2016-06-01

    The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications.

    PubMed

    Grande Burgos, María José; Pulido, Rubén Pérez; Del Carmen López Aguayo, María; Gálvez, Antonio; Lucas, Rosario

    2014-12-08

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.

  8. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications

    PubMed Central

    Grande Burgos, María José; Pérez Pulido, Rubén; López Aguayo, María del Carmen; Gálvez, Antonio; Lucas, Rosario

    2014-01-01

    Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure. PMID:25493478

  9. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    PubMed

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-08-02

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.

  10. Somatostatin displayed on filamentous phage as a receptor-specific agonist

    PubMed Central

    Rousch, Mat; Lutgerink, Jan T; Coote, James; de Bruïne, Adriaan; Arends, Jan-Willem; Hoogenboom, Hennie R

    1998-01-01

    In search of methods to identify bio-active ligands specific for G protein-coupled receptors with seven transmembrane spanning regions, we have developed a filamentous phage-based selection and functional screening method. First, methods for panning peptide phage on cells were established, using the hormone somatostatin as a model. Somatostatin was displayed on the surface of filamentous phage by cloning into phage(mid) vectors and fusion to either pIII or pVIII viral coat proteins. Peptide displaying phage bound to a polyclonal anti-somatostatin serum, and, more importantly, to several somatostatin receptor subtypes (Sst) expressed on transfected CHO-K1 cells, in a pattern which was dependent on the used display method. Binding was competed with somatostatin, with an IC50 in the nanomolar range. The phage were specifically enriched by panning on cells, establishing conditions for cell selections of phage libraries. Binding of somatostatin displaying phage to sst2 on a reporter cell line, in which binding of natural ligand reduces secretion of alkaline phosphatase (via a cyclic AMP responsive element sensitive promoter), proved that the phage particles act as receptor-specific agonists. Less than 100 phage particles per cell were required for this activity, which is approximately 1000 fold less than soluble somatostatin, suggesting that phage binding interferes with normal receptor desensitization and/or recycling. The combination of biopanning of phage libraries on cells with functional screening of phage particles for receptor triggering activity, may be used to select novel, bio-active ligands from phage libraries of random peptides, antibody fragments, or libraries based on the natural receptor ligand. PMID:9776337

  11. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    PubMed

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation, rendering cyclo(87-99)(Ala91,Ala96)MBP87-99 an important candidate drug for MS immunotherapy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.« less

  13. Novel Peptide Ligands of RGS4 from a Focused One-Bead, One-Compound Library

    PubMed Central

    Roof, Rebecca A.; Sobczyk-Kojiro, Katarzyna; Turbiak, Anjanette J.; Roman, David L.; Pogozheva, Irina D.; Blazer, Levi L.; Neubig, Richard R.; Mosberg, Henry I.

    2010-01-01

    Regulators of G Protein Signaling (RGS) accelerate GTP hydrolysis by Gα subunits and profoundly inhibit signaling by G protein-coupled receptors. The distinct expression patterns and pathophysiologic regulation of RGS proteins suggest that inhibitors may have therapeutic potential. We previously reported the design, mechanistic evaluation and structure-activity relationships (SAR) of a disulfide-containing cyclic peptide inhibitor of RGS4, YJ34 (Ac-Val-Lys-c[Cys-Thr-Gly-Ile-Cys]-Glu-NH2, S-S) (Roof, et al. Chem Biol Drug Des 2006; 67:266-274). Using a focused one-bead, one-compound (OBOC) peptide library that contains features known to be necessary for the activity of YJ34, we now identify peptides that bind to RGS4. Six peptides showed confirmed binding to RGS4 by flow cytometry. Two analogs of peptide 2, (Gly-Thr-c[Cys-Phe-Gly-Thr-Cys]-Trp-NH2, S-S with a free or acetylated N-terminus) inhibited RGS4-stimulated Gαo GTPase activity at 25–50 μM. They selectively inhibit RGS4 but not RGS7, RGS16 and RGS19. Their inhibition of RGS4 does not depend on cysteine-modification of RGS4, as they do not lose activity when all cysteines are removed from RGS4. Peptide 2 has been modeled to fit in the same binding pocket predicted for YJ34 but in the reverse orientation. PMID:18637987

  14. Secondary structure inducing potential of beta-amino acids: torsion angle clustering facilitates comparison and analysis of the conformation during MD trajectories.

    PubMed

    Guthöhrlein, E W; Malesević, M; Majer, Z; Sewald, N

    2007-01-01

    While numerous examples of beta-peptides--exclusively composed of beta-amino acids--have been investigated during the past decade, there are only few reports on the conformational preference of a single beta-amino acid when incorporated into a cyclopeptide. The conformational bias of beta-amino acids on the secondary structure of cyclopeptides has been investigated by NMR spectroscopy in combination with distance geometry (DG) and molecular dynamics (MD) calculations using experimental constraints. The atomic coordinate RMSD criterion usually employed for clustering of conformations after DG and MD calculations does not necessarily group similar peptide conformations, as there is an insufficient correlation between atomic coordinates and torsion angles. To improve on this shortcoming and to eliminate any arbitrary decisions during this process, a torsion angle clustering procedure has been implemented. For the cyclic pentapeptides cyclo-(-Val-beta-Hala-Phe-Leu-Ile-) 1 and cyclo-(-Ser-Pro-Leu-beta-Hasn-Asp-) 3, the beta-amino acid is found in the central position of an extended gamma-turn (pseudo gamma-turn, Psigamma-turn), while the beta-Hpro residue in the cyclic hexapeptide cyclo-(-Ser-beta-Hpro-Leu-Asn-Ile-Asp-) 5 preferentially occupies position i+1 of a pseudo beta-turn (Psibeta-turn). These results further corroborate the hypothesis of beta-amino acids being reliable inducers of secondary structure in cyclic penta- and hexapeptides. They can be employed in the de novo design of biologically active cyclopeptides in pharmaceutical research, since the three-dimensional presentation of pharmacophoric groups in the side chains can be tailored by incorporation of beta-amino acids in strategic sequential positions. (c) 2007 Wiley Periodicals, Inc.

  15. Quantum Mechanical Calculations in Collaborations with Experimental Chemistry: The Theoretical Organic Chemistry Perspective

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh Nhu Ngoc

    The results of quantum chemical calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols by significantly increasing basicity of the substrate hydroxyl group. The energy barrier for cyclization of the pentadienyl cation after water loss is already low in the background reaction and is altered fairly little by the cage. The calculations for other non-alcohol substrates also suggest that the cage increases the basicity of amine and phosphine groups, though to a lesser extend comparing to the alcohol substrate. Due to their twisting patterns, alpha-helical peptides are known to have overall "macrodipoles" along the principal axes as the result of the backbone carbonyl groups pointing toward the C-terminus. As the dipoles have implications in helical bundles, interactions with lipid bilayers, and distribution of charge, chemists have long been interested in employing the macrodipole in modifications of peptides' catalytic activities. In this studied, we examined the impact of both global and local noncovalent interactions between peptide catalysts and substrates in the first transesterification step, in hope of designing a better peptide catalysts to aid in ester metabolism. Quantum mechanical calculations helped predict whether the targeted medium-sized cyclic peptide products would more likely be the major products, before the experimental team invested extensive resources and time to carry out the syntheses. Many systems were found to favor the medium-sized cyclic peptides, whereas one system was predicted to result in polycyclic product, and the latter experimental observations agreed with these predictions. Naturally occurring cyclic peptides display various biological activities due to their diverse structures. Understanding the dominant structures of these peptides could help give insight into protein-protein interactions or substrate-protein binding. With the experimental NMR data obtained for the synthesized peptides, dynamic simulations were used to sample a large conformational space, generating diverse conformer libraries. Quantum mechanical calculations were then used to determine the relative energies between the conformers, and to compute theoretical NMR data, which were then compared to the experimental values, to determine the best match conformers. Hydropersulfides are commonly found among many mammalian systems, and has recently gained more interest due to their greater nucleophilicity and reducing capacity compared to the related thiols. A series of quantum mechanical calculations were performed for small sulfur-containing molecules in order to help understand these biological compounds. First part of this chapter explores the basics of chemical properties and reactivity of hydropersulfides. The later sections further discuss the redox component of RSSH in generation of the radical RSS, which was found to be unreactive in the presence of O 2 and NO. Modeling the formation of these natural products in the absence of the enzymes has many of its own limitation, but understanding the inherent reactivity of the substrates could be beneficial to future enzymatic studies. Density functional theory calculations of mechanism of caryolene featured one mechanism with a base-catalyzed deprotonation/reprotonation sequence, while the other higher-energy mechanism involved intramolecular proton transfer and a secondary carbocation minimum. This result suggested the role of the enzyme in helping to avoid the secondary carbocation. Both pathways bypassed the concerted suprafacial/suprafacial [2+2] cycloadditions, which were not in violation of orbital symmetry due to their asynchronicity. Quantum mechanical calculations were used to determine theoretical 1H and 13C chemical shifts, which were then compared to the experimental NMR data to assign relative configurations for isohirsut-1-ene, isohirsut-4-ene, and tsukubadiene, which were previously isolated from engineered Streptomyces. Conformational searches and Boltzmann averaging were performed to address conformational flexibility in experimental NMR. The reactivity of macrocyclic bis-enones in Diels-Alder reactions was examined with quantum mechanical calculations to locate transition state structures and potential energy surfaces. Stepwise mechanisms appeared to be much lower in energy than the concerted pathways. Steric interactions and torsional strain helped explain product formations and why reactants that differed only by Z/E stereochemistry gave different product observation. The Ready group investigated the different approach to synthesizing nitrogen-containing heterocycles via dihydropyridine boronic ester intermediates, which was formed when pyridine boronic ester reacted with organometallic reagents in the presence of an acylating agent. The relative stereochemistry was initially assigned by comparison of experimental and computed chemical shifts, and the structure of the major product was later confirmed by X-ray crystallography. In the development of a stereo-controlled synthesis of australifungin, a natural products, only a small amount of the intermediate, which needed to undergo removal of protecting groups to yield the desired product, was obtained. There were worries that removing these protecting group might instead lead to undesired side product. However, the calculation results indicated that the desired product would still be more thermodynamically favored, giving confidence for the experimental work to proceed. (Abstract shortened by ProQuest.).

  16. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  17. MURI: Surface-Templated Bio-Inspired Synthesis and Fabrication of Functional Materials

    DTIC Science & Technology

    2006-06-21

    metallic nanowires were prepared by electro-deposition of gold into porous anodic aluminum oxide ( AAO ) as described by Martin and co- workers. A thin, 200...controlled by monitoring the charge passed through the membrane . The Ag support and aluminum membranes were subsequently dissolved with concentrated...featuring copper and iron- oxides . Appropriately designed cyclic D, L-α-peptides can assume flat ring-shaped geometry and stack via directed backbone

  18. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides

    PubMed Central

    Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L.; Squires, R. Burke; Hurt, Darrell E.; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael

    2016-01-01

    Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a ‘Ranking Search’ function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure–activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. PMID:26578581

  19. Determination of trace amount of cyanobacterial toxin in water by microchip based enzyme-linked immunosorbent assay.

    PubMed

    Pyo, Dongjin; Hahn, Jong Hoon

    2009-01-01

    Routine monitoring of microcystin in natural waters is difficult because the concentration of the toxin is usually lower than the detection limits. As a more sensitive detection method for microcystin, we developed a microchip based enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibodies. New monoclonal antibodies against the microcystin leucine-arginine variant (MCLR), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa, were prepared from cloned hybridoma cell lines. We used keyhole limpet hemocyanin(KLH)-conjugated MCLR as an immunogen for the production of mouse monoclonal antibody. The immunization, cell fusion, and screening of hybridoma cells producing anti-MCLR antibody were conducted. Since the ELISA test was highly sensitive, the newly developed microchip based ELISA can be suitable for the trace analysis of cyanobacterial hepatotoxins, microcystins in water. The linear responses of monoclonal antibodies with different concentrations of microcystin LR were established between 0.025 and 0.3 ng/mL.

  20. Physiology and Endocrinology of the Ovarian Cycle in Macaques

    PubMed Central

    Weinbauer, Gerhard F.; Niehoff, Marc; Niehaus, Michael; Srivastav, Shiela; Fuchs, Antje; Van Esch, Eric; Cline, J. Mark

    2009-01-01

    Macaques provide excellent models for preclinical testing and safety assessment of female reproductive toxicants. Currently, cynomolgus monkeys are the predominant species for (reproductive) toxicity testing. Marmosets and rhesus monkeys are being used occasionally. The authors provide a brief review on physiology and endocrinology of the cynomolgus monkey ovarian cycle, practical guidance on assessment and monitoring of ovarian cyclicity, and new data on effects of social housing on ovarian cyclicity in toxicological studies. In macaques, cycle monitoring is achieved using daily vaginal smears for menstruation combined with cycle-timed frequent sampling for steroid and peptide hormone analysis. Owing to requirements of frequent and timed blood sampling, it is not recommended to incorporate these special evaluations into a general toxicity study design. Marmosets lack external signs of ovarian cyclicity, and cycle monitoring is done by regular determinations of progesterone. Cynomolgus and marmoset monkeys do not exhibit seasonal variations in ovarian activity, whereas such annual rhythm is pronounced in rhesus monkeys. Studies on pair- and group-housed cynomolgus monkeys revealed transient alterations in the duration and endocrinology of the ovarian cycle followed by return to normal cyclicity after approximately six months. This effect is avoided if the animals had contact with each other prior to mingling. These experiments also demonstrated that synchronization of ovarian cycles did not occur. PMID:20852722

  1. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

    PubMed

    Verbeke, Tobin J; Giannone, Richard J; Klingeman, Dawn M; Engle, Nancy L; Rydzak, Thomas; Guss, Adam M; Tschaplinski, Timothy J; Brown, Steven D; Hettich, Robert L; Elkins, James G

    2017-02-23

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.

  2. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    PubMed Central

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; Engle, Nancy L.; Rydzak, Thomas; Guss, Adam M.; Tschaplinski, Timothy J.; Brown, Steven D.; Hettich, Robert L.; Elkins, James G.

    2017-01-01

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes. PMID:28230109

  3. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

    NASA Astrophysics Data System (ADS)

    Pusterla, Ivano; Bode, Jeffrey W.

    2015-08-01

    Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid-hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM-5 mM) and mild temperatures (20-25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

  4. Protein-membrane electrostatic interactions: Application of the Lekner summation technique

    NASA Astrophysics Data System (ADS)

    Juffer, André H.; Shepherd, Craig M.; Vogel, Hans J.

    2001-01-01

    A model has been developed to calculate the electrostatic interaction between biomolecules and lipid bilayers. The effect of ionic strength is included by means of explicit ions, while water is described as a background continuum. The bilayer is considered at the atomic level. The Lekner summation technique is employed to calculate the long-range electrostatic interactions. The new method is employed to estimate the electrostatic contribution to the free energy of binding of sandostatin, a cyclic eight-residue analogue of the peptide hormone somatostatin, to lipid bilayers with thermodynamic integration. Monte Carlo simulation techniques were employed to determine ion distributions and peptide orientations. Both neutral as well as negatively charged lipid bilayers were used. An error analysis to judge the quality of the computation is also presented. The applicability of the Lekner summation technique to combine it with computer simulation models that simulate the adsorption of peptides (and proteins) into the interfacial region of lipid bilayers is discussed.

  5. Conformationally restricted C-terminal peptides of substance P. Synthesis, mass spectral analysis and pharmacological properties.

    PubMed

    Theodoropoulos, D; Poulos, C; Gatos, D; Cordopatis, P; Escher, E; Mizrahi, J; Regoli, D; Dalietos, D; Furst, A; Lee, T D

    1985-10-01

    Four cyclic analogues of the C-terminal hepta- or hexapeptide of substance P were prepared by the solution method. The cyclizations were obtained by substituting with cysteine the residues normally present in positions 5 or 6 or 11 of substance P and by subsequent disulfide bond formation. The final products were identified by ordinary analytical procedures and advanced mass spectroscopy. The biological activities were determined on three bioassays: the guinea pig ileum, the guinea pig trachea and the rabbit mesenteric vein. Results obtained with these assays indicate that all peptides with a disulfide bridgehead in position 11 are inactive and that a cycle between positions 5 and 6 already strongly reduces the biological activity. The acyclic precursors containing thiol protection groups display weak biological activities. These results further underline the importance of the side chain in position 11 of substance P and suggest that optimal biological activities may require a linear peptide sequence.

  6. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine.

    PubMed

    Nasrolahi Shirazi, Amir; Tiwari, Rakesh Kumar; Oh, Donghoon; Banerjee, Antara; Yadav, Arpita; Parang, Keykavous

    2013-05-06

    Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the negatively charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F'-GpYLPQTV, F'-NEpYTARQ, F'-AEEEIYGEFEAKKKK, F'-PEpYLGLD, F'-pYVNVQN-NH2, and F'-GpYEEI (F' = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F'-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F'-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F'-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, respectively. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable negatively charged phosphopeptides.

  7. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.

    PubMed

    Kumaran, Desigan; Adler, Michael; Levit, Matthew; Krebs, Michael; Sweeney, Richard; Swaminathan, Subramanyam

    2015-11-15

    The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter. Published by Elsevier Ltd.

  8. PnPP-19, a Synthetic and Nontoxic Peptide Designed from a Phoneutria nigriventer Toxin, Potentiates Erectile Function via NO/cGMP.

    PubMed

    Silva, Carolina Nunes; Nunes, Kenia Pedrosa; Torres, Fernanda Silva; Cassoli, Juliana Silva; Santos, Daniel Moreira; Almeida, Flávia De Marco; Matavel, Alessandra; Cruz, Jader Santos; Santos-Miranda, Arthur; Nunes, Allancer Divino C; Castro, Carlos Henrique; Machado de Ávila, Ricardo Andrés; Chávez-Olórtegui, Carlos; Láuar, Stephanie Stransky; Felicori, Liza; Resende, Jarbas Magalhães; Camargos, Elizabeth Ribeiro da Silva; Borges, Márcia Helena; Cordeiro, Marta Nascimento; Peigneur, Steve; Tytgat, Jan; de Lima, Maria Elena

    2015-11-01

    We designed a peptide, PnPP-19, comprising the potential active core of the Phoneutria nigriventer native toxin PnTx2-6. We investigated its role on erectile function, and its toxicity and immunogenicity. Erectile function was evaluated by the intracavernous pressure-to-mean arterial pressure ratio during electrical field stimulation on rat pelvic ganglia. Cavernous strips were contracted with phenylephrine and relaxation was induced by electrical field stimulation with or without PnPP-19 (10(-8) M). Activity on sodium channels was evaluated by electrophysiological screening of transfected channels on Xenopus oocytes and dorsal root ganglion cells. Antibodies were detected by indirect enzyme-linked immunosorbent assay in mice previously treated with the peptide. Histopathological studies were performed with mouse organs treated with different doses of PnPP-19. PnPP-19 was able to potentiate erection at 4 and 8 Hz in vivo and ex vivo. It showed no toxicity and low immunogenicity in mice, and did not affect sodium channels or rat hearts. PnPP-19 increased cyclic guanosine monophosphate levels at 8 Hz. This effect was inhibited by L-NAME (10(-4) M). Erectile function was partially inhibited by 7-nitroindazole (10(-5) M), a selective inhibitor of neuronal nitric oxide synthase. PnPP-19 potentiates erection in vivo and ex vivo via the nitric oxide/cyclic guanosine monophosphate pathway. It does not affect sodium channels or rat hearts and shows no toxicity and low immunogenicity. These findings make it a promising candidate as a novel drug in the therapy of erectile dysfunction. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae.

    PubMed

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata . It consists of 10 amino acid residues, including five N -methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae . The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR , were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae , gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata . Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae , although there may be unknown factors limiting productivity in this species.

  10. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae

    PubMed Central

    Yoshimi, Akira; Yamaguchi, Sigenari; Fujioka, Tomonori; Kawai, Kiyoshi; Gomi, Katsuya; Machida, Masayuki; Abe, Keietsu

    2018-01-01

    A novel cyclic peptide compound, KK-1, was originally isolated from the plant-pathogenic fungus Curvularia clavata. It consists of 10 amino acid residues, including five N-methylated amino acid residues, and has potent antifungal activity. Recently, the genome-sequencing analysis of C. clavata was completed, and the biosynthetic genes involved in KK-1 production were predicted by using a novel gene cluster mining tool, MIDDAS-M. These genes form an approximately 75-kb cluster, which includes nine open reading frames, containing a non-ribosomal peptide synthetase (NRPS) gene. To determine whether the predicted genes were responsible for the biosynthesis of KK-1, we performed heterologous production of KK-1 in Aspergillus oryzae by introduction of the cluster genes into the genome of A. oryzae. The NRPS gene was split in two fragments and then reconstructed in the A. oryzae genome, because the gene was quite large (approximately 40 kb). The remaining seven genes in the cluster, excluding the regulatory gene kkR, were simultaneously introduced into the strain of A. oryzae in which NRPS had already been incorporated. To evaluate the heterologous production of KK-1 in A. oryzae, gene expression was analyzed by RT-PCR and KK-1 productivity was quantified by HPLC. KK-1 was produced in variable quantities by a number of transformed strains, along with expression of the cluster genes. The amount of KK-1 produced by the strain with the greatest expression of all genes was lower than that produced by the original producer, C. clavata. Therefore, expression of the cluster genes is necessary and sufficient for the heterologous production of KK-1 in A. oryzae, although there may be unknown factors limiting productivity in this species. PMID:29686660

  11. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: insights from x-ray crystallography

    DOE PAGES

    Kumaran, D.; Adler, M.; Levit, M.; ...

    2015-10-17

    The seven antigenically distinct serotypes (A to G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins: the heavy chain is responsible for neurospecific binding, internalization and translocation, and the light chain is responsible for substrate cleavage. Because of their extreme toxicity and prior history of weaponization, the BoNTs are considered to be potential bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than critical care;more » therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was synthesized and found to inhibit BoNT/A light chain (Balc) with high affinity. When tested in a cell-free Förster resonance excitation transfer (FRET) assay, CPI-1 was found to have a K i of 13.9 nM using full-length Balc448 and 42.1 nM using a truncated crystallizable form of light chain (Balc424). Co-crystallization of CPI-1 with Balc424 revealed that in the Balc-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn 2+ binding region involved in catalysis. This is in contrast to linear peptide inhibitors described to date which block only the latter« less

  12. Near-infrared optical imaging in glioblastoma xenograft with ligand targeting α3 integrin

    PubMed Central

    Xiao, Wenwu; Yao, Nianhuan; Peng, Li; Liu, Ruiwu; Lam, Kit S

    2010-01-01

    Purpose Patients with glioblastoma usually have a very poor prognosis. Even with a combination of radiotherapy plus temozolomide, the median survival of these patients is only 14.6 months. New treatment approaches to this cancer are needed. Our purpose is to develop new cell-surface binding ligands for glioblastoma cells, and use them as targeted imaging and therapeutic agents for this deadly disease. Methods One-bead one-compound combinatorial cyclic peptide libraries were screened with live human glioblastoma U-87MG cells. The binding affinity and targeting specificity of peptides identified were tested with in vitro experiments on cells and in vivo, and ex vivo experiments on U-87MG xegnograft mouse model. Results A cyclic peptide, LXY1, was identified and shown to be binding to the α3 integrin of U-87MG cells with moderately high affinity (Kd = 0.5+/−0.1 μM) and high specificity. Biotinylated LXY1, when complexed with streptavidin-Cy5.5 (SA-Cy5.5) conjugate, targeted both subcutaneous and orthotopic U-87MG xenograft implants in nude mice. The in vivo targeting specificity was further verified by strong inhibition of tumor uptake of LXY1-biotin-SA-Cy5.5 complex when intravenously injecting the animals with anti-α3 integrin antibody or excess unlabeled LXY1 prior to administrating the imaging probe. The smaller univalent LXY1-Cy5.5 conjugate (2279 Da) was found to have a faster accumulation in the U-87MG tumor and shorter retention time compared with the larger tetravalent LXY1-biotin-SA-Cy5.5 complex (~ 64 KDa). Conclusions Collectively, the data reveals that LXY1 has the potential to be developed into an effective imaging and therapeutic targeting agent for human glioblastoma. PMID:18712382

  13. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    PubMed

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory. SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  14. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides.

    PubMed

    Cameron, Alan J; Squire, Christopher J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2017-12-14

    Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H 2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of anticitrullinated protein antibody reactivities in a subset of anti-CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 ‘shared epitope’ alleles

    PubMed Central

    Wagner, Catriona A; Sokolove, Jeremy; Lahey, Lauren J; Bengtsson, Camilla; Saevarsdottir, Saedis; Alfredsson, Lars; Delanoy, Michelle; Lindstrom, Tamsin M; Walker, Roger P; Bromberg, Reuven; Chandra, Piyanka E; Binder, Steven R; Klareskog, Lars; Robinson, William H

    2015-01-01

    Introduction A hallmark of rheumatoid arthritis (RA) is the development of autoantibodies targeting proteins that contain citrulline. Anticitrullinated protein antibodies (ACPAs) are currently detected by the commercial cyclic citrullinated peptide (CCP) assay, which uses a mix of cyclised citrullinated peptides as an artificial mimic of the true antigen(s). To increase the sensitivity of ACPA detection and dissect ACPA specificities, we developed a multiplex assay that profiles ACPAs by measuring their reactivity to the citrullinated peptides and proteins derived from RA joint tissue. Methods We created a bead-based, citrullinated antigen array to profile ACPAs. This custom array contains 16 citrullinated peptides and proteins detected in RA synovial tissues. We used the array to profile ACPAs in sera from a cohort of patients with RA and other non-inflammatory arthritides, as well as sera from an independent cohort of RA patients for whom data were available on carriage of HLA-DRB1 ‘shared epitope’ (SE) alleles and history of cigarette smoking. Results Our multiplex assay showed that at least 10% of RA patients who tested negative in the commercial CCP assay possessed ACPAs. Carriage of HLA-DRB1 SE alleles and a history of cigarette smoking were associated with an increase in ACPA reactivity—in anti-CCP+ RA and in a subset of anti-CCP− RA. Conclusions Our multiplex assay can identify ACPA-positive RA patients missed by the commercial CCP assay, thus enabling greater diagnostic sensitivity. Further, our findings suggest that cigarette smoking and possession of HLA-DRB1 SE alleles contribute to the development of ACPAs in anti-CCP− RA. PMID:24297382

  16. Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization

    PubMed Central

    2015-01-01

    Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F′-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4–2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295

  17. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine

    PubMed Central

    Mozziconacci, Olivier; Kerwin, Bruce A.; Schöneich, Christian

    2013-01-01

    The photodissociation of disulfide bonds in model peptides containing Ala and Ala-d3 generates a series of photoproducts following the generation of a CysS• thiyl radical pair. These photoproducts include transformations of Cys to dehydroalanine (Dha) and Ala, as well as Ala to Dha. Intramolecular Michael addition of an intact Cys with a photolytically generated Dha results in the formation of cyclic thioethers. The conversion of Cys into Dha likely involves a 1,3-H-shift from the Cys αC-H bond to the thiyl radical, followed by elimination of HS•. The conversion of Dha into Ala most likely involves hydrated electrons, which are generated through the photolysis of Cys, the photoproduct of disulfide photolysis. Prior to stable product formation, CysS• radicals engage in reversible hydrogen transfer reactions with αC-H and βC-H bonds of the surrounding amino acids. Especially for the βC-H bonds of Ala such hydrogen transfer reactions are unexpected based on thermodynamic grounds; however, the replacement of deuterons in Ala-d3 by hydrogens in H2O provides strong experimental evidence for such reactions. PMID:21895001

  18. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers.

    PubMed

    Guo, Jinxia; Lang, Lixin; Hu, Shuo; Guo, Ning; Zhu, Lei; Sun, Zhongchan; Ma, Ying; Kiesewetter, Dale O; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2014-04-01

    RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

  19. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region.

    PubMed

    Amin, Mohamadreza; Mansourian, Mercedeh; Koning, Gerben A; Badiee, Ali; Jaafari, Mahmoud Reza; Ten Hagen, Timo L M

    2015-12-28

    Liposomes containing cytotoxic agents and targeted with Arg-Gly-Asp based peptides have frequently been used against αvβ3 integrin on tumor neovasculature. However, like many other ligand modified liposomes these preparations suffered from enhanced uptake by the reticulo endothelial system (RES) and off-targeted interaction with integrin receptors vastly expressed in normal organs causing poor biodistribution and toxic effects. Here we mainly focus on development of a RGD-modified liposomal delivery system to enhance both targeting selectivity and tumor uptake. First, sterically stabilized liposomal doxorubicin (SSLD) prepared and decorated with cRGDfK and RGDyC peptides differ in their physical properties. Stability assessments as well as in vitro and in vivo studies revealed that increasing the peptide hydrophobicity promotes the therapeutic efficacy of RGD-SSLD in a C-26 tumor model due to decreased recognition by RES and opsonization and limited off-targeted interactions. Then a novel N-methylated RGD peptide was designed and its capability in targeting integrin presenting cells was comprehensively assessed both in vitro and in vivo. RGDf[N-methyl]C promotes the liposome internalization by HUVEC via integrin mediated endocytosis. Intravital microscopy in window chamber bearing mice illustrated the capability of RGDf[N-methyl]C-liposomes in targeting both tumor vasculature and tumor cells in murine B16F0 and human BLM tumor models. Quantitative biodistribution in mice bearing B16F0 tumor revealed its high affinity to tumor with no considerable affinity to normal organs. Treatment by high dose of RGDf[N-methyl]C-SSLD was found more effective than non-targeted SSLD and no toxic side effect was observed. In conclusion, the RGDf[N-methyl]C-liposome was found promising in targeting tumor vasculature as well as other cells inside the tumor. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Agonist-induced glycogenolysis in rabbit retinal slices and cultures.

    PubMed Central

    Ghazi, H.; Osborne, N. N.

    1989-01-01

    1. The effects of different putative retinal transmitters and/or modulators on glycogenolysis in rabbit retinal slices and in retinal Müller cell cultures were examined. 2. Incubation of rabbit retinal slices or primary retinal cultures (either 3-5 day-old or 25-30 day-old) in a buffer solution containing [3H]-glucose resulted in the accumulation of newly synthesized [3H]-glycogen. 3. Noradrenaline (NA), isoprenaline, vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) and 8-hydroxy-dipropylaminetetralin (8-OH-DPAT) stimulated the hydrolysis of this newly formed 3H-polymer. The potency order of maximal stimulations was: VIP greater than NA greater than isoprenaline greater than 5-HT greater than 8-OH-DPAT. 4. The putative retinal transmitters, dopamine, gamma-aminobutyric acid (GABA), glycine and taurine and the muscarinic agonist carbachol (CCh) had no effect on [3H]-glycogen content. 5. The glycogenolytic effects of NA/isoprenaline and 5-HT/8-OH-DPAT appear to be mediated by beta-adrenoceptors and 5-HT1 receptors (possibly 5-HT1A), respectively while the VIP-induced response involved another receptor subtype. 6. Agonists which mediated [3H]-glycogen hydrolysis also stimulated an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. Both responses are blocked to a similar extent by the same antagonists and so are probably mediated via the same receptor subtypes. Moreover, dibutyryl cyclic AMP (db cyclic AMP) promoted tritiated glycogen breakdown in the three retinal preparations. 7. Not all receptors linked to cyclic AMP production however promote glycogenolysis. Dopamine and apomorphine stimulated cyclic AMP formation via D1-receptors without influencing glycogenolysis. These receptors are exclusively associated with neurones. PMID:2568145

  1. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    NASA Astrophysics Data System (ADS)

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization of the films confirmed the presence of both EODT and EDOTacid units. Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. Thus we were able to develop a method for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicities and surface morphologies. For longer lifetime devices incorporating a biomolecule via covalent immobilization techniques are preferred over physical adsorption or entrapment. We took advantage of the carboxylic acid group on the PEDOTacid copolymer films to modify the surface of these films with a laminin based peptide, the nonapeptide sequence CDPGYIGSR. XPS and toluidine blue O assay proved the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide modified films. The bioactivity of the peptide along with the need of a spacer molecule for cell adhesion and differentiation was tested using the rat pheochromocytoma (PC12) cells. Films modified with the longest poly(ethylene glycol) spacer used in this study, a 3 nm long molecule, demonstrated the best attachment and neurite outgrowth compared to films with peptides with no spacer and a 1 nm spacer, PEG3. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with the mean neurite length of 90 microm. Along with the acid functionalized PEDOT films, vinyl terminated ProDOT films were also investigated as coatings for neural electrodes. The vinyl group was successfully modified with a RGD peptide via thiol-ene click chemistry. Both the acid and vinyl functional conducting polymer films provide an effective approach to biofunctionalize conducting polymer films.

  2. Antagonistic Properties of Some Halophilic Thermoactinomycetes Isolated from Superficial Sediment of a Solar Saltern and Production of Cyclic Antimicrobial Peptides by the Novel Isolate Paludifilum halophilum

    PubMed Central

    Frikha Dammak, Donyez; Zarai, Ziad; Najah, Soumaya; Abdennabi, Rayed; Belbahri, Lassaad; Rateb, Mostafa E.; Mejdoub, Hafedh

    2017-01-01

    This study has focused on the isolation of twenty-three halophilic actinomycetes from two ponds of different salinity and the evaluation of their ability to exert an antimicrobial activity against both their competitors and several other pathogens. From the 23 isolates, 18 strains showed antagonistic activity, while 19 showed activities against one or more of the seven pathogen strains tested. Six strains exhibited consistent antibacterial activity against Gram-negative and Gram-positive pathogens characterized at the physiological and molecular levels. These strains shared only 94-95% 16S rRNA sequence identity with the closely related species of the Thermoactinomycetaceae family. Among them, the potent strain SMBg3 was further characterized and assigned to a new genus in the family for which the name Paludifilum halophilum (DSM 102817T) is proposed. Sequential extraction of the antimicrobial compounds with ethyl acetate revealed that the crude extract from SMBg3 strain had inhibitory effect on the growth of the plant pathogen Agrobacterium tumefaciens and the human pathogens Staphylococcus aureus, Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa. Based on the HRESI-MS spectral data, the cyclic lipopeptide Gramicidin S and four cyclic dipeptides (CDPs) named cyclo(L-4-OH-Pro-L-Leu), cyclo(L-Tyr-L-Pro), cyclo(L-Phe-L-Pro), and cyclo(L-Leu-L-Pro) were detected in the fermentation broth of Paludifilum halophilum. To our knowledge, this is the first report on the isolation of these compounds from members of the Thermoactinomycetaceae family. PMID:28819625

  3. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting.

    PubMed

    Han, Zheng; Zhou, Zhuxian; Shi, Xiaoyue; Wang, Junpeng; Wu, Xiaohui; Sun, Da; Chen, Yinghua; Zhu, Hui; Magi-Galluzzi, Cristina; Lu, Zheng-Rong

    2015-05-20

    Extradomain-B fibronectin (EDB-FN), one of the oncofetal fibronectin (onfFN) isoforms, is a high-molecular-weight glycoprotein that mediates cell adhesion and migration. The expression of EDB-FN is associated with a number of cancer-related biological processes such as tumorigenesis, angiogenesis, and epithelial-to-mesenchymal transition (EMT). Here, we report the development of a small peptide specific to EDB-FN for targeting prostate cancer. A cyclic nonapeptide, CTVRTSADC (ZD2), was identified using peptide phage display. A ZD2-Cy5 conjugate was synthesized to accomplish molecular imaging of prostate cancer in vitro and in vivo. ZD2-Cy5 demonstrated effective binding to up-regulated EDB-FN secreted by TGF-β-induced PC3 cancer cells following EMT. Following intravenous injections, the targeted fluorescent probe specifically bound to and delineated PC3-GFP prostate tumors in nude mice bearing the tumor xenografts. ZD2-Cy5 also showed stronger binding to human prostate tumor specimens with a higher Gleason score (GS9) compared to those with a lower score (GS 7), with no binding in benign prostatic hyperplasia (BPH). Thus, the ZD2 peptide is a promising strategy for molecular imaging and targeted therapy of prostate cancer.

  4. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis.

    PubMed

    Huang, En; Zhang, Liwen; Chung, Yoon-Kyung; Zheng, Zuoxing; Yousef, Ahmed E

    2013-01-01

    Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food.

  5. Characterization and Application of Enterocin RM6, a Bacteriocin from Enterococcus faecalis

    PubMed Central

    Chung, Yoon-Kyung; Yousef, Ahmed E.

    2013-01-01

    Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food. PMID:23844357

  6. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature

    PubMed Central

    Gerlag, Danielle M; Borges, Eric; Tak, Paul P; Ellerby, H Michael; Bredesen, Dale E; Pasqualini, Renata; Ruoslahti, Erkki; Firestein, Gary S

    2001-01-01

    Because angiogenesis plays a major role in the perpetuation of inflammatory arthritis, we explored a method for selectively targeting and destroying new synovial blood vessels. Mice with collagen-induced arthritis were injected intravenously with phage expressing an RGD motif. In addition, the RGD peptide (RGD-4C) was covalently linked to a proapoptotic heptapeptide dimer, D(KLAKLAK)2, and was systemically administered to mice with collagen-induced arthritis. A phage displaying an RGD-containing cyclic peptide (RGD-4C) that binds selectively to the αvβ3 and αvβ5 integrins accumulated in inflamed synovium but not in normal synovium. Homing of RGD-4C phage to inflamed synovium was inhibited by co-administration of soluble RGD-4C. Intravenous injections of the RGD-4C–D(KLAKLAK)2 chimeric peptide significantly decreased clinical arthritis and increased apoptosis of synovial blood vessels, whereas treatment with vehicle or uncoupled mixture of the RGD-4C and the untargeted proapoptotic peptide had no effect. Targeted apoptosis of synovial neovasculature can induce apoptosis and suppress clinical arthritis. This form of therapy has potential utility in the treatment of inflammatory arthritis. PMID:11714389

  7. Primary structures of skin antimicrobial peptides indicate a close, but not conspecific, phylogenetic relationship between the leopard frogs Lithobates onca and Lithobates yavapaiensis (Ranidae).

    PubMed

    Conlon, J Michael; Coquet, Laurent; Leprince, Jérôme; Jouenne, Thierry; Vaudry, Hubert; King, Jay D

    2010-04-01

    The phylogenetic relationship between the relict leopard frog Lithobates (Rana) onca (Cope, 1875) and the lowland leopard frog Lithobates (Rana) yavapaiensis (Platz and Frost, 1984) is unclear. Chromatographic analysis of norepinephrine-stimulated skin secretions from L. onca led to the identification of six peptides with antimicrobial activity. Determination of their primary structures indicated that four of the peptides were identical to brevinin-1Ya, brevinin-1Yb, brevinin-1Yc and ranatuerin-2Ya previously isolated from skin secretions of L. yavapaiensis. However, a peptide belonging to the temporin family (temporin-ONa: FLPTFGKILSGLF.NH(2)) and an atypical member of the ranatuerin-2 family containing a C-terminal cyclic heptapeptide domain (ranatuerin-2ONa: GLMDTVKNAAKNLAGQMLDKLKCKITGSC) were isolated from the L. onca secretions but were not present in the L. yavapaiensis secretions. Ranatuerin-2ONa inhibited the growth of Escherichia coli (MIC=50muM) and Candida albicans (MIC=100muM ) and showed hemolytic activity (LC(50)=90muM) but was inactive against Staphylococcus aureus. The data indicate a close phylogenetic relationship between L. onca and L. yavapaiensis but suggest that they are not conspecific species.

  8. Unusual Fragmentation of Pro-Ser/Thr-Containing Peptides Detected in Collision-Induced Dissociation Spectra

    NASA Astrophysics Data System (ADS)

    Medzihradszky, Katalin F.; Trinidad, Jonathan C.

    2012-04-01

    During collision-induced dissociation (CID)-, phosphoserine- and phosphothreonine-containing peptides frequently undergo neutral loss of phosphoric acid. Subsequent amide bond cleavage N-terminal to the site of phosphorylation results in a y ion with a mass 18 Da lower than the corresponding unmodified y fragment. We report here that when the phosphoserine or phosphothreonine is directly preceded by a proline, an unusual fragment with a mass 10 Da higher than the corresponding unmodified y ion is frequently observed. Accurate mass measurements are consistent with elimination of the phosphoric acid followed by fragmentation between the α carbon and the carbonyl group of the proline residue. We propose a cyclic oxazoline structure for this fragment. Our observation may be explained by the charge-directed SN2 neighboring group participation reaction proposed for the phosphoric acid elimination by Palumbo et al. [Palumbo, A. M., Tepe, J. J., Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. J. Protein Res. 7(2), 771-779 (2008)]. Considering such specific fragment ions for confirmation purposes after regular database searches may boost the confidence of peptide identifications as well as phosphorylation site assignments.

  9. cRGD Peptide-Conjugated Pyropheophorbide-a Photosensitizers for Tumor Targeting in Photodynamic Therapy.

    PubMed

    Li, Wenjing; Tan, Sihai; Xing, Yutong; Liu, Qian; Li, Shuang; Chen, Qingle; Yu, Min; Wang, Fengwei; Hong, Zhangyong

    2018-04-02

    Pyropheophorbide-a (Pyro) is a highly promising photosensitizer for tumor photodynamic therapy (PDT), although its very limited tumor-accumulation ability seriously restricts its clinical applications. A higher accumulation of photosensitizers is very important for the treatment of deeply seated and larger tumors. The conjugation of Pyro with tumor-homing peptide ligands could be a very useful strategy to optimize the physical properties of Pyro. Herein, we reported our studies on the conjugation of Pyro with a cyclic cRGDfK (cRGD) peptide, an integrin binding sequence, to develop highly tumor-specific photosensitizers for PDT application. To further reduce the nonspecific uptake and, thus, reduce the background distribution of the conjugates in normal tissues, we opted to add a highly hydrophilic polyethylene glycol (PEG) chain and an extra strongly hydrophilic carboxylic acid group as the linker to avoid the direct connection of the strongly hydrophobic Pyro macrocycle and cRGD ligand. We reported here the synthesis and characterization of these conjugates, and the influence of the hydrophilic modification on the biological function of the conjugates was carefully studied. The tumor-accumulation ability and photodynamic-induced cell-killing ability of these conjugates were evaluated through both in vitro cell-based experiment and in vivo distribution and tumor therapy experiments with tumor-bearing mice. Thus, the synthesized conjugate significantly improved the tumor enrichment and tumor selectivity of Pyro, as well as abolished the xenograft tumors in the murine model through a one-time PDT treatment.

  10. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33

    PubMed Central

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  11. Antidepressant-like effect of food-derived pyroglutamyl peptides in mice.

    PubMed

    Yamamoto, Yukako; Mizushige, Takafumi; Mori, Yukiha; Shimmura, Yuki; Fukutomi, Ruuta; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-06-01

    The N-terminal glutamine residue, exposed by enzymatic cleavage of precursor proteins, is known to be modified to a pyroglutamyl residue with a cyclic structure in not only endogenous but also food-derived peptides. We investigated the effects of wheat-derived pyroglutamyl peptides on emotional behaviors. Pyroglutamyl leucine (pyroGlu-Leu, pEL) and pyroglutamyl glutaminyl leucine (pyroGlu-Gln-Leu, pEQL) exhibited antidepressant-like activity in the tail suspension and forced swim tests in mice. pEQL exhibited more potent antidepressant-like activity than pEL after i.p. and i.c.v. administration. pEQL exhibited antidepressant-like activity at a lower dose than Gln-Gln-Leu, suggesting that pyroglutamyl peptide had more potent activity. To examine whether pyroglutamyl peptides increased hippocampus neurogenesis, associated with the effects of antidepressants, we measured 5-bromo-2'-deoxyuridine (BrdU) incorporation. pEL and pEQL increased BrdU-positive cells in the dentate gyrus of the hippocampus. Intriguingly, pEL did not increase hippocampal mRNA and protein expression of brain-derived neurotrophic factor (BDNF), which is a factor associated with both neuropoietic and antidepressive effects. Thus, pyroglutamyl peptides may enhance hippocampal neurogenesis via a pathway independent of BDNF. We also confirmed that pEL and pEQL were produced in the subtilisin digest of major wheat proteins, glutenin and gliadin, after heat treatment. pEL and pEQL are the first peptides derived from wheat proteins to be shown to exhibit an antidepressant-like activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase.

    PubMed

    Benjdia, Alhosna; Decamps, Laure; Guillot, Alain; Kubiak, Xavier; Ruffié, Pauline; Sandström, Corine; Berteau, Olivier

    2017-06-30

    Radical S -adenosylmethionine (SAM) enzymes are emerging as a major superfamily of biological catalysts involved in the biosynthesis of the broad family of bioactive peptides called ribosomally synthesized and post-translationally modified peptides (RiPPs). These enzymes have been shown to catalyze unconventional reactions, such as methyl transfer to electrophilic carbon atoms, sulfur to C α atom thioether bonds, or carbon-carbon bond formation. Recently, a novel radical SAM enzyme catalyzing the formation of a lysine-tryptophan bond has been identified in Streptococcus thermophilus , and a reaction mechanism has been proposed. By combining site-directed mutagenesis, biochemical assays, and spectroscopic analyses, we show here that this enzyme, belonging to the emerging family of SPASM domain radical SAM enzymes, likely contains three [4Fe-4S] clusters. Notably, our data support that the seven conserved cysteine residues, present within the SPASM domain, are critical for enzyme activity. In addition, we uncovered the minimum substrate requirements and demonstrate that KW cyclic peptides are more widespread than anticipated, notably in pathogenic bacteria. Finally, we show a strict specificity of the enzyme for lysine and tryptophan residues and the dependence of an eight-amino acid leader peptide for activity. Altogether, our study suggests novel mechanistic links among SPASM domain radical SAM enzymes and supports the involvement of non-cysteinyl ligands in the coordination of auxiliary clusters. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Hoiamides, Structurally Intriguing Neurotoxic Lipopeptides from Papua New Guinea Marine Cyanobacteria

    PubMed Central

    Choi, Hyukjae; Pereira, Alban R.; Cao, Zhengyu; Shuman, Cynthia F.; Engene, Niclas; Byrum, Tara; Matainaho, Teatulohi; Murray, Thomas F.; Mangoni, Alfonso; Gerwick, William H.

    2011-01-01

    Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two α-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca2+ oscillations with EC50 values of 3.9 μM and 79.8 nM, respectively, while 3 had no significant effects in these assays. PMID:20687534

  14. Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil.

    PubMed

    Michelsen, Charlotte F; Watrous, Jeramie; Glaring, Mikkel A; Kersten, Roland; Koyama, Nobuhiro; Dorrestein, Pieter C; Stougaard, Peter

    2015-03-17

    Potatoes are cultivated in southwest Greenland without the use of pesticides and with limited crop rotation. Despite the fact that plant-pathogenic fungi are present, no severe-disease outbreaks have yet been observed. In this report, we document that a potato soil at Inneruulalik in southern Greenland is suppressive against Rhizoctonia solani Ag3 and uncover the suppressive antifungal mechanism of a highly potent biocontrol bacterium, Pseudomonas fluorescens In5, isolated from the suppressive potato soil. A combination of molecular genetics, genomics, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) revealed an antifungal genomic island in P. fluorescens In5 encoding two nonribosomal peptides, nunamycin and nunapeptin, which are key components for the biocontrol activity by strain In5 in vitro and in soil microcosm experiments. Furthermore, complex microbial behaviors were highlighted. Whereas nunamycin was demonstrated to inhibit the mycelial growth of R. solani Ag3, but not that of Pythium aphanidermatum, nunapeptin instead inhibited P. aphanidermatum but not R. solani Ag3. Moreover, the synthesis of nunamycin by P. fluorescens In5 was inhibited in the presence of P. aphanidermatum. Further characterization of the two peptides revealed nunamycin to be a monochlorinated 9-amino-acid cyclic lipopeptide with similarity to members of the syringomycin group, whereas nunapeptin was a 22-amino-acid cyclic lipopeptide with similarity to corpeptin and syringopeptin. Crop rotation and systematic pest management are used to only a limited extent in Greenlandic potato farming. Nonetheless, although plant-pathogenic fungi are present in the soil, the farmers do not experience major plant disease outbreaks. Here, we show that a Greenlandic potato soil is suppressive against Rhizoctonia solani, and we unravel the key biocontrol components for Pseudomonas fluorescens In5, one of the potent biocontrol bacteria isolated from this Greenlandic suppressive soil. Using a combination of molecular genetics, genomics, and microbial imaging mass spectrometry, we show that two cyclic lipopeptides, nunamycin and nunapeptin, are important for the biocontrol activity of P. fluorescens In5 both in vitro and in microcosm assays. Furthermore, we demonstrate that the synthesis of nunamycin is repressed by the oomycete Pythium aphanidermatum. Overall, our report provides important insight into interkingdom interference between bacteria and fungi/oomycetes. Copyright © 2015 Michelsen et al.

  15. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  16. Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers

    DOE PAGES

    Song, Yeonho; Lee, Ji Hye; Hwang, Hoon; ...

    2016-11-04

    Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less

  17. Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆

    PubMed Central

    Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité

    2008-01-01

    Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497

  18. Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium–niobium alloy surfaces

    PubMed Central

    Medda, Rebecca; Helth, Arne; Herre, Patrick; Pohl, Darius; Rellinghaus, Bernd; Perschmann, Nadine; Neubauer, Stefanie; Kessler, Horst; Oswald, Steffen; Eckert, Jürgen; Spatz, Joachim P.; Gebert, Annett; Cavalcanti-Adam, Elisabetta A.

    2014-01-01

    Multi-potent adult mesenchymal stem cells (MSCs) derived from bone marrow have therapeutic potential for bone diseases and regenerative medicine. However, an intrinsic heterogeneity in their phenotype, which in turn results in various differentiation potentials, makes it difficult to predict the response of these cells. The aim of this study is to investigate initial cell–surface interactions of human MSCs on modified titanium alloys. Gold nanoparticles deposited on β-type Ti–40Nb alloys by block copolymer micelle nanolithography served as nanotopographical cues as well as specific binding sites for the immobilization of thiolated peptides present in several extracellular matrix proteins. MSC heterogeneity persists on polished and nanopatterned Ti–40Nb samples. However, cell heterogeneity and donor variability decreased upon functionalization of the gold nanoparticles with cyclic RGD peptides. In particular, the number of large cells significantly decreased after 24 h owing to the arrangement of cell anchorage sites, rather than peptide specificity. However, the size and number of integrin-mediated adhesion clusters increased in the presence of the integrin-binding peptide (cRGDfK) compared with the control peptide (cRADfK). These results suggest that the use of integrin ligands in defined patterns could improve MSC-material interactions, not only by regulating cell adhesion locally, but also by reducing population heterogeneity. PMID:24501674

  19. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.

  20. Influence of the interfacial peptide organization on the catalysis of hydrogen evolution.

    PubMed

    Doneux, Th; Dorcák, V; Palecek, E

    2010-01-19

    The hydrogen evolution reaction is catalyzed by peptides and proteins adsorbed on electrode materials with high overpotentials for this reaction, such as mercury. The catalytic response characteristics are known to be very sensitive to the composition and structure of the investigated biomolecule, opening the way to the implementation of a label-free, reagentless electroanalytical method in protein analysis. Herein, it is shown using the model peptide Cys-Ala-Ala-Ala-Ala-Ala that the interfacial organization significantly influences the catalytic behavior. This peptide forms at the electrode two distinct films, depending on the concentration and accumulation time. The low-coverage film, composed of flat-lying molecules (area per molecule of approximately 250-290 A(2)), yields a well-defined catalytic peak at potentials around -1.75 V. The high-coverage film, made of upright-oriented peptides (area per molecule of approximately 43 A(2)), is catalytically more active and the peak is observed at potentials less negative by approximately 0.4 V. The higher activity, evidenced by constant-current chronopotentiometry and cyclic voltammetry, is attributed to an increase in the acid dissociation constant of the amino acid residues as a result of the low permittivity of the interfacial region, as inferred from impedance measurements. An analogy is made to the known differences in acidic-basic behaviors of solvent-exposed and hydrophobic domains of proteins.

  1. Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peatfield, A.C.; Barnes, P.J.; Bratcher, C.

    1983-07-01

    We studied the effect of vasoactive intestinal peptide (VIP) on the output of 35S-labeled macromolecules from ferret tracheal explants either placed in beakers or suspended in modified Ussing chambers. In Ussing chamber experiments, the radiolabel precursor, sodium (35S)sulfate, and all drugs were placed on the submucosal side of the tissue. Washings were collected at 30-min intervals from the luminal side and were dialyzed to remove unbound 35S, leaving radiolabeled macromolecules. Vasoactive intestinal peptide at 3 X 10(-7) M stimulated bound 35S output by a mean of + 252.6% (n . 14). The VIP response was dose-dependent with a near maximalmore » response and a half maximal response at approximately 10(-6) M and 10(-8), M, respectively. The VIP effect was not inhibited by a mixture of tetrodotoxin, atropine, I-propranolol, and phentolamine. Vasoactive intestinal peptide had no effect on the electrical properties of the of the tissues. We conclude that VIP stimulates output of sulfated-macromolecules from ferret tracheal submucosal glands without stimulating ion transport. Our studies also suggest that VIP acts on submucosal glands via specific VIP receptors. Vasoactive intestinal peptide has been shown to increase intracellular levels of cyclic AMP, and we suggest that this may be the mechanism for its effect on the output of macromolecules. This mechanism may be important in the neural regulation of submucosal gland secretion.« less

  2. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma.

    PubMed

    Hwang, Hai-Min; Heo, Chang-Kyu; Lee, Hye Jung; Kwak, Sang-Seob; Lim, Won-Hee; Yoo, Jong-Shin; Yu, Dae-Yuel; Lim, Kook Jin; Kim, Jeong-Yoon; Cho, Eun-Wie

    2018-06-28

    Tumor-associated (TA) autoantibodies, which are generated by the immune system upon the recognition of abnormal TA antigens, are promising biomarkers for the early detection of tumors. In order to detect autoantibody biomarkers effectively, antibody-specific epitopes in the diagnostic test should maintain the specific conformations that are as close as possible to those presenting in the body. However, when using patients' serum as a source of TA autoantibodies the characterization of the autoantibody-specific epitope is not easy due to the limited amount of patient-derived serum. To overcome these limits, we constructed a B cell hybridoma pool derived from a hepatocellular carcinoma (HCC) model HBx-transgenic mouse and characterized autoantibodies derived from them as tumor biomarkers. Their target antigens were identified by mass spectrometry and the correlations with HCC were examined. With the assumption that TA autoantibodies generated in the tumor mouse model are induced in human cancer patients, the enzyme-linked immunosorbent assays (ELISA) based on the characteristics of mouse TA autoantibodies were developed for the detection of autoantibody biomarkers in human serum. To mimic natural antigenic structures, the specific epitopes against autoantibodies were screened from the phage display cyclic random heptapeptide library, and the streptavidin antigens fused with the specific epitopes were used as coating antigens. In this study, one of HCC-associated autoantibodies derived from HBx-transgenic mouse, XC24, was characterized. Its target antigen was identified as splicing factor 3b subunit 1 (SF3B1) and the high expression of SF3B1 was confirmed in HCC tissues. The specific peptide epitopes against XC24 were selected and, among them, XC24p11 cyclic peptide (-CDATPPRLC-) was used as an epitope of anti-SF3B1 autoantibody ELISA. With this epitope, we could effectively distinguish between serum samples from HCC patients (n = 102) and healthy subjects (n = 85) with 73.53% sensitivity and 91.76% specificity (AUC = 0.8731). Moreover, the simultaneous detection of anti-XC24p11 epitope autoantibody and AFP enhanced the efficiency of HCC diagnosis with 87.25% sensitivity and 90.59% specificity (AUC = 0.9081). ELISA using XC24p11 peptide epitope that reacts against anti-SF3B1 autoantibody can be used as a novel test to enhance the diagnostic efficiency of HCC.

  3. Alotamide A, a Novel Neuropharmacological Agent From the Marine Cyanobacterium Lyngbya bouillonii

    PubMed Central

    Soria-Mercado, Irma E.; Pereira, Alban; Cao, Zhengyu; Murray, Thomas F.; Gerwick, William H.

    2009-01-01

    Alotamide A (1), a structurally intriguing cyclic depsipeptide, was isolated from the marine mat-forming cyanobacterium Lyngbya bouillonii collected in Papua New Guinea. It features three contiguous peptidic residues and an unsaturated heptaketide with oxidations and methylations unlike those found in any other marine cyanobacterial metabolite. Pure alotamide A (1) displays an unusual calcium influx activation profile in murine cerebrocortical neurons with an EC50 of 4.18 μM. PMID:19754100

  4. Peptide formation in the prebiotic era - Thermal condensation of glycine in fluctuating clay environments

    NASA Technical Reports Server (NTRS)

    Lahav, N.; White, D.; Chang, S.

    1978-01-01

    As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.

  5. A Systematic Review of Serum Biomarkers Anti-Cyclic Citrullinated Peptide and Rheumatoid Factor as Tests for Rheumatoid Arthritis

    PubMed Central

    Taylor, Peter; Gartemann, Juliane; Hsieh, Jeanie; Creeden, James

    2011-01-01

    This systematic review assesses the current status of anti-cyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) tests in the diagnosis and prognosis of rheumatoid arthritis (RA). We reviewed publications on tests and biomarkers for early diagnosis of RA from English-language MEDLINE-indexed journals and non-MEDLINE-indexed sources. 85 publications were identified and reviewed, including 68 studies from MEDLINE and 17 non-MEDLINE sources. Anti-CCP2 assays provide improved sensitivity over anti-CCP assays and RF, but anti-CCP2 and RF assays in combination demonstrate a positive predictive value (PPV) nearing 100%, greater than the PPV of either of the tests alone. The combination also appears to be able to distinguish between patients whose disease course is expected to be more severe and both tests are incorporated in the 2010 ACR Rheumatoid Arthritis Classification Criteria. While the clinical value of anti-CCP tests has been established, differences in cut-off values, sensitivities and specificities exist between first-, second- and third-generation tests and harmonization efforts are under way. Anti-CCP and RF are clinically valuable biomarkers for the diagnosis and prognosis of RA patients. The combination of the two biomarkers in conjunction with other clinical measures is an important tool for the diagnosis and management of RA patients. PMID:21915375

  6. The association of immunoglobulin A, immunoglobulin G and anti-cyclic citrullinated peptide antibodies with disease activity in seronegative rheumatoid arthritis patients.

    PubMed

    Karimifar, Mansoor; Moussavi, Hamidreza; Babaei, Mehran; Akbari, Mojtaba

    2014-09-01

    Rheumatoid arthritis (RA) is a common autoimmune disease that is associated with progressive disability, systemic complications, and early death. The present study was aimed to investigate the level of immunoglobulin G (IgG) and IgA isotypes and anti-cyclic citrullinated peptide (CCP) antibody and to assess their association with disease severity based on disease activity score (DAS-28) in patients with IgM rheumatoid factor (IgM-RF) negative RA. In this cross-sectional study, 62 RA patients with IgM-RF negative were assessed. Radiographs were obtained for all RA patients. The RF (IgG, and IgA) and anti-CCP were measured by using the enzyme-linked immunosorbent assay. Values of cut-off points over 15 UI/mL for IgA IgA-RF, 20 UI/mL for IgG-RF and over 20 units for anti-CCP were considered positive. DAS-28 score was compared in regard to the IgA-RF and IgG-RF and anti-CCP positivity using Mann-Whitney test. DAS-28 score in IgA-RF positive was significantly higher than IgA-RF negative (mean score, 6.03 ± 0.33 vs. 5.44 ± 0.76 respectively, P = 0.035). In IgG-RF positive patients, DAS-28 score was similar to patients with IgG-RF negative (5.64 ± 0.59 vs. 5.46 ± 0.78 respectively, P = 0.396). Furthermore, in patients with anti-CCP positive DAS-28 score was significantly higher than patients with anti-CCP negative (5.72 ± 0.61 vs. 5.38 ± 0.79 respectively, P = 0.049). Findings indicated that there was a significant association between the amounts of IgA and anti-CCP with severity of disease in RF negative RA patients while there was no significant association between the amounts of IgG and severity of RA disease.

  7. Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    James, Carrie Rae

    Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.

  8. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides.

    PubMed

    Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L; Squires, R Burke; Hurt, Darrell E; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseyev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael

    2016-01-04

    Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a 'Ranking Search' function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure-activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Engineered Knottin Peptides: A New Class of Agents for Imaging Integrin Expression in Living Subjects

    PubMed Central

    Kimura, Richard H; Cheng, Zhen; Gambhir, Sanjiv Sam; Cochran, Jennifer R

    2009-01-01

    There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with low nM affinity to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or 64Cu-DOTA to their N-termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. Near-infrared fluorescence and microPET imaging both demonstrated that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 h post injection for two high affinity (IC50 ∼20 nM) 64Cu-DOTA-conjugated knottin peptides was 4.47 ± 1.21 and 4.56 ± 0.64 % injected dose/gram (%ID/g), compared to a low affinity knottin peptide (IC50 ∼0.4 μM; 1.48 ± 0.53 %ID/g) and c(RGDyK) (IC50 ∼1 μM; 2.32 ± 0.55 %ID/g), a low affinity cyclic pentapeptide under clinical development. Furthermore, 64Cu-DOTA-conjugated knottin peptides generated lower levels of non-specific liver uptake (∼2 %ID/g) compared to c(RGDyK) (∼4 %ID/g) 1 h post injection. MicroPET imaging results were confirmed by in vivo biodistribution studies. 64Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers. PMID:19276378

  10. Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects.

    PubMed

    Zanin, Sofia; Sandre, Michele; Cozza, Giorgio; Ottaviani, Daniele; Marin, Oriano; Pinna, Lorenzo A; Ruzzene, Maria

    2015-10-01

    Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (α/α') and two regulatory (β) subunits. It has a global prosurvival function, especially in cancer, and represents an attractive therapeutic target. Most CK2 inhibitors available so far are ATP-competitive compounds; however, the possibility to block only the phosphorylation of few substrates has been recently explored, and a compound composed of a Tat cell-penetrating peptide and an active cyclic peptide, selected for its ability to bind to the CK2 substrate E7 protein of human papilloma virus, has been developed [Perea et al., Cancer Res. 2004; 64:7127-7129]. By using a similar chimeric peptide (CK2 modulatory chimeric peptide, CK2-MCP), we performed a study to dissect its molecular mechanism of action and the signaling pathways that it affects in cells. We found that it directly interacts with CK2 itself, counteracting the regulatory and stabilizing functions of the β subunit. Cell treatment with CK2-MCP induces a rapid decrease of the amount of CK2 subunits, as well as of other signaling proteins. Concomitant cell death is observed, more pronounced in tumor cells and not accompanied by apoptotic events. CK2 relocalizes to lysosomes, whose proteases are activated, while the proteasome machinery is inhibited. Several sequence variants of the chimeric peptide have been also synthesized, and their effects compared to those of the parental peptide. Intriguingly, the Tat moiety is essential not only for cell penetration but also for the in vitro efficacy of the peptide. We conclude that this class of chimeric peptides, in addition to altering some properties of CK2 holoenzyme, affects several other cellular targets, causing profound perturbations of cell biology. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice.

    PubMed

    Huang, Na; Lu, Shuai; Liu, Xiao-Ge; Zhu, Jie; Wang, Yu-Jiong; Liu, Rui-Tian

    2017-10-06

    Alzheimer's disease (AD) is the most common form of dementia, characterized by the formation of extracellular senile plaques and neuronal loss caused by amyloid β (Aβ) aggregates in the brains of AD patients. Conventional strategies failed to treat AD in clinical trials, partly due to the poor solubility, low bioavailability and ineffectiveness of the tested drugs to cross the blood-brain barrier (BBB). Moreover, AD is a complex, multifactorial neurodegenerative disease; one-target strategies may be insufficient to prevent the processes of AD. Here, we designed novel kind of poly(lactide-co-glycolic acid) (PLGA) nanoparticles by loading with Aβ generation inhibitor S1 (PQVGHL peptide) and curcumin to target the detrimental factors in AD development and by conjugating with brain targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin receptor (TfR), to improve BBB penetration. The average particle size of drug-loaded PLGA nanoparticles and CRT-conjugated PLGA nanoparticles were 128.6 nm and 139.8 nm, respectively. The results of Y-maze and new object recognition test demonstrated that our PLGA nanoparticles significantly improved the spatial memory and recognition in transgenic AD mice. Moreover, PLGA nanoparticles remarkably decreased the level of Aβ, reactive oxygen species (ROS), TNF-α and IL-6, and enhanced the activities of super oxide dismutase (SOD) and synapse numbers in the AD mouse brains. Compared with other PLGA nanoparticles, CRT peptide modified-PLGA nanoparticles co-delivering S1 and curcumin exhibited most beneficial effect on the treatment of AD mice, suggesting that conjugated CRT peptide, and encapsulated S1 and curcumin exerted their corresponding functions for the treatment.

  12. Two cyclic hexapeptides from Penicillium sp. FN070315 with antiangiogenic activities.

    PubMed

    Jang, Jun-Pil; Jung, Hye Jin; Han, Jang Mi; Jung, Narae; Kim, Yonghyo; Kwon, Ho Jeong; Ko, Sung-Kyun; Soung, Nak-Kyun; Jang, Jae-Hyuk; Ahn, Jong Seog

    2017-01-01

    In the course of searching for angiogenesis inhibitors from microorganisms, two cyclic peptides, PF1171A (1) and PF1171C (2) were isolated from the soil fungus Penicillium sp. FN070315. In the present study, we investigated the antiangiogenic efficacy and associated mechanisms of 1 and 2 in vitro using human umbilical vein endothelial cells (HUVECs). Compounds 1 and 2 inhibited the proliferation of HUVECs at concentrations not exhibiting cytotoxicity. Moreover, 1 and 2 significantly suppressed vascular endothelial growth factor (VEGF)-induced migration, invasion, proliferation and tube formation of HUVECs as well as neovascularization of the chorioallantoic membrane in developing chick embryos. We also identified an association between the antiangiogenic activity of 1 and 2 and the downregulation of both the phosphorylation of VEGF receptor 2 and the expression of hypoxia inducible factor-1α at the protein level. Taken together, these results further suggest that compounds 1 and 2 will be promising angiogenesis inhibitors.

  13. Gene family encoding the major toxins of lethal Amanita mushrooms

    PubMed Central

    Hallen, Heather E.; Luo, Hong; Scott-Craig, John S.; Walton, Jonathan D.

    2007-01-01

    Amatoxins, the lethal constituents of poisonous mushrooms in the genus Amanita, are bicyclic octapeptides. Two genes in A. bisporigera, AMA1 and PHA1, directly encode α-amanitin, an amatoxin, and the related bicyclic heptapeptide phallacidin, a phallotoxin, indicating that these compounds are synthesized on ribosomes and not by nonribosomal peptide synthetases. α-Amanitin and phallacidin are synthesized as proproteins of 35 and 34 amino acids, respectively, from which they are predicted to be cleaved by a prolyl oligopeptidase. AMA1 and PHA1 are present in other toxic species of Amanita section Phalloidae but are absent from nontoxic species in other sections. The genomes of A. bisporigera and A. phalloides contain multiple sequences related to AMA1 and PHA1. The predicted protein products of this family of genes are characterized by a hypervariable “toxin” region capable of encoding a wide variety of peptides of 7–10 amino acids flanked by conserved sequences. Our results suggest that these fungi have a broad capacity to synthesize cyclic peptides on ribosomes. PMID:18025465

  14. Benzoylureas as removable cis amide inducers: synthesis of cyclic amides via ring closing metathesis (RCM).

    PubMed

    Brady, Ryan M; Khakham, Yelena; Lessene, Guillaume; Baell, Jonathan B

    2011-02-07

    Rapid and high yielding synthesis of medium ring lactams was made possible through the use of a benzoylurea auxiliary that serves to stabilize a cisoid amide conformation, facilitating cyclization. The auxiliary is released after activation under the mild conditions required to deprotect a primary amine, such as acidolysis of a Boc group in the examples given here. This methodology is a promising tool for the synthesis of medium ring lactams, macrocyclic natural products and peptides.

  15. Janthinocins A, B and C, novel peptide lactone antibiotics produced by Janthinobacterium lividum. I. Taxonomy, fermentation, isolation, physico-chemical and biological characterization.

    PubMed

    O'Sullivan, J; McCullough, J; Johnson, J H; Bonner, D P; Clark, J C; Dean, L; Trejo, W H

    1990-08-01

    Janthinocins A, B and C are novel antibacterial agents produced by Janthinobacterium lividum. They were isolated from fermentation broths and characterized by UV, IR, NMR and mass spectroscopy. They are cyclic decapeptide lactones with marked activity against aerobic and anaerobic Gram-positive bacteria and are 2 to 4 times more potent in vitro than vancomycin. Janthinocins A and B were also found to be effective in a Staphylococcus aureus systemic infection in mice.

  16. Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptor-Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles.

    PubMed

    Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon

    2016-08-01

    Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    PubMed Central

    Pandey, Kailash N.

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  18. Formation of [b3 - 1 + cat]+ ions from metal-cationized tetrapeptides containing beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid residues.

    PubMed

    Osburn, Sandra M; Ochola, Sila O; Talaty, Erach R; Van Stipdonk, Michael J

    2008-11-01

    The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.

  19. Homooligomeric β3 (R)-valine peptides: Transformation between C14 and C12 helical structures induced by a guest Aib residue.

    PubMed

    Vasantha, Basavalingappa; George, Gijo; Raghothama, Srinivasarao; Balaram, Padmanabhan

    2017-01-01

    Novel helical, structures unprecedented in the chemistry of α-polypeptides, may be found in polypeptides containing β and γ amino acids. The structural characterization of C 12 and C 14 -helices in oligo β-peptides was originally achieved using conformationally constrained cyclic β-residues. This study explores the conformational characteristics of proteinogenic β 3 residues in homooligomeric sequences and addresses the issue of inducing a transition between C 14 and C 12 helices by the introduction of a guest α-residue. Folded C 14 -helical structures are demonstrated for the nonapeptide Boc-[β 3 (R)Val] 9 -OMe by NMR methods in CDCl 3 -DMSO mixtures, while the peptide was found to be aggregated in CDCl 3 . The insertion of a guest Aib residue into an oligo-β-valine sequence in the octapeptide model Boc-[(β 3 (R)Val) 3 -Aib-(β 3 (R)Val] 4 -OMe results in well dispersed NH region in the NMR spectrum indicating folded structures in CDCl 3 . Structure calculations for both the peptides using NOE distance constraints support a C 14 helical structure in the homooligomer which transform into a C 12 helix on introduction of the guest Aib residue. © 2016 Wiley Periodicals, Inc.

  20. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).

    PubMed

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen

    2009-09-01

    Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to currently used chemoselective one-step (18)F-labelling protocols.

  1. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs

    PubMed Central

    Thie, Holger

    2017-01-01

    ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297

  2. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because ofmore » their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently labeled peptides, including our lectin/carbohydrate- targeting peptides, by displaying the targeting epitopes on small ~29 amino acid cyclic plant protein scaffolds known as cyclotides. Cyclotides are extremely stable molecules with long serum half-lives and low kidney uptake (7). More than one copy of the peptide can be engineered into the cyclotide loops, thus increasing the avidity of the peptide construct for its target.« less

  3. Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-08-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators ofmore » protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.« less

  4. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    PubMed

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  6. Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

    PubMed Central

    Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.

    2011-01-01

    Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease. PMID:22174951

  7. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    PubMed

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  8. Molecular Steps in the Immune Signaling Pathway Evoked by Plant Elicitor Peptides: Ca2+-Dependent Protein Kinases, Nitric Oxide, and Reactive Oxygen Species Are Downstream from the Early Ca2+ Signal1[OPEN

    PubMed Central

    Ma, Yi; Zhao, Yichen; Walker, Robin K.; Berkowitz, Gerald A.

    2013-01-01

    Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca2+ elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca2+ signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca2+-dependent protein kinases (CPKs) decode the Ca2+ signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca2+ signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca2+-conducting channel in the Pep immune signaling pathway. PMID:24019427

  9. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding.

    PubMed

    Zawilska, Jolanta B; Dejda, Agnieszka; Niewiadomski, Pawel; Gozes, Illana; Nowak, Jerzy Z

    2005-01-01

    Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.

  10. The role of limited proteolysis of thyrotropin-releasing hormone in thermoregulation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, C.

    1982-01-01

    Cyclo (His-Pro) is a biologiclly active cyclic dipeptide derived from thyrotropin-releasing hormone by its limited proteolysis. We have developed a specific radioimmunoassay for this cyclic peptide and shown its presence throughout rat and monkey brains. The normal rat brain concentration of cyclo (His-Pro) ranged from 35-61 pmols/brain. The elution profiles of rat brain cyclo (His-Pro)-like immunoreactivity and synthetic radioactive cyclo (His-Pro) following gel filtration, ion-exchange chromatography and high pressure liquid chromatography were similar. An analysis of the regional distribution of cyclo (His-Pro) and TRH in rat and monkey brains exhibited no apparent precursor-product relationship. Studies on the neuroanatomic sites formore » the thermoregulatory effects of cyclo (His-Pro) suggested that the neural loci responsible for cyclo (His-Pro)-induced hypothermia resides within POA/AHA. The endogenous levels of brain cyclo (His-Pro) were elevated when rats were made either hypothyroid by surgical thyroidectomy or forced to drink alcohol for six weeks. These studies demonstrate that cyclo (His-Pro) is present throughout the central nervous system in physiologically relevant concentrations which can be modified by appropriate physiological and pharamacological manipulations. These data in conjunction with earlier reports of multiple biological activities of exogenous cyclo (His-Pro), suggest that endogenous cyclo (His-Pro) is a biological active peptide and it may play a neurotransmitter or neuromodulator role in the central nervous system.« less

  11. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  12. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-07

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  13. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    PubMed

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  14. Women with rheumatoid arthritis negative for anti-cyclic citrullinated peptide and rheumatoid factor are more likely to improve during pregnancy, whereas in autoantibody-positive women autoantibody levels are not influenced by pregnancy.

    PubMed

    de Man, Y A; Bakker-Jonges, L E; Goorbergh, C M Dufour-van den; Tillemans, S P R; Hooijkaas, H; Hazes, J M W; Dolhain, R J E M

    2010-02-01

    To determine whether changes in levels of anti-cyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) are associated with the spontaneous improvement of rheumatoid arthritis (RA) during pregnancy and with the subsequent flare post partum. Disease activity scores from the Pregnancy-induced Amelioration of Rheumatoid Arthritis (PARA) study of 118 patients were available for analysis. Before conception (if applicable), at each trimester and at 6, 12 and 26 weeks post partum, levels of the autoantibodies anti-CCP, IgM-RF, IgG-RF and IgA-RF were determined. Responses in disease activity were classified according to European League Against Rheumatism (EULAR) response criteria during pregnancy and post partum, and associated with the presence or absence of autoantibodies. The median levels of anti-CCP and all subclasses of RF during pregnancy were stable, whereas post partum the levels of anti-CCP, IgM-RF and IgA-RF declined. A significantly higher percentage of women without autoantibodies (negative for anti-CCP and RF) improved compared with women positive for either or both autoantibodies (75% vs 39%, p = 0.01). The occurrence of a flare post partum was comparable between these groups. Improvement of disease activity of RA during pregnancy was not associated with changes in levels of autoantibodies during pregnancy, however, improvement may occur more frequently in the absence of anti-CCP and RF.

  15. Estradiol modulates the anorexic response to central glucagon-like peptide 1.

    PubMed

    Maske, Calyn B; Jackson, Christine M; Terrill, Sarah J; Eckel, Lisa A; Williams, Diana L

    2017-07-01

    Estrogens suppress feeding in part by enhancing the response to satiation signals. Glucagon-like peptide 1 (GLP-1) acts on receptor populations both peripherally and centrally to affect food intake. We hypothesized that modulation of the central GLP-1 system is one of the mechanisms underlying the effects of estrogens on feeding. We assessed the anorexic effect of 0, 1, and 10μg doses of GLP-1 administered into the lateral ventricle of bilaterally ovariectomized (OVX) female rats on a cyclic regimen of either 2μg β-estradiol-3-benzoate (EB) or oil vehicle 30min prior to dark onset on the day following hormone treatment. Central GLP-1 treatment significantly suppressed food intake in EB-treated rats at both doses compared to vehicle, whereas only the 10μg GLP-1 dose was effective in oil-treated rats. To follow up, we examined whether physiologic-dose cyclic estradiol treatment influences GLP-1-induced c-Fos in feeding-relevant brain areas of OVX females. GLP-1 significantly increased c-Fos expression in the area postrema (AP) and nucleus of the solitary tract (NTS), and the presence of estrogens may be required for this effect in the paraventricular nucleus of the hypothalamus (PVN). Together, these data suggest that modulation of the central GLP-1 system may be one of the mechanisms by which estrogens suppress food intake, and highlight the PVN as a region of interest for future investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    PubMed

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10 7 M -1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10 15 M -2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water equilibrium.

  17. Killing of Staphylococci by θ-Defensins Involves Membrane Impairment and Activation of Autolytic Enzymes

    PubMed Central

    Wilmes, Miriam; Stockem, Marina; Bierbaum, Gabriele; Schlag, Martin; Götz, Friedrich; Tran, Dat Q.; Schaal, Justin B.; Ouellette, André J.; Selsted, Michael E.; Sahl, Hans-Georg

    2014-01-01

    θ-Defensins are cyclic antimicrobial peptides expressed in leukocytes of Old world monkeys. To get insight into their antibacterial mode of action, we studied the activity of RTDs (rhesus macaque θ-defensins) against staphylococci. We found that in contrast to other defensins, RTDs do not interfere with peptidoglycan biosynthesis, but rather induce bacterial lysis in staphylococci by interaction with the bacterial membrane and/or release of cell wall lytic enzymes. Potassium efflux experiments and membrane potential measurements revealed that the membrane impairment by RTDs strongly depends on the energization of the membrane. In addition, RTD treatment caused the release of Atl-derived cell wall lytic enzymes probably by interaction with membrane-bound lipoteichoic acid. Thus, the premature and uncontrolled activity of these enzymes contributes strongly to the overall killing by θ-defensins. Interestingly, a similar mode of action has been described for Pep5, an antimicrobial peptide of bacterial origin. PMID:25632351

  18. Determining the Binding Sites of β-Cyclodextrin and Peptides by Electron-Capture Dissociation High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Geib, Timon; Volmer, Dietrich A.

    2015-07-01

    Cyclodextrins (CDs) are a group of cyclic oligosaccharides, which readily form inclusion complexes with hydrophobic compounds to increase bioavailability, thus making CDs ideal drug excipients. Recent studies have also shown that CDs exhibit a wide range of protective effects, preventing proteins from aggregation, degradation, and folding. These effects strongly depend on the binding sites on the protein surface. CDs only exhibit weak interactions with amino acids, however; conventional analytical techniques therefore usually fail to reveal the exact location of the binding sites. Moreover, some studies even suggest that CD inclusion complexes are merely electrostatic adducts. Here, electron capture dissociation (ECD) was applied in this proof-of-concept study to examine the exact nature of the CD/peptide complexes, and CD binding sites were unambiguously located for the first time via Fourier-transform ion cyclotron resonance (FTICR) tandem mass spectrometry.

  19. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    PubMed

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of proteins and also reflect the effect of alkyl chain on the stability of protein model compounds.

  20. Caco-2 cell-based electrochemical biosensor for evaluating the antioxidant capacity of Asp-Leu-Glu-Glu isolated from dry-cured Xuanwei ham.

    PubMed

    Xing, Lujuan; Ge, Qingfeng; Jiang, Donglei; Gao, Xiaoge; Liu, Rui; Cao, Songmin; Zhuang, Xinbo; Zhou, Guanghong; Zhang, Wangang

    2018-05-15

    A cell-based electrochemical biosensor was developed to determine the antioxidant activity of Asp-Leu-Glu-Glu (DLEE) isolated from dry-cured Chinese Xuanwei ham. A platinized gold electrode (Pt NPs/GE) covered with silver nanowires (Ag NWs) was fabricated to detect H 2 O 2 using redox signaling via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal condition, the detection limit of the modified electrode was 0.12μM with a linear relationship from 0.2 to 2μM, which showed relatively outstanding catalytic effects towards the reduction of H 2 O 2 . Furthermore, the generation of reactive oxygen species (ROS) in the cell can be used to indirectly assess changes in intercellular oxidative stress by detecting variations in electrochemical signals. A 3D cell culture of alginate/graphene oxide (NaAlg/GO) was used to encapsulate and immobilize Caco-2 cells. Based on ROS generation and electrochemical results, we found that DLEE could effectively reduce oxidative stress level in Caco-2 cells under external stimulation. DLEE showed high antioxidant activity with a relative antioxidant capacity (RAC) rate of 88.17% at 1.5mg/mL. Finally, an efficient electrochemical biosensor was established using the active 3D Caco-2 cell platform. This system is sensitive and simple to operate with the property to evaluate the antioxidant activity of peptides by the detection of H 2 O 2 in cell membrane. In summary, this work describes a new method for assessing antioxidant capacity of peptide DLEE using cell-based electrochemical signaling with a rapid screening pattern. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.

  2. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  3. N-Terminal Protease Gene Phylogeny Reveals the Potential for Novel Cyanobactin Diversity in Cyanobacteria

    PubMed Central

    Martins, Joana; Leão, Pedro N.; Ramos, Vitor; Vasconcelos, Vitor

    2013-01-01

    Cyanobactins are a recently recognized group of ribosomal cyclic peptides produced by cyanobacteria, which have been studied because of their interesting biological activities. Here, we have used a PCR-based approach to detect the N-terminal protease (A) gene from cyanobactin synthetase gene clusters, in a set of diverse cyanobacteria from our culture collection (Laboratory of Ecotoxicology, Genomics and Evolution (LEGE) CC). Homologues of this gene were found in Microcystis and Rivularia strains, and for the first time in Cuspidothrix, Phormidium and Sphaerospermopsis strains. Phylogenetic relationships inferred from available A-gene sequences, including those obtained in this work, revealed two new groups of phylotypes, harboring Phormidium, Sphaerospermopsis and Rivularia LEGE isolates. Thus, this study shows that, using underexplored cyanobacterial strains, it is still possible to expand the known genetic diversity of genes involved in cyanobactin biosynthesis. PMID:24351973

  4. Conformational energy calculations on polypeptides and proteins: use of a statistical mechanical procedure for evaluating structure and properties.

    PubMed

    Scheraga, H A; Paine, G H

    1986-01-01

    We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.

  5. Identification of novel potential scaffold for class I HDACs inhibition: An in-silico protocol based on virtual screening, molecular dynamics, mathematical analysis and machine learning.

    PubMed

    Fan, Cong; Huang, Yanxin

    2017-09-23

    Histone deacetylases (HDACs) family has been widely reported as an important class of enzyme targets for cancer therapy. Much effort has been made in discovery of novel scaffolds for HDACs inhibition besides existing hydroxamic acids, cyclic peptides, benzamides, and short-chain fatty acids. Herein we set up an in-silico protocol which not only could detect potential Zn 2+ chelation bonds but also still adopted non-bonded model to be effective in discovery of Class I HDACs inhibitors, with little human's subjective visual judgment involved. We applied the protocol to screening of Chembridge database and selected out 7 scaffolds, 3 with probability of more than 99%. Biological assay results demonstrated that two of them exhibited HDAC-inhibitory activity and are thus considerable for structure modification to further improve their bio-activity. Copyright © 2017. Published by Elsevier Inc.

  6. C-type natriuretic peptide and atrial natriuretic peptide receptors of rat brain.

    PubMed

    Brown, J; Zuo, Z

    1993-03-01

    Natriuretic peptide receptors in rat brain were mapped by in vitro autoradiography using 125I-labeled [Tyr0]CNP-(1-22) to bind atrial natriuretic peptide receptor (ANPR)-B and ANPR-C receptors selectively, and 125I-labeled alpha-ANP to select ANPR-A and ANPR-C receptors. Des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4- 23)-amide (C-ANP) was used for its selectivity for ANPR-C over ANPR-A. Specific binding of 125I-[Tyr0]CNP-(1-22) with a dissociation constant (Kd) approximately 1 nM occurred in olfactory bulb, cerebral cortex, lateral septal nucleus, choroid plexus, and arachnoid mater. This binding was abolished by C-type natriuretic peptide [CNP-(1-22)], alpha-ANP and C-ANP, and conformed to ANPR-C. 125I-alpha-ANP bound to all structures that bound 125I-[Tyr0]CNP-(1-22). This binding was also inhibited by both CNP-(1-22) and C-ANP, confirming the presence of ANPR-C-like binding sites. However, ANPR-C-like binding sites were heterogenous because only some had high affinities for 125I-[Tyr0]CNP-(1-22) and CNP-(1-22). 125I-alpha-ANP also bound sites without affinities for C-ANP or CNP-(1-22). These sites were consistent with ANPR-A. They occurred mainly on the olfactory bulb, the choroid plexus, and the subfornical organ. Guanosine 3',5'-cyclic monophosphate production was strongly stimulated by alpha-ANP but not by CNP-(1-22) in olfactory bulb. Neither ligand stimulated it in cortical tissue. Thus the natriuretic peptide binding sites of rat brain conformed to ANPR-A and to heterogenous ANPR-C-like sites. No ANPR-B were detected.

  7. Design and characterization of α-melanotropin peptide analogs cyclized through rhenium and technetium metal coordination

    PubMed Central

    Giblin, Michael F.; Wang, Nannan; Hoffman, Timothy J.; Jurisson, Silvia S.; Quinn, Thomas P.

    1998-01-01

    α-Melanocyte stimulating hormone (α-MSH) analogs, cyclized through site-specific rhenium (Re) and technetium (Tc) metal coordination, were structurally characterized and analyzed for their abilities to bind α-MSH receptors present on melanoma cells and in tumor-bearing mice. Results from receptor-binding assays conducted with B16 F1 murine melanoma cells indicated that receptor-binding affinity was reduced to approximately 1% of its original levels after Re incorporation into the cyclic Cys4,10, d-Phe7–α-MSH4-13 analog. Structural analysis of the Re–peptide complex showed that the disulfide bond of the original peptide was replaced by thiolate–metal–thiolate cyclization. A comparison of the metal-bound and metal-free structures indicated that metal complexation dramatically altered the structure of the receptor-binding core sequence. Redesign of the metal binding site resulted in a second-generation Re–peptide complex (ReCCMSH) that displayed a receptor-binding affinity of 2.9 nM, 25-fold higher than the initial Re–α-MSH analog. Characterization of the second-generation Re–peptide complex indicated that the peptide was still cyclized through Re coordination, but the structure of the receptor-binding sequence was no longer constrained. The corresponding 99mTc- and 188ReCCMSH complexes were synthesized and shown to be stable in phosphate-buffered saline and to challenges from diethylenetriaminepentaacetic acid (DTPA) and free cysteine. In vivo, the 99mTcCCMSH complex exhibited significant tumor uptake and retention and was effective in imaging melanoma in a murine-tumor model system. Cyclization of α-MSH analogs via 99mTc and 188Re yields chemically stable and biologically active molecules with potential melanoma-imaging and therapeutic properties. PMID:9788997

  8. Preferential amino acid sequences in alumina-catalyzed peptide bond formation.

    PubMed

    Bujdák, J; Rode, B M

    2002-05-21

    The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.

  9. A stapled peptide antagonist of MDM2 carried by polymeric micelles sensitizes glioblastoma to temozolomide treatment through p53 activation

    PubMed Central

    Chen, Xishan; Tai, Lingyu; Gao, Jie; Qian, Jianchang; Zhang, Mingfei; Li, Beibei; Xie, Cao; Lu, Linwei; Lu, Wuyuan; Lu, Weiyue

    2017-01-01

    Antagonizing MDM2 and MDMX to activate the tumor suppressor protein p53 is an attractive therapeutic paradigm for the treatment of glioblastoma multiforme (GBM). However, challenges remain with respect to the poor ability of p53 activators to efficiently cross the blood–brain barrier and/or blood–brain tumor barrier and to specifically target tumor cells. To circumvent these problems, we developed a cyclic RGD peptide-conjugated poly(-ethylene glycol)-co-poly(lactic acid) polymeric micelle (RGD-M) that carried a stapled peptide antagonist of both MDM2 and MDMX (sPMI). The peptide-carrying micelle RGD-M/sPMI was prepared via film-hydration method with high encapsulation efficiency and loading capacity as well as ideal size distribution. Micelle encapsulation dramatically increased the solubility of sPMI, thus alleviating its serum sequestration. In vitro studies showed that RGD-M/sPMI efficiently inhibited the proliferation of glioma cells in the presence of serum by activating the p53 signaling pathway. Further, RGD-M/sPMI exerted potent tumor growth inhibitory activity against human glioblastoma in nude mouse xenograft models. Importantly, the combination of RGD-M/sPMI and temozolomide — a standard chemotherapy drug for GBM increased antitumor efficacy against glioblastoma in experimental animals. Our results validate a combination therapy using p53 activators with temozolomide as a more effective treatment for GBM. PMID:26428461

  10. Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity.

    PubMed

    Bittencourt, Clicia Ramos; de Oliveira Farias, Emanuel Airton; Bezerra, Karla Costa; Véras, Leiz Maria Costa; Silva, Vladimir Costa; Costa, Carlos Henrique Nery; Bemquerer, Marcelo P; Silva, Luciano Paulino; Souza de Almeida Leite, José Roberto de; Eiras, Carla

    2016-02-01

    This report details the development of thin films containing an antimicrobial peptide, specifically, dermaseptin 01 (GLWSTIKQKGKEAAIAAA-KAAGQAALGAL-NH2, [DRS 01]), and a natural polysaccharide, for a novel application in detecting the presence of Leishmania cells and maintaining anti-leishmanial activity. The peptide DRS 01 was immobilized in conjunction with natural cashew gum (CG) onto an indium tin oxide (ITO) substrate using the Layer-by-Layer (LbL) deposition technique. The LbL film ITO/CG/DRS 01, containing DRS 01 as the outer layer, was capable of detecting the presence of Leishmania cells and acting as an anti-leishmanial system. Detection was performed using cyclic voltammetry (CV) in phosphate buffer (pH7.2) in the presence of promastigote cells (0-10(7)cells/mL). The results showed a linear and inversely proportional relation between the concentration of Leishmania infantum protozoan cells and the measured current values obtained for the films, which was attributed to the effect of peptide-induced lysis of the cell membrane, and resulted in freed residues that were adsorbed on the electrode surface. With this, the paper shows a method using thin films with this new material to demonstrate the anti-leishmanial activity in vitro models of carpet-like mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Retargeting of Rat Parvovirus H-1PV to Cancer Cells through Genetic Engineering of the Viral Capsid

    PubMed Central

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K.; Nettelbeck, Dirk M.; Kleinschmidt, Jürgen; Rommelaere, Jean

    2012-01-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds αvβ3 and αvβ5 integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing αvβ5 integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy. PMID:22258256

  12. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    PubMed

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  13. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.

    PubMed

    Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T

    2018-02-14

    The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.

  14. Recent developments in the theory of protein folding: searching for the global energy minimum.

    PubMed

    Scheraga, H A

    1996-04-16

    Statistical mechanical theories and computer simulation are being used to gain an understanding of the fundamental features of protein folding. A major obstacle in the computation of protein structures is the multiple-minima problem arising from the existence of many local minima in the multidimensional energy landscape of the protein. This problem has been surmounted for small open-chain and cyclic peptides, and for regular-repeating sequences of models of fibrous proteins. Progress is being made in resolving this problem for globular proteins.

  15. VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis

    DTIC Science & Technology

    2007-09-01

    with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are

  16. Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer.

    PubMed Central

    Rouhiainen, L; Sivonen, K; Buikema, W J; Haselkorn, R

    1995-01-01

    Cyanobacteria produce toxins that kill animals. The two main classes of cyanobacterial toxins are cyclic peptides that cause liver damage and alkaloids that block nerve transmission. Many toxin-producing strains from Finnish lakes were brought into axenic culture, and their toxins were characterized. Restriction fragment length polymorphism analysis, probing with a short tandemly repeated DNA sequence found at many locations in the chromosome of Anabaena sp. strain PCC 7120, distinguishes hepatotoxic Anabaena isolates from neurotoxin-producing strains and from Nostoc spp. PMID:7592362

  17. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins.

    PubMed

    Carmichael, W W; An, J

    1999-01-01

    Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).

  18. Novel synthesis of cyclic amide-linked analogues of angiotensins II and III.

    PubMed

    Matsoukas, J M; Hondrelis, J; Agelis, G; Barlos, K; Gatos, D; Ganter, R; Moore, D; Moore, G J

    1994-09-02

    Cyclic amide-linked angiotension II (ANGII) analogues have been synthesized by novel strategies, in an attempt to test the ring clustering and the charge relay bioactive conformation recently suggested. These analogues were synthesized by connecting side chain amino and carboxyl groups at positions 1 and 8, 2 and 8, 3 and 8, and 3 and 5, N-terminal amino and C-terminal carboxyl groups at positions 1 and 8, 2 and 8, and 4 and 8, and side chain amino to C-terminal carboxyl group at positions 1 and 8. All these analogues were biologically inactive, except for cyclic [Sar1, Asp3, Lys5]ANGII (analogue 10) which had high contractile activity in the rat uterus assay (30% of ANGII) and [Lys1, Tyr(Me)4, Glu8]ANGII (analogue 7) which had weak antagonist activity (PA2 approximately 6). Precyclic linear peptides synthesized using 2-chlorotrityl chloride resin and N alpha-Fmoc-amino acids with suitable side chain protection were obtained in high yield and purity and were readily cyclized with benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate as coupling reagent. Molecular modeling suggests that the ring structure of the potent analogue can be accommodated in the charge relay conformation proposed for ANGII.

  19. Association of levels of antibodies against citrullinated cyclic peptides and citrullinated α-enolase in chronic and aggressive periodontitis as a risk factor of Rheumatoid arthritis: a case control study.

    PubMed

    Reichert, Stefan; Schlumberger, Wolfgang; Dähnrich, Cornelia; Hornig, Nora; Altermann, Wolfgang; Schaller, Hans-Günter; Schulz, Susanne

    2015-08-29

    Periodontal disease could be a risk factor for rheumatoid arthritis (RA). It is assumed that the bacterial strain Porphyromonas gingivalis mediates citrullination of host peptides and thereby the generation of RA-associated autoantibodies in genetically predisposed individuals. For that reason non-RA individuals who suffered from generalized aggressive (GAgP, N = 51) and generalized chronic periodontitis (GChP, N = 50) were investigated regarding the occurrence of antibodies against citrullinated cyclic peptides (anti-CCP) and citrullinated α-enolase peptide-1 (anti-CEP-1) in comparison to non-RA non-periodontitis controls (N = 89). Furthermore, putative associations between infections with five periodontopathic bacteria or expression of certain human leucocyte antigens (HLA) to these autoantibodies were investigated. The presence of anti-CCP and anti-CEP-1 in plasma samples was conducted with enzyme linked immunosorbent assay. Subgingival plaque specimens were taken from the deepest pocket of each quadrant and pooled. For detection of DNA of five periodontopathic bacteria PCR with sequence specific oligonucleotides was carried out. Low resolution HLA typing was carried out with PCR with sequence specific primers. Differences between patients and controls were assessed using Chi square test with Yates correction or Fisher`s exact test if the expected number n in one group was <5. Two patients with GAgP (3.9%), no patient with GChP and two controls (2.2%, pFisher = 0.662) were positive for anti-CEP-1 whereas no study participant was anti-CCP positive. Individuals with P. gingivalis were slightly more often anti-CEP-1 positive in comparison to individuals without P. gingivalis (3.2 vs. 1.1%, pFisher = 0.366). Carrier of HLA-DQB1*06 or the HLA combination DRB1*13; DRB3*; DQB1*06 were slightly more anti-CEP-1 positive (6.1 and 4.3%) than no carriers (0.7 and 0%, pFisher 0.053). GAgP and GChP and the presence of periodontopathic bacteria are not associated with an increased risk for occurrence of anti-CCP and anti-CEP-1 autoantibodies. The putative relationship between periodontitis and RA should be investigated in further studies.

  20. Atrial natriuretic peptide induces acrosomal exocytosis of human spermatozoa.

    PubMed

    Rotem, R; Zamir, N; Keynan, N; Barkan, D; Breitbart, H; Naor, Z

    1998-02-01

    Acrosomal exocytosis in mammalian spermatozoa is a process essential for fertilization. We report here that atrial natriuretic peptide (ANP) markedly stimulates acrosomal exocytosis of capacitated human spermatozoa. Typically, ANP exerts some of its actions via activation of the ANP receptor (ANPR-A), a particulate guanylyl cyclase-linked receptor, and subsequent formation of guanosine 3',5'-cyclic monophosphate (cGMP). We found that ANP-stimulated acrosome reaction was inhibited by the competitive ANPR-A antagonist anantin, indicating a receptor-mediated process. A linear fragment of ANP, ANP-(13-28), and another ANP-like compound, brain natriuretic peptide, were inactive. The stimulatory effect of ANP on acrosome reaction was mimicked by the permeable cGMP analog, 8-bromo-cGMP (8-BrcGMP). Addition of the protein kinase C (PKC) inhibitors, staurosporine and GF-109203X, resulted in a dose-related inhibition of ANP-induced acrosome reaction. Also, downregulation of endogeneous PKC activity resulted in inhibition of ANP- but not 8-BrcGMP-induced acrosome reaction. Removal of extracellular Ca2+ abolished ANP-induced acrosome reaction. Thus ANP via Ca2+ influx, PKC activation, and stimulation of particulate guanylyl cyclase may play a role in the induction of acrosome reaction of human spermatozoa.

  1. PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments.

    PubMed

    Terada, Y; Tomita, K; Nonoguchi, H; Yang, T; Marumo, F

    1994-08-01

    The present study was undertaken to investigate the presence of C-type natriuretic peptide (CNP) mRNA and its receptor, natriuretic peptide B-type receptor (ANPR-B) mRNA, in rat renal structures. The microlocalization of mRNAs coding for CNP and ANPR-B was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, vasa recta bundle, and arcuate arteries. The PCR signal for CNP was detected in glomerulus, vasa recta bundle, and arcuate artery. The PCR product of ANPR-B was widely present in renal structures. Relatively large amounts of ANPR-B PCR product were detected in glomerulus, vasa recta bundle, arcuate artery, and distal nephron segments. A relatively high concentration of CNP (10(-7) M) stimulated guanosine 3',5'-cyclic monophosphate accumulation in glomerulus, medullary thick ascending limb, cortical collecting duct, and inner medullary collecting duct. Our data demonstrate that CNP can be produced locally in the glomerulus and renal vascular system and that ANPR-B is widely distributed in renal structures. Thus CNP may influence renal function and act in autocrine and paracrine fashions in the kidney.

  2. [Pathogenic activity modulation of Escherichia coli TL+ toxin with an isolated protein of Giardia intestinalis and a synthetic peptide].

    PubMed

    Jiménez-Cardoso, E; Eligio-García, L; Jiménez-Cardoso, J M; Angeles-Anguiano, E; Tobilla-Mercado, J M; Castañeda, G

    2001-01-01

    It is know that a protein from Giardia intestinalis works as a substrate for V. cholerae and Escherichia coli. The toxic activity of both activates protein G form intestinal mucosa with a pathogenic activity results. In the present study, the pathogenic activity of subunit A of Vibrio cholerae toxin (ADP-ribosyltranferase) using isolated fragments from: Giardia intestinalis and a synthetic peptide were used as modulators in vivo. Adult Neo Zealand males rabbits with ileal loop were prepared and different mixtures of heat labile enterotoxin obtained from Escherichia coli H10407 and ARF protein isolated by electrofocusing from Giardia intestinalis Portland I were inoculated in the loops. The toxin activity was evaluated by luminal liquid secretion and cyclic AMP concentration in tissues (each loop). ADP ribosyltranferase activity was modulated, due to a decreased of luminal secretion and cAMP in tissues. Such results were seen when synthetic peptide and subunit A from Vibrio cholerae were used. The ADP ribosyltranferase activity of heat labile Escherichia coli and Vibrio cholerae toxins were modified by in vitro and in vivo interaction with ARF protein, which modified pathogenic effect over rabbits intestinal epithelium.

  3. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    PubMed

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  4. Ribosomal Biosynthesis of the Cyclic Peptide Toxins of Amanita Mushrooms

    PubMed Central

    Walton, Jonathan D.; Hallen-Adams, Heather E.; Luo, Hong

    2014-01-01

    Some species of mushrooms in the genus Amanita are extremely poisonous and frequently fatal to mammals including humans and dogs. Their extreme toxicity is due to amatoxins such as α- and β-amanitin. Amanita mushrooms also biosynthesize a chemically related group of toxins, the phallotoxins, such as phalloidin. The amatoxins and phallotoxins (collectively known as the Amanita toxins) are bicyclic octa- and heptapeptides, respectively. Both contain an unusual Trp-Cys cross-bridge known as tryptathionine. We have shown that, in Amanita bisporigera, the amatoxins and phallotoxins are synthesized as proproteins on ribosomes and not by nonribosomal peptide synthetases. The proproteins are 34–35 amino acids in length and have no predicted signal peptides. The genes for α-amanitin (AMA1) and phallacidin (PHA1) are members of a large family of related genes, characterized by highly conserved amino acid sequences flanking a hypervariable “toxin” region. The toxin regions are flanked by invariant proline (Pro) residues. An enzyme that could cleave the proprotein of phalloidin was purified from the phalloidin-producing lawn mushroom Conocybe apala. The enzyme is a serine protease in the prolyl oligopeptidase (POP) subfamily. The same enzyme cuts at both Pro residues to release the linear hepta- or octapeptide. PMID:20564017

  5. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.

    PubMed

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O

    2005-03-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

  6. A Reexamination of Active and Passive Tumor Targeting by Using Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands

    PubMed Central

    Huang, Xiaohua; Peng, Xianghong; Wang, Yiqing; Wang, Yuxiang; Shin, Dong M.; El-Sayed, Mostafa A.; Nie, Shuming

    2010-01-01

    The targeted delivery of nanoparticles to solid tumors is one of the most important and challenging problems in cancer nanomedicine, but the detailed delivery mechanisms and design principles are still not well understood. Here we report quantitative tumor uptake studies for a class of elongated gold nanocrystals (called nanorods) that are covalently conjugated to tumor-targeting peptides. A major advantage in using gold as a “tracer” is that the accumulated gold in tumors and other organs can be quantitatively determined by elemental mass spectrometry (gold is not a natural element found in animals). Thus, colloidal gold nanorods are stabilized with a layer of polyethylene glycols (PEGs), and are conjugated to three different ligands: (i) a single-chain variable fragment (ScFv) peptide that recognizes the epidermal growth factor receptor (EGFR); (ii) an amino terminal fragment (ATF) peptide that recognizes the urokinase plasminogen activator receptor (uPAR); and (iii) a cyclic RGD peptide that recognizes the avb3 integrin receptor. Quantitative pharmacokinetic and biodistribution data show that these targeting ligands only marginally improve the total gold accumulation in xenograft tumor models in comparison with nontargeted controls, but their use could greatly alter the intracellular and extracellular nanoparticle distributions. When the gold nanorods are administered via intravenous injection, we also find that active molecular targeting of the tumor microenvironments (e.g., fibroblasts, macrophages, and vasculatures) does not significantly influence the tumor nanoparticle uptake. These results suggest that for photothermal cancer therapy, the preferred route of gold nanorod administration is intra-tumoral injection instead of intravenous injection. PMID:20863096

  7. A simple fragment of cyclic acyldepsipeptides is necessary and sufficient for ClpP activation and antibacterial activity.

    PubMed

    Carney, Daniel W; Compton, Corey L; Schmitz, Karl R; Stevens, Julia P; Sauer, Robert T; Sello, Jason K

    2014-10-13

    The development of new antibacterial agents, particularly those with unique biological targets, is essential to keep pace with the inevitable emergence of drug resistance in pathogenic bacteria. We identified the minimal structural component of the cyclic acyldepsipeptide (ADEP) antibiotics that exhibits antibacterial activity. We found that N-acyldifluorophenylalanine fragments function via the same mechanism of action as ADEPs, as evidenced by the requirement of ClpP for the fragments' antibacterial activity, the ability of fragments to activate Bacillus subtilis ClpP in vitro, and the capacity of an N-acyldifluorophenylalanine affinity matrix to capture ClpP from B. subtilis cell lysates. N-acyldifluorophenylalanine fragments are much simpler in structure than the full ADEPs and are also highly amenable to structural diversification. Thus, the stage has been set for the development of non-peptide activators of ClpP that can be used as antibacterial agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bis-Cyclic-Guanidine as a Novel Class of Compounds Potent Against Clostridium Difficile.

    PubMed

    Li, Chunhui; Teng, Peng; Peng, Zhong; Sang, Peng; Sun, Xingmin; Cai, Jianfeng

    2018-05-16

    Clostridium difficile infection (CDI) symptoms range from diarrhea to severe toxic megacolon and even death. Due to its rapid acquisition of resistance, C. difficile is listed as an urgent antibiotic-resistant threat, and has surpassed methicillin-resistant Staphylococcus aureus (MRSA) as the most common hospital-acquired infections in the USA. To combat the pathogen, the new structural class of pseudo peptides that exhibit antimicrobial activities could play an important role. Herein, we report that bis-cyclic guanidine compounds that exhibit potent antibacterial activity against C. difficile with decent selectivity. Eight compounds showed high in vitro potency against C. difficile UK6 with MIC of 1.0 μg/mL, and cytotoxic selectivity index (SI) up to 37. Moreover, the most selective compound 13 is also effective upon the treatment of C. difficile-induced diseases in the mouse model of CDI, and appears to be a very promising new candidate for the treatment of CDI. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. © 2015 The Protein Society.

  10. In vitro action of bombesin and bombesin-like peptides on amylase secretion, calcium efflux, and adenylate cyclase activity in the rat pancreas: a comparison with other secretagogues.

    PubMed Central

    Deschodt-Lanckman, M; Robberecht, P; De Neef, P; Lammens, M; Christophe, J

    1976-01-01

    Bombesin (a tetradecapeptide), the C-terminal nonapeptide of bombesin (bombesin-NP), and litorin (a parent nonapeptide), each stimulated amylase secretion from rat pancreatic fragments. These responses were not affected by atropine. The concentrations that produced half-maximal stumulation of secretion were 0.25 nM for bombesin, 0.30 nM for bombesin-NP, and 0.07 nM for litorin, as compared to 0.12 nM for caerulein and 0.80 muM for the cholinergic agent carbamylcholine. When used at maximal concentrations, bombesin, bombesin-NP, and litorin showed no action on cyclic AMP levels in the presence of 5 mM theophylline. By contrast, caerulein and secretin increased cyclic AMP levels by 27 and 208%, respectively. Bombesin, bombesin-NP, and litorin did not activate adenylate cyclase in a purified pancreatic plasma membrane preparation, whereas caerulein and secretin increased this activity 20 and 16-times, respectively... PMID:184111

  11. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery

    PubMed Central

    Crisp, Jessica L.; Savariar, Elamprakash N.; Glasgow, Heather L.; Ellies, Lesley G.; Whitney, Michael A.; Tsien, Roger. Y.

    2014-01-01

    Activatable cell penetrating peptides (ACPPs) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9) cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence guided surgery. To improve specificity and sensitivity for MMP-2, an integrin αvβ3 binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin αvβ3, which are known to associate via MMP-2’s hemopexin domain. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared to either MMP or integrin αvβ3 targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8±1.6, a 10 fold higher tumor fluorescence compared to the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor bearing mice, compared to no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. PMID:24737028

  12. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery.

    PubMed

    Crisp, Jessica L; Savariar, Elamprakash N; Glasgow, Heather L; Ellies, Lesley G; Whitney, Michael A; Tsien, Roger Y

    2014-06-01

    Activatable cell-penetrating peptides (ACPP) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9)-cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence-guided surgery. To improve specificity and sensitivity for MMP-2, an integrin α(v)β(3)-binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin α(v)β(3), which are known to associate via the hemopexin domain of MMP-2. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared with either MMP or integrin α(v)β(3) targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8 ± 1.6, a 10-fold higher tumor fluorescence compared with the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor-bearing mice, compared with no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. ©2014 American Association for Cancer Research.

  13. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders.

    PubMed

    Schulze, M; Dathe, M; Waberski, D; Müller, K

    2016-01-01

    Antibiotics are of great importance in boar semen extenders to ensure long shelf life of spermatozoa and to reduce transmission of pathogens into the female tract. However, the use of antibiotics carries a risk of developing resistant bacterial strains in artificial insemination laboratories and their spread via artificial insemination. Development of multiresistant bacteria is a major concern if mixtures of antibiotics are used in semen extenders. Minimal contamination prevention techniques and surveillance of critical hygiene control points proved to be efficient in reducing bacterial load and preventing development of antibiotic resistance. Nevertheless, novel antimicrobial concepts are necessary for efficient bacterial control in extended boar semen with a minimum risk of evoking antibiotic resistance. Enhanced efforts have been made in recent years in the design and use of antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. The male genital tract harbors a series of endogenic substances with antimicrobial activity and additional functions relevant to the fertilization process. However, exogenic AMPs often exert dose- and time-dependent toxic effects on mammalian spermatozoa. Therefore, it is important that potential newly designed AMPs have only minor impacts on eukaryotic cells. Recently, synthetic magainin derivatives and cyclic hexapeptides were tested for their application in boar semen preservation. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and potential synergistic interaction with conventional antibiotics propel predominantly cyclic hexapeptides into highly promising, leading candidates for further development in semen preservation. The time scale for the development of resistant pathogens cannot be predicted at this moment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Anti-Cyclic Citrullinated Peptide (Anti-CCP) and Anti-Mutated Citrullinated Vimentin (Anti-MCV) Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    PubMed Central

    Gonzalez-Lopez, Laura; Rocha-Muñoz, Alberto Daniel; Ponce-Guarneros, Manuel; Flores-Chavez, Alejandra; Salazar-Paramo, Mario; Cardona-Muñoz, Ernesto German; Fajardo-Robledo, Nicte Selene; Zavaleta-Muñiz, Soraya Amali; Garcia-Cobian, Teresa; Gamez-Nava, Jorge Ivan

    2014-01-01

    We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP) and anti-mutated citrullinated vimentin antibodies (anti-MCV) with the presence of extra-articular (ExRA) manifestations in 225 patients with rheumatoid arthritis (RA). Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P = 0.40 and P = 0.91, resp.). Making an analysis of individual manifestations, rheumatoid nodules were associated with positivity for rheumatoid factor (RF); (P = 0.01), anti-CCP (P = 0.048), and anti-MCV (P = 0.02). Instead, RF, anti-CCP, or anti-MCV were not associated with SS, chronic anemia, or peripheral neuropathy. Levels of anti-CCP correlated with the score of the Health Assessment Questionnaire-Disability Index (HAQ-Di) (r = 0.154, P = 0.03), erythrocyte sedimentation rate (ESR); (r = 0.155, P = 0.03), and RF (P = 0.254, P < 0.001), whereas anti-MCV titres only correlated with RF (r = 0.169, P = 0.02). On adjusted analysis, ExRA was associated with longer age (P = 0.015), longer disease duration (P = 0.007), higher DAS-28 score (P = 0.002), and higher HAQ-DI score (P = 0.007), but serum levels of anti-CCP and anti-MCV were not associated. These findings show the need to strengthen the evaluation of the pathogenic mechanisms implied in each specific ExRA manifestation. PMID:24804270

  15. Smoking in combination with antibodies to cyclic citrullinated peptides is associated with persistently high levels of survivin in early rheumatoid arthritis: a prospective cohort study

    PubMed Central

    2014-01-01

    Introduction High levels of the oncoprotein survivin may be detected in the majority of patients with early rheumatoid arthritis (RA). Survivin is a sensitive predictor of joint damage and persistent disease activity. Survivin-positive patients are often poor responders to antirheumatic and biological treatment. The aim of this study was to investigate the reproducibility of survivin status and its significance for clinical and immunological assessment of RA patients. Methods Survivin levels were measured in 339 patients from the Better Anti-Rheumatic FarmacOTherapy (BARFOT) cohort of early RA at baseline and after 24 months. The association of survivin status with joint damage (total Sharp-van der Heijde score), disease activity (Disease Activity Score based on evaluation of 28 joints (DAS28)), functional disability (Health Assessment Questionnaire (HAQ)), and pain perception (Visual Analogue Scale (VAS)) was calculated in the groups positive and negative for survivin on both occasions, and for the positive-negative and negative-positive groups. Results In 268 patients (79%) the levels of survivin were similar at baseline and after 24 months, 15% converted from survivin-positive to survivin-negative, and 5% from survivin-negative to survivin-positive. A combination of smoking and antibodies against cyclic citrullinated peptides (aCCP) predicted persistently (baseline and 24 months) high levels of survivin (odds ratio 4.36 (95% CI: 2.64 to 7.20), P < 0.001), positive predictive value 0.66 and specificity 0.83). The independent nature of survivin and aCCP was demonstrated by statistical and laboratory analysis. Survivin positivity on both test occasions was associated with the progression of joint damage, significantly higher DAS28 and lower rate of remission at 24 and 60 months compared to negative-negative patients. Survivin status was less associated with changes in HAQ and VAS. Conclusions Survivin is a relevant and reproducible marker of severe RA. Persistently high levels of survivin were associated with smoking and the presence of aCCP and/or RF antibodies and predicted persistent disease activity and joint damage. PMID:24428870

  16. High-Temperature Cyclic Oxidation Data, Volume 1

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Garlick, R. G.; Lowell, C. E.

    1984-01-01

    This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  17. Agonist properties of a stable hexapeptide analog of neurotensin, N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1).

    PubMed

    Akunne, H C; Demattos, S B; Whetzel, S Z; Wustrow, D J; Davis, D M; Wise, L D; Cody, W L; Pugsley, T A; Heffner, T G

    1995-04-18

    The major signal transduction pathway for neurotensin (NT) receptors is the G-protein-dependent stimulation of phospholipase C, leading to the mobilization of intracellular free Ca2+ ([Ca2+]i) and the stimulation of cyclic GMP. We investigated the functional actions of an analog of NT(8-13), N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1), and other NT related analogs by quantitative measurement of the cytosolic free Ca2+ concentration in HT-29 (human colonic adenocarcinoma) cells using the Ca(2+)-sensitive dye fura-2/AM and by effects on cyclic GMP levels in rat cerebellar slices. The NT receptor binding affinities for these analogs to HT-29 cell membranes and newborn (10-day-old) mouse brain membranes were also investigated. Data obtained from HT-29 cell and mouse brain membrane preparations showed saturable single high-affinity sites and binding densities (Bmax) of 130.2 and 87.5 fmol/mg protein, respectively. The respective KD values were 0.47 and 0.39 nM, and the Hill coefficients were 0.99 and 0.92. The low-affinity levocabastine-sensitive site was not present (K1 > 10,000) in either membrane preparation. Although the correlation of binding between HT-29 cell membranes and mouse brain membranes was quite significant (r = 0.92), some of the reference agents had lower binding affinities in the HT-29 cell membranes. The metabolically stable compound NT1 plus other NT analogs and related peptides [NT, NT(8-13), xenopsin, neuromedin N, NT(9-13), kinetensin and (D-Trp11)-NT] increased intracellular Ca2+ levels in HT-29 cells, indicating NT receptor agonist properties. The effect of NT1 in mobilizing [Ca2+]i blocked by SR 48692, a non-peptide NT antagonist. Receptor binding affinities of NT analogs to HT-29 cell membranes were positively correlated with potencies for mobilizing intracellular calcium in the same cells. In addition, NT1 increased cyclic GMP levels in rat cerebellar slices, confirming the latter findings of its NT agonist action. These results substantiate the in vitro NT agonist properties of the hexapeptide NT analog NT1.

  18. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    NASA Astrophysics Data System (ADS)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  19. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging

    PubMed Central

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-01-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280

  20. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Yamasaki, Tomoteru; Kawamura, Kazunori; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2016-09-01

    The transmembrane cell adhesion receptor αVβ3 integrin (αVβ3) has been identified as an important molecular target for cancer imaging and therapy. We have developed a tetrameric cyclic RGD (Arg-Gly-Asp) peptide-based radiotracer (64)Cu-cyclam-RAFT-c(-RGDfK-)4, which successfully captured αVβ3-positive tumors and angiogenesis by PET. Here, we subsequently evaluated its therapeutic potential and side effects using an established αVβ3-positive tumor mouse model. Mice with subcutaneous U87MG glioblastoma xenografts received single administrations of 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 (37 MBq/nmol), peptide control, or vehicle solution and underwent tumor growth evaluation. Side effects were assessed in tumor-bearing and tumor-free mice in terms of body weight, routine hematology, and hepatorenal functions. Biodistribution of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 with ascending peptide doses (0.25-10 nmol) and with the therapeutic dose of 2 nmol were determined at 3 hours and at various time points (2 minutes-24 hours) postinjection, respectively, based on which radiation-absorbed doses were estimated. The results revealed that (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently slowed down the tumor growth. The mean tumor doses were 1.28 and 1.81 Gy from 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, respectively. Peptide dose study showed that the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently decreased at doses ≥1 nmol, indicating a saturation of αVβ3 with the administered therapeutic doses (1 and 2 nmol). Combined analysis of the data from tumor-bearing and tumor-free mice revealed no significant toxicity caused by 37-74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 Our study demonstrates the therapeutic efficacy and safety of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 for αVβ3-targeted radionuclide therapy. (64)Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising theranostic drug for cancer imaging and therapy. Mol Cancer Ther; 15(9); 2076-85. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Novel 64Cu Labeled RGD2-BBN Heterotrimers for PET Imaging of Prostate Cancer.

    PubMed

    Lucente, Ermelinda; Liu, Hongguang; Liu, Yang; Hu, Xiang; Lacivita, Enza; Leopoldo, Marcello; Cheng, Zhen

    2018-05-16

    Bombesin receptor 2 (BB 2 ) and integrin α v β 3 receptor are privileged targets for molecular imaging of cancer because of their overexpression in a number of tumor tissues. The most recent developments in heterodimer-based radiopharmaceuticals concern BB 2 - and integrin α v β 3 -targeting compounds, consisting of bombesin (BBN) and cyclic arginine-glycine-aspartic acid peptides (RGD), connected through short length linkers. Molecular imaging probes based on RGD-BBN heterodimer design exhibit improved tumor targeting efficacy compared to the single-receptor targeting peptide monomers. However, their application in clinical study is restricted because of inefficient synthesis or unfavorable in vivo properties, which could depend on the short linker nature. Thus, the aim of the present study was to develop a RGD 2 -BBN heterotrimer, composed of (7-14)BBN-NH 2 peptide (BBN) linked to the E[ c(RGDyK)] 2 dimer peptide (RGD 2 ), bearing the new linker type [Pro-Gly] 12 . The heterodimer E[c(RGDyK)] 2 -PEG 3 -Glu-(Pro-Gly) 12 -BBN(7-14)-NH 2 (RGD 2 -PG 12 -BBN) was prepared through conventional solid phase synthesis, then conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODA-GA). In 64 Cu labeling, the NODA-GA chelator showed superior radiochemical characteristics compared to DOTA (70% vs 40% yield, respectively). Both conjugates displayed dual targeting ability, showing good α v β 3 affinities and high BB 2 receptor affinities which, in the case of the NODA-GA conjugate, were in the same range as the best RGD-BBN heterodimer ligands reported to date ( K i = 24 nM). 64 Cu-DOTA and 64 Cu-NODA-GA probes were also found to be stable after 1 h incubation in mouse serum (>90%). In a microPET study in prostate cancer PC-3 xenograft mice, both probes showed low tumor uptake, probably due to poor pharmacokinetic properties in vivo. Overall, our study demonstrates that novel RGD-BBN heterodimer with long linker can be prepared and they preserve high binding affinities to BB 2 and integrin α v β 3 receptor binding ability. The present study represents a step forward in the design of effective heterodimer or heterotrimer probes for dual targeting.

  2. Location of alkali metal binding sites in endothelin A selective receptor antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from multistep collisionally activated decompositions.

    PubMed

    Ngoka, L C; Gross, M L

    2000-02-01

    We previously showed by using mass spectrometry that endothelin A selective receptor antagonists BQ123 and JKC301 form novel coordination compounds with sodium ions. This property may underlie the ability of an ET(A) antagonist to induce net tubular sodium reabsorption in the proximal tubule cells and reverse acute renal failure induced by severe ischemia. We have now defined the metal binding sites on BQ123 and JKC301 by subjecting the metal-containing peptides to multiple stages of collisionally activated decomposition (CAD) in an ion trap mass spectrometer. When submitted to low-energy CAD, the ring opens at the Asp-Pro amide bond. The metal ion, which bonds, inter alia, to the carbonyl oxygen of the proline residue, acts as a fixed charge site, and directs a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues are sequentially cleaved from the C-terminal end, and the terminal aziridinone structure moves one step toward the N-terminus with each C-terminal amino acid residue removed. These observations are the basis of a new method to sequence cyclic peptides. Amino acid residues are observed as sets of three ions, a*(n)PD, b*(n)PD and c*(n)PD where n is the number of amino acid residues in the peptide. Copyright 2000 John Wiley & Sons, Ltd.

  3. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.

    PubMed

    Han, Jinzhi; Gao, Peng; Zhao, Shengming; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia

    2017-01-06

    LI-F type peptides (AMP-jsa9) produced by Paenibacillus polymyxa JSa-9 are a group of cyclic lipodepsipeptide antibiotics that exhibit a broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi, especially Bacillus cereus and Fusarium moniliforme. In this study, to better understand the antibacterial mechanism of AMP-jsa9 against B. cereus, the ultrastructure of AMP-jsa9-treated B. cereus cells was observed by both atomic force microscopy and transmission electron microscopy, and quantitative proteomic analysis was performed on proteins extracted from treated and untreated bacterial cells by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis, including determinations of ATP, NAD (+) H, NADP (+) H, reactive oxygen species (ROS), the activities of catalase (CAT) and superoxide dismutase (SOD), and the relative expression of target genes by quantitative real-time PCR. Bacterial cells exposed to AMP-jsa9 showed irregular surfaces with bleb projections and concaves; we hypothesize that AMP-jsa9 penetrated the cell wall and was anchored on the cytoplasmic membrane and that ROS accumulated in the cell membrane after treatment with AMP-jsa9, modulating the bacterial membrane properties and increasing membrane permeability. Consequently, the blebs were formed on the cell wall by the impulsive force of the leakage of intercellular contents. iTRAQ-based proteomic analysis detected a total of 1317 proteins, including 176 differentially expressed proteins (75 upregulated (fold >2) and 101 downregulated (fold <0.5)). Based on proteome analysis, the putative pathways of AMP-jsa9 action against B. cereus can be summarized as: (i) inhibition of bacterial sporulation, thiamine biosynthesis, energy metabolism, DNA transcription and translation, and cell wall biosynthesis, through direct regulation of protein levels; and (ii) indirect effects on the same pathways through the accumulation of ROS and the consequent impairment of cellular functions, resulting from downregulation of antioxidant proteins, especially CAT and SOD. The mode of action of LI-F type antimicrobial peptides (AMP-jsa9) against B. cereus was elucidated at the proteomic level. Two pathways of AMP-jsa9 action upon B. cereus cells were identified and the mechanism of bleb formation on the surfaces of bacterial cells was predicted based on the results of ultrastructural observation and proteomic analysis. These results are helpful in understanding the mechanism of LI-F type peptides and in providing the theoretical base for applying AMP-jsa9 or its analogs to combat Gram-positive pathogenic bacteria in the food and feed industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Study on stress-strain response of multi-phase TRIP steel under cyclic loading

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.

    2013-12-01

    The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.

  5. Rheumatoid arthritis and pulmonary nodules: An unexpected final diagnosis.

    PubMed

    Zurita Prada, Pablo Antonio; Urrego Laurín, Claudia Lía; Assyaaton Bobo, Sow; Faré García, Regina; Estrada Trigueros, Graciliano; Gallardo Romero, José Manuel; Borrego Pintado, Maria Henar

    We report the case of a 50-year-old female smoker with an 11-year history of seropositive rheumatoid arthritis (rheumatoid factor and anti-cyclic citrullinated peptide antibodies) receiving triple therapy. She developed pulmonary nodules diagnosed as Langerhans cell histiocytosis by lung biopsy. We found no reported cases of the coexistence of these two diseases. Smoking abstinence led to radiologic resolution without modifying the immunosuppressive therapy. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  6. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  7. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    NASA Astrophysics Data System (ADS)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  8. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    PubMed

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  9. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  10. High in Vivo Stability of 64Cu-Labeled Cross-Bridged Chelators Is a Crucial Factor in Improved Tumor Imaging of RGD Peptide Conjugates.

    PubMed

    Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo

    2018-01-11

    Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.

  11. Peptide Macrocyclization Catalyzed by a Prolyl Oligopeptidase Involved in α-Amanitin Biosynthesis

    DOE PAGES

    Luo, Hong; Hong, Sung-Yong; Sgambelluri, R.  Michael; ...

    2014-12-04

    Amatoxins are ribosomally encoded and posttranslationally modified peptides that account for the majority of fatal mushroom poisonings of humans. A representative amatoxin is the bicyclic octapeptide α-amanitin, formed via head-to-tail macrocyclization, which is ribosomally biosynthesized as a 35-amino acid propeptide in Amanita bisporigera and in the distantly related mushroom Galerina marginata. Although members of the prolyl oligopeptidase (POP) family of serine proteases have been proposed to play a role in α-amanitin posttranslational processing, the exact mechanistic details are not known. In this paper, we show that a specific POP (GmPOPB) is required for toxin maturation in G. marginata. Recombinant GmPOPBmore » catalyzed two nonprocessive reactions: hydrolysis at an internal Pro to release the C-terminal 25-mer from the 35-mer propeptide and transpeptidation at the second Pro to produce the cyclic octamer. Finally on the other hand, we show that GmPOPA, the putative housekeeping POP of G. marginata, behaves like a conventional POP.« less

  12. Larger differences in utilization of rarely requested tests in primary care in Spain.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Uris, Joaquín; Leiva-Salinas, Carlos

    2015-01-01

    The study was performed to compare and analyze the inter-departmental variability in the request of rarely requested laboratory tests in primary care, as opposed to other more common and highly requested tests. Data from production statistics for the year 2012 from 76 Spanish laboratories was used. The number of antinuclear antibodies, antistreptolysin O, creatinine, cyclic citrullinated peptide antibodies, deaminated peptide gliadine IgA antibodies, glucose, protein electrophoresis, rheumatoid factor, transglutaminase IgA antibodies, urinalysis and uric acid tests requested was collected. The number of test requests per 1000 inhabitants was calculated. In order to explore the variability the coefficient of quartile dispersion was calculated. The smallest variation was seen for creatinine, glucose, uric acid and urinalysis; the most requested tests. The tests that were least requested showed the greatest variability. Our study shows through a very simplified approach, in a population close to twenty million inhabitants, how in primary care, the variability in the request of laboratory tests is inversely proportional to the request rate.

  13. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  14. Hoiamide A, a Sodium Channel Activator of Unusual Architecture from a Consortium of Two Papua New Guinea Cyanobacteria

    PubMed Central

    Pereira, Alban; Cao, Zhengyu; Murray, Thomas F.; Gerwick, William H.

    2009-01-01

    Summary Hoiamide A, a novel bioactive cyclic depsipeptide, was isolated from an environmental assemblage of the marine cyanobacteria Lyngbya majuscula and Phormidium gracile collected in Papua New Guinea. This stereochemically complex metabolite possesses a highly unusual structure which likely derives from a mixed peptide-polyketide biogenetic origin, and includes a peptidic section featuring an acetate extended and S-adenosyl methionine modified isoleucine moiety, a triheterocyclic fragment bearing two a-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C15-polyketide substructure. Pure hoiamide A potently inhibited [3H]batrachotoxin binding to voltage-gated sodium channels (IC50 = 92.8 nM) and activated sodium influx (EC50 = 1.73 μM) in mouse neocortical neurons, as well as exhibited modest cytotoxicity to cancer cells. Further investigation revealed that hoiamide A is a partial agonist of site 2 on the voltage gated sodium channel. PMID:19716479

  15. Identification and Structural Characterization of Naturally-Occurring Broad-Spectrum Cyclic Antibiotics Isolated from Paenibacillus

    NASA Astrophysics Data System (ADS)

    Knolhoff, Ann M.; Zheng, Jie; McFarland, Melinda A.; Luo, Yan; Callahan, John H.; Brown, Eric W.; Croley, Timothy R.

    2015-08-01

    The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MSn spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.

  16. Comparison of Biological Properties of 99mTc-Labeled Cyclic RGD Peptide Trimer and Dimer Useful as SPECT Radiotracers for Tumor Imaging

    PubMed Central

    Zhao, Zuo-Quan; Yang, Yong; Fang, Wei; Liu, Shuang

    2016-01-01

    Introduction This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. Methods HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. Results 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200 GBq/µmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. Conclusion Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors. PMID:27556955

  17. Synthesis and Evaluation of Antimicrobial Activity of [R₄W₄K]-Levofloxacin and [R₄W₄K]-Levofloxacin-Q Conjugates.

    PubMed

    Riahifard, Neda; Tavakoli, Kathy; Yamaki, Jason; Parang, Keykavous; Tiwari, Rakesh

    2017-06-08

    The development of a new class of antibiotics to fight bacterial resistance is a time-consuming effort associated with high-cost and commercial risks. Thus, modification, conjugation or combination of existing antibiotics to enhance their efficacy is a suitable strategy. We have previously reported that the amphiphilic cyclic peptide [R₄W₄] had antibacterial activity with a minimum inhibitory concentration (MIC) of 2.97 µg/mL against Methicillin-resistant Staphylococcus aureus (MRSA). Herein, we hypothesized that conjugation or combination of the amphiphilic cyclic peptide [R₄W₄] with levofloxacin or levofloxacin-Q could improve the antibacterial activity of levofloxacin and levofloxacin-Q. Fmoc/tBu solid-phase chemistry was employed to synthesize conjugates of [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin. The carboxylic acid group of levofloxacin or levofloxacin-Q was conjugated with the amino group of β-alanine attached to lysine in the presence of 2-(1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and N , N -diisopropylethylamine (DIPEA) for 3 h to afford the products. Antibacterial assays were conducted to determine the potency of conjugates [R₄W₄K]-levofloxacin-Q and [R₄W₄K]-levofloxacin against MRSA and Klebsiella pneumoniae . Although levofloxacin-Q was inactive even at a concentration of 128 µg/mL, [R₄W₄K]-levofloxacin-Q conjugate and the corresponding physical mixture showed MIC values of 8 µg/mL and 32 µg/mL against MRSA and Klebsiella pneumonia , respectively, possibly due to the activity of the peptide. On the other hand, [R₄W₄K]-levofloxacin conjugate (MIC = 32 µg/mL and MIC = 128 µg/mL) and the physical mixture (MIC = 8 µg/mL and 32 µg/mL) was less active than levofloxacin (MIC = 2 µg/mL and 4 = µg/mL) against MRSA and Klebsiella pneumoniae , respectively. The data showed that the conjugation of levofloxacin with [R₄W₄K] significantly reduced the antibacterial activity compared to the parent analogs, while [R₄W₄K]-levofloxacin-Q conjugate was more significantly potent than levofloxacin-Q alone.

  18. Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes

    PubMed Central

    Kim, Pyung-Hwan; Lee, Minhyung; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) agonist, exenxdin-4, is currently being advanced as a promising diabetes remedy via a variety of incretin actions similar with GLP-1. In this study, we investigated an effective anti-diabetic therapy via exendin-4 expressing chimeric plasmid based on two-step transcription amplification (TSTA) system with dendrimer-type bioreducible polymer for more improved incretin-based gene therapy. Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amido amine) (PAMAM) dendrimer (PAM-ABP) was used as gene carrier. PAM-ABP/chimeric DNA polyplex was markedly elevated exendin-4 expression in ectopic cells as well as increased insulin production through an enhanced activation of protein kinase K (PKA) induced by up-regulation of exendin-4-stimulated cyclic adenosine monophosphate (cAMP) in pancreatic β-cell. Consistent with these results, intravenous administration of PAM-ABP/chimeric DNA polyplex improved glucoregulotory effects, as well as increased insulin secretion by high expression of exendin-4 in blood in type 2 diabetic mice with no any toxicity. Our exendin-4 system can be attributed to provide a potential diabetes therapeutic agent for improved incretin gene therapy. PMID:24839613

  19. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin

    PubMed Central

    Furumai, Ryohei; Komatsu, Yasuhiko; Nishino, Norikazu; Khochbin, Saadi; Yoshida, Minoru; Horinouchi, Sueharu

    2001-01-01

    Trichostatin A (TSA) and trapoxin (TPX) are potent inhibitors of histone deacetylases (HDACs). TSA is proposed to block the catalytic reaction by chelating a zinc ion in the active-site pocket through its hydroxamic acid group. On the other hand, the epoxyketone is suggested to be the functional group of TPX capable of alkylating the enzyme. We synthesized a novel TPX analogue containing a hydroxamic acid instead of the epoxyketone. The hybrid compound cyclic hydroxamic acid-containing peptide (CHAP) 1 inhibited HDAC1 at low nanomolar concentrations. The HDAC1 inhibition by CHAP1 was reversible as it was by TSA, in contrast to the irreversible inhibition by TPX. CHAP with an aliphatic chain length of five, which corresponded to that of acetylated lysine, was stronger than those with other lengths. These results suggest that TPX is a substrate mimic and that the replacement of the epoxyketone with the hydroxamic acid converted TPX to an inhibitor chelating the zinc like TSA. Interestingly, HDAC6, but not HDAC1 or HDAC4, was resistant to TPX and CHAP1, whereas TSA inhibited these HDACs to a similar extent. HDAC6 inhibition by TPX at a high concentration was reversible, probably because HDAC6 is not alkylated by TPX. We further synthesized the counterparts of all known naturally occurring cyclic tetrapeptides containing the epoxyketone. HDAC1 was highly sensitive to all these CHAPs much more than HDAC6, indicating that the structure of the cyclic tetrapeptide framework affects the target enzyme specificity. These results suggest that CHAP is a unique lead to develop isoform-specific HDAC inhibitors. PMID:11134513

  20. A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1992-01-01

    A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni- and Co-base superalloys was reduced to a single attack parameter, K(sub a), for each run. This K(sub a) value was used to rank the cyclic oxidation resistance of each alloy at 1000, 1100, and 1150 C. These K(sub a) values were also used to derive an estimating equation using multiple linear regression involving log(sub 10)K(sub a) as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr, and Ta.

  1. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells.

    PubMed

    Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza

    2016-08-23

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88-92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream.

  2. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells

    PubMed Central

    Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza

    2016-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88–92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88–92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream. PMID:27323409

  3. Plant natriuretic peptides: systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts.

    PubMed

    Gehring, Chris; Irving, Helen

    2013-06-01

    Immunologic evidence has suggested the presence of biologically active natriuretic peptide (NPs) hormones in plants because antiatrial NP antibodies affinity purify biologically active plant NPs (PNP). In the model plant, an Arabidopsis thaliana PNP (AtPNP-A) has been identified and characterized. AtPNP-A belongs to a novel class of molecules that share some similarity with the cell wall loosening expansins but do not contain the carbohydrate-binding wall anchor thus suggesting that PNPs and atrial natriuretic peptides are heterologs. AtPNP-A acts systemically, and this is consistent with its localization in the apoplastic extracellular space and the conductive tissue. Furthermore, AtPNP-A signals via the second messenger cyclic guanosine 3',5'-monophosphate and modulates ion and water transport and homeostasis. It also plays a critical role in host defense against pathogens. AtPNP-A can be classified as novel paracrine plant hormone because it is secreted into the apoplastic space in response to stress and can enhance its own expression. Interestingly, purified recombinant PNP induces apoptosis in a dose-dependent manner and was most effective on cardiac myoblast cell lines. Because PNP is mimicking the effect of ANP in some instances, PNP may prove to provide useful leads for development of novel therapeutic NPs.

  4. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543.

    PubMed

    Shishido, Tânia K; Jokela, Jouni; Fewer, David P; Wahlsten, Matti; Fiore, Marli F; Sivonen, Kaarina

    2017-11-17

    Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.

  5. The glucagon-like peptides: a new genre in therapeutic targets for intervention in Alzheimer's disease.

    PubMed

    Perry, TracyAnn; Greig, Nigel H

    2002-12-01

    Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an insulinotropic hormone, secreted from the enteroendocrine L cells of the intestinal tract in response to nutrient ingestion. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose in patients with type 2 diabetes mellitus. GLP-1 receptors, which are coupled to the cyclic AMP second messenger pathway, are expressed throughout the brains of rodents and humans. The chemoarchitecture of receptor distribution in the brain correlates well with a central role for GLP-1 in the regulation of food intake and response to aversive stress. We have recently reported that GLP-1 and several longer acting analogs that bind at the GLP-1 receptor, possess neurotrophic properties, and offer protection against glutamate-induced apoptosis and oxidative injury in cultured neuronal cells. Furthermore, GLP-1 can modify processing of the amyloid beta- protein precursor in cell culture and dose-dependently reduces amyloid beta-peptide levels in the brain in vivo. As such, this review discusses the known role of GLP-1 within the central nervous system, and considers the potential of GLP-1 and analogs as novel therapeutic targets for intervention in Alzheimer's disease (AD) and potentially other central and peripheral neurodegenerative conditions.

  6. Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages.

    PubMed

    Abriouel, Hikmate; Lucas, Rosario; Omar, Nabil Ben; Valdivia, Eva; Gálvez, Antonio

    2010-06-01

    Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.

  7. Computational study of the inhibitory mechanism of the kinase CDK5 hyperactivity by peptide p5 and derivation of a pharmacophore

    NASA Astrophysics Data System (ADS)

    Cardone, A.; Brady, M.; Sriram, R.; Pant, H. C.; Hassan, S. A.

    2016-06-01

    The hyperactivity of the cyclic dependent kinase 5 (CDK5) induced by the activator protein p25 has been linked to a number of pathologies of the brain. The CDK5-p25 complex has thus emerged as a major therapeutic target for Alzheimer's disease (AD) and other neurodegenerative conditions. Experiments have shown that the peptide p5 reduces the CDK5-p25 activity without affecting the endogenous CDK5-p35 activity, whereas the peptide TFP5, obtained from p5, elicits similar inhibition, crosses the blood-brain barrier, and exhibits behavioral rescue of AD mice models with no toxic side effects. The molecular basis of the kinase inhibition is not currently known, and is here investigated by computer simulations. It is shown that p5 binds the kinase at the same CDK5/p25 and CDK5/p35 interfaces, and is thus a non-selective competitor of both activators, in agreement with available experimental data in vitro. Binding of p5 is enthalpically driven with an affinity estimated in the low µM range. A quantitative description of the binding site and pharmacophore is presented, and options are discussed to increase the binding affinity and selectivity in the design of drug-like compounds against AD.

  8. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes.

    PubMed

    Seal, Manas; Dey, Somdatta Ghosh

    2018-01-02

    Type 2 diabetes mellitus (T2Dm) is characterized by reduced β cell mass and amyloid deposits of human islet amyloid polypeptide (hIAPP) or amylin, a 37 amino acid containing peptide around pancreatic β cells. The interaction of copper (Cu) with amylin and its mutants has been studied in detail using absorption, circular dichroism, electron paramagnetic resonance spectroscopy, and cyclic voltammetry. Cu binds amylin in a 1:1 ratio, and the binding domain lies within the first 19 amino acid residues of the peptide. Depending on the pH of the medium, Cu-amylin shows the formation of five pH-dependent components (component IV at pH 4.0, component III at pH 5.0, component II at pH 6.0, component I at pH 8.0, and another higher pH component above pH 9.0). The terminal amine, His18, and amidates are established as key residues in the peptide that coordinate the Cu center. The physiologically relevant components I and II can generate H 2 O 2 , which can possibly account for the enhanced toxicity of amylin in the presence of Cu, causing damage of the β cells of the pancreas via oxidative stress.

  9. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    PubMed

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  10. Synthetic Peptide Drugs for Targeting Skin Cancer: Malignant Melanoma and Melanotic Lesions.

    PubMed

    Eberle, Alex N; Rout, Bhimsen; Qi, Mei Bigliardi; Bigliardi, Paul L

    2017-01-01

    Peptides play decisive roles in the skin, ranging from host defense responses to various forms of neuroendocrine regulation of cell and organelle function. Synthetic peptides conjugated to radionuclides or photosensitizers may serve to identify and treat skin tumors and their metastatic forms in other organs of the body. In the introductory part of this review, the role and interplay of the different peptides in the skin are briefly summarized, including their potential application for the management of frequently occurring skin cancers. Special emphasis is given to different targeting options for the treatment of melanoma and melanotic lesions. Radionuclide Targeting: α-Melanocyte-stimulating hormone (α-MSH) is the most prominent peptide for targeting of melanoma tumors via the G protein-coupled melanocortin-1 receptor that is (over-)expressed by melanoma cells and melanocytes. More than 100 different linear and cyclic analogs of α-MSH containing chelators for 111In, 67/68Ga, 64Cu, 90Y, 212Pb, 99mTc, 188Re were synthesized and examined with experimental animals and in a few clinical studies. Linear Ac-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys-NH2 (NAP-amide) and Re-cyclized Cys- Cys-Glu-His-D-Phe-Arg-Trp-Cys-Arg-Pro-Val-NH2 (Re[Arg11]CCMSH) containing different chelators at the N- or C-terminus served as lead compounds for peptide drugs with further optimized characteristics. Alternatively, melanoma may be targeted with radiopeptides that bind to melanin granules occurring extracellularly in these tumors. Photosensitizer targeting: A more recent approach is the application of photosensitizers attached to the MSH molecule for targeted photodynamic therapy using LED or coherent laser light that specifically activates the photosensitizer. Experimental studies have demonstrated the feasibility of this approach as a more gentle and convenient alternative compared to radionuclides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions.

    PubMed

    Bronson, R A; Fusi, F M; Calzi, F; Doldi, N; Ferrari, A

    1999-05-01

    Fertilin is a protein initially identified in guinea pig spermatozoa; it is the prototype of a larger family of conserved, proteins designated as a disintegrin and a metalloproteinase (ADAM). These heterodimers which consist of alpha and beta subunits, containing metalloproteinase-like and disintegrin-like domains, appear to play a role in mammalian fertilization. Peptides derived from the disintegrin domains of two ADAMs, fertilin and cyritestin, interfere with gamete adhesion and sperm-egg membrane fusion in non-human species. It has been suggested that fertilin-beta binds to an oolemmal integrin, and it is proposed that the tripeptide FEE (Phe-Glu-Glu) is the integrin recognition sequence in human fertilin-beta. We evaluated whether fertilin beta plays a role in human fertilization by studying the effects of a linear octapeptide containing the FEE sequence, SFEECDLP, and a scrambled octapeptide with the same amino acids, SFPCEDEL, on the incorporation of human spermatozoa by human zona-free eggs. The effects of G4120, a potent RGD-containing (Arg-Gly-Asp) thioether-bridged cyclic peptide which blocks both fibronectin and vitronectin receptors, and the relationship between FEE- and RGD-receptor interactions on sperm-egg interactions were also studied. The FEE-containing peptide, but not the scrampled peptide, inhibited sperm adhesion to oocytes and their penetration, over the range 1-5 microM. The inhibition induced by SFEECDLP was reversible and occurred only in the presence of peptide itself. The G4120 peptide exhibited 10-fold less inhibitory effects on sperm adhesion and penetration than did SFEECDLP. When combined, SFEECDLP and G4120 exhibited strong inhibition of both adhesion and penetration at concentrations that individually had been ineffective, suggesting co-operation between the two receptor-ligand interactions during fertilization. We propose that a fertilin-like molecule is functionally active on human spermatozoa and that its interaction with an oolemmal integrin receptor plays a role in fertilization in humans.

  12. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide.

    PubMed

    Carretero, Gustavo P B; Saraiva, Greice K V; Cauz, Ana C G; Rodrigues, Magali A; Kiyota, Sumika; Riske, Karin A; Dos Santos, Alcindo A; Pinatto-Botelho, Marcos F; Bemquerer, Marcelo P; Gueiros-Filho, Frederico J; Chaimovich, Hernan; Schreier, Shirley; Cuccovia, Iolanda M

    2018-05-09

    Antimicrobial peptides (AMPs) work as a primary defense against pathogenic microorganisms. BP100, (KKLFKKILKYL-NH 2 ), a rationally designed short, highly cationic AMP, acts against many bacteria, displaying low toxicity to eukaryotic cells. Previously we found that its mechanism of action depends on membrane surface charge and on peptide-to-lipid ratio. Here we present the synthesis of two BP100 analogs: BP100‑alanyl‑hexadecyl‑1‑amine (BP100-Ala-NH-C 16 H 33 ) and cyclo(1‑4)‑d‑Cys 1 , Ile 2 , Leu 3 , Cys 4 -BP100 (Cyclo(1‑4)‑cILC-BP100). We examined their binding to large unilamellar vesicles (LUV), conformational and functional properties, and compared with those of BP100. The analogs bound to membranes with higher affinity and a lesser dependence on electrostatic forces than BP100. In the presence of LUV, BP100 and BP100-Ala-NH-C 16 H 33 acquired α-helical conformation, while Cyclo(1‑4)‑cILC-BP100) was partly α-helical and partly β-turn. Taking in conjunction: 1. particle sizes and zeta potential, 2. effects on lipid flip-flop, 3. leakage of LUVs internal contents, and 4. optical microscopy of giant unilamellar vesicles, we concluded that at high concentrations, all three peptides acted by a carpet mechanism, while at low concentrations the peptides acted by disorganizing the lipid bilayer, probably causing membrane thinning. The higher activity and lesser membrane surface charge dependence of the analogs was probably due to their greater hydrophobicity. The MIC values of both analogs towards Gram-positive and Gram-negative bacteria were similar to those of BP100 but both analogues were more hemolytic. Confocal microscopy showed Gram-positive B. subtilis killing with concomitant extensive membrane damage suggestive of lipid clustering, or peptide-lipid aggregation. These results were in agreement with those found in model membranes. Copyright © 2018. Published by Elsevier B.V.

  13. An interleukin 13 receptor α 2–specific peptide homes to human Glioblastoma multiforme xenografts

    PubMed Central

    Pandya, Hetal; Gibo, Denise M.; Garg, Shivank; Kridel, Steven; Debinski, Waldemar

    2012-01-01

    Interleukin 13 receptor α 2 (IL-13Rα2) is a glioblastoma multiforme (GBM)–associated plasma membrane receptor, a brain tumor of dismal prognosis. Here, we isolated peptide ligands for IL-13Rα2 with use of a cyclic disulphide-constrained heptapeptide phages display library and 2 in vitro biopanning schemes with GBM cells that do (G26-H2 and SnB19-pcDNA cells) or do not (G26-V2 and SnB19-asIL-13Rα2 cells) over-express IL-13Rα2. We identified 3 peptide phages that bind to IL-13Rα2 in cellular and protein assays. One of the 3 peptide phages, termed Pep-1, bound to IL-13Rα2 with the highest specificity, surprisingly, also in a reducing environment. Pep-1 was thus synthesized and further analyzed in both linear and disulphide-constrained forms. The linear peptide bound to IL-13Rα2 more avidly than did the disulphide-constrained form and was efficiently internalized by IL-13Rα2–expressing GBM cells. The native ligand, IL-13, did not compete for the Pep-1 binding to the receptor and vice versa in any of the assays, indicating that the peptide might be binding to a site on the receptor different from the native ligand. Furthermore, we demonstrated by noninvasive near infrared fluorescence imaging in nude mice that Pep-1 binds and homes to both subcutaneous and orthotopic human GBM xenografts expressing IL-13Rα2 when injected by an intravenous route. Thus, we identified a linear heptapeptide specific for the IL-13Rα2 that is capable of crossing the blood-brain tumor barrier and homing to tumors. Pep-1 can be further developed for various applications in cancer and/or inflammatory diseases. PMID:21946118

  14. Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from Leuconostoc mesenteroides LBP-K06 Have Activities against Multidrug-Resistant Bacteria.

    PubMed

    Liu, Rui; Kim, Andrew H; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-01-01

    Lactobacillus plantarum and Leuconostoc mesenteroides play a prominent role as functional starters and predominant isolates in the production of various types of antimicrobial compound-containing fermented foods, especially including kimchi. In the case of the bioactive cyclic dipeptides, their racemic diastereomers inhibitory to bacteria and fungi have been suggested to come solely from Lactobacillus spp. of these strains. We previously demonstrated the antifungal and antiviral activities of proline-based cyclic dipeptides, which were fractionated from culture filtrates of Lb. plantarum LBP-K10 originated from kimchi. However, cyclic dipeptides have not been identified in the filtrates, either from cultures or fermented subject matter, driven by Ln. mesenteroides , which have been widely used as starter cultures for kimchi fermentation. Most importantly, the experimental verification of cyclic dipeptide-content changes during kimchi fermentation have also not been elucidated. Herein, the antibacterial fractions, including cyclo(Leu-Pro) and cyclo(Phe-Pro), from Ln. mesenteroides LBP-K06 culture filtrates, which exhibited a typical chromatographic retention behavior (t R ), were identified by using semi-preparative high-performance liquid chromatography and gas chromatography-mass spectrometry. Based on this finding, the proline-based cyclic dipeptides, including cyclo(Ser-Pro), cyclo(Tyr-Pro), and cyclo(Leu-Pro), were additionally identified in the filtrates only when fermenting Chinese cabbage produced with Ln. mesenteroides LBP-K06 starter cultures. The detection and isolation of cyclic dipeptides solely in controlled fermented cabbage were conducted under the control of fermentation-process parameters concomitantly with strong CDP selectivity by using a two-consecutive-purification strategy. Interestingly, cyclic dipeptides in the filtrates, when using this strain as a starter, increased with fermentation time. However, no cyclic dipeptides were observed in the filtrates of other fermented products, including other types of kimchi and fermented materials of plant and animal origin. This is the first report to conclusively demonstrate evidence for the existence of antimicrobial cyclic dipeptides produced by Ln. mesenteroides in kimchi. Through filtrates from lactic acid bacterial cultures and from fermented foods, we have also proved a method of combining chromatographic fractionation and mass spectrometry-based analysis for screening cyclic dipeptide profiling, which may allow evaluation of the fermented dairy foods from a new perspective.

  15. Syntheses of precursors and reference compounds of the melanin-concentrating hormone receptor 1 (MCHR1) tracers [¹¹C]SNAP-7941 and [¹⁸F]FE@SNAP for positron emission tomography.

    PubMed

    Schirmer, Eva; Shanab, Karem; Datterl, Barbara; Neudorfer, Catharina; Mitterhauser, Markus; Wadsak, Wolfgang; Philippe, Cécile; Spreitzer, Helmut

    2013-09-30

    The MCH receptor has been revealed as a target of great interest in positron emission tomography imaging. The receptor's eponymous substrate melanin-concentrating hormone (MCH) is a cyclic peptide hormone, which is located predominantly in the hypothalamus with a major influence on energy and weight regulation as well as water balance and memory. Therefore, it is thought to play an important role in the pathophysiology of adiposity, which is nowadays a big issue worldwide. Based on the selective and high-affinity MCH receptor 1 antagonist SNAP-7941, a series of novel SNAP derivatives has been developed to provide different precursors and reference compounds for the radiosyntheses of the novel PET radiotracers [(11)C]SNAP-7941 and [(18)F]FE@SNAP. Positron emission tomography promotes a better understanding of physiologic parameters on a molecular level, thus giving a deeper insight into MCHR1 related processes as adiposity.

  16. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity.

    PubMed

    Cai, Weijing; Matthew, Susan; Chen, Qi-Yin; Paul, Valerie J; Luesch, Hendrik

    2018-05-15

    Two new cyclic lipopeptides termed laxaphycins B4 (1) and A2 (2) were discovered from a collection of the marine cyanobacterium Hormothamnion enteromorphoides, along with the known compound laxaphycin A. The planar structures were solved based on a combined interpretation of 1D and 2D NMR data and mass spectral data. The absolute configurations of the subunits were determined by chiral LC-MS analysis of the hydrolysates, advanced Marfey's analysis and 1D and 2D ROESY experiments. Consistent with similar findings on other laxaphycin A- and B-type peptides, laxaphycin B4 (1) showed antiproliferative effects against human colon cancer HCT116 cells with IC 50 of 1.7 µM, while laxaphycins A and A2 (2) exhibited weak activities. The two major compounds isolated from the sample, laxaphycins A and B4, were shown to act synergistically to inhibit the growth of HCT116 colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Species-level assessment of secondary metabolite diversity among Hamigera species and a taxonomic note on the genus

    PubMed Central

    Igarashi, Yasuhiro; Hanafusa, Tomoaki; Gohda, Fumiya; Peterson, Stephen; Bills, Gerald

    2014-01-01

    Secondary metabolite phenotypes in nine species of the Hamigera clade were analysed to assess their correlations to a multi-gene species-level phylogeny. High-pressure-liquid-chromatography-based chemical analysis revealed three distinctive patterns of secondary metabolite production: (1) the nine species could be divided into two groups on the basis of production of the sesquiterpene tricinonoic acid; (2) the tricinonoic acid-producing group produced two cyclic peptides avellanins A and B; (3) the tricinonoic acid-non-producing group could be further divided into two groups according to the production of avellanins A and B. The chemical phenotype was consistent with the phylogeny of the species, although metabolite patterns were not diagnostic at the species level. In addition, the taxonomy of the Hamigera clade was updated with the new combination Hamigera ingelheimensis proposed for Merimbla ingelheimensis, so that all species in the clade are now in the same genus. PMID:25379334

  18. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferredmore » relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.« less

  19. Combined LC-MS/MS and Molecular Networking Approach Reveals New Cyanotoxins from the 2014 Cyanobacterial Bloom in Green Lake, Seattle.

    PubMed

    Teta, Roberta; Della Sala, Gerardo; Glukhov, Evgenia; Gerwick, Lena; Gerwick, William H; Mangoni, Alfonso; Costantino, Valeria

    2015-12-15

    Cyanotoxins obtained from a freshwater cyanobacterial collection at Green Lake, Seattle during a cyanobacterial harmful algal bloom in the summer of 2014 were studied using a new approach based on molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. This MS networking approach is particularly well-suited for the detection of new cyanotoxin variants and resulted in the discovery of three new cyclic peptides, namely microcystin-MhtyR (6), which comprised about half of the total microcystin content in the bloom, and ferintoic acids C (12) and D (13). Structure elucidation of 6 was aided by a new microscale methylation procedure. Metagenomic analysis of the bloom using the 16S-ITS rRNA region identified Microcystis aeruginosa as the predominant cyanobacterium in the sample. Fragments of the putative biosynthetic genes for the new cyanotoxins were also identified, and their sequences correlated to the structure of the isolated cyanotoxins.

  20. Ocular manifestations of rheumatoid arthritis and their correlation with anti-cyclic citrullinated peptide antibodies.

    PubMed

    Vignesh, Ammapati Paul Pandian; Srinivasan, Renuka

    2015-01-01

    To study the ocular manifestations of rheumatoid arthritis and to correlate the role of anti-cyclic citrullinated peptide antibody (anti-CCP antibody) with the ocular manifestations. Three-hundred and ninety-two eyes of the 196 rheumatoid arthritis patients who attended the ophthalmology outpatient department underwent a detailed ocular examination using slit lamp biomicroscopy and ophthalmoscopy. The tear function of all the patients was assessed using Schirmer's test, tear film break-up time and ocular surface staining. The anti-CCP antibody titers for all the rheumatoid arthritis patients were estimated using enzyme-linked immunosorbent assay tests. Seventy-seven patients (135 eyes, 39%) out of the 196 patients studied had ocular manifestations typical of rheumatoid arthritis. Dry eye was the most common manifestation (28%, 54 patients). Of the patients, 78% was females (60 patients). The mean duration of rheumatoid arthritis in patients with ocular manifestations was 5.4±2.7 years and without ocular manifestations was 2.1±1.6years. Three percent of the patients had episcleritis (six patients). Scleritis was present in 2% of the patients (four patients). Peripheral ulcerative keratitis and sclerosing keratitis was present in 1% of the population each (two patients each). Eighty-five percent (66 patients) had bilateral manifestations 15% (eleven patients) had unilateral manifestations. There was a strong association between the presence of anti-CCP antibodies and ocular manifestations of rheumatoid arthritis which was shown by the statistically significant P-value of <0.0001. Ocular manifestations are a significant part of the extra-articular manifestation of rheumatoid arthritis. Dry eye was the most common ocular manifestation. There was a statistically significant association between the presence of anti-CCP antibodies specific to rheumatoid arthritis and the ocular manifestations.

Top