Science.gov

Sample records for cyclin g-associated kinase

  1. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies

    PubMed Central

    Chaikuad, Apirat; Keates, Tracy; Vincke, Cécile; Kaufholz, Melanie; Zenn, Michael; Zimmermann, Bastian; Gutiérrez, Carlos; Zhang, Rong-guang; Hatzos-Skintges, Catherine; Joachimiak, Andrzej; Muyldermans, Serge; Herberg, Friedrich W.; Knapp, Stefan; Müller, Susanne

    2014-01-01

    GAK (cyclin G-associated kinase) is a key regulator of clathrin-coated vesicle trafficking and plays a central role during development. Additionally, due to the unusually high plasticity of its catalytic domain, it is a frequent ‘off-target’ of clinical kinase inhibitors associated with respiratory side effects of these drugs. In the present paper, we determined the crystal structure of the GAK catalytic domain alone and in complex with specific single-chain antibodies (nanobodies). GAK is constitutively active and weakly associates in solution. The GAK apo structure revealed a dimeric inactive state of the catalytic domain mediated by an unusual activation segment interaction. Co-crystallization with the nanobody NbGAK_4 trapped GAK in a dimeric arrangement similar to the one observed in the apo structure, whereas NbGAK_1 captured the activation segment of monomeric GAK in a well-ordered conformation, representing features of the active kinase. The presented structural and biochemical data provide insight into the domain plasticity of GAK and demonstrate the utility of nanobodies to gain insight into conformational changes of dynamic molecules. In addition, we present structural data on the binding mode of ATP mimetic inhibitors and enzyme kinetic data, which will support rational inhibitor design of inhibitors to reduce the off-target effect on GAK. PMID:24438162

  2. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential. PMID:22918538

  3. Cyclin-dependent kinases.

    PubMed

    Malumbres, Marcos

    2014-01-01

    Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  4. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C.

    PubMed

    Tassan, J P; Jaquenoud, M; Léopold, P; Schultz, S J; Nigg, E A

    1995-09-12

    Metazoan cyclin C was originally isolated by virtue of its ability to rescue Saccharomyces cerevisiae cells deficient in G1 cyclin function. This suggested that cyclin C might play a role in cell cycle control, but progress toward understanding the function of this cyclin has been hampered by the lack of information on a potential kinase partner. Here we report the identification of a human protein kinase, K35 [cyclin-dependent kinase 8 (CDK8)], that is likely to be a physiological partner of cyclin C. A specific interaction between K35 and cyclin C could be demonstrated after translation of CDKs and cyclins in vitro. Furthermore, cyclin C could be detected in K35 immunoprecipitates prepared from HeLa cells, indicating that the two proteins form a complex also in vivo. The K35-cyclin C complex is structurally related to SRB10-SRB11, a CDK-cyclin pair recently shown to be part of the RNA polymerase II holoenzyme of S. cerevisiae. Hence, we propose that human K35(CDK8)-cyclin C might be functionally associated with the mammalian transcription apparatus, perhaps involved in relaying growth-regulatory signals.

  5. Cyclin-dependent kinases in C. elegans

    PubMed Central

    Boxem, Mike

    2006-01-01

    Cell division is an inherent part of organismal development, and defects in this process can lead to developmental abnormalities as well as cancerous growth. In past decades, much of the basic cell-cycle machinery has been identified, and a major challenge in coming years will be to understand the complex interplay between cell division and multicellular development. Inevitably, this requires the use of more complex multicellular model systems. The small nematode Caenorhabditis elegans is an excellent model system to study the regulation of cell division in a multicellular organism, and is poised to make important contributions to this field. The past decade has already seen a surge in cell-cycle research in C. elegans, yielding information on the function of many basic cell-cycle regulators, and making inroads into the developmental control of cell division. This review focuses on the in vivo roles of cyclin-dependent kinases in C. elegans, and highlights novel findings implicating CDKs in coupling development to cell-cycle progression. PMID:16759361

  6. Crystal Structure of Human Cyclin K, A Positive Regulator of Cyclin-Dependent Kinase 9

    SciTech Connect

    Baek,K.; Brown, R.; Birrane, G.; Ladias, J.

    2007-01-01

    K and the closely related cyclins T1, T2a, and T2b interact with cyclin-dependent kinase 9 (CDK9) forming multiple nuclear complexes, referred to collectively as positive transcription elongation factor b (P-TEFb). Through phosphorylation of the C-terminal domain of the RNA polymerase II largest subunit, distinct P-TEFb species regulate the transcriptional elongation of specific genes that play central roles in human physiology and disease development, including cardiac hypertrophy and human immunodeficiency virus-1 pathogenesis. We have determined the crystal structure of human cyclin K (residues 11-267) at 1.5 {angstrom} resolution, which represents the first atomic structure of a P-TEFb subunit. The cyclin K fold comprises two typical cyclin boxes with two short helices preceding the N-terminal box. A prominent feature of cyclin K is an additional helix (H4a) in the first cyclin box that obstructs the binding pocket for the cell-cycle inhibitor p27{sup Kip1}. Modeling of CDK9 bound to cyclin K provides insights into the structural determinants underlying the formation and regulation of this complex. A homology model of human cyclin T1 generated using the cyclin K structure as a template reveals that the two proteins have similar structures, as expected from their high level of sequence identity. Nevertheless, their CDK9-interacting surfaces display significant structural differences, which could potentially be exploited for the design of cyclin-targeted inhibitors of the CDK9-cyclin K and CDK9-cyclin T1 complexes.

  7. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex.

    PubMed Central

    Sterner, D E; Lee, J M; Hardin, S E; Greenleaf, A L

    1995-01-01

    Saccharomyces cerevisiae CTDK-I is a protein kinase complex that specifically and efficiently hyperphosphorylates the carboxyl-terminal repeat domain (CTD) of RNA polymerase II and is composed of three subunits of 58, 38, and 32 kDa. The kinase is essential in vivo for normal phosphorylation of the CTD and for normal growth and differentiation. We have now cloned the genes for the two smaller kinase subunits, CTK2 and CTK3, and found that they form a unique, divergent cyclin-cyclin-dependent kinase complex with the previously characterized largest subunit protein CTK1, a cyclin-dependent kinase homolog. The CTK2 gene encodes a cyclin-related protein with limited homology to cyclin C, while CTK3 shows no similarity to other known proteins. Copurification of the three gene products with each other and CTDK-I activity by means of conventional chromatography and antibody affinity columns has verified their participation in the complex in vitro. In addition, null mutations of each of the genes and all combinations thereof conferred very similar growth-impaired, cold-sensitive phenotypes, consistent with their involvement in the same function in vivo. These characterizations and the availability of all of the genes encoding CTDK-I and reagents derivable from them will facilitate investigations into CTD phosphorylation and its functional consequences both in vivo and in vitro. PMID:7565723

  8. PCTAIRE Kinase 3/Cyclin-dependent Kinase 18 Is Activated through Association with Cyclin A and/or Phosphorylation by Protein Kinase A*

    PubMed Central

    Matsuda, Shinya; Kominato, Kyohei; Koide-Yoshida, Shizuyo; Miyamoto, Kenji; Isshiki, Kinuka; Tsuji, Akihiko; Yuasa, Keizo

    2014-01-01

    PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser12, Ser66, and Ser109 and that PCTK3 activity significantly increased via phosphorylation at Ser12 by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3. PMID:24831015

  9. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities.

  10. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  11. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins.

    PubMed

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  12. Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase.

    PubMed Central

    Kato, J Y; Matsuoka, M; Strom, D K; Sherr, C J

    1994-01-01

    The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells. Images PMID:8139570

  13. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer

    PubMed Central

    Balakrishnan, Archana; Vyas, Arpita; Deshpande, Kaivalya; Vyas, Dinesh

    2016-01-01

    Colorectal cancer accounts for a significant proportion of cancer deaths worldwide. The need to develop more chemotherapeutic agents to combat this disease is critical. Cyclin dependent kinases (CDKs), along with its binding partner cyclins, serve to control the growth of cells through the cell cycle. A new class of drugs, termed CDK inhibitors, has been studied in preclinical and now clinical trials. These inhibitors are believed to act as an anti-cancer drug by blocking CDKs to block the uncontrolled cellular proliferation that is hallmark of cancers like colorectal cancer. CDK article provides overview of the emerging drug class of CDK inhibitors and provides a list of ones that are currently in clinical trials. PMID:26900281

  14. A Minimal Cascade Model for the Mitotic Oscillator Involving Cyclin and cdc2 Kinase

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert

    1991-10-01

    A minimal model for the mitotic oscillator is presented. The model, built on recent experimental advances, is based on the cascade of post-translational modification that modulates the activity of cdc2 kinase during the cell cycle. The model pertains to the situation encountered in early amphibian embryos, where the accumulation of cyclin suffices to trigger the onset of mitosis. In the first cycle of the bicyclic cascade model, cyclin promotes the activation of cdc2 kinase through reversible dephosphorylation, and in the second cycle, cdc2 kinase activates a cyclin protease by reversible phosphorylation. That cyclin activates cdc2 kinase while the kinase triggers the degradation of cyclin has suggested that oscillations may originate from such a negative feedback loop [Felix, M. A., Labbe, J. C., Doree, M., Hunt, T. & Karsenti, E. (1990) Nature (London) 346, 379-382]. This conjecture is corroborated by the model, which indicates that sustained oscillations of the limit cycle type can arise in the cascade, provided that a threshold exists in the activation of cdc2 kinase by cyclin and in the activation of cyclin proteolysis by cdc2 kinase. The analysis shows how mitotic oscillations may readily arise from time lags associated with these thresholds and from the delayed negative feedback provided by cdc2-induced cyclin degradation. A mechanism for the origin of the thresholds is proposed in terms of the phenomenon of zero-order ultrasensitivity previously described for biochemical systems regulated by covalent modification.

  15. Immunohistochemical study of cyclins D and E and cyclin dependent kinase (cdk) 2 and 4 in human endometrial carcinoma.

    PubMed

    Ito, K; Sasano, H; Yoshida, Y; Sato, S; Yajima, A

    1998-01-01

    We studied the immunolocalization of cyclins D1 and E and their corresponding partner cyclin dependent kinases (cdk), cdk4 and cdk2 in 39 cases of human endometrioid endometrial carcinoma and examined the correlations between the labeling indexes of the cyclins, cdks and clinicopathologic parameters and the clinical outcome of the patients. Cyclin D1 immunoreactivity was observed exclusively in the nuclei of tumor cells in 22/39 (56%) of the cases examined. Immunoreactivity for cyclin E, cdk2, and cdk4 was detected in carcinoma cells of 37/39 (95%), 39/39 and 36/39 cases, respectively. There were no significant correlations between the labeling indices of any of the parameters examined. Cyclins D1 and E labeling indices were not significantly correlated with any of the clinicopathologic parameters examined. However, there was a significant correlation between cdk2 labeling index and the histological grade of carcinoma (p < 0.0001), and a significant correlation (p = 0.015) was also detected between the cdk4 labeling index and pathologic stages. There was no significant difference in clinical outcome of the patients according to the cyclin and ckd4 immunostaining patterns. These results indicate that cdk2 and cdk4 overexpression may be involved in the development and/or progression of human endometrioid endometrial carcinoma. PMID:9673386

  16. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis.

    PubMed

    Casimiro, Mathew C; Di Sante, Gabriele; Crosariol, Marco; Loro, Emanuele; Dampier, William; Ertel, Adam; Yu, Zuoren; Saria, Elizabeth A; Papanikolaou, Alexandros; Li, Zhiping; Wang, Chenguang; Addya, Sankar; Lisanti, Michael P; Fortina, Paolo; Cardiff, Robert D; Tozeren, Aydin; Knudsen, Erik S; Arnold, Andrew; Pestell, Richard G

    2015-04-20

    Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis. PMID:25940700

  17. Cyclin-dependent kinase 2 protects podocytes from apoptosis

    PubMed Central

    Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna

    2016-01-01

    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672

  18. Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas

    PubMed Central

    Cross, Frederick R.

    2015-01-01

    We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of ∼2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle. PMID:26475866

  19. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies

    PubMed Central

    Bose, Prithviraj; Simmons, Gary L; Grant, Steven

    2014-01-01

    INTRODUCTION Cyclin-dependent kinases (CDKs) regulate cell cycle progression. Certain CDKs (e.g., CDK7, CDK9) also control cellular transcription. Consequently, CDKs represent attractive targets for anti-cancer drug development, as their aberrant expression is common in diverse malignancies, and CDK inhibition can trigger apoptosis. CDK inhibition may be particularly successful in hematologic malignancies, which are more sensitive to inhibition of cell cycling and apoptosis induction. AREAS COVERED A number of CDK inhibitors, ranging from pan-CDK inhibitors such as flavopiridol (alvocidib) to highly selective inhibitors of specific CDKs (e.g., CDK4/6), such as PD0332991, that are currently in various phases of development, are profiled in this review. Flavopiridol induces cell cycle arrest, and globally represses transcription via CDK9 inhibition. The latter may represent its major mechanism of action via down-regulation of multiple short-lived proteins. In early phase trials, flavopiridol has shown encouraging efficacy across a wide spectrum of hematologic malignancies. Early results with dinaciclib and PD0332991 also appear promising. EXPERT OPINION In general, the anti-tumor efficacy of CDK inhibitor monotherapy is modest, and rational combinations are being explored, including those involving other targeted agents. While selective CDK4/6 inhibition might be effective against certain malignancies, broad spectrum CDK inhibition will likely be required for most cancers. PMID:23647051

  20. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.

  1. A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the retinoblastoma protein.

    PubMed

    Pan, W; Cox, S; Hoess, R H; Grafström, R H

    2001-04-01

    Phosphorylation of the retinoblastoma protein (Rb) by the cyclin D1/cyclin-dependent kinase (cdk) 4 complex (cdk4/D1) is a key regulatory step for maintaining the orderly progression of the cell cycle. The B domain of Rb contains a site that recognizes and binds the LXCXE motif found in D-type cyclins. This interaction is important for phosphorylation of Rb by cdk4/D1, although in vitro the Rb C domain alone is efficiently phosphorylated by cdk4/D1. A mutation in the C domain of Rb, L901Q, has been identified that completely abolishes cdk4/D1 phosphorylation of the isolated C domain. By contrast, the L901Q mutation has no effect on phosphorylation by either cyclin E/cdk2 or cyclin B/cdk1, suggesting that the interaction between L901Q and cdk4/D1 is specific. Introduction of the L901Q mutation into Rb containing the A, B, and C domains results in phosphorylation becoming predominantly dependent on the LXCXE binding region. However, when the LXCXE binding region of Rb is mutated, phosphorylation becomes dependent on the L901 site within the C domain. The L901 binding site can supplant the LXCXE binding site for the cdk4/D1-dependent phosphorylation of S780 and S795 but not S807/S811. Despite the limited homology between C domains of Rb, p107, and p130, the L901 site is conserved and introduction of the L925Q mutation into the isolated C domain of p107 also inhibits phosphorylation by cdk4/D1. These data support a model for cdk4/D1 recognizing two independent binding sites in Rb and suggests a conservation of this C domain binding motif for cyclin D1/cdk4 kinase among the Rb family of proteins. PMID:11306463

  2. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen.

    PubMed

    Wang, Jianling; Wang, Gangduo; Ma, Huaxian; Khan, M Firoze

    2011-01-15

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in

  3. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    SciTech Connect

    Wang Jianling; Wang Gangduo; Ma Huaxian; Khan, M. Firoze

    2011-01-15

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in

  4. Cyclin D1/cyclin dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells

    PubMed Central

    Zhong, Zhijiu; Yeow, Wen-Shuz; Zou, Chunhua; Wassell, Richard; Wang, Chenguang; Pestell, Richard G.; Quong, Judy N.; Quong, Andrew A.

    2010-01-01

    Cyclin D1 belongs to the family of proteins that regulates progression through the G1-S phase of the cell cycle through binding to cyclin dependent kinase 4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon and prostate over-express the cyclin D1 gene. However, the correlation between cyclin D1 over-expression with E2F target gene regulation or cyclin dependent kinase-dependent cyclin D1 activity with tumor development have not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A, a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. Filamin A has also been associated with a variety of cancers including lung, prostate, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. Using mass spectrometry, we found that cyclin D1 and Filamin A co-immunoprecipitate and that lower levels of cyclin D1 are associated with decreased phosphorylation of FLNa at serine 2152 and 1459. We also identify many proteins related to cytoskeletal function, biomolecular synthesis, organelle biogenesis, and calcium regulation whose levels of expression change concomitant with decreased cell motility induced by decreased cyclin D1 and cyclin D1-cdk4/6 activity. PMID:20179208

  5. Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo.

    PubMed

    Chen, Wei; Lee, Jeongwu; Cho, Steve Y; Fine, Howard A

    2004-06-01

    Cyclin-dependent kinases (cdks) represent potentially promising molecular targets for cancer therapeutic strategies. To evaluate the antitumor activity of selective cyclin/cdk inhibition, we constructed a chimeric protein composed of a F-box protein (TrCP) fused to a peptide comprising the cyclin/cdk2 binding motif in p21-like cdk inhibitors (TrCP-LFG). We now demonstrate that endogenous cyclin A and its binding substrate, cdk2, can be tethered to beta-TrCP, ubiquitinated, and effectively degraded. Degradation of cdk2 and cyclin A together, but not cdk2 alone, results in massive tumor cell apoptosis in vitro and in vivo in a proteasome-dependent manner with no toxicity to normal tissue. These data demonstrate that cyclin A and/or the cyclin A/cdk2 complex is a promising anticancer target with a high therapeutic index.

  6. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    SciTech Connect

    Lee, Juhyung; Yun, Nuri; Kim, Chiho; Song, Min-Young; Park, Kang-Sik; Oh, Young J.

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  7. Synthesis and biological evaluation of selective and potent cyclin-dependent kinase inhibitors.

    PubMed

    N'gompaza-Diarra, Joannah; Bettayeb, Karima; Gresh, Nohad; Meijer, Laurent; Oumata, Nassima

    2012-10-01

    A new series of 2,6,9-trisubstituted purines, structurally related to the cyclin-dependent kinase (CDK) inhibitor Roscovitine, has been synthesized. These compounds mainly differ by the substituent on the C-2 position which encompasses a diol group. These compounds were screened for kinase inhibitory activities and antiproliferative effects. They were shown to be potent inhibitors of cyclin-dependent kinases but also, for some of them of casein kinase 1 (CK1) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). The inhibition of kinases was accompanied by an antiproliferative effect against several tumor cell-lines. The most potent derivatives inhibited SH-SY5Y (neuroblastoma) tumor cell line with an IC(50) < 0.5 μM which means approximately a 30 fold increase compared to Roscovitine. A valine ester was also prepared from the most potent inhibitor to serve as a prodrug. PMID:22982525

  8. Characterization of the fission yeast mcs2 cyclin and its associated protein kinase activity.

    PubMed Central

    Molz, L; Beach, D

    1993-01-01

    We have previously described the isolation of mcs2-75, a mutation obtained as an allele-specific suppressor of a dominant allele of cdc2. mcs2 was cloned and determined to be an essential gene, the product of which shares homology with the cyclin family of proteins. In contrast to the behavior of some, but not all cyclins, the mcs2 protein is constant in its abundance and localization throughout the cell cycle. A kinase activity that co-precipitates with mcs2 can be detected when myelin basic protein (MBP) is provided as an exogenous substrate. This kinase activity is constant throughout the cell cycle. mcs2 does not appear to associate with the cdc2 protein kinase or an antigenically related kinase. Finally, a protein kinase termed csk1 (cyclin suppressing kinase) was isolated as a high copy suppressor of an mcs2 mutation. csk1 is not essential, however, the level of kinase activity that co-precipitates with mcs2 is reduced approximately 3-fold in strains harboring a csk1 null allele. Therefore, csk1 may encode a protein kinase physically associated with mcs2 or alternatively may function as an upstream activator of the mcs2-associated kinase. Images PMID:8467814

  9. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  10. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C

    PubMed Central

    Sahin, Bogachan; Hawasli, Ammar H.; Greene, Robert W.; Molkentin, Jeffery D.; Bibb, James A.

    2008-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-α. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors. PMID:18190909

  11. Negative regulation of cyclin-dependent kinase 5 targets by protein kinase C.

    PubMed

    Sahin, Bogachan; Hawasli, Ammar H; Greene, Robert W; Molkentin, Jeffery D; Bibb, James A

    2008-03-10

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed protein serine/threonine kinase essential for brain development and implicated in synaptic plasticity, dopaminergic neurotransmission, drug addiction, and neurodegenerative disorders. Relatively little is known about the molecular mechanisms that regulate the activity of Cdk5 in vivo. In order to determine whether protein kinase C (PKC) regulates Cdk5 activity in the central nervous system, the phosphorylation levels of two Cdk5 substrates were evaluated under conditions of altered PKC activity in vivo. Treatment of acute striatal slices with a PKC-activating phorbol ester caused a time- and dose-dependent decrease in the levels of phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 dopamine- and cAMP-regulated phosphoprotein, Mr 32,000 (DARPP-32). This effect was reversed by the PKC inhibitor, Ro-32-0432. Moreover, phospho-Ser6 inhibitor-1, phospho-Ser67 inhibitor-1, and phospho-Thr75 DARPP-32 levels were elevated in brain tissue from mice lacking the gene for PKC-alpha. PKC did not phosphorylate Cdk5 or its cofactor, p25, in vitro. Striatal levels of the Cdk5 cofactor, p35, did not change in response to phorbol ester treatment. Furthermore, Cdk5 immunoprecipitated from striatal slices treated with phorbol ester had unaltered activity toward a control substrate in vitro. These results suggest that PKC exerts its effects on the phosphorylation state of Cdk5 substrates through an indirect mechanism that may involve the regulatory binding partners of Cdk5 other than its neuronal cofactors.

  12. Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes.

    PubMed

    Taniguchi, Yoshinori; Pippin, Jeffrey W; Hagmann, Henning; Krofft, Ronald D; Chang, Alice M; Zhang, Jiong; Terada, Yoshio; Brinkkoetter, Paul; Shankland, Stuart J

    2012-05-01

    Cyclin-dependent kinase (Cdk)-5 is activated by both cyclin I and the noncyclin activator p35 in terminally differentiated cells such as kidney podocytes and neurons. Cyclin I and p35 are restricted to podocytes in the kidney, and each limit podocyte apoptosis by activating Cdk5. To determine whether both activators are necessary, or whether they serve backup roles, a double cyclin I-p35 null mouse was generated. Experimental glomerular disease characterized by podocyte apoptosis was then induced by administering an anti-podocyte antibody. The results showed that under nonstressed conditions double mutants had normal kidney structure and function and were indistinguishable from wild-type, cyclin I(-/-), or p35(-/-) mice. In contrast, when stressed with disease, podocyte apoptosis increased fourfold compared with diseased cyclin I(-/-) or p35(-/-) mice. This resulted in a more pronounced decrease in podocyte number, proteinuria, and glomerulosclerosis. Under normal states and nephritic states, levels for the prosurvival protein Bcl-2 were lower in double cyclin I(-/-) p35(-/-) mice than the other mice. Similarly, levels of Bcl-xL, another prosurvival member, were lower in normal and nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. Moreover, levels of ERK1/2 and MEK1/2 activation were lower in nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. The results demonstrate that the activators of Cdk5, p35, and cyclin I are not required for normal kidney function. However, they play pivotal coordinated roles in maintaining podocyte survival during stress states in disease.

  13. Molecular dynamic behavior and binding affinity of flavonoid analogues to the cyclin dependent kinase 6/cyclin D complex.

    PubMed

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Hannongbua, Supot

    2012-01-23

    The cyclin dependent kinases (CDKs), each with their respective regulatory partner cyclin that are involved in the regulation of the cell cycle, apoptosis, and transcription, are potentially interesting targets for cancer therapy. The CDK6 complex with cyclin D (CDK6/cycD) drives cellular proliferation by phosphorylation of specific key target proteins. To understand the flavonoids that inhibit the CDK6/cycD functions, molecular dynamics simulations (MDSs) were performed on three inhibitors, fisetin (FST), apigenin (AGN), and chrysin (CHS), complexed with CDK6/cycD, including the two different binding orientations of CHS: FST-like (CHS_A) and deschloro-flavopiridol-like (CHS_B). For all three inhibitors, including both CHS orientations, the conserved interaction between the 4-keto group of the flavonoid and the backbone V101 nitrogen of CDK6 was strongly detected. The 3'- and 4'-OH groups on the flavonoid phenyl ring and the 3-OH group on the benzopyranone ring of inhibitor were found to significantly increase the binding and inhibitory efficiency. Besides the electrostatic interactions, especially through hydrogen bond formation, the van der Waals (vdW) interactions with the I19, V27, F98, H100, and L152 residues of CDK6 are also important factors in the binding efficiency of flavonoids against the CDK6/cycD complex. On the basis of the docking calculation and MM-PBSA method, the order of the predicted inhibitory affinities of these three inhibitors toward the CDK6/cycD was FST > AGN > CHS, which is in good agreement with the experimental data. In addition, CHS preferentially binds to the active CDK6 in a different orientation to FST and AGN but similar to its related analog, deschloro-flavopiridol. The obtained results are useful as the basic information for the further design of potent anticancer drugs specifically targeting the CDK6 enzyme.

  14. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression.

    PubMed

    Yang, Liu; Fang, Dongdong; Chen, Huijun; Lu, Yiyu; Dong, Zheng; Ding, Han-Fei; Jing, Qing; Su, Shi-Bing; Huang, Shuang

    2015-08-28

    CCNE1 gene amplification is present in 15-20% ovary tumor specimens. Here, we showed that Cyclin E1 (CCNE1) was overexpressed in 30% of established ovarian cancer cell lines. We also showed that CCNE1 was stained positive in over 40% of primary ovary tumor specimens regardless of their histological types while CCNE1 staining was either negative or low in normal ovary and benign ovary tumor tissues. However, the status of CCNE1 overexpression was not associated with the tumorigenic potential of ovarian cancer cell lines and also did not correlate with pathological grades of ovary tumor specimens. Subsequent experiments with CCNE1 siRNAs showed that knockdown of CCNE1 reduced cell growth only in cells with inherent CCNE1 overexpression, indicating that these cells may have developed an addiction to CCNE1 for growth/survival. As CCNE1 is a regulatory factor of cyclin-dependent kinase 2 (Cdk2), we investigated the effect of Cdk2 inhibitor on ovary tumorigenecity. Ovarian cancer cells with elevated CCNE1 expression were 40 times more sensitive to Cdk2 inhibitorSNS-032 than those without inherent CCNE1 overexpression. Moreover, SNS-032 greatly prolonged the survival of mice bearing ovary tumors with inherent CCNE1 overexpression. This study suggests that ovary tumors with elevated CCNE1 expression may be staged for Cdk2-targeted therapy. PMID:26204491

  15. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity.

    PubMed

    Khleif, S N; DeGregori, J; Yee, C L; Otterson, G A; Kaye, F J; Nevins, J R; Howley, P M

    1996-04-30

    Alterations of various components of the cell cycle regulatory machinery that controls the progression of cells from a quiescent to a growing state contribute to the development of many human cancers. Such alterations include the deregulated expression of G1 cyclins, the loss of function of activities such as those of protein p16INK4a that control G1 cyclin-dependent kinase activity, and the loss of function of the retinoblastoma protein (RB), which is normally regulated by the G1 cyclin-dependent kinases. Various studies have revealed an inverse relationship in the expression of p16INK4a protein and the presence of functional RB in many cell lines. In this study we show that p16INK4a is expressed in cervical cancer cell lines in which the RB gene, Rb, is not functional, either as a consequence of Rb mutation or expression of the human papillomavirus E7 protein. We also demonstrate that p16INK4a levels are increased in primary cells in which RB has been inactivated by DNA tumor virus proteins. Given the role of RB in controlling E2F transcription factor activity, we investigated the role of E2F in controlling p16INK4a expression. We found that E2F1 overexpression leads to an inhibition of cyclin D1-dependent kinase activity and induces the expression of a p16-related transcript. We conclude that the accumulation of G1 cyclin-dependent kinase activity during normal G1 progression leads to E2F accumulation through the inactivation of RB, and that this then leads to the induction of cyclin kinase inhibitor activity and a shutdown of G1 kinase activity.

  16. Crystal structure of a human cyclin-dependent kinase 6 complexwith a flavonol inhibitor, Fisetin

    SciTech Connect

    Lu, Heshu; Chang, Debbie J.; Baratte, Blandine; Meijer, Laurent; Schulze-Gahmen, Ursula

    2005-01-10

    Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription and neuronal functions. They are important targets for the design of drugs with anti-mitotic and/or anti-neurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinity and specificity.

  17. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  18. The Cyclin-dependent Kinase Inhibitor Dacapo Promotes Genomic Stability during Premeiotic S Phase

    PubMed Central

    Narbonne-Reveau, Karine

    2009-01-01

    The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition. PMID:19211840

  19. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    PubMed Central

    2011-01-01

    Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6) are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP). An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with a companion diagnostic

  20. Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells

    PubMed Central

    Wang, Zhu A.; Kalderon, Daniel

    2009-01-01

    Whether stem cells have unique cell cycle machineries and how they integrate with niche interactions remains largely unknown. We identified a hypomorphic cyclin E allele WX that strongly impairs the maintenance of follicle stem cells (FSCs) in the Drosophila ovary but does not reduce follicle cell proliferation or germline stem cell maintenance. CycEWX protein can still bind to the cyclin-dependent kinase catalytic subunit Cdk2, but forms complexes with reduced protein kinase activity measured in vitro. By creating additional CycE variants with different degrees of kinase dysfunction and expressing these and CycEWX at different levels, we found that higher CycE-Cdk2 kinase activity is required for FSC maintenance than to support follicle cell proliferation. Surprisingly, cycEWX FSCs were lost from their niches rather than arresting proliferation. Furthermore, FSC function was substantially restored by expressing either excess DE-cadherin or excess E2F1/DP, the transcription factor normally activated by CycE-Cdk2 phosphorylation of retinoblastoma proteins. These results suggest that FSC maintenance through niche adhesion is regulated by inputs that normally control S phase entry, possibly as a quality control mechanism to ensure adequate stem cell proliferation. We speculate that a positive connection between central regulators of the cell cycle and niche retention may be a common feature of highly proliferative stem cells. PMID:19966222

  1. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development.

  2. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  3. Unexpected Reduction of Skin Tumorigenesis on Expression of Cyclin-Dependent Kinase 6 in Mouse Epidermis

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L.

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G1 phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  4. The Interaction between Cyclin B1 and Cytomegalovirus Protein Kinase pUL97 is Determined by an Active Kinase Domain.

    PubMed

    Steingruber, Mirjam; Socher, Eileen; Hutterer, Corina; Webel, Rike; Bergbrede, Tim; Lenac, Tihana; Sticht, Heinrich; Marschall, Manfred

    2015-08-11

    Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.

  5. Cyclin-Dependent Kinase Five Mediates Activation of Lung Xanthine Oxidoreductase in Response to Hypoxia

    PubMed Central

    Kim, Bo S.; Serebreni, Leonid; Fallica, Jonathan; Hamdan, Omar; Wang, Lan; Johnston, Laura; Kolb, Todd; Damarla, Mahendra; Damico, Rachel; Hassoun, Paul M.

    2015-01-01

    Background Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. Methods and Results Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. Conclusions and Significance These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury. PMID:25831123

  6. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

    PubMed

    Gomes, Helga; Moraes, Jorge; Githaka, Naftaly; Martins, Renato; Isezaki, Masayoshi; Vaz, Itabajara da Silva; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko

    2015-07-30

    Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins. PMID:26073111

  7. Vaccination with cyclin-dependent kinase tick antigen confers protection against Ixodes infestation.

    PubMed

    Gomes, Helga; Moraes, Jorge; Githaka, Naftaly; Martins, Renato; Isezaki, Masayoshi; Vaz, Itabajara da Silva; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko

    2015-07-30

    Among arthropods, ticks lead as vectors of animal diseases and rank second to mosquitoes in transmitting human pathogens. Cyclin-dependent kinases (CDK) participate in cell cycle control in eukaryotes. CDKs are serine/threonine protein kinases and these catalytic subunits are activated or inactivated at specific stages of the cell cycle. To determine the potential of using CDKs as anti-tick vaccine antigens, hamsters were immunized with recombinant Ixodes persulcatus CDK10, followed by a homologous tick challenge. Though it was not exactly unexpected, IpCDK10 vaccination significantly impaired tick blood feeding and fecundity, which manifested as low engorgement weights, poor oviposition, and a reduction in 80% of hatching rates. These findings may underpin the development of more efficacious anti-tick vaccines based on the targeting of cell cycle control proteins.

  8. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  9. Cyclin-Dependent Kinase Suppression by WEE1 Kinase Protects the Genome through Control of Replication Initiation and Nucleotide Consumption

    PubMed Central

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo; O'Hanlon, Karen A.; Patzke, Sebastian; Holmberg, Christian; Mejlvang, Jakob; Groth, Anja; Nielsen, Olaf

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage. PMID:22907750

  10. Spatial reorganization of the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo.

    PubMed

    Bergman, Zane J; Mclaurin, Justin D; Eritano, Anthony S; Johnson, Brittany M; Sims, Amanda Q; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.

  11. Selective cyclin-dependent kinase inhibitors discriminating between cell cycle and transcriptional kinases: future reality or utopia?

    PubMed

    Wesierska-Gadek, Józefa; Krystof, Vladimír

    2009-08-01

    Progression of the cell cycle is controlled by activating and inhibiting cellular factors. The delicate balance between these positive- and negative-acting regulators warrants proper cell cycle progression in normal cells and facilitates cellular response to a variety of stress stimuli. The increased activity of the positive regulators of the cell cycle in cancer cells is frequently accompanied by the loss or inactivation of the inhibitors of cyclin-dependent kinases (CDKs). The supplementation of the cellular CDK inhibitors by the pharmacological counterparts is a very promising therapeutic option. The generated pharmacological inhibitors of CDKs belong to different classes of compounds and display various CDK inhibitory features. In this article the action and specificity of CDK inhibitor roscovitine, belonging to the group of purine analogues, is reviewed and the rationale for dissecting the inhibitory action on cell cycle and transcriptional CDKs is discussed.

  12. Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia

    PubMed Central

    Gergics, Peter; Brinkmeier, Michelle L.

    2015-01-01

    Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression. PMID:25668206

  13. Mutual regulation of cyclin-dependent kinase and the mitotic exit network

    PubMed Central

    König, Cornelia; Maekawa, Hiromi

    2010-01-01

    The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects. PMID:20123997

  14. Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases

    PubMed Central

    Schonbrunn, Ernst; Betzi, Stephane; Alam, Riazul; Martin, Mathew P.; Becker, Andreas; Han, Huijong; Francis, Rawle; Chakrasali, Ramappa; Jakkaraj, Sudhakar; Kazi, Aslamuzzaman; Sebti, Said M.; Cubitt, Christopher L.; Gebhard, Anthony W.; Hazlehurst, Lori A.; Tash, Joseph S.; Georg, Gunda I.

    2013-01-01

    Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009 – 0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 co-crystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4 and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics. PMID:23600925

  15. Regulation of protein phosphatase inhibitor-1 by cyclin-dependent kinase 5.

    PubMed

    Nguyen, Chan; Nishi, Akinori; Kansy, Janice W; Fernandez, Joseph; Hayashi, Kanehiro; Gillardon, Frank; Hemmings, Hugh C; Nairn, Angus C; Bibb, James A

    2007-06-01

    Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.

  16. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    PubMed

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency.

  17. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    PubMed

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  18. NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation

    PubMed Central

    Xing, Junyue; Yi, Jie; Cai, Xiaoyu; Tang, Hao; Liu, Zhenyun; Zhang, Xiaotian; Martindale, Jennifer L.; Yang, Xiaoling; Jiang, Bin; Gorospe, Myriam

    2015-01-01

    The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without altering CDK1 mRNA levels. Further studies revealed that NSun2 methylated CDK1 mRNA in vitro and in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle. PMID:26391950

  19. The effect of cyclin-dependent kinases inhibitor treatment on experimental herpes simplex encephalitis mice.

    PubMed

    Zhou, Yu; Zeng, Yan-Ping; Zhou, Qin; Guan, Jing-Xia; Lu, Zu-Neng

    2016-08-01

    Herpes simplex encephalitis(HSE) is the most common and serious viral encephalitis in humans. There is a lack of effective medication to date for HSE. A better understanding of the mediators of tissue damage is essential for finding new targets for therapeutic intervention. In this project, we explored the effect of cyclin-dependent kinases inhibitor olomoucine treatment on experimental HSE mice. The following results were obtained: (1) olomoucine increased survival in HSE mice; (2) olomoucine inhibited microglial activation and reduced HSV-1-induced cytokines release; (3) olomoucine prevented neural cells apoptosis and attenuated brain tissue pathological changes following HSV-1 infection; (4) olomoucine reduced brain edema and improved neurological function in HSE. Overall, olomoucine can induce a blunted inflammatory response, maintain the blood vessel wall intact, improve neurological function and increase survival in HSE mice.

  20. Transgenic Expression of Cyclin-Dependent Kinase 4 Results in Epidermal Hyperplasia, Hypertrophy, and Severe Dermal Fibrosis

    PubMed Central

    Miliani de Marval, Paula L.; Gimenez-Conti, Irma B.; LaCava, Margaret; Martinez, Luis A.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2001-01-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27Kip1 to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression. PMID:11438484

  1. Implication of cyclin-dependent kinase 5 in the neuroprotective properties of lithium.

    PubMed

    Jordà, E G; Verdaguer, E; Canudas, A M; Jiménez, A; Garcia de Arriba, S; Allgaier, C; Pallàs, M; Camins, A

    2005-01-01

    Although numerous studies have demonstrated a neuroprotective and anti-apoptotic role of lithium in neuronal cell cultures, the precise mechanism by which this occurs, remains to be elucidated. In this study, we evaluated the lithium-mediated neuroprotection against colchicine-induced apoptosis in cultured cerebellar granule neurons. Previously, it has been demonstrated that colchicine mediates apoptosis in cerebellar granule neurons through cytoskeletal alteration and activation of an intrinsic pro-apoptotic pathway. Recently we also demonstrated a potential role of cyclin-dependent kinase 5 (cdk5) in this pathway. Here we report that colchicine induces dephosphorylation in Ser-9 and phosphorylation in Tyr-216, and thus activation, of glycogen synthase kinase-3beta in cerebellar granule neurons, and that this modification is inhibited by the presence of 5 mM lithium. However, the selective glycogen synthase kinase-3beta inhibitors SB-415286 and SB-216763 were unable to prevent colchicine-induced apoptosis in these cells, suggesting that the anti-apoptotic activity of lithium is not mediated by glycogen synthase kinase-3beta under these conditions. On the other hand, 5 mM lithium prevented the colchicine-induced increase in cdk5 expression and breakdown of cdk5/p35 to cdk5/p25. In addition, we show that up-regulation of cdk5/p25 is unrelated to inhibition of the activity of myocyte enhancer factor 2, a pro-survival transcription factor. These data suggest a previously undescribed neuroprotective mechanism of lithium associated with the modulation of cdk5/p35 or cdk5/p25 expression.

  2. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    NASA Technical Reports Server (NTRS)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  3. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors.

  4. The history and future of targeting cyclin-dependent kinases in cancer therapy

    PubMed Central

    Asghar, Uzma; Witkiewicz, Agnieszka K.; Turner, Nicholas C.; Knudsen, Erik S.

    2015-01-01

    Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity. PMID:25633797

  5. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation.

    PubMed

    Hawasli, Ammar H; Benavides, David R; Nguyen, Chan; Kansy, Janice W; Hayashi, Kanehiro; Chambon, Pierre; Greengard, Paul; Powell, Craig M; Cooper, Donald C; Bibb, James A

    2007-07-01

    Learning is accompanied by modulation of postsynaptic signal transduction pathways in neurons. Although the neuronal protein kinase cyclin-dependent kinase 5 (Cdk5) has been implicated in cognitive disorders, its role in learning has been obscured by the perinatal lethality of constitutive knockout mice. Here we report that conditional knockout of Cdk5 in the adult mouse brain improved performance in spatial learning tasks and enhanced hippocampal long-term potentiation and NMDA receptor (NMDAR)-mediated excitatory postsynaptic currents. Enhanced synaptic plasticity in Cdk5 knockout mice was attributed to reduced NR2B degradation, which caused elevations in total, surface and synaptic NR2B subunit levels and current through NR2B-containing NMDARs. Cdk5 facilitated the degradation of NR2B by directly interacting with both it and its protease, calpain. These findings reveal a previously unknown mechanism by which Cdk5 facilitates calpain-mediated proteolysis of NR2B and may control synaptic plasticity and learning.

  6. Adapalene inhibits the activity of cyclin-dependent kinase 2 in colorectal carcinoma

    PubMed Central

    SHI, XI-NAN; LI, HONGJIAN; YAO, HONG; LIU, XU; LI, LING; LEUNG, KWONG-SAK; KUNG, HSIANG-FU; LIN, MARIE CHIA-MI

    2015-01-01

    Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1-to-S-phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open-source protein-ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration-approved small molecular drugs with a re-purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphtoic acid) exhibited the highest anti-proliferative effects in LoVo and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1-phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr-160) and Rb (on Ser-795). Furthermore, the anti-cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti-tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose-dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer. PMID:26398439

  7. Cdk3, a conjugation-specific cyclin-dependent kinase, is essential for the initiation of meiosis in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Zhang, Jing; Shodhan, Anura; Tian, Miao; Miao, Wei

    2016-09-16

    Meiosis is an important process in sexual reproduction. Meiosis initiation has been found to be highly diverse among species. In yeast, it has been established that cyclin-dependent kinases (Cdks) and cyclins are essential components in the meiosis initiation pathway. In this study, we identified 4 Cdks in the model ciliate, Tetrahymena thermophila, and we found one of them, Cdk3, which is specifically expressed during early conjugation, to be essential for meiosis initiation. Cdk3 deletion led to arrest at the pair formation stage of conjugation. We then confirmed that Cdk3 acts upstream of double-strand break (DSB) formation. Moreover, we detected that Cdk3 is necessary for the expression of many genes involved in early meiotic events. Through proteomic quantification of phosphorylation, co-expression analysis and RNA-Seq analyses, we identified a conjugation-specific cyclin, Cyc2, which most likely partners with Cdk3 to initiate meiosis.

  8. Cdk3, a conjugation-specific cyclin-dependent kinase, is essential for the initiation of meiosis in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Zhang, Jing; Shodhan, Anura; Tian, Miao; Miao, Wei

    2016-09-16

    Meiosis is an important process in sexual reproduction. Meiosis initiation has been found to be highly diverse among species. In yeast, it has been established that cyclin-dependent kinases (Cdks) and cyclins are essential components in the meiosis initiation pathway. In this study, we identified 4 Cdks in the model ciliate, Tetrahymena thermophila, and we found one of them, Cdk3, which is specifically expressed during early conjugation, to be essential for meiosis initiation. Cdk3 deletion led to arrest at the pair formation stage of conjugation. We then confirmed that Cdk3 acts upstream of double-strand break (DSB) formation. Moreover, we detected that Cdk3 is necessary for the expression of many genes involved in early meiotic events. Through proteomic quantification of phosphorylation, co-expression analysis and RNA-Seq analyses, we identified a conjugation-specific cyclin, Cyc2, which most likely partners with Cdk3 to initiate meiosis. PMID:27420775

  9. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma.

    PubMed

    Zhou, Liang; Wang, Yinghui; Ou, Chengshan; Lin, Zhixiang; Wang, Jianyu; Liu, Hongxia; Zhou, Meijuan; Ding, Zhenhua

    2015-08-01

    Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma.

  10. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma.

    PubMed

    Zhou, Liang; Wang, Yinghui; Ou, Chengshan; Lin, Zhixiang; Wang, Jianyu; Liu, Hongxia; Zhou, Meijuan; Ding, Zhenhua

    2015-08-01

    Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma. PMID:26072217

  11. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug

    PubMed Central

    WANG, JIN; YIN, HAILIN; PANANDIKAR, ASHWINI; GANDHI, VARSHA; SEN, SUBRATA

    2015-01-01

    Drug resistance is a major obstacle in successful systemic therapy of metastatic cancer. We analyzed the involvement of cell cycle regulatory proteins in eliciting response to N (phosphonoacetyl)-L-aspartate (PALA), an inhibitor of de novo pyrimidine synthesis, in two metastatic variants of human cancer cell line MDA-MB-435 isolated from lung (L-2) and brain (Br-1) in nude mouse, respectively. L-2 and Br-l cells markedly differed in their sensitivity to PALA. While both cell types displayed an initial S phase delay/arrest, Br-l cells proliferated but most L-2 cells underwent apoptosis. There was distinct elevation in cyclin A, and phosphorylated Rb proteins concomitant with decreased expression of bcl-2 protein in the PALA treated L-2 cells undergoing apoptosis. Markedly elevated cyclin A associated and cdk2 kinase activities together with increased E2F1-DNA binding were detected in these L-2 cells. Induced ectopic cyclin A expression sensitized Br-l cells to PALA by activating an apoptotic pathway. Our findings demonstrate that elevated expression of cyclin A and associated kinase can activate an apoptotic pathway in cells exposed to DNA antimetabolites. Abrogation of this pathway can lead to resistance against these drugs in metastatic variants of human carcinoma cells. PMID:26058363

  12. Synthesis and evaluation of pyrazolo[1,5-b]pyridazines as selective cyclin dependent kinase inhibitors

    SciTech Connect

    Stevens, Kirk L.; Reno, Michael J.; Alberti, Jennifer B.; Price, Daniel J.; Kane-Carson, Laurie S.; Knick, Victoria B.; Shewchuk, Lisa M.; Hassell, Anne M.; Veal, James M.; Davis, Stephen T.; Griffin, Robert J.; Peel, Michael R.

    2010-10-01

    A novel series of pyrazolo[1,5-b]pyridazines have been synthesized and identified as cyclin dependant kinase inhibitors potentially useful for the treatment of solid tumors. Modification of the hinge-binding amine or the C(2)- and C(6)-substitutions on the pyrazolopyridazine core provided potent inhibitors of CDK4 and demonstrated enzyme selectivity against VEGFR-2 and GSK3{beta}.

  13. Lack of Cyclin-Dependent Kinase 4 Inhibits c-myc Tumorigenic Activities in Epithelial Tissues

    PubMed Central

    Miliani de Marval, Paula L.; Macias, Everardo; Rounbehler, Robert; Sicinski, Piotr; Kiyokawa, Hiroaki; Johnson, David G.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2004-01-01

    The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors. PMID:15314163

  14. Regulation of hippocampal and behavioral excitability by cyclin-dependent kinase 5.

    PubMed

    Hawasli, Ammar H; Koovakkattu, Della; Hayashi, Kanehiro; Anderson, Anne E; Powell, Craig M; Sinton, Christopher M; Bibb, James A; Cooper, Donald C

    2009-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg(2+)-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies. PMID:19529798

  15. Identification and Characterization of the Cyclin-Dependent Kinases Gene Family in Silkworm, Bombyx mori.

    PubMed

    Li, Yinü; Jiang, Feng; Shi, Xiaofeng; Liu, Xingjian; Yang, Huipeng; Zhang, Zhifang

    2016-01-01

    Cyclin-dependent protein kinases (CDKs) play key roles at different checkpoint regulations of the eukaryotic cell cycle. However, only few studies of lepidoptera CDK family proteins have been reported so far. In this study, we performed the cDNA sequencing of 10 members of the CDK family in Bombyx mori. Gene structure analysis suggested that CDK12 and CDC2L1 owned two and three isoforms, respectively. Phylogenetic analysis showed that CDK genes in different species were highly conserved, implying that they evolved independently even before the split between vertebrates and invertebrates. We found that the expression levels of BmCDKs in 13 tissues of fifth-instar day 3 larvae were different: CDK1, CDK7, and CDK9 had a high level of expression, whereas CDK4 was low-level expressed and was detected only in the testes and fat body cells. Similar expression profiles of BmCDKs during embryo development were obtained. Among the variants of CDK12, CDK12 transcript variant A had the highest expression, and the expression of CDC2L1 transcript variant A was the highest among the variants of CDC2L1. It was shown from the RNAi experiments that the silencing of CDK1, CDK10, CDK12, and CDC2L1 could influence the cells from G0/G1 to S phase transition.

  16. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation

    PubMed Central

    Goins, Duane; Siefert, Joseph C.; Clowdus, Emily A.

    2015-01-01

    S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRRTESE) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRRTESE does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRRTESE does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled. PMID:25737283

  17. Cyclin-Dependent Kinase Inhibitor 1a (p21) Modulates Response to Cocaine and Motivated Behaviors.

    PubMed

    Scholpa, Natalie E; Briggs, Sherri B; Wagner, John J; Cummings, Brian S

    2016-04-01

    This study investigated the functional role of cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) in cocaine-induced responses using a knockout mouse model. Acute locomotor activity after cocaine administration (15 mg/kg, i.p.) was decreased in p21(-/-) mice, whereas cocaine-induced place preference was enhanced. Interestingly, κ-opioid-induced place aversion was also significantly enhanced. Concentration-dependent analysis of locomotor activity in response to cocaine demonstrated a rightward shift in the p21(-/-) mice. Pretreatment with a 5-hydroxytryptamine receptor antagonist did not alter the enhancement of cocaine-induced conditioned place preference in p21(-/-) mice, indicating a lack of involvement of serotonergic signaling in this response. Cocaine exposure increased p21 expression exclusively in the ventral sector of the hippocampus of rodents after either contingent or noncontingent drug administration. Increased p21 expression was accompanied by increased histone acetylation of the p21 promoter region in rats. Finally, increased neurogenesis in the dorsal hippocampus of p21(-/-) mice was also observed. These results show that functional loss of p21 altered the acute locomotor response to cocaine and the conditioned responses to either rewarding or aversive stimuli. Collectively, these findings demonstrate a previously unreported involvement of p21 in modulating responses to cocaine and in motivated behaviors.

  18. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy

    PubMed Central

    Ullah, Zakir; Lee, Chrissie Y; DePamphilis, Melvin L

    2009-01-01

    Cyclin-dependent kinases (CDKs) play a central role in the orderly transition from one phase of the eukaryotic mitotic cell division cycle to the next. In this context, p27Kip1 (one of the CIP/KIP family of CDK specific inhibitors in mammals) or its functional analogue in other eukarya prevents a premature transition from G1 to S-phase. Recent studies have revealed that expression of a second member of this family, p57Kip2, is induced as trophoblast stem (TS) cells differentiate into trophoblast giant (TG) cells. p57 then inhibits CDK1 activity, an enzyme essential for initiating mitosis, thereby triggering genome endoreduplication (multiple S-phases without an intervening mitosis). Expression of p21Cip1, the third member of this family, is also induced in during differentiation of TS cells into TG cells where it appears to play a role in suppressing the DNA damage response pathway. Given the fact that p21 and p57 are unique to mammals, the question arises as to whether one or both of these proteins are responsible for the induction and maintenance of polyploidy during mammalian development. PMID:19490616

  19. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells.

    PubMed

    Strock, Christopher J; Park, Jong-In; Nakakura, Eric K; Bova, G Steven; Isaacs, John T; Ball, Douglas W; Nelkin, Barry D

    2006-08-01

    We show here that cyclin-dependent kinase 5 (CDK5), a known regulator of migration in neuronal development, plays an important role in prostate cancer motility and metastasis. P35, an activator of CDK5 that is indicative of its activity, is expressed in a panel of human and rat prostate cancer cell lines, and is also expressed in 87.5% of the human metastatic prostate cancers we examined. Blocking of CDK5 activity with a dominant-negative CDK5 construct, small interfering RNA, or roscovitine resulted in changes in the microtubule cytoskeleton, loss of cellular polarity, and loss of motility. Expression of a dominant-negative CDK5 in the highly metastatic Dunning AT6.3 prostate cancer cell line also greatly impaired invasive capacity. CDK5 activity was important for spontaneous metastasis in vivo; xenografts of AT6.3 cells expressing dominant-negative CDK5 had less than one-fourth the number of lung metastases exhibited by AT6.3 cells expressing the empty vector. These results show that CDK5 activity controls cell motility and metastatic potential in prostate cancer.

  20. The cyclin-dependent kinase Cdk1 directly regulates vacuole inheritance.

    PubMed

    Peng, Yutian; Weisman, Lois S

    2008-09-01

    In budding yeast, vacuole inheritance is tightly coordinated with the cell cycle. The movement of vacuoles and several other organelles is actin-based and is mediated by interaction between the yeast myosin V motor Myo2 and organelle-specific adaptors. Myo2 binds to vacuoles via the adaptor protein Vac17, which binds to the vacuole membrane protein Vac8. Here we show that the yeast cyclin-dependent kinase Cdk1 phosphorylates Vac17 and that phosphorylation of Vac17 parallels cell cycle-dependent movement of the vacuole. Substitution of the Cdk1 sites in Vac17 decreases its interaction with Myo2 and causes a partial defect in vacuole inheritance. This defect is enhanced in the presence of Myo2 with mutated phosphorylation sites. Thus, Cdk1 appears to control the timing of vacuole movement. The presence of multiple predicted Cdk1 sites in other organelle-specific myosin V adaptors suggests that the inheritance of other cytoplasmic organelles may be regulated by a similar mechanism.

  1. The Indispensable Role of Cyclin-Dependent Kinase 1 in Skeletal Development

    PubMed Central

    Saito, Masanori; Mulati, Mieradili; Talib, S. Zakiah A.; Kaldis, Philipp; Takeda, Shu; Okawa, Atsushi; Inose, Hiroyuki

    2016-01-01

    Skeletal development is tightly regulated through the processes of chondrocyte proliferation and differentiation. Although the involvement of transcription and growth factors on the regulation of skeletal development has been extensively studied, the role of cell cycle regulatory proteins in this process remains elusive. To date, through cell-specific loss-of-function experiments in vivo, no cell cycle regulatory proteins have yet been conclusively shown to regulate skeletal development. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates skeletal development based on chondrocyte-specific loss-of-function experiments performed in a mouse model. Cdk1 is highly expressed in columnar proliferative chondrocytes and is greatly downregulated upon differentiation into hypertrophic chondrocytes. Cdk1 is essential for proper chondrocyte proliferation and deletion of Cdk1 resulted in accelerated differentiation of chondrocytes. In vitro and ex vivo analyses revealed that Cdk1 is an essential cell cycle regulatory protein for parathyroid hormone-related peptide (PTHrP) signaling pathway, which is critical to chondrocyte proliferation and differentiation. These results demonstrate that Cdk1 functions as a molecular switch from proliferation to hypertrophic differentiation of chondrocytes and thus is indispensable for skeletal development. Given the availability of inhibitors of Cdk1 activity, our results could provide insight for the treatment of diseases involving abnormal chondrocyte proliferation, such as osteoarthritis. PMID:26860366

  2. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae.

    PubMed Central

    Huang, D; Farkas, I; Roach, P J

    1996-01-01

    In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p. PMID:8754836

  3. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    PubMed

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation

  4. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.

    PubMed

    Yousuf, Mohammad A; Tan, Chunfeng; Torres-Altoro, Melissa I; Lu, Fang-Min; Plautz, Erik; Zhang, Shanrong; Takahashi, Masaya; Hernandez, Adan; Kernie, Steven G; Plattner, Florian; Bibb, James A

    2016-07-01

    Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation

  5. High Expression of PTGR1 Promotes NSCLC Cell Growth via Positive Regulation of Cyclin-Dependent Protein Kinase Complex

    PubMed Central

    Zhou, Weihe; Zhang, Yuefeng; Liu, Yong

    2016-01-01

    Lung cancer has been the most common cancer and the main cause of cancer-related deaths worldwide for several decades. PTGR1 (prostaglandin reductase 1), as a bifunctional enzyme, has been involved in the occurrence and progression of cancer. However, its impact on human lung cancer is rarely reported. In this study, we found that PTGR1 was overexpressed in lung cancer based on the analyses of Oncomine. Moreover, lentivirus-mediated shRNA knockdown of PTGR1 reduced cell viability in human lung carcinoma cells 95D and A549 by MTT and colony formation assay. PTGR1 depletion led to G2/M phase cell cycle arrest and increased the proportion of apoptotic cells in 95D cells by flow cytometry. Furthermore, silencing PTGR1 in 95D cells resulted in decreased levels of cyclin-dependent protein kinase complex (CDK1, CDK2, cyclin A2, and cyclin B1) by western blotting and then PTGR1 is positively correlated with cyclin-dependent protein by using the data mining of the Oncomine database. Therefore, our findings suggest that PTGR1 may play a role in lung carcinogenesis through regulating cell proliferation and is a potential new therapeutic strategy for lung cancer. PMID:27429979

  6. Down-regulating cyclin-dependent kinase 9 of alloreactive CD4+ T cells prolongs allograft survival

    PubMed Central

    Zhan, Yang; Han, Yeming; Sun, Hukui; Liang, Ting; Zhang, Chao; Song, Jing; Hou, Guihua

    2016-01-01

    CDK9 (Cyclin-dependent kinase 9)/Cyclin T1/RNA polymerase II pathway has been demonstrated to promote the development of several inflammatory diseases, such as arthritis or atherosclerosis, however, its roles in allotransplantation rejection have not been addressed. Here, we found that CDK9/Cyclin T1 were apparently up-regulated in the allogeneic group, which was positively correlated with allograft damage. CDK9 was inhibited obviously in naive splenic CD4+ T cells treated 6 h with 3 μM PHA767491 (a CDK9 inhibitor), and adoptive transfer of these CD4+ T cells into allografted SCID mice resulted in prolonged survival compared with the group without PHA767491 pretreated. Decelerated rejection was correlated with enhanced IL-4 and IL-10 production and with decreased IFN-γ production by alloreactive T cells. More interestingly, we found that CDK942, not CDK955, was high expressed in allorejection group, which could be prominently dampened with PHA767491 treatment. The expression of CDK942 was consistent with its downstream molecule RNA polymerase II. Altogether, our findings revealed the crucial role of CDK9/Cyclin T1/Pol II pathway in promoting allorejection at multiple levels and may provide a new approach for transplantation tolerance induction through targeting CDK9. PMID:27102157

  7. Hesperetin exerts apoptotic effect on A431 skin carcinoma cells by regulating mitogen activated protein kinases and cyclins.

    PubMed

    Smina, T P; Mohan, A; Ayyappa, K A; Sethuraman, S; Krishnan, U M

    2015-10-30

    Dietary agents and phytochemicals have been utilised for the management of cancer for many years. Hesperetin, a dietary flavonoid found abundantly in citrus fruits, was evaluated for its cytotoxic and pro-apoptotic activities in A431 human skin carcinoma cells. Effect of hesperetin in regulating MAPK (Mitogen-Activated Protein Kinase) signalling pathway and levels of various cyclins and other downstream apoptotic proteins were investigated. Its critical role in regulating other apoptotic proteins especially p21, Bcl-2 and Bax were also assessed. Hesperetin stimulated alterations in MAPK (Mitogen-Activated Protein Kinase) signalling pathway by modulating the expression levels of ERK (Extracellular signal Regulated Kinase), JNK (c-Jun NH2-terminal Kinase) and p38; thereby induced apoptosis in A431 cells. Hesperetin regulated the levels of cyclin A2, B1, D1, D3 and E1. It also modulated the levels of various proteins involved in apoptotic pathway especially p21, Bcl-2 and Bax. The study revealed the efficiency of hesperetin against human skin carcinoma cells and proposed its mechanism of action; there by opens up new avenues for the use of this dietary flavonoid against skin malignancies.

  8. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    SciTech Connect

    Qiao, Lan; Paul, Pritha; Lee, Sora; Qiao, Jingbo; Wang, Yongsheng; Chung, Dai H.

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.

  9. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    SciTech Connect

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong; Zheng, Shusen

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. Black-Right-Pointing-Pointer Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. Black-Right-Pointing-Pointer CDKN3 could inhibit the expression of p21 in HCC cells. Black-Right-Pointing-Pointer Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. Black-Right-Pointing-Pointer We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  10. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5

    PubMed Central

    Beaudry, H; Mercier-Blais, A-A; Delaygue, C; Lavoie, C; Parent, J-L; Neugebauer, W; Gendron, L

    2015-01-01

    Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process. PMID:25598508

  11. Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation.

    PubMed

    Yang, Yan; Wang, Haibo; Zhang, Jie; Luo, Fucheng; Herrup, Karl; Bibb, James A; Lu, Richard; Miller, Robert H

    2013-06-15

    The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.

  12. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  13. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  14. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure.

    PubMed

    Rouget, Raphaël; Sharma, Gyanesh; LeBlanc, Andréa C

    2015-02-27

    Familial prion protein (PrP) mutants undergo conversion from soluble and protease-sensitive to insoluble and partially protease-resistant proteins. Cyclin-dependent kinase 5 (Cdk5) phosphorylation of wild type PrP (pPrP) at serine 43 induces a conversion of PrP into aggregates and fibrils. Here, we investigated whether familial PrP mutants are predisposed to Cdk5 phosphorylation and whether phosphorylation of familial PrP mutants increases conversion. PrP mutants representing three major familial PrP diseases and different PrP structural domains were studied. We developed a novel in vitro kinase reaction coupled with Thioflavin T binding to amyloid structure assay to monitor phosphorylation-dependent amyloid conversion. Although non-phosphorylated full-length wild type or PrP mutants did not convert into amyloid, Cdk5 phosphorylation rapidly converted these into Thioflavin T-positive structures following first order kinetics. Dephosphorylation partially reversed conversion. Phosphorylation-dependent conversion of PrP from α-helical structures into β-sheet structures was confirmed by circular dichroism. Relative to wild type pPrP, most PrP mutants showed increased rate constants of conversion. In contrast, non-phosphorylated truncated PrP Y145X (where X represents a stop codon) and Q160X mutants converted spontaneously into Thioflavin T-positive fibrils after a lag phase of over 20 h, indicating nucleation-dependent polymerization. Phosphorylation reduced the lag phase by over 50% and thus accelerated the formation of the nucleating event. Consistently, phosphorylated Y145X and phosphorylated Q160X exacerbated conversion in a homologous seeding reaction, whereas WT pPrP could not seed WT PrP. These results demonstrate an influence of both the N terminus and the C terminus of PrP on conversion. We conclude that post-translational modifications of the flexible N terminus of PrP can cause or exacerbate PrP mutant conversion. PMID:25572400

  15. Unscheduled Akt-Triggered Activation of Cyclin-Dependent Kinase 2 as a Key Effector Mechanism of Apoptin's Anticancer Toxicity▿

    PubMed Central

    Maddika, Subbareddy; Panigrahi, Soumya; Wiechec, Emilia; Wesselborg, Sebastian; Fischer, Ute; Schulze-Osthoff, Klaus; Los, Marek

    2009-01-01

    Apoptin, a protein from the chicken anemia virus, has attracted attention because it specifically kills tumor cells while leaving normal cells unharmed. The reason for this tumor selectivity is unclear and depends on subcellular localization, as apoptin resides in the cytoplasm of normal cells but in the nuclei of transformed cells. It was shown that nuclear localization and tumor-specific killing crucially require apoptin's phosphorylation by an as yet unknown kinase. Here we elucidate the pathway of apoptin-induced apoptosis and show that it essentially depends on abnormal phosphatidylinositol 3-kinase (PI3-kinase)/Akt activation, resulting in the activation of the cyclin-dependent kinase CDK2. Inhibitors as well as dominant-negative mutants of PI3-kinase and Akt not only inhibited CDK2 activation but also protected cells from apoptin-induced cell death. Akt activated CDK2 by direct phosphorylation as well as by the phosphorylation-induced degradation of the inhibitor p27Kip1. Importantly, we also identified CDK2 as the principal kinase that phosphorylates apoptin and is crucially required for apoptin-induced cell death. Immortalized CDK2-deficient fibroblasts and CDK2 knockdown cells were markedly protected against apoptin. Thus, our results not only decipher the pathway of apoptin-induced cell death but also provide mechanistic insights for the selective killing of tumor cells. PMID:19103742

  16. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering.

  17. Cyclin kinase inhibitor p21WAF1/CIP1 in malignant melanoma: reduced expression in metastatic lesions.

    PubMed Central

    Maelandsmo, G. M.; Holm, R.; Fodstad, O.; Kerbel, R. S.; Flørenes, V. A.

    1996-01-01

    Immunohistochemical analysis of the expression of the cyclin kinase inhibitor p21WAF1/CIP1 in a panel of primary and metastatic human melanocytic tumors was performed. It was found that, independent of the p53 status, approximately 30% of the primary melanomas and 40% of the metastases completely lacked expression of this cell cycle inhibitor. Some tumors were also analyzed by Northern blotting, and in most of the cases a consistant correlation between mRNA and protein expression was observed. In four benign nevi studied, WAF1/CIP1 mRNA was expressed whereas the protein was not detected, suggesting a post-transcriptional regulation of the inhibitor in these cases. In superficial spreading melanomas, a significant correlation between protein expression and tumor thickness was found, with thin lesions showing low protein levels. Interestingly, by comparing primary and metastatic specimens obtained from the same patient, a reduction in p21WAF1/CIP1 antibody staining was observed in the latter, probably reflecting a more aggressive phenotype of the metastases. In conclusion, our results demonstrate the complexity in the relationship between p21WAF1/CIP1 expression and tumor phenotype and furthermore suggest that aberrant expression of the cyclin-dependent kinase inhibitor may be of importance in the development and progression of sporadic malignant melanoma. Images Figure 1 Figure 2 PMID:8952518

  18. Role of the p21 Cyclin-Dependent Kinase Inhibitor in Limiting Intimal Cell Proliferation in Response to Arterial Injury

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Yong; Simari, Robert D.; Perkins, Neil D.; San, Hong; Gordon, David; Nabel, Gary J.; Nabel, Elizabeth G.

    1996-07-01

    Arterial injury induces a series of proliferative, vasoactive, and inflammatory responses that lead to vascular proliferative diseases, including atherosclerosis and restenosis. Although several factors have been defined which stimulate this process in vivo, the role of specific cellular gene products in limiting this response is not well understood. The p21 cyclin-dependent kinase inhibitor affects cell cycle progression, senescence, and differentiation in transformed cells, but its expression in injured blood vessels has not been investigated. In this study, we report that p21 protein is induced in porcine arteries following balloon catheter injury and suggest that p21 is likely to play a role in limiting arterial cell proliferation in vivo. Vascular endothelial and smooth muscle cell growth was arrested through the ability of p21 to inhibit progression through the G1 phase of the cell cycle. Following injury to porcine arteries, p21 gene product was detected in the neointima and correlated inversely with the location and kinetics of intimal cell proliferation. Direct gene transfer of p21 using an adenoviral vector into balloon injured porcine arteries inhibited the development of intimal hyperplasia. Taken together, these findings suggest that p21, and possibly related cyclin-dependent kinase inhibitors, may normally regulate cellular proliferation following arterial injury, and strategies to increase its expression may prove therapeutically beneficial in vascular diseases.

  19. Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase.

    PubMed Central

    Cross, F R; Levine, K

    2000-01-01

    We showed recently that a screen for mutant CDC28 with improved binding to a defective Cln2p G1 cyclin yielded a spectrum of mutations similar to those yielded by a screen for intragenic suppressors of the requirement for activation loop phosphorylation (T169E suppressors). Recombination among these mutations yielded CDC28 mutants that bypassed the G1 cyclin requirement. Here we analyze further the interrelationship between T169E suppression, interaction with defective cyclin, and G1 cyclin bypass. DNA shuffling of mutations from the various screens and recombination onto a T169E-encoding 3' end yielded CDC28 mutants with strong T169E suppression. Some of the strongest T169E suppressors could suppress the defective Cln2p G1 cyclin even while retaining T169E. The strong T169E suppressors did not exhibit bypass of the G1 cyclin requirement but did so when T169E was reverted to T. These results suggested that for these mutants, activation loop phosphorylation and cyclin binding might be alternative means of activation rather than independent requirements for activation (as with wild type). These results suggest mechanistic overlap between the conformational shift induced by cyclin binding and that induced by activation loop phosphorylation. This conclusion was supported by analysis of suppressors of a mutation in the Cdk phosphothreonine-binding pocket created by cyclin binding. PMID:10747052

  20. Multiple Roles of Cyclin-Dependent Kinase 4/6 Inhibitors in Cancer Therapy

    PubMed Central

    Roberts, Patrick J.; Bisi, John E.; Strum, Jay C.; Combest, Austin J.; Darr, David B.; Usary, Jerry E.; Zamboni, William C.; Wong, Kwok-Kin; Perou, Charles M.

    2012-01-01

    Background Cyclin-dependent kinases (CDKs) regulate cell proliferation and coordinate the cell cycle checkpoint response to DNA damage. Although inhibitors with varying selectivity to specific CDK family members have been developed, selective CDK4/6 inhibitors have emerged as the most attractive antineoplastic agents because of the importance of CDK4/6 activity in regulating cell proliferation and the toxic effects associated with inhibition of other CDKs (eg, CDK1 and CDK2). Methods FVB/N wild-type mice (n = 13) were used to evaluate carboplatin-induced myelosuppression in bone marrow by complete blood cell counts after treatment with the CDK4/6 inhibitor PD0332991. Genetically engineered murine models of retinoblastoma (Rb)-competent (MMTV-c-neu) and Rb-incompetent (C3-TAg) breast cancer (n = 16 MMTV-c-neu mice in the carboplatin plus vehicle control group, n = 17 MMTV-c-neu mice in the carboplatin plus PD0332991 group, n = 17 C3-TAg mice in the carboplatin plus vehicle control group, and n = 14 C3-TAg mice in the carboplatin plus PD0332991 group) were used to investigate the antitumor activity of PD0332991 alone or in combination with chemotherapy. All statistical tests were two-sided. Results Coadministration of PD0332991 with carboplatin compared with carboplatin alone in FVB/N wild-type mice increased hematocrit (51.2% vs 33.5%, difference = 17.7%, 95% confidence interval [CI] = −26.7% to −8.6%, P < .001), platelet counts (1321 vs 758.5 thousand cells per μL, difference = 562.5 thousand cells per μL, 95% CI = −902.8 to −222.6, P = .002), myeloid cells (granulocytes and monocytes; 3.1 vs 1.6 thousand cells per μL, difference = 1.5 thousand cells per μL, 95% CI = −2.23 to −0.67, P < .001), and lymphocytes (7.9 vs 5.4 thousand cells per μL, difference = 2.5 thousand cells per μL, 95% CI = −4.75 to −0.18, P = .02). Daily administration of PD0332991 exhibited antitumor activity in MMTV-c-neu mice as a single agent. However, the combination of

  1. Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase.

    PubMed

    Katayama, Masafumi; Kiyono, Tohru; Horie, Kengo; Hirayama, Takashi; Eitsuka, Takahiro; Kuroda, Kengo; Donai, Kenichiro; Hidema, Shizu; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2016-01-01

    The prairie vole (Microtus ochrogaster) shows social behaviors such as monogamy and parenting of infants with pair bonding. These social behaviors are specific to the prairie vole and have not been observed in other types of voles, such as mountain voles. Although the prairie vole has several unique characteristics, an in vitro cell culture system has not been established for this species. Furthermore, establishment of cultured cells derived from the prairie vole may be beneficial based on the three Rs (i.e., Replacement, Reduction, and Refinement) concept. Therefore, in this study, we attempted to establish an immortalized cell line derived from the prairie vole. Our previous research has shown that transduction with mutant forms of cyclin-dependent kinase 4 (CDK4), cyclin D, and telomerase reverse transcriptase (TERT) could efficiently immortalize cells from multiple species, including humans, cattle, pigs, and monkeys. Here, we introduced these three genes into prairie vole-derived muscle fibroblasts. The expression of mutant CDK4 and cyclin D proteins was confirmed by western blotting, and telomerase activity was detected in immortalized vole muscle-derived fibroblasts (VMF-K4DT cells or VMFs) by stretch PCR. Population doubling analysis showed that the introduction of mutant CDK4, cyclin D, and TERT extended the lifespan of VMFs. To the best of our knowledge, this is the first report describing the establishment of an immortalized cell line derived from the prairie vole through the expression of mutant CDK4, cyclin D, and human TERT. PMID:26496927

  2. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation.

    PubMed

    Kato, J Y; Matsuoka, M; Polyak, K; Massagué, J; Sherr, C J

    1994-11-01

    Cyclic AMP (cAMP) blocks the mitogenic effects of colony-stimulating factor 1 (CSF-1) in macrophages, inducing cell cycle arrest in mid-G1 phase. Complexes between cyclin D1 and cyclin-dependent kinase 4 (cdk4) assemble in growth arrested cells, but cdk4 is not phosphorylated in vivo by the cdk-activating kinase (CAK) and remains inactive. Although undetectable in lysates of cAMP-treated cells, active CAK is recovered after antibody precipitation, indicating that it is not the direct target of inhibition. Levels of the cdk inhibitor p27Klp1 increase in cAMP-treated cells, and its immunodepletion from inhibitory lysates restores CAK-mediated cdk4 activation. Kip1 does not bind to CAK, but its association with cyclin D-cdk4 prevents CAK from phosphorylating and activating the holoenzyme. PMID:7954814

  3. Regulation of Cdc28 Cyclin-Dependent Protein Kinase Activity during the Cell Cycle of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Mendenhall, Michael D.; Hodge, Amy E.

    1998-01-01

    The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity—cyclin-CKI binding and phosphorylation-dephosphorylation events—are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized. PMID:9841670

  4. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana.

    PubMed

    Takatsuka, Hirotomo; Umeda-Hara, Chikage; Umeda, Masaaki

    2015-06-01

    For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK-activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate-type CAKs, three CDKDs (CDKD;1-CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post-embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1-1 cdkd;3-1 pollen grains were defective in pollen mitosis I and II, producing one-cell or two-cell pollen grains that lacked fertilization ability. We also found that the double knock-out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post-embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1-1 cdkd;3-1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post-embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.

  5. Alterations in cyclin-dependent protein kinase 5 (CDK5) protein levels, activity and immunocytochemistry in canine motor neuron disease.

    PubMed

    Green, S L; Vulliet, P R; Pinter, M J; Cork, L C

    1998-11-01

    Hereditary canine spinal muscular atrophy (HCSMA) is a dominantly inherited motor neuron disease in Brittany spaniels that is clinically characterized by progressive muscle weakness leading to paralysis. Histopathologically, degeneration is confined to motor neurons with accumulation of phosphorylated neurofilaments in axonal internodes. Cyclin-dependent kinase 5 (CDK5), a kinase related to the cell cycle kinase cdc2, phosphorylates neurofilaments and regulates neurofilament dynamics. We examined CDK5 activity, protein levels, and cellular immunoreactivity in nervous tissue from dogs with HCSMA, from closely age-matched controls and from dogs with other neurological diseases. On immunoblot analysis, CDK5 protein levels were increased in the HCSMA dogs (by approximately 1.5-fold in both the cytosolic and the particulate fractions). CDK5 activity was significantly increased (by approximately 3-fold) in the particulate fractions in the HCSMA dogs compared to all controls. The finding that CDK5 activity was increased in the young HCSMA homozygotes with the accelerated form of the disease, who do not show axonal swellings histologically, suggests that alterations in CDK5 occurs early in the pathogenesis, prior to the development of significant neurofilament pathology. Immunocytochemically, there was strong CDK5 staining of the nuclei, cytoplasm and axonal processes of the motor neurons in both control dogs and dogs with HCSMA. Further immunocytochemical studies demonstrated CDK5 staining where neurofilaments accumulated, in axonal swellings in the dogs with HCSMA. Our observations suggest phosphorylation-dependent events mediated by CDK5 occur in canine motor neuron disease.

  6. Loss of Cyclin-Dependent Kinase 5 from Parvalbumin Interneurons Leads to Hyperinhibition, Decreased Anxiety, and Memory Impairment

    PubMed Central

    Rudenko, Andrii; Seo, Jinsoo; Hu, Ji; Su, Susan C.; de Anda, Froylan Calderon; Durak, Omer; Ericsson, Maria; Carlén, Marie

    2015-01-01

    Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia. PMID:25673832

  7. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro.

    PubMed

    Czapski, Grzegorz A; Gąssowska, Magdalena; Wilkaniec, Anna; Cieślik, Magdalena; Adamczyk, Agata

    2013-09-17

    Extracellular alpha-synuclein (ASN) could be involved in the pathomechanism of Parkinson's disease (PD) via disturbances of calcium homeostasis, activation of nitric oxide synthase and oxidative/nitrosative stress. In this study we analyzed the role of cyclin-dependent kinase 5 (Cdk5) in the molecular mechanism(s) of ASN toxicity. We found that exposure of PC12 cells to ASN increases Cdk5 activity via calpain-dependent p25 formation and by enhancement of Cdk5 phosphorylation at Tyr15. Cdk5 and calpain inhibitors prevented ASN-evoked cell death. Our findings, indicating the participation of Cdk5 in ASN toxicity, provide new insight into how extracellular ASN may trigger dopaminergic cell dysfunction in PD.

  8. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    PubMed

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  9. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes.

    PubMed

    Lu, Gang; Seta, Karen A; Millhorn, David E

    2005-06-10

    Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells. PMID:15824106

  10. A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34cdc2 kinase during meiosis.

    PubMed

    Kelley, C A; Oberman, F; Yisraeli, J K; Adelstein, R S

    1995-01-20

    There are two vertebrate nonmuscle myosin heavy chain (MHC) genes that encode two separate isoforms of the heavy chain, MHC-A and MHC-B. Recent work has identified additional, alternatively spliced isoforms of MHC-B cDNA with inserted sequences of 30 nucleotides (chicken and human) or 48 nucleotides (Xenopus) at a site corresponding to the ATP binding region in the MHC protein (Takahashi, M., Kawamoto, S., and Adelstein, R.S. (1992) J. Biol. Chem. 267, 17864-17871) and Bhatia-Dey, N., Adelstein, R.S., and Dawid, I.B. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2856-2859). The deduced amino acid sequence of these inserts contains a consensus sequence for phosphorylation by cyclin-p34cdc2 (cdc2) kinase. In cultured Xenopus XTC cells, we have identified two inserted MHC-B isoforms and a non-inserted MHC-A isoform by immunoblotting of cell extracts. When myosin was immunoprecipitated from XTC cells and phosphorylated in vitro with cdc2 kinase, the kinase catalyzed the phosphorylation of both inserted MHC-B isoforms but not MHC-A. Isoelectric focusing of tryptic peptides generated from MHC-B phosphorylated with cdc2 kinase revealed one major phosphopeptide that was purified by reverse-phase high performance liquid chromatography and sequenced. The phosphorylated residue was Ser-214, the cdc2 kinase consensus site within the insert near the ATP binding region. The same site was phosphorylated in intact XTC cells during log phase of growth and in cell-free lysates of Xenopus eggs stabilized in second meiotic metaphase but not interphase. Moreover, Ser-214 phosphorylation was detected during maturation of Xenopus oocytes when the cdc2 kinase-containing maturation-promoting factor was activated, but not in G2 interphase-arrested oocytes. These results demonstrate that MHC-B phosphorylation is tightly regulated by cdc2 kinase during meiotic cell cycles. Furthermore, MHC-A and MHC-B isoforms are differentially phosphorylated at these stages, suggesting that they may serve

  11. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro.

    PubMed

    Prasad, Shilpa; Koch, Biplob; Chaube, Shail K

    2016-04-01

    Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro. PMID:26982431

  12. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis.

    PubMed

    Lilja, Lena; Johansson, Jenny Ulrika; Gromada, Jesper; Mandic, Slavena Andrea; Fried, Gabriel; Berggren, Per-Olof; Bark, Christina

    2004-07-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.

  13. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.

    PubMed

    Liu, Jiao; Du, Junxie; Yang, Yanrui; Wang, Yun

    2015-11-01

    Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. Here, we demonstrate that Cdk5 phosphorylates TRPV1 at Threonine 406 and promotes the surface localization of TRPV1, leading to inflammatory thermal hyperalgesia. The mutation of Thr-406 of TRPV1 to alanine reduced the interaction of TRPV1 with the cytoskeletal elements and decreased the binding of TRPV1 with the motor protein KIF13B, which led to reduced surface distribution of TRPV1. Disrupting the phosphorylation of TRPV1 at Thr-406 dramatically reduced the surface level of TRPV1 in HEK 293 cells after transient expression and the channel function in cultured dorsal root ganglion (DRG) neurons. Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.

  14. The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: The effect on inflammatory gene expression.

    PubMed

    Czapski, Grzegorz A; Gąssowska, Magdalena; Wilkaniec, Anna; Chalimoniuk, Małgorzata; Strosznajder, Joanna B; Adamczyk, Agata

    2016-02-01

    Cyclin-dependent kinase 5 (Cdk5) is critical for nervous system's development and function, and its aberrant activation contributes to pathomechanism of Alzheimer's disease and other neurodegenerative disorders. It was recently suggested that Cdk5 may participate in regulation of inflammatory signalling. The aim of this study was to analyse the mechanisms involved in regulating Cdk5 activity in the brain during systemic inflammatory response (SIR) as well as the involvement of Cdk5 in controlling the expression of inflammatory genes. Genetic and biochemical alterations in hippocampus were analysed 3 and 12 h after intraperitoneal injection of lipopolysaccharide. We observed an increase in both Cdk5 gene expression and protein level. Moreover, phosphorylation of Cdk5 on Ser159 was significantly enhanced. Also transcription of Cdk5-regulatory protein (p35/Cdk5r1) was augmented, and the level of p25, calpain-dependent cleavage product of p35, was increased. All these results demonstrated rapid activation of Cdk5 in the brain during SIR. Hyperactivity of Cdk5 contributed to enhanced phosphorylation of tau and glycogen synthase kinase 3β. Inhibition of Cdk5 with Roscovitine reduced activation of NF-κB and expression of inflammation-related genes, demonstrating the critical role of Cdk5 in regulation of gene transcription during SIR.

  15. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5

    PubMed Central

    Su, Susan C.; Seo, Jinsoo; Pan, Jen Q.; Samuels, Benjamin Adam; Rudenko, Andrii; Ericsson, Maria; Neve, Rachael L.; Yue, David T.; Tsai, Li-Huei

    2012-01-01

    SUMMARY N-type voltage-gated calcium channels (CaV2.2) localize to presynaptic nerve terminals and mediate key events including synaptogenesis and neurotransmission. While several kinases have been implicated in the modulation of calcium channels, their impact on presynaptic functions remains unclear. Here we report that the N-type calcium channel is a substrate for cyclin-dependent kinase 5 (Cdk5). The pore-forming α1 subunit of the N-type calcium channel is phosphorylated in the C-terminal domain, and phosphorylation results in enhanced calcium influx due to increased channel open probability. Phosphorylation of the N-type calcium channel by Cdk5 facilitates neurotransmitter release and alters presynaptic plasticity by increasing the number of docked vesicles at the synaptic cleft. These effects are mediated by an altered interaction between N-type calcium channels and RIM1, which tethers presynaptic calcium channels to the active zone. Collectively, our results highlight a molecular mechanism by which N-type calcium channels are regulated by Cdk5 to affect presynaptic functions. PMID:22920258

  16. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    SciTech Connect

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F.

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  17. Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5.

    PubMed

    Kobayashi, Hiroyuki; Saito, Taro; Sato, Ko; Furusawa, Kotaro; Hosokawa, Tomohisa; Tsutsumi, Koji; Asada, Akiko; Kamada, Shinji; Ohshima, Toshio; Hisanaga, Shin-ichi

    2014-07-11

    Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. In contrast to other Cdks that promote cell proliferation, Cdk5 plays a role in regulating various neuronal functions, including neuronal migration, synaptic activity, and neuron death. Cdks responsible for cell proliferation need phosphorylation in the activation loop for activation in addition to binding a regulatory subunit cyclin. Cdk5, however, is activated only by binding to its activator, p35 or p39. Furthermore, in contrast to Cdk1 and Cdk2, which are inhibited by phosphorylation at Tyr-15, the kinase activity of Cdk5 is reported to be stimulated when phosphorylated at Tyr-15 by Src family kinases or receptor-type tyrosine kinases. We investigated the activation mechanism of Cdk5 by phosphorylation at Tyr-15. Unexpectedly, however, it was found that Tyr-15 phosphorylation occurred only on monomeric Cdk5, and the coexpression of activators, p35/p25, p39, or Cyclin I, inhibited the phosphorylation. In neuron cultures, too, the activation of Fyn tyrosine kinase did not increase Tyr-15 phosphorylation of Cdk5. Further, phospho-Cdk5 at Tyr-15 was not detected in the p35-bound Cdk5. In contrast, expression of active Fyn increased p35 in neurons. These results indicate that phosphorylation at Tyr-15 is not an activation mechanism of Cdk5 but, rather, indicate that tyrosine kinases could activate Cdk5 by increasing the protein amount of p35. These results call for reinvestigation of how Cdk5 is regulated downstream of Src family kinases or receptor tyrosine kinases in neurons, which is an important signaling cascade in a variety of neuronal activities.

  18. Inhibition of cyclin-dependent kinase 6 suppresses cell proliferation and enhances radiation sensitivity in medulloblastoma cells

    PubMed Central

    Harris, Peter S.; Venkataraman, Sujatha; Alimova, Irina; Birks, Diane K.; Donson, Andrew M.; Foreman, Nicholas K.; Vibhakar, Rajeev

    2015-01-01

    Medulloblastoma accounts for 20 % of all primary pediatric intracranial tumors. Current treatment cures 50–80 % of patients but is associated with significant long-term morbidity and thus new therapeutic targets are needed. One such target is cyclin-dependent kinase 6 (CDK6), a serine/threonine kinase that plays a vital role in cell cycle progression and differentiation. CDK6 is overexpressed in medulloblastoma patients and is associated with an adverse prognosis. To investigate the role of CDK6 in medulloblastoma, we assayed the effect of CDK6 inhibition on proliferation by depleting expression with RNA interference (RNAi) or by inhibiting kinase function with a small molecule inhibitor, PD0332991. Cell proliferation was assessed by colony focus assay or by the xCELLigence system. We then investigated the impact of CDK6 inhibition on differentiation of murine neural stem cells by immunofluorescence of relevant markers. Finally we evaluated the effects of PD0332991 treatment on medulloblastoma cell cycle and radiosensitivity using colony focus assays. Gene expression analysis revealed that CDK6 mRNA expression is higher than normal cerebellum in fifteen out of sixteen medulloblastoma patient samples. Inhibition of CDK6 by RNAi significantly decreased medulloblastoma cell proliferation and colony forming potential. Interestingly, CDK6 inhibition by RNAi increased differentiation in murine neural stem cells. PD0332991 treatment significantly decreased medulloblastoma cell proliferation and led to a G0/G1 cell cycle arrest. Furthermore, PD0332991 pretreatment sensitized medulloblastoma cells to ionizing radiation. Our findings suggest that targeting CDK6 with small molecule inhibitors may prove beneficial in the treatment of medulloblastoma, especially when combined with radiation. PMID:23138228

  19. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

    PubMed Central

    Rahmati, Masoud; Taherabadi, Seyed Jalal; Mehrabi, Mahmoud

    2015-01-01

    Background: The relationship between decreased activity/neuropathic pain and gene expression alterations in soleus muscle has remained elusive. Objectives: In this experimental study, we investigated the effects of decreased activity in neuropathic pain form on Cyclin-Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase-3 β (GSK-3β) gene expression in soleus muscle of rats. Materials and Methods: Twelve male Wistar rats were randomly divided into three groups: (1) tight ligation of the L5 spinal nerve (SNL: n = 4); (2) sham surgery (Sham: n = 4), and (3) control (C: n = 4). The threshold to produce a withdrawal response to a mechanical and thermal stimulus was measured using von Frey filaments and radiation heat apparatus, respectively. Following 4 weeks after surgery, the left soleus muscle was removed and mRNA levels were determined by real-time Polymerase Chain Reaction (PCR). Results: Compared to control animals, L5 ligated animals developed mechanical and heat hypersensitivity during total period of study. Soleus muscle weight as well as CDK5 mRNA levels (less than ~ 0.4 fold) was decreased and GSK-3β mRNA levels (up to ~ 7 folds) increased in L5 ligated animals. Conclusions: These results showed enhanced muscle atrophy processes following peripheral nerve damage and might provide a useful approach to study underlying muscle mechanisms associated with clinical neuropathic pain syndromes. PMID:26290750

  20. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer

    PubMed Central

    Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-01-01

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  1. Cyclin-dependent kinase inhibitor dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer.

    PubMed

    Chen, Xiu-Xiu; Xie, Feng-Feng; Zhu, Xiu-Jie; Lin, Feng; Pan, Shi-Shi; Gong, Li-Hua; Qiu, Jian-Ge; Zhang, Wen-Ji; Jiang, Qi-Wei; Mei, Xiao-Long; Xue, You-Qiu; Qin, Wu-Ming; Shi, Zhi; Yan, Xiao-Jian

    2015-06-20

    Ovarian cancer is one of the most lethal of woman cancers, and its clinical therapeutic outcome currently is unsatisfied. Dinaciclib, a novel small molecule inhibitor of CDK1, CDK2, CDK5 and CDK9, is assessed in clinical trials for the treatment of several types of cancers. In this study, we investigated the anticancer effects and mechanisms of dinaciclib alone or combined with cisplatin in ovarian cancer. Dinaciclib alone actively induced cell growth inhibition, cell cycle arrest and apoptosis with the increased intracellular ROS levels, which were accompanied by obvious alterations of related proteins such as CDKs, Cyclins, Mcl-1, XIAP and survivin. Pretreatment with N-acety-L-cysteine significantly blocked ROS generation but only partially rescued apoptosis triggered by dinaciclib. Moreover, the combination of dinaciclib with cisplatin synergistically promoted cell cycle arrest and apoptosis, and inhibited the subcutaneous xenograft growth of ovarian cancer in nude mice. Altogether, dinaciclib potently synergizes with cisplatin in preclinical models of ovarian cancer, indicating this beneficial combinational therapy may be a promising strategy for treatment of ovarian cancer. PMID:25962959

  2. Gossypin as a novel selective dual inhibitor of V-RAF murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase 4 for melanoma.

    PubMed

    Bhaskaran, Shylesh; Dileep, Kalarikkal V; Deepa, Sathyaseelan S; Sadasivan, Chittalakkottu; Klausner, Mitch; Krishnegowda, Naveen K; Tekmal, Rajeshwar R; VandeBerg, John L; Nair, Hareesh B

    2013-04-01

    Mutation in the BRAF gene (BRAFV600E) exists in nearly 70% of human melanomas. Targeted therapy against BRAFV600E kinase using a recently identified RAF-selective inhibitor, PLX4032, has been successful in early clinical trials. However, in patients with the normal BRAF allele (wild-type), PLX4032 is protumorigenic. This conundrum identifies the unmet need for novel therapeutic agents to target BRAFV600E kinase that are not counterproductive. We have identified gossypin, a pentahydroxy flavone, as a potent antimelanoma agent. Gossypin inhibited human melanoma cell proliferation, in vitro, in melanoma cell lines that harbor both BRAFV600E kinase and cyclin-dependent kinase 4 (CDK4) as well as in cells with BRAF wild-type allele. Gossypin inhibited kinase activities of BRAFV600E and CDK4, in vitro, possibly through direct binding of gossypin with these kinases, as confirmed by molecular docking studies. For cells harboring the BRAFV600E, gossypin inhibited cell proliferation through abrogation of the MEK-ERK-cyclin D1 pathway and in cells with BRAF wild-type allele, through attenuation of the retinoblastoma-cyclin D1 pathway. Furthermore, gossypin significantly inhibited melanoma growth in an organotypic three-dimensional skin culture mimicking human skin. Gossypin (10 and 100 mg/kg) treatment for 10 days in human melanoma (A375) cell xenograft tumors harboring BRAFV600E significantly reduced tumor volume through induction of apoptosis and increased survival rate in mice, and the effect was significantly superior to that of PLX4032 (10 mg/kg) or roscovitine 10 mg/kg. In summary, this study identified gossypin as a novel agent with dual inhibitory effects for BRAFV600E kinase and CDK4 for treatment of melanoma. PMID:23543365

  3. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway.

    PubMed Central

    Loeb, J D; Kerentseva, T A; Pan, T; Sepulveda-Becerra, M; Liu, H

    1999-01-01

    Several lines of evidence suggest that the morphogenetic transition from the yeast form to pseudohyphae in Saccharomyces cerevisiae may be regulated by the cyclin-dependent kinase (Cdk). To examine this hypothesis, we mutated all of the G1 cyclin genes in strains competent to form pseudohyphae. Interestingly, mutation of each G1 cyclin results in a different filamentation phenotype, varying from a significant defect in cln1/cln1 strains to enhancement of filament production in cln3/cln3 strains. cln1 cln2 double mutants are more defective in pseudohyphal development and haploid invasive growth than cln1 strains. FLO11 transcription, which correlates with the level of invasive growth, is low in cln1 cln2 mutants and high in grr1 cells (defective in proteolysis of Cln1,2), suggesting that Cln1,2/Cdks regulate the pseudohyphal transcriptional program. Epistasis analysis reveals that Cln1,2/Cdk and the filamentation MAP kinase pathway function in parallel in regulating filamentous and invasive growth. Cln1 and Cln2, but not Ste20 or Ste12, are responsible for most of the elevated FLO11 transcription in grr1 strains. Furthermore, phenotypic comparison of various filamentation mutants illustrates that cell elongation and invasion/cell-cell adhesion during filamentation are separable processes controlled by the pseudohyphal transcriptional program. Potential targets for G1 cyclin/Cdks during filamentous growth are discussed. PMID:10581264

  4. Staurosporine resistance accompanies DNA tumor virus-induced immortalization and is independent of the expression and activities of ERK1, ERK2, cyclin A, cyclin-dependent kinase (cdk) 2, and cdk4.

    PubMed

    Chang, T; Khalsa, O; Wang, H; Lee, M E; Schlegel, R

    1996-03-01

    Staurosporine, a potent protein kinase inhibitor, has been shown to arrest the growth of a number of normal cell types in the G1 phase of the cell cycle, while having little effect on several transformed lines. We wished to determine whether increased resistance to staurosporine was a common feature of virus-immortalized human cells and whether this phenotype was an early event following the expression of SV40 tumor antigens. Human foreskin keratinocytes immortalized by the SV40 DNA tumor virus displayed an increased resistance to staurosporine-induced growth arrest when compared with normal parental cells, as has been seen in human diploid fibroblasts. Keratinocytes immortalized by human papillomaviruses, or by just the human papillomavirus E6 and E7 oncogenes were also staurosporine resistant, suggesting that this phenotype often accompanies the immortalization of human cells by DNA tumor viruses. Acquisition of staurosporine resistance was a late event during immortalization, because precrisis human diploid fibroblasts that expressed the SV40 large T and small t antigens were not resistant to staurosporine. The same parental cells that were fully immortalized by SV40 were resistant. Staurosporine resistance was not the result of increased activities and/or expression of cyclin A, cyclin-dependent kinase (cdk) 2, cdk4, or the mitogen-activated kinases ERK1 and ERK2. Although increased activities and/or expression of cyclin A and cdk2 and cdk4 proteins, but not ERK1 or ERK2, were associated with immortalization, similar increases were found in staurosporine-sensitive precrisis cells expressing SV40 tumor antigens.

  5. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis

    PubMed Central

    Jarry, Marie; Lecointre, Céline; Malleval, Céline; Desrues, Laurence; Schouft, Marie-Thérèse; Lejoncour, Vadim; Liger, François; Lyvinec, Gildas; Joseph, Benoît; Loaëc, Nadège; Meijer, Laurent; Honnorat, Jérôme; Gandolfo, Pierrick; Castel, Hélène

    2014-01-01

    Background Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. Methods The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. Results Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. Conclusion Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma. PMID:24891448

  6. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  7. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy

    PubMed Central

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L.; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2015-01-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously—a phenomenon called “migration–proliferation dichotomy.” We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration–proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  8. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.

  9. Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses

    PubMed Central

    Tyan, Yu-Chang; Hsiao, Eric S. L.; Chu, Po-Chen; Lee, Chung-Ta; Lee, Jenq-Chang; Chen, Yi-Ming Arthur; Liao, Pao-Chi

    2016-01-01

    Colorectal cancer is the most common form of cancer in the world, and the five-year survival rate is estimated to be almost 90% in the early stages. Therefore, the identification of potential biomarkers to assess the prognosis of early stage colorectal cancer patients is critical for further clinical treatment. Dysregulated tyrosine phosphorylation has been found in several diseases that play a significant regulator of signaling in cellular pathways. In this study, this strategy was used to characterize the tyrosine phosphoproteome of colorectal cell lines with different progression abilities (SW480 and SW620). We identified a total of 280 phosphotyrosine (pTyr) peptides comprising 287 pTyr sites from 261 proteins. Label-free quantitative analysis revealed the differential level of a total of 103 pTyr peptides between SW480 and SW620 cells. We showed that cyclin-dependent kinase I (CDK1) pTyr15 level in SW480 cells was 3.3-fold greater than in SW620 cells, and these data corresponded with the label-free mass spectrometry-based proteomic quantification analysis. High level CDK1 pTyr15 was associated with prolonged disease-free survival for stage II colorectal cancer patients (n = 79). Taken together, our results suggest that the CDK1 pTyr15 protein is a potential indicator of the progression of colorectal cancer. PMID:27383761

  10. [The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu; Padkina, M V; Sambuk, E V

    2009-06-01

    The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PH085 gene lead to constitutive synthesis of Pho5 acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho(0)] cells the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that the appearing secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and hamper the loss of mitochondrial DNA caused by pho85. These results provide evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but it is fully probable that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions.

  11. Deficiency of the cyclin-dependent kinase inhibitor, CDKN1B, results in overgrowth and neurodevelopmental delay.

    PubMed

    Grey, William; Izatt, Louise; Sahraoui, Wafa; Ng, Yiu-Ming; Ogilvie, Caroline; Hulse, Anthony; Tse, Eric; Holic, Roman; Yu, Veronica

    2013-06-01

    Germline mutations in the cyclin-dependent kinase inhibitor, CDKN1B, have been described in patients with multiple endocrine neoplasia (MEN), a cancer predisposition syndrome with adult onset neoplasia and no additional phenotypes. Here, we describe the first human case of CDKN1B deficiency, which recapitulates features of the murine CDKN1B knockout mouse model, including gigantism and neurodevelopmental defects. Decreased mRNA and protein expression of CDKN1B were confirmed in the proband's peripheral blood, which is not seen in MEN syndrome patients. We ascribed the decreased protein level to a maternally derived deletion on chromosome 12p13 encompassing the CDKN1B locus (which reduced mRNA expression) and a de novo allelic variant (c.-73G>A) in the CDKN1B promoter (which reduced protein translation). We propose a recessive model where decreased dosage of CDKN1B during development in humans results in a neuronal phenotype akin to that described in mice, placing CDKN1B as a candidate gene involved in developmental delay. PMID:23505216

  12. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

    PubMed

    Marqués-Torrejón, M Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Lopez-Contreras, Andrés J; Fernández-Capetillo, Oscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis.

  13. Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines.

    PubMed Central

    Southgate, J.; Proffitt, J.; Roberts, P.; Smith, B.; Selby, P.

    1995-01-01

    Loss of cell cycle control through the structural or functional aberration of checkpoint genes and their products is a potentially important process in carcinogenesis. In this study, a panel of well-characterised established human bladder cancer cell lines was screened by the polymerase chain reaction for homozygous loss of the cyclin-dependent kinase inhibitor genes p15, p16 and p27. The results demonstrate that, whereas there was no genetic loss of p27, homozygous deletion of both p15 and p16 genes occurred in seven of 13 (54%) independent bladder cell lines tested. Differential loss of either the p15 or p16 gene was not seen. The p15 and p16 genes are known to be juxtaposed on chromosome 9p21 at the locus of a putative tumour-suppressor gene involved in the initiation of bladder cancer. Cytogenetic analysis of the cell lines revealed karyotypes ranging from near diploid to near pentaploid with complex rearrangements of some chromosomes and a high prevalence of chromosome 9p rearrangements, although all cell lines contained at least one cytogenetically normal 9p21 region. These observations support a role for p15/p16 gene inactivation in bladder carcinogenesis and/or the promotion of cell growth in vitro and lend support to the hypothesis that homozygous deletion centred on 9p21 is a mechanism by which both p15 and p16 genes are co-inactivated. Images Figure 1 Figure 2 Figure 3 PMID:7577470

  14. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1

    PubMed Central

    Pareek, Tej K.; Keller, Jason; Kesavapany, Sashi; Agarwal, Nitin; Kuner, Rohini; Pant, Harish C.; Iadarola, Michael J.; Brady, Roscoe O.; Kulkarni, Ashok B.

    2007-01-01

    Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel highly expressed in small-diameter sensory neurons, is activated by heat, protons, and capsaicin. The phosphorylation of TRPV1 provides a versatile regulation of intracellular calcium levels and is critical for TRPV1 function in responding to a pain stimulus. We have previously reported that cyclin-dependent kinase 5 (Cdk5) activity regulates nociceptive signaling. In this article we report that the Cdk5-mediated phosphorylation of TRPV1 at threonine-407 can modulate agonist-induced calcium influx. Inhibition of Cdk5 activity in cultured dorsal root ganglia neurons resulted in a significant reduction of TRPV1-mediated calcium influx, and this effect could be reversed by restoring Cdk5 activity. Primary nociceptor-specific Cdk5 conditional-knockout mice showed reduced TRPV1 phosphorylation, resulting in significant hypoalgesia. Thus, the present study indicates that Cdk5-mediated TRPV1 phosphorylation is important in the regulation of pain signaling. PMID:17194758

  15. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    PubMed Central

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  16. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach.

    PubMed

    Kamal, Ahmed; Mahesh, Rasala; Nayak, V Lakshma; Babu, Korrapati Suresh; Kumar, G Bharath; Shaik, Anver Basha; Kapure, Jeevak Sopanrao; Alarifi, Abdullah

    2016-01-27

    Aiming to develop a new target for the anticancer treatment, a series of 5'H-spiro[indoline-3,4'-pyrrolo [1,2-a]quinoxalin]-2-ones has been synthesized by simple, highly efficient and environmentally friendly method in excellent yields under catalyst-free conditions using ethanol as a green solvent. A simple filtration of the reaction mixture and subsequent drying affords analytically pure products. The synthesized derivatives were evaluated for their antiproliferative activity against five different human cancer cell lines, among the congeners compound 3n showed significant cytotoxicity against the human prostate cancer (DU-145). Flow cytometric analysis revealed that this compound induces cell cycle arrest in the G0/G1 phase and Western blot analysis suggested that reduction in Cdk4 expression level leads to apoptotic cell death. This was further confirmed by mitochondrial membrane potential ((ΔΨm), Annexin V-FITC assay and docking experiments. Furthermore, it was observed that there is an increase in expression levels of cyclin dependent kinase inhibitors like Cip1/p21 and Kip1/p27.

  17. Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration.

    PubMed

    Roesley, Siti Nur Ain; Suryadinata, Randy; Morrish, Emma; Tan, Anthonius Ricardo; Issa, Samah M A; Oakhill, Jonathan S; Bernard, Ora; Welch, Danny R; Šarčević, Boris

    2016-01-01

    Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.

  18. Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2.

    PubMed

    Price, Peter M; Yu, Fang; Kaldis, Philipp; Aleem, Eiman; Nowak, Grazyna; Safirstein, Robert L; Megyesi, Judit

    2006-09-01

    Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidney cells. This protein is a positive effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral transduction of p21 completely protected proximal tubule cells from cisplatin toxicity. Herein is reported that cdk2 inhibitory drugs protect kidney cells in vivo and in vitro, that transduction of kidney cells in vitro with dominant-negative cdk2 also protected, and that cdk2 knockout cells were resistant to cisplatin. The cdk2 knockout cells regained cisplatin sensitivity after transduction with wild-type cdk2. It is concluded that cisplatin cytotoxicity depends on cdk2 activation and that the mechanism of p21 protection is by direct inhibition of cdk2. This demonstrated the involvement of a protein that previously was associated with cell-cycle progression with pathways of apoptosis. It also was demonstrated that this pathway of cisplatin-induced cell death can be interceded in vivo to prevent nephrotoxicity.

  19. Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase

    PubMed Central

    Beck, Halfdan; Nähse, Viola; Larsen, Marie Sofie Yoo; Groth, Petra; Clancy, Trevor; Lees, Michael; Jørgensen, Mette; Helleday, Thomas; Syljuåsen, Randi G.

    2010-01-01

    Maintenance of genome integrity is of critical importance to cells. To identify key regulators of genomic integrity, we screened a human cell line with a kinome small interfering RNA library. WEE1, a major regulator of mitotic entry, and CHK1 were among the genes identified. Both kinases are important negative regulators of CDK1 and -2. Strikingly, WEE1 depletion rapidly induced DNA damage in S phase in newly replicated DNA, which was accompanied by a marked increase in single-stranded DNA. This DNA damage is dependent on CDK1 and -2 as well as the replication proteins MCM2 and CDT1 but not CDC25A. Conversely, DNA damage after CHK1 inhibition is highly dependent on CDC25A. Furthermore, the inferior proliferation of CHK1-depleted cells is improved substantially by codepletion of CDC25A. We conclude that the mitotic kinase WEE1 and CHK1 jointly maintain balanced cellular control of Cdk activity during normal DNA replication, which is crucial to prevent the generation of harmful DNA lesions during replication. PMID:20194642

  20. Downregulation of cyclin-dependent kinase 2 activity and cyclin A promoter activity in vascular smooth muscle cells by p27(KIP1), an inhibitor of neointima formation in the rat carotid artery.

    PubMed Central

    Chen, D; Krasinski, K; Sylvester, A; Chen, J; Nisen, P D; Andrés, V

    1997-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia during atherosclerosis and restenosis, but the endogenous cell cycle regulatory factors underlying VSMC growth in response to arterial injury are not well understood. In the present study, we report that downregulation of cyclin-dependent kinase 2 (cdk2) activity in serum-deprived VSMCs was associated with the formation of complexes between cdk2 and its inhibitory protein p27(KIP1) (p27). Ectopic overexpression of p27 in serum-stimulated VSMCs resulted in the inhibition of cdk2 activity and repression of cyclin A promoter activity. Collectively, these findings indicate that p27 may contribute to VSMC growth arrest in vitro. Using the rat carotid model of balloon angioplasty, a marked upregulation of p27 was observed in injured arteries. High levels of p27 expression in the media and neointima correlated with downregulation of cdk2 activity at 2 wk after angioplasty, and adenovirus-mediated overexpression of p27 in balloon-injured arteries attenuated neointimal lesion formation. Thus, the inhibition of cdk2 function and repression of cyclin A gene transcription through the induction of the endogenous p27 protein provides a mechanism for the inhibition of VSMC growth at late time points after angioplasty. PMID:9153274

  1. Aurora Kinase A Is Not Involved in CPEB1 Phosphorylation and cyclin B1 mRNA Polyadenylation during Meiotic Maturation of Porcine Oocytes

    PubMed Central

    Komrskova, Pavla; Susor, Andrej; Malik, Radek; Prochazkova, Barbora; Liskova, Lucie; Supolikova, Jaroslava; Hladky, Stepan; Kubelka, Michal

    2014-01-01

    Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation. PMID:24983972

  2. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes.

    PubMed

    Komrskova, Pavla; Susor, Andrej; Malik, Radek; Prochazkova, Barbora; Liskova, Lucie; Supolikova, Jaroslava; Hladky, Stepan; Kubelka, Michal

    2014-01-01

    Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.

  3. Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein

    PubMed Central

    Ambrósio, Daniela L.; Kirkham, Justin K.; Günzl, Arthur

    2016-01-01

    In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target. PMID:26954683

  4. Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein.

    PubMed

    Badjatia, Nitika; Park, Sung Hee; Ambrósio, Daniela L; Kirkham, Justin K; Günzl, Arthur

    2016-03-01

    In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target.

  5. Recruitment of trimeric proliferating cell nuclear antigen by G1-phase cyclin-dependent kinases following DNA damage with platinum-based antitumour agents

    PubMed Central

    He, G; Kuang, J; Koomen, J; Kobayashi, R; Khokhar, A R; Siddik, Z H

    2013-01-01

    Background: In cycling tumour cells, the binary cyclin-dependent kinase Cdk4/cyclin D or Cdk2/cyclin E complex is inhibited by p21 following DNA damage to induce G1 cell-cycle arrest. However, it is not known whether other proteins are also recruited within Cdk complexes, or their role, and this was investigated. Methods: Ovarian A2780 tumour cells were exposed to the platinum-based antitumour agent 1R,2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) (DAP), which preferentially induces G1 arrest in a p21-dependent manner. The Cdk complexes were analysed by gel filtration chromatography, immunoblot and mass spectrometry. Results: The active forms of Cdk4 and Cdk2 complexes in control tumour cells have a molecular size of ∼140 kDa, which increased to ∼290 kDa when inhibited following G1 checkpoint activation by DAP. Proteomic analysis identified Cdk, cyclin, p21 and proliferating cell nuclear antigen (PCNA) in the inhibited complex, and biochemical studies provided unequivocal evidence that the increase in ∼150 kDa of the inhibited complex is consistent with p21-dependent recruitment of PCNA as a trimer, likely bound to three molecules of p21. Although p21 alone was sufficient to inhibit the Cdk complex, PCNA was critical for stabilising p21. Conclusion: G1 Cdk complexes inhibited by p21 also recruit PCNA, which inhibits degradation and, thereby, prolongs activity of p21 within the complex. PMID:24104967

  6. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2

    PubMed Central

    Rastelli, Giulio; Anighoro, Andrew; Chripkova, Martina; Carrassa, Laura; Broggini, Massimo

    2014-01-01

    Allosteric targeting of protein kinases via displacement of the structural αC helix with type III allosteric inhibitors is currently gaining a foothold in drug discovery. Recently, the first crystal structure of CDK2 with an open allosteric pocket adjacent to the αC helix has been described, prospecting new opportunities to design more selective inhibitors, but the structure has not yet been exploited for the structure-based design of type III allosteric inhibitors. In this work we report the results of a virtual screening campaign that resulted in the discovery of the first-in-class type III allosteric ligands of CDK2. Using a combination of docking and post-docking analyses made with our tool BEAR, 7 allosteric ligands (hit rate of 20%) with micromolar affinity for CDK2 were identified, some of them inhibiting the growth of breast cancer cell lines in the micromolar range. Competition experiments performed in the presence of the ATP-competitive inhibitor staurosporine confirmed that the 7 ligands are truly allosteric, in agreement with their design. Of these, compound 2 bound CDK2 with an EC50 value of 3 μM and inhibited the proliferation of MDA-MB231 and ZR-75–1 breast cancer cells with IC50 values of approximately 20 μM, while compound 4 had an EC50 value of 71 μM and IC50 values around 4 μM. Remarkably, the most potent compound 4 was able to selectively inhibit CDK2-mediated Retinoblastoma phosphorylation, confirming that its mechanism of action is fully compatible with a selective inhibition of CDK2 phosphorylation in cells. Finally, hit expansion through analog search of the most potent inhibitor 4 revealed an additional ligand 4g with similar in vitro potency on breast cancer cells. PMID:24911186

  7. Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites

    PubMed Central

    Moses, Alan M.; Liku, Muluye E.; Li, Joachim J.; Durbin, Richard

    2007-01-01

    Evolutionary change in gene regulation is a key mechanism underlying the genetic component of organismal diversity. Here, we study evolution of regulation at the posttranslational level by examining the evolution of cyclin-dependent kinase (CDK) consensus phosphorylation sites in the protein subunits of the pre-replicative complex (RC). The pre-RC, an assembly of proteins formed during an early stage of DNA replication, is believed to be regulated by CDKs throughout the animals and fungi. Interestingly, although orthologous pre-RC components often contain clusters of CDK consensus sites, the positions and numbers of sites do not seem conserved. By analyzing protein sequences from both distantly and closely related species, we confirm that consensus sites can turn over rapidly even when the local cluster of sites is preserved, consistent with the notion that precise positioning of phosphorylation events is not required for regulation. We also identify evolutionary changes in the clusters of sites and further examine one replication protein, Mcm3, where a cluster of consensus sites near a nucleocytoplasmic transport signal is confined to a specific lineage. We show that the presence or absence of the cluster of sites in different species is associated with differential regulation of the transport signal. These findings suggest that the CDK regulation of MCM nuclear localization was acquired in the lineage leading to Saccharomyces cerevisiae after the divergence with Candida albicans. Our results begin to explore the dynamics of regulatory evolution at the posttranslational level and show interesting similarities to recent observations of regulatory evolution at the level of transcription. PMID:17978194

  8. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy.

    PubMed

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M; Yang, Ben; Shi, Han; Sze, Christie C; Hong, Benjamin Taige; Su, Susan C; Cantu, Jorge A; Topczewski, Jacek; Crawford, Thomas O; Ko, Chien-Ping; Sumner, Charlotte J; Ma, Long; Ma, Yong-Chao

    2015-04-15

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.

  9. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  10. Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B.

    PubMed

    Xing, Bao-Ming; Yang, Yan-Rui; Du, Jun-Xia; Chen, Hai-Jing; Qi, Cai; Huang, Zhi-Hua; Zhang, Ying; Wang, Yun

    2012-10-17

    The number of functional transient receptor potential vanilloid 1 (TRPV1) channels at the surface, especially at the peripheral terminals of primary sensory neurons, regulates heat sensitivity, and increased surface localization of TRPV1s contributes to heat hyperalgesia. However, the mechanisms for regulating TRPV1 surface localization are essentially unknown. Here, we show that cyclin-dependent kinase 5 (Cdk5), a new player in thermal pain sensation, positively regulates TRPV1 surface localization. Active Cdk5 was found to promote TRPV1 anterograde transport in vivo, suggesting a regulatory role of Cdk5 in TRPV1 membrane trafficking. TRPV1-containing vesicles bind to the forkhead-associated (FHA) domain of the KIF13B (kinesin-3 family member 13B) and are thus delivered to the cell surface. Overexpression of Cdk5 or its activator p35 promoted and inhibition of Cdk5 activity prevented the KIF13B-TRPV1 association, indicating that Cdk5 promotes TRPV1 anterograde transport by mediating the motor-cargo association. Cdk5 phosphorylates KIF13B at Thr-506, a residue located in the FHA domain. T506A mutation reduced the motor-cargo interaction and the cell-permeable TAT-T506 peptide, targeting to the Thr-506, decreased TRPV1 surface localization, demonstrating the essential role of Thr-506 phosphorylation in TRPV1 transport. Moreover, complete Freund's adjuvant (CFA) injection-induced activation of Cdk5 increased the anterograde transport of TRPV1s, contributing to the development and possibly the maintenance of heat hyperalgesia, whereas intrathecal delivery of the TAT-T506 peptide alleviated CFA-induced heat hyperalgesia in rats. Thus, Cdk5 regulation of TRPV1 membrane trafficking is a fundamental mechanism controlling the heat sensitivity of nociceptors, and moderate inhibition of Thr-506 phosphorylation during inflammation might be helpful for the treatment of inflammatory thermal pain.

  11. Molecular Determinants for the Inactivation of the Retinoblastoma Tumor Suppressor by the Viral Cyclin-dependent Kinase UL97*

    PubMed Central

    Iwahori, Satoko; Hakki, Morgan; Chou, Sunwen; Kalejta, Robert F.

    2015-01-01

    The retinoblastoma (Rb) tumor suppressor restricts cell cycle progression by repressing E2F-responsive transcription. Cellular cyclin-dependent kinase (CDK)-mediated Rb inactivation through phosphorylation disrupts Rb-E2F complexes, stimulating transcription. The human cytomegalovirus (HCMV) UL97 protein is a viral CDK (v-CDK) that phosphorylates Rb. Here we show that UL97 phosphorylates 11 of the 16 consensus CDK sites in Rb. A cleft within Rb accommodates peptides with the amino acid sequence LXCXE. UL97 contains three such motifs. We determined that the first LXCXE motif (L1) of UL97 and the Rb cleft enhance UL97-mediated Rb phosphorylation. A UL97 mutant with a non-functional L1 motif (UL97-L1m) displayed significantly reduced Rb phosphorylation at multiple sites. Curiously, however, it efficiently disrupted Rb-E2F complexes but failed to relieve Rb-mediated repression of E2F reporter constructs. The HCMV immediate early 1 protein cooperated with UL97-L1m to inactivate Rb in transfection assays, likely indicating that cells infected with a UL97-L1m mutant virus show no defects in growth or E2F-responsive gene expression because of redundant viral mechanisms to inactivate Rb. Our data suggest that UL97 possesses a mechanism to elicit E2F-dependent gene expression distinct from disruption of Rb-E2F complexes and dependent upon both the L1 motif of UL97 and the cleft region of Rb. PMID:26100623

  12. Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21RAS Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB

    PubMed Central

    Marampon, Francesco; Casimiro, Mathew C.; Fu, Maofu; Powell, Michael J.; Popov, Vladimir M.; Lindsay, Jaime; Zani, Bianca M.; Ciccarelli, Carmela; Watanabe, Genichi; Lee, Richard J.

    2008-01-01

    The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21RAS pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21RAS. NGF induced the cyclin D1 promoter via Sp1, nuclear factor-κB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells. PMID:18367547

  13. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Song, Nu Ry; Seo, Sang Kwon; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2010-07-01

    Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents. PMID:20444693

  14. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics

    PubMed Central

    1995-01-01

    We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be

  15. The Ability of Positive Transcription Elongation Factor b To Transactivate Human Immunodeficiency Virus Transcription Depends on a Functional Kinase Domain, Cyclin T1, and Tat

    PubMed Central

    Fujinaga, Koh; Cujec, Thomas P.; Peng, Junmin; Garriga, Judit; Price, David H.; Graña, Xavier; Peterlin, B. Matija

    1998-01-01

    By binding to the transactivation response element (TAR) RNA, the transcriptional transactivator (Tat) from the human immunodeficiency virus increases rates of elongation rather than initiation of viral transcription. Two cyclin-dependent serine/threonine kinases, CDK7 and CDK9, which phosphorylate the C-terminal domain of RNA polymerase II, have been implicated in Tat transactivation in vivo and in vitro. In this report, we demonstrate that CDK9, which is the kinase component of the positive transcription elongation factor b (P-TEFb) complex, can activate viral transcription when tethered to the heterologous Rev response element RNA via the regulator of expression of virion proteins (Rev). The kinase activity of CDK9 and cyclin T1 is essential for these effects. Moreover, P-TEFb binds to TAR only in the presence of Tat. We conclude that Tat–P-TEFb complexes bind to TAR, where CDK9 modifies RNA polymerase II for the efficient copying of the viral genome. PMID:9696809

  16. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    PubMed

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  17. The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus.

    PubMed

    Andreu, Zoraida; Khan, Muhammad Amir; González-Gómez, Pilar; Negueruela, Santiago; Hortigüela, Rafael; San Emeterio, Juana; Ferrón, Sacri R; Martínez, Gloria; Vidal, Anxo; Fariñas, Isabel; Lie, Dieter Chichung; Mira, Helena

    2015-01-01

    Members of the cyclin-dependent kinase (CDK)-inhibitory protein (CIP)/kinase-inhibitory protein (KIP) family of cyclin-dependent kinase inhibitors regulate proliferation and cell cycle exit of mammalian cells. In the adult brain, the CIP/KIP protein p27(kip1) has been related to the regulation of intermediate progenitor cells located in neurogenic niches. Here, we uncover a novel function of p27(kip1) in the adult hippocampus as a dual regulator of stem cell quiescence and of cell-cycle exit of immature neurons. In vivo, p27(kip1) is detected in radial stem cells expressing SOX2 and in newborn neurons of the dentate gyrus. In vitro, the Cdkn1b gene encoding p27(kip1) is transcriptionally upregulated by quiescence signals such as BMP4. The nuclear accumulation of p27(kip1) protein in adult hippocampal stem cells encompasses the BMP4-induced quiescent state and its overexpression is able to block proliferation. p27(kip1) is also expressed in immature neurons upon differentiation of adult hippocampal stem cell cultures. Loss of p27(kip1) leads to an increase in proliferation and neurogenesis in the adult dentate gyrus, which results from both a decrease in the percentage of radial stem cells that are quiescent and a delay in cell cycle exit of immature neurons. Analysis of animals carrying a disruption in the cyclin-CDK interaction domain of p27(kip1) indicates that the CDK inhibitory function of the protein is necessary to control the activity of radial stem cells. Thus, we report that p27(kip1) acts as a central player of the molecular program that keeps adult hippocampal stem cells out of the cell cycle.

  18. Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases

    SciTech Connect

    Okuda, Tsukasa; Shurtleff, S.A.; Downing, J.R.

    1995-10-10

    Progression through the G1 phase of the cell cycle is dependent on the activity of holoenzymes formed between D-type cyclins and their catalytic partners, the cyclin-dependent kinases cdk4 and cdk6. p16{sup INK4a} p15{sup INK4b}, and p18{sup INK4c}, a group of structurally related proteins, function as specific inhibitors of the cyclin D-dependent kinases and are likely to play physiologic roles as specific regulators of these kinases in vivo. A new member of the INK4 gene family, murine INK4d, has recently been identified. Here we report the isolation of human INK4d (gene symbol CDKN2D), which is 86 identical at the amino acid level to the murine clone and {approximately}44% identical to each of the other human INK4 family members. The INK4d gene is ubiquitously expressed as a single 1.4-kb mRNA with the highest levels detected in thymus, spleen, peripheral blood leukocytes, fetal liver, brain, and testes. The abundance of INK4d mRNA oscillates in a cell-cycle-dependent manner with expression lowest at mid G1 and maximal during S phase. Using a P1-phage genomic clone of INK4d for fluorescence in situ hybridization analysis, the location of this gene was mapped to chromosome 19p13. No rearrangements or deletions of the INK4d gene were observed in Southern blot analysis of selected cases of pediatric acute lymphoblastic leukemia (ALL) containing a variant (1;19)(q23;p13) translocation that lacks rearrangement of either E2A or PBX1, or in ALL cases containing homozygous or hemizygous deletions of the related genes, INK4a and INK4b. 39 refs., 3 figs.

  19. LPLUNC1 Inhibits Nasopharyngeal Carcinoma Cell Growth via Down-Regulation of the MAP Kinase and Cyclin D1/E2F Pathways

    PubMed Central

    Li, Xiaoling; Zhang, Wenling; Fan, Songqing; Shi, Lei; Li, Xiayu; Gong, Zhaojian; Ma, Jian; Zhou, Ming; Xiang, Juanjuan; Peng, Shuping; Xiang, Bo; Deng, Hao; Yang, Yunbo; Li, Yong; Xiong, Wei; Zeng, Zhaoyang; Li, Guiyuan

    2013-01-01

    Long-palate, lung and nasal epithelium clone 1 (LPLUNC1) gene expression is relatively tissue specific. It is highly expressed in nontumor nasopharyngeal epithelial tissues, but its expression is reduced in nasopharyngeal carcinoma (NPC), indicating that LPLUNC1 may be associated with the tumorigenesis of NPC. To study the effects of LPLUNC1 on NPC tumorigenesis, a full-length LPLUNC1 expression plasmid was stably transfected into the NPC cell line, 5-8F. Our data indicated that LPLUNC1 inhibited NPC cell proliferation in vitro and tumor formation in vivo. LPLUNC1 also delayed cell cycle progression from G1 to S phase and inhibited the expression of cyclin D1, cyclin-dependent kinase 4 (CDK4) and phosphorylated Rb. To further investigate the molecular mechanisms underlying the suppressive effects of LPLUNC1 on NPC tumorigenesis, cDNA microarray was performed. These studies revealed that LPLUNC1 inhibited the expression of certain mitogen-activated protein (MAP) kinases (MAPK) kinases and cell cycle-related molecules. Western blotting confirmed that the expression of MEK1, phosphorylated ERK1/2, phosphorylated JNK1/2, c-Myc and c-Jun were inhibited by LPLUNC1. Furthermore, the transcriptional activity of AP-1 was down-regulated by LPLUNC1, suggesting that the MAPK signaling pathway is regulated by LPLUNC1. Taken together, the present study indicates that LPLUNC1 delays NPC cell growth by inhibiting the MAPK and cyclin D1/E2F pathways and suggests that LPLUNC1 may represent a promising candidate tumor suppressor gene associated with NPC. PMID:23650533

  20. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection

    PubMed Central

    Kuroda, Kengo; Kiyono, Tohru; Isogai, Emiko; Masuda, Mizuki; Narita, Moe; Okuno, Katsuya; Koyanagi, Yukako; Fukuda, Tomokazu

    2015-01-01

    Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4), and human telomerase reverse transcriptase (TERT). The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1), TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection. PMID:26624883

  1. Phase I study of palbociclib, a cyclin-dependent kinase 4/6 inhibitor, in Japanese patients.

    PubMed

    Tamura, Kenji; Mukai, Hirofumi; Naito, Yoichi; Yonemori, Kan; Kodaira, Makoto; Tanabe, Yuko; Yamamoto, Noboru; Osera, Shozo; Sasaki, Masaoki; Mori, Yuko; Hashigaki, Satoshi; Nagasawa, Takashi; Umeyama, Yoshiko; Yoshino, Takayuki

    2016-06-01

    This phase I study in Japanese patients evaluated the safety, pharmacokinetics, and preliminary efficacy of palbociclib, a highly selective and reversible oral cyclin-dependent kinase 4/6 inhibitor, as monotherapy for solid tumors (part 1) and combined with letrozole as first-line treatment of postmenopausal patients with estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer (part 2). Part 1 evaluated palbociclib 100 and 125 mg once daily (3 weeks on/1 week off; n = 6 each group) to determine the maximum tolerated dose. Part 2 evaluated palbociclib maximum tolerated dose (125 mg) plus letrozole 2.5 mg (n = 6). The most common treatment-related adverse event was neutropenia (all grades/grade 3/4): 100 mg, 83%/67%; 125 mg, 67%/33%; and palbociclib plus letrozole, 100%/83%. Heavier pretreatment with chemotherapy may have resulted in higher neutropenia rates observed with the 100-mg dose. Palbociclib exposure was higher with 125 vs 100 mg (mean area under the plasma concentration-time curve over dosing interval [τ]: 1322 vs 547.5 ng·h/mL [single dose], 2838 vs 1276 ng·h/mL [multiple dose]; mean maximum plasma concentration: 104.1 vs 41.4 ng/mL [single dose], 185.5 vs 77.4 ng/mL [multiple dose]). Half-life was 23-26 h. No drug-drug interactions between palbociclib and letrozole occurred. Four patients had stable disease (≥24 weeks in one patient with rectal cancer [100 mg] and one with esophageal cancer [125 mg]) in part 1; two patients had partial response and two had stable disease (both ≥24 weeks) in part 2. Palbociclib at the 125-mg dose (schedule 3/1) was tolerated and is the recommended dose for monotherapy and letrozole combination therapy in Japanese patients. The trials are registered with www.ClinicalTrials.gov: A5481010 and NCT01684215.

  2. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2.

    PubMed

    Nakajima, Tomomi; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Shibata, Kiyoshi; Minegishi, Naoko; Yumimoto, Kanae; Nakayama, Keiichi I; Masumoto, Kazuma; Katou, Fuminori; Niida, Hiroyuki; Kitagawa, Masatoshi

    2015-04-17

    A GATA family transcription factor, GATA-binding protein 2 (GATA2), participates in cell growth and differentiation of various cells, such as hematopoietic stem cells. Although its expression level is controlled by transcriptional induction and proteolytic degradation, the responsible E3 ligase has not been identified. Here, we demonstrate that F-box/WD repeat-containing protein 7 (Fbw7/Fbxw7), a component of Skp1, Cullin 1, F-box-containing complex (SCF)-type E3 ligase, is an E3 ligase for GATA2. GATA2 contains a cell division control protein 4 (Cdc4) phosphodegron (CPD), a consensus motif for ubiquitylation by Fbw7, which includes Thr(176). Ectopic expression of Fbw7 destabilized GATA2 and promoted its proteasomal degradation. Substitution of threonine 176 to alanine in GATA2 inhibited binding with Fbw7, and the ubiquitylation and degradation of GATA2 by Fbw7 was suppressed. The CPD kinase, which mediates the phosphorylation of Thr(176), was cyclin B-cyclin-dependent kinase 1 (CDK1). Moreover, depletion of endogenous Fbw7 stabilized endogenous GATA2 in K562 cells. Conditional Fbw7 depletion in mice increased GATA2 levels in hematopoietic stem cells and myeloid progenitors at the early stage. Increased GATA2 levels in Fbw7-conditional knock-out mice were correlated with a decrease in a c-Kit high expressing population of myeloid progenitor cells. Our results suggest that Fbw7 is a bona fide E3 ubiquitin ligase for GATA2 in vivo.

  3. Downregulation of cyclin-dependent kinase inhibitor; p57{sup kip2}, is involved in the cell cycle progression of vascular smooth muscle cells

    SciTech Connect

    Nakano, Noritsugu . E-mail: norida@med.hokudai.ac.jp; Urasawa, Kazushi; Takagi, Yasushi; Saito, Takahiko; Kaneta, Satoshi; Ishikawa, Susumu; Higashi, Hideaki; Tsutsui, Hiroyuki; Hatakeyama, Masanori; Kitabatake, Akira

    2005-12-23

    Immature vascular smooth muscle cells (VSMCs) proliferate responding to extrinsic mitogens and accumulate in neointima after arterial injuries. Cell proliferation is positively regulated by cyclin/cyclin-dependent kinase (CDK) complex and negatively controlled by CDK inhibitors; CKIs such as p27{sup kip1} and p57{sup kip2}. In this study, embryonic rat thoracic aorta VSMCs; A10 were G0/G1 arrested by serum starvation, re-stimulated with serum, and harvested every four hours. Both CKIs co-expressed in quiescent VSMCs and rapidly diminished by stimulation. Protein level of p27{sup kip1} was regulated by both transcription and post-transcription, but that of p57{sup kip2} was mainly by post-transcription. Supplemental overexpression of p57{sup kip2} inhibited the activations of G1 cyclin/CDKs and subsequent hyperphosphorylations of all three retinoblastoma pocket proteins as well as G1/S transition of cell cycle. Our findings suggest that the downregulations of not only p27{sup kip1}, but also p57{sup kip2} responding to mitogenic stimulation, play key roles in the cell cycle progression of VSMCs.

  4. Ruthenium-Arene-β-Carboline Complexes as Potent Inhibitors of Cyclin-Dependent Kinase 1: Synthesis, Characterization and Anticancer Mechanism Studies.

    PubMed

    He, Liang; Liao, Si-Yan; Tan, Cai-Ping; Ye, Rui-Rong; Xu, Yu-Wen; Zhao, Meng; Ji, Liang-Nian; Mao, Zong-Wan

    2013-09-01

    A series of Ru(II)-arene complexes (1-6) of the general formula [(η(6)-arene)Ru(L)Cl]PF6 (arene=benzene or p-cymene; L=bidentate β-carboline derivative, an indole alkaloid with potential cyclin-dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X-ray crystallography. Hydrolytic studies show that β-carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3- to 12-fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross-resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1-6 may directly target CDK1, because they can block cells in the G2M phase, down-regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial-related pathways and intracellular reactive oxygen species (ROS) elevation.

  5. Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells.

    PubMed

    Jia, Yi; Domenico, Joanne; Swasey, Christina; Wang, Meiqin; Gelfand, Erwin W; Lucas, Joseph J

    2014-01-01

    G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers. PMID:24848372

  6. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    PubMed

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  7. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling.

    PubMed

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J; Ball, Douglas W; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D

    2010-06-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers in which it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers in which metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration, and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in the profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer.

  8. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression via suppression of Ras-Ral signaling

    PubMed Central

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J.; Ball, Douglas W.; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D.

    2011-01-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers where it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers where metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer. PMID:20484029

  9. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis.

    PubMed

    Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan

    2013-02-01

    Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5' splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5.

  10. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration

    PubMed Central

    Diril, M. Kasim; Ratnacaram, Chandrahas Koumar; Padmakumar, V. C.; Wasser, Martin; Coppola, Vincenzo; Tessarollo, Lino; Kaldis, Philipp

    2012-01-01

    Cyclin-dependent kinase 1 (Cdk1) is an archetypical kinase and a central regulator that drives cells through G2 phase and mitosis. Knockouts of Cdk2, Cdk3, Cdk4, or Cdk6 have resulted in viable mice, but the in vivo functions of Cdk1 have not been fully explored in mammals. Here we have generated a conditional-knockout mouse model to study the functions of Cdk1 in vivo. Ablation of Cdk1 leads to arrest of embryonic development around the blastocyst stage. Interestingly, liver-specific deletion of Cdk1 is well tolerated, and liver regeneration after partial hepatectomy is not impaired, indicating that regeneration can be driven by cell growth without cell division. The loss of Cdk1 does not affect S phase progression but results in DNA re-replication because of an increase in Cdk2/cyclin A2 activity. Unlike other Cdks, loss of Cdk1 in the liver confers complete resistance against tumorigenesis induced by activated Ras and silencing of p53. PMID:22355113

  11. CYCLIN-DEPENDENT KINASE G1 Is Associated with the Spliceosome to Regulate CALLOSE SYNTHASE5 Splicing and Pollen Wall Formation in Arabidopsis[C][W][OA

    PubMed Central

    Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan

    2013-01-01

    Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5′ splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5. PMID:23404887

  12. Targeted overexpression of CKI-insensitive cyclin-dependent kinase 4 increases functional β-cell number through enhanced self-replication in zebrafish.

    PubMed

    Li, Mingyu; Maddison, Lisette A; Crees, Zachary; Chen, Wenbiao

    2013-06-01

    β-Cells of the islet of Langerhans produce insulin to maintain glucose homeostasis. Self-replication of β-cells is the predominant mode of postnatal β-cell production in mammals, with about 20% of rodent β cells dividing in a 24-hour period. However, replicating β-cells are rare in adults. Induction of self-replication of existing β-cells is a potential treatment for diabetes. In zebrafish larvae, β-cells rarely self-replicate, even under conditions that favor β-cell genesis such overnutrition and β-cell ablation. It is not clear why larval β-cells are refractory to replication. In this study, we tested the hypothesis that insufficient activity of cyclin-dependent kinase 4 may be responsible for the low replication rate by ectopically expressing in β-cells a mutant CDK4 (CDK4(R24C)) that is insensitive to inhibition by cyclin-dependent kinase inhibitors. Our data show that expression of CDK4(R24C) in β-cells enhanced β-cell replication. CDK4(R24C) also dampened compensatory β-cell neogenesis in larvae and improved glucose tolerance in adult zebrafish. Our data indicate that CDK4 inhibition contributes to the limited β-cell replication in larval zebrafish. To our knowledge, this is the first example of genetically induced β-cell replication in zebrafish.

  13. Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at Serine 727.

    PubMed

    Lam, Eric; Choi, Sung Hee; Pareek, Tej K; Kim, Byung-Gyu; Letterio, John J

    2015-10-01

    Cyclin-dependent kinase 5 (Cdk5) is known as a unique member of the cyclin-dependent family of serine/threonine kinases. Previously, we demonstrated Cdk5 to be an important regulator of T cell function and that disruption of Cdk5 expression ameliorates T cell mediated neuroinflammation. Here, we show a novel role of Cdk5 in the regulation of Foxp3 expression in murine CD4(+) T cells. Our data indicate that disruption of Cdk5 activity in T cells abrogates the IL-6 suppression of Foxp3 expression. This effect is achieved through Cdk5 phosphorylation of the signal transducer and activator of transcription 3 (Stat3) specifically at Serine 727 in T cells, and we show this post-translational modification is required for proper Stat3 DNA binding to the Foxp3 gene on the enhancer II region. Taken together, our data point to an essential role for Cdk5 in the differentiation of T cells as it regulates Foxp3 gene expression through phosphorylation of Stat3. PMID:26198700

  14. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast.

    PubMed

    Su, Wen-Min; Han, Gil-Soo; Casciano, Jessica; Carman, George M

    2012-09-28

    Pah1p, which functions as phosphatidate phosphatase (PAP) in the yeast Saccharomyces cerevisiae, plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The diacylglycerol produced by PAP is used for the synthesis of triacylglycerol as well as for the synthesis of phospholipids via the Kennedy pathway. Pah1p is a highly phosphorylated protein in vivo and has been previously shown to be phosphorylated by the protein kinases Pho85p-Pho80p and Cdc28p-cyclin B. In this work, we showed that Pah1p was a bona fide substrate for protein kinase A, and we identified by mass spectrometry and mutagenesis that Ser-10, Ser-677, Ser-773, Ser-774, and Ser-788 were the target sites of phosphorylation. Protein kinase A-mediated phosphorylation of Pah1p inhibited its PAP activity by decreasing catalytic efficiency, and the inhibitory effect was primarily conferred by phosphorylation at Ser-10. Analysis of the S10A and S10D mutations (mimicking dephosphorylation and phosphorylation, respectively), alone or in combination with the seven alanine (7A) mutations of the sites phosphorylated by Pho85p-Pho80p and Cdc28p-cyclin B, indicated that phosphorylation at Ser-10 stabilized Pah1p abundance and inhibited its association with membranes, PAP activity, and triacylglycerol synthesis. The S10A mutation enhanced the physiological effects imparted by the 7A mutations, whereas the S10D mutations attenuated the effects of the 7A mutations. These data indicated that the protein kinase A-mediated phosphorylation of Ser-10 functions in conjunction with the phosphorylations mediated by Pho85p-Pho80p and Cdc28p-cyclin B and that phospho-Ser-10 should be dephosphorylated for proper PAP function.

  15. Kainate receptor-mediated apoptosis in primary cultures of cerebellar granule cells is attenuated by mitogen-activated protein and cyclin-dependent kinase inhibitors

    PubMed Central

    Giardina, Sarah F; Beart, Philip M

    2002-01-01

    Previous studies have suggested that neuronal apoptosis is the result of an abortive attempt to re-enter the cell cycle, and more recently the cyclin-dependent (CDKs) and the mitogen-activated protein (MAP) kinases, two superfamilies of kinases that influence and control cell cycle progression, have been implicated in neuronal apoptosis. Here, to examine whether CDK/MAPK related pathways are involved in excitotoxicity, we studied the actions of various kinase inhibitors on apoptosis induced by the ionotropic glutamate (Glu) receptor agonist, kainate (KA), in primary cultures of murine cerebellar granule cells (CGCs). KA-mediated neurotoxicity was concentration-dependent, as determined by a cell viability assay monitoring the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and largely apoptotic in nature, as shown by morphological examination and labelling of DNA fragmentation in situ using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP digoxigenin nick-end labelling (TUNEL). KA-mediated neurotoxicity and apoptosis was completely attenuated by the mixed CDK and MAP kinase inhibitor, olomoucine, in a concentration-dependent manner (50 – 600 μM), and partially by roscovitine (1 – 100 μM), a more selective CDK inihibitor. The p38 MAP kinase inhibitor, SB203580 (1 – 100 μM), partially attenuated KA receptor-mediated apoptosis, as did the MAP kinase kinase inhibitors PD98509 (1 – 100 μM) and U0126 (1 – 100 μM). These findings provide new evidence for a complex network of interacting pathways involving CDK/MAPK that control apoptosis downstream of KA receptor activation in excitotoxic neuronal cell death. PMID:11934814

  16. Development of a time-resolved fluorescence resonance energy transfer assay for cyclin-dependent kinase 4 and identification of its ATP-noncompetitive inhibitors.

    PubMed

    Lo, Mei-Chu; Ngo, Rachel; Dai, Kang; Li, Cong; Liang, Lingming; Lee, Josie; Emkey, Renee; Eksterowicz, John; Ventura, Manuel; Young, Stephen W; Xiao, Shou-Hua

    2012-02-15

    Protein kinases are recognized as important drug targets due to the pivotal roles they play in human disease. Many kinase inhibitors are ATP competitive, leading to potential problems with poor selectivity and significant loss of potency in vivo due to cellular ATP concentrations being much higher than K(m). Consequently, there has been growing interest in the development of ATP-noncompetitive inhibitors to overcome these problems. There are challenges to identifying ATP-noncompetitive inhibitors from compound library screens because ATP-noncompetitive inhibitors are often weaker and commonly excluded by potency-based hit selection criteria in favor of abundant and highly potent ATP-competitive inhibitors in screening libraries. Here we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for protein kinase cyclin-dependent kinase 4 (CDK4) and the identification of ATP-noncompetitive inhibitors by high-throughput screening after employing a strategy to favor this type of inhibitors. We also present kinetic characterization that is consistent with the proposed mode of inhibition.

  17. Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2.

    PubMed

    Romito, Antonio; Lonardo, Enza; Roma, Guglielmo; Minchiotti, Gabriella; Ballabio, Andrea; Cobellis, Gilda

    2010-02-03

    Sik1 (salt inducible kinase 1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57(Kip2) is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation.

  18. Lack of Sik1 in Mouse Embryonic Stem Cells Impairs Cardiomyogenesis by Down-Regulating the Cyclin-Dependent Kinase Inhibitor p57kip2

    PubMed Central

    Romito, Antonio; Lonardo, Enza; Roma, Guglielmo; Minchiotti, Gabriella; Ballabio, Andrea; Cobellis, Gilda

    2010-01-01

    Sik1 (salt inducible kinase 1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57Kip2 is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation. PMID:20140255

  19. Ringo/cyclin-dependent kinase and mitogen-activated protein kinase signaling pathways regulate the activity of the cell fate determinant Musashi to promote cell cycle re-entry in Xenopus oocytes.

    PubMed

    Arumugam, Karthik; MacNicol, Melanie C; Wang, Yiying; Cragle, Chad E; Tackett, Alan J; Hardy, Linda L; MacNicol, Angus M

    2012-03-23

    Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.

  20. Crystal structure of human cyclin-dependent kinase-2 complex with MK2 inhibitor TEI-I01800: insight into the selectivity

    PubMed Central

    Fujino, Aiko; Fukushima, Kei; Kubota, Takaharu; Kosugi, Tomomi; Takimoto-Kamimura, Midori

    2013-01-01

    Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the MK2–TEI-I01800 complex has been reported; its Gly-rich loop was found to form an α-helix, not a β-sheet as has been observed for other Ser/Thr kinases. TEI-I01800 is 177-fold selective against MK2 compared with CDK2; in order to understand the inhibitory mechanism of TEI-I01800, the cyclin-dependent kinase 2 (CDK2) complex structure with TEI-I01800 was determined at 2.0 Å resolution. Interestingly, the Gly-rich loop of CDK2 formed a β-sheet that was different from that of MK2. In MK2, TEI-I01800 changed the secondary structure of the Gly-rich loop from a β-sheet to an α-helix by collision between Leu70 and a p-ethoxyphenyl group at the 7-position and bound to MK2. However, for CDK2, TEI-I01800 bound to CDK2 without this structural change and lost the interaction with the substituent at the 7-position. In summary, the results of this study suggest that the reason for the selectivity of TEI-I01800 is the favourable conformation of TEI-I01800 itself, making it suitable for binding to the α-form MK2. PMID:24121337

  1. Cyclin-Dependent Kinase Inhibitor P1446A Induces Apoptosis in a JNK/p38 MAPK-Dependent Manner in Chronic Lymphocytic Leukemia B-Cells

    PubMed Central

    Paiva, Cody; Godbersen, J. Claire; Soderquist, Ryan S.; Rowland, Taylor; Kilmarx, Sumner; Spurgeon, Stephen E.; Brown, Jennifer R.; Srinivasa, Sreesha P.; Danilov, Alexey V.

    2015-01-01

    CDK (cyclin-dependent kinase) inhibitors have shown remarkable activity in CLL, where its efficacy has been linked to inhibition of the transcriptional CDKs (7 and 9) and deregulation of RNA polymerase and short-lived pro-survival proteins such as MCL1. Furthermore, ER (endoplasmic reticulum) stress has been implicated in CDK inhibition in CLL. Here we conducted a pre-clinical study of a novel orally active kinase inhibitor P1446A in CLL B-cells. P1446A inhibited CDKs at nanomolar concentrations and induced rapid apoptosis of CLL cells in vitro, irrespective of chromosomal abnormalities or IGHV mutational status. Apoptosis preceded inactivation of RNA polymerase, and was accompanied by phosphorylation of stress kinases JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Pharmacologic inhibitors of JNK/p38 MAPK conferred protection from P1446A-mediated apoptosis. Treatment with P1446A led to a dramatic induction of NOXA in a JNK-dependent manner, and sensitized CLL cells to ABT-737, a BH3-mimetic. We observed concurrent activation of apoptosis stress-inducing kinase 1 (ASK1) and its interaction with inositol-requiring enzyme 1 (IRE1) and tumor necrosis factor receptor-associated factor 2 (TRAF2) in CLL cells treated with P1446A, providing insights into upstream regulation of JNK in this setting. Consistent with previous reports on limited functionality of ER stress mechanism in CLL cells, treatment with P1446A failed to induce an extensive unfolded protein response. This study provides rationale for additional investigations of P1446A in CLL. PMID:26606677

  2. Cyclin-Dependent Kinase Inhibitor P1446A Induces Apoptosis in a JNK/p38 MAPK-Dependent Manner in Chronic Lymphocytic Leukemia B-Cells.

    PubMed

    Paiva, Cody; Godbersen, J Claire; Soderquist, Ryan S; Rowland, Taylor; Kilmarx, Sumner; Spurgeon, Stephen E; Brown, Jennifer R; Srinivasa, Sreesha P; Danilov, Alexey V

    2015-01-01

    CDK (cyclin-dependent kinase) inhibitors have shown remarkable activity in CLL, where its efficacy has been linked to inhibition of the transcriptional CDKs (7 and 9) and deregulation of RNA polymerase and short-lived pro-survival proteins such as MCL1. Furthermore, ER (endoplasmic reticulum) stress has been implicated in CDK inhibition in CLL. Here we conducted a pre-clinical study of a novel orally active kinase inhibitor P1446A in CLL B-cells. P1446A inhibited CDKs at nanomolar concentrations and induced rapid apoptosis of CLL cells in vitro, irrespective of chromosomal abnormalities or IGHV mutational status. Apoptosis preceded inactivation of RNA polymerase, and was accompanied by phosphorylation of stress kinases JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase). Pharmacologic inhibitors of JNK/p38 MAPK conferred protection from P1446A-mediated apoptosis. Treatment with P1446A led to a dramatic induction of NOXA in a JNK-dependent manner, and sensitized CLL cells to ABT-737, a BH3-mimetic. We observed concurrent activation of apoptosis stress-inducing kinase 1 (ASK1) and its interaction with inositol-requiring enzyme 1 (IRE1) and tumor necrosis factor receptor-associated factor 2 (TRAF2) in CLL cells treated with P1446A, providing insights into upstream regulation of JNK in this setting. Consistent with previous reports on limited functionality of ER stress mechanism in CLL cells, treatment with P1446A failed to induce an extensive unfolded protein response. This study provides rationale for additional investigations of P1446A in CLL.

  3. Regulation of the Action of Early Mitotic Inhibitor 1 on the Anaphase-promoting Complex/Cyclosome by Cyclin-dependent Kinases*

    PubMed Central

    Moshe, Yakir; Bar-On, Ortal; Ganoth, Dvora; Hershko, Avram

    2011-01-01

    Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation. PMID:21454540

  4. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis.

    PubMed Central

    Patel, V; Senderowicz, A M; Pinto, D; Igishi, T; Raffeld, M; Quintanilla-Martinez, L; Ensley, J F; Sausville, E A; Gutkind, J S

    1998-01-01

    Flavopiridol (HMR 1275) has been identified recently as a novel antineoplastic agent in the primary screen conducted by the Developmental Therapeutics Program, National Cancer Institute. Flavopiridol inhibits most cyclin-dependent kinases (cdks) and displays unique anticancer properties. Here, we investigated whether this compound was effective against head and neck squamous cell carcinomas (HNSCC). Exposure of HNSCC cells to flavopiridol diminished cdc2 and cdk2 activity and potently inhibited cell proliferation (IC50 43-83 nM), which was concomitant with the appearance of cells with a sub-G1 DNA content. Moreover, DNA fragmentation and TUNEL (terminal deoxynucleotidyl transferase-mediated nick end labeling) reaction confirmed that flavopiridol induces apoptosis in all cell lines, even on certain HNSCC cells that are insensitive to apoptosis to DNA-damaging agents (gamma-irradiation and bleomycin). A tumorigenic HNSCC cell line was used to assess the effect of flavopiridol in vivo. Treatment (5 mg/kg per day, intraperitoneally) for 5 d led to the appearance of apoptotic cells in the tumor xenografts and caused a 60-70% reduction in tumor size, which was sustained over a period of 10 wk. Flavopiridol treatment also resulted in a remarkable reduction of cyclin D1 expression in HNSCC cells and tumor xenografts. Our data indicate that flavopiridol exerts antitumor activity in HNSCC, and thus it can be considered a suitable candidate drug for testing in the treatment of refractory carcinomas of the head and neck. PMID:9802881

  5. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration.

    PubMed

    Xu, Shuangbing; Li, Xu; Gong, Zihua; Wang, Wenqi; Li, Yujing; Nair, Binoj Chandrasekharan; Piao, Hailong; Yang, Kunyu; Wu, Gang; Chen, Junjie

    2014-11-01

    Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases. PMID:25096995

  6. FGFR1 signaling stimulates proliferation of human mesenchymal stem cells by inhibiting the cyclin-dependent kinase inhibitors p21(Waf1) and p27(Kip1).

    PubMed

    Dombrowski, Christian; Helledie, Torben; Ling, Ling; Grünert, Martin; Canning, Claire A; Jones, C Michael; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2013-12-01

    Signaling through fibroblast growth factor receptor one (FGFR1) is a known inducer of proliferation in both embryonic and human adult mesenchymal stem cells (hMSCs) and positively regulates maintenance of stem cell viability. Leveraging the mitogenic potential of FGF2/FGFR1 signaling in stem cells for therapeutic applications necessitates a mechanistic understanding of how this receptor stimulates cell cycle progression. Using small interfering RNA (siRNA) depletion, antibody-inhibition, and small molecule inhibition, we establish that FGFR1 activity is rate limiting for self-renewal of hMSCs. We show that FGFR1 promotes stem cell proliferation through multiple mechanisms that unite to antagonize cyclin-dependent kinase (CDK) inhibitors. FGFR1 not only stimulates c-Myc to suppress transcription of the CDK inhibitors p21(Waf1) and p27(Kip1), thus promoting cell cycle progression but also increases the activity of protein kinase B (AKT) and the level of S-phase kinase-associated protein 2 (Skp2), resulting in the nuclear exclusion and reduction of p21(Waf1). The in vivo importance of FGFR1 signaling for the control of proliferation in mesenchymal progenitor populations is underscored by defects in ventral mesoderm formation during development upon inhibition of its signaling. Collectively, these studies demonstrate that FGFR1 signaling mediates the continuation of MSC growth and establishes a receptor target for enhancing the expansion of mesenchymal progenitors while maintaining their multilineage potential.

  7. Cyclin-Dependent Kinase 5 Is Involved in the Phosphorylation of Gephyrin and Clustering of GABAA Receptors at Inhibitory Synapses of Hippocampal Neurons

    PubMed Central

    Kalbouneh, Heba; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2014-01-01

    CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons. PMID:25093719

  8. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis1[OPEN

    PubMed Central

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Churchman, Michelle; Larkin, John C.

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  9. Insight into the Interactions between Novel Isoquinolin-1,3-Dione Derivatives and Cyclin-Dependent Kinase 4 Combining QSAR and Molecular Docking

    PubMed Central

    Zheng, Junxia; Kong, Hao; Wilson, James M.; Guo, Jialiang; Chang, Yiqun; Yang, Mengjia; Xiao, Gaokeng; Sun, Pinghua

    2014-01-01

    Several small-molecule CDK inhibitors have been identified, but none have been approved for clinical use in the past few years. A new series of 4-[(3-hydroxybenzylamino)-methylene]-4H-isoquinoline-1,3-diones were reported as highly potent and selective CDK4 inhibitors. In order to find more potent CDK4 inhibitors, the interactions between these novel isoquinoline-1,3-diones and cyclin-dependent kinase 4 was explored via in silico methodologies such as 3D-QSAR and docking on eighty-one compounds displaying potent selective activities against cyclin-dependent kinase 4. Internal and external cross-validation techniques were investigated as well as region focusing, bootstraping and leave-group-out. A training set of 66 compounds gave the satisfactory CoMFA model (q2 = 0.695, r2 = 0.947) and CoMSIA model (q2 = 0.641, r2 = 0.933). The remaining 15 compounds as a test set also gave good external predictive abilities with r2pred values of 0.875 and 0.769 for CoMFA and CoMSIA, respectively. The 3D-QSAR models generated here predicted that all five parameters are important for activity toward CDK4. Surflex-dock results, coincident with CoMFA/CoMSIA contour maps, gave the path for binding mode exploration between the inhibitors and CDK4 protein. Based on the QSAR and docking models, twenty new potent molecules have been designed and predicted better than the most active compound 12 in the literatures. The QSAR, docking and interactions analysis expand the structure-activity relationships of constrained isoquinoline-1,3-diones and contribute towards the development of more active CDK4 subtype-selective inhibitors. PMID:24722522

  10. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

    PubMed

    Schofield, Alice V; Gamell, Cristina; Suryadinata, Randy; Sarcevic, Boris; Bernard, Ora

    2013-03-15

    Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.

  11. The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK

    PubMed Central

    Bártová, Iveta; Otyepka, Michal; KřÍž, Zdeněk; Koča, Jaroslav

    2005-01-01

    Molecular dynamics (MD) simulations were used to explain structural details of cyclin-dependent kinase-2 (CDK2) inhibition by phosphorylation at T14 and/or Y15 located in the glycine-rich loop (G-loop). Ten-nanosecond-long simulations of fully active CDK2 in a complex with a short peptide (HHASPRK) substrate and of CDK2 inhibited by phosphorylation of T14 and/or Y15 were produced. The inhibitory phosphorylations at T14 and/or Y15 show namely an ATP misalignment and a G-loop shift (~5 Å) causing the opening of the substrate binding box. The biological functions of the G-loop and GxGxxG motif evolutionary conservation in protein kinases are discussed. The position of the ATP γ-phosphate relative to the phosphorylation site (S/T) of the peptide substrate in the active CDK2 is described and compared with inhibited forms of CDK2. The MD results clearly provide an explanation previously not known as to why a basic residue (R/K) is preferred at the P2 position in phosphorylated S/T peptide substrates. PMID:15632290

  12. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  13. Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases.

    PubMed

    Braña, Miguel F; Cacho, Mónica; García, M Luisa; Mayoral, Elena P; López, Berta; de Pascual-Teresa, Beatriz; Ramos, Ana; Acero, Nuria; Llinares, Francisco; Muñoz-Mingarro, Dolores; Lozach, Olivier; Meijer, Laurent

    2005-11-01

    Pyrazolopyridazine 1a was identified in a high-throughput screening carried out by BASF Bioresearch Corp. (Worcester, MA) as a potent inhibitor of CDK1/cyclin B and shown to have selectivity for the CDK family. Analogues of the lead compound have been synthesized and their antitumor activities have been tested. A molecular model of the complex between the lead compound and the CDK2 ATP binding site has been built using a combination of conformational search and automated docking techniques. The stability of the resulting complex has been assessed by molecular dynamics simulations and the experimental results obtained for the synthesized analogues have been rationalized on the basis of the proposed binding mode for compound 1a. As a result of the SAR study, monofuryl 1o has been synthesized and is one of the most active compounds against CDK1 of this series.

  14. Molecular Characterization and Expression Profiles of Cyclin B1, B2 and Cdc2 Kinase during Oogenesis and Spermatogenesis in Rainbow Trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The meiotic maturation of oocytes and spermatocytes is controlled by the maturation promotion factor (MPF), a complex of the Cdc2 and cyclin B proteins. To better understand the mechanism of oocyte and spermatocyte maturation in fish, the expression of cyclin B1 (CB1), cyclin B2 (CB2) and Cdc2 kinas...

  15. Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers

    PubMed Central

    2012-01-01

    Background P276-00 is a novel cyclin-dependent kinase inhibitor currently in Phase II clinical trials. Gemcitabine is a standard of care for the treatment of pancreatic cancer. The present study investigated the effect of the combination of P276-00 and gemcitabine in five pancreatic cancer cell lines. Methods Cytotoxic activity was evaluated by Propidium Iodide assay. Cell cycle and apoptosis was analyzed by flow cytometry. Genes and proteins known to inhibit apoptosis and contribute to chemoresistance were analysed using western blot analysis and RT-PCR. In vivo efficacy was studied in PANC-1 xenograft model. Results The combination of gemcitabine followed by P276-00 was found to be highly to weakly synergistic in various pancreatic cancer cell lines as assessed by the combination index. Enhancement of apoptosis in PANC-1 cells and decrease in the antiapoptotic protein Bcl-2 and survivin was seen. P276-00 potentiated the gemcitabine-induced cytotoxicity by modulation of proteins involved in chemoresistance to gemcitabine and cell cycle viz. antiapoptotic proteins p8 and cox-2, proapoptotic protein BNIP3 and cell cycle related proteins Cdk4 and cyclin D1. The above results could explain the novel mechanisms of action of the combination therapy. We also show here that gemcitabine in combination with P276-00 is much more effective as an antitumor agent compared with either agent alone in the PANC-1 xenograft tumor model in SCID mice. Conclusions The chemosensitzation of pancreatic tumors to gemcitabine would likely be an important and novel strategy for treatment of pancreatic cancer and enable the use of lower and safer concentrations, to pave the way for a more effective treatment in this devastating disease. Phase IIb clinical trials of P276-00 in combination with gemcitabine in pancreatic cancer patients are ongoing. PMID:22873289

  16. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines

    PubMed Central

    2012-01-01

    Background Mantle cell lymphoma (MCL) is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks) and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide evidence and rational that P276

  17. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  18. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation.

    PubMed

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G₁ phase. Sustained overexpression of DYRK1A induced G₀ cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27(Kip1) on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27(Kip1) Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.

  19. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation.

    PubMed

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G₁ phase. Sustained overexpression of DYRK1A induced G₀ cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27(Kip1) on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27(Kip1) Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  20. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination

    PubMed Central

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn

    2016-01-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35−/− mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation. SIGNIFICANCE STATEMENT The development of oligodendrocytes and myelination is essential for normal CNS function and cyclin-dependent kinase 5 (Cdk5) activity is critical for oligodendrocyte maturation, but how Cdk5 activity is controlled is unclear. Here we show that the coactivators of Cdk5, p35 and p39, regulate distinct stages of oligodendrocyte development and myelination. Loss of p35 perturbs oligodendrocyte progenitor cell differentiation, whereas loss of p39 delays oligodendrocyte maturation. Loss of both completely inhibits oligodendrogenesis and myelination. Disruption of oligodendrocyte development was more pronounced in p35−/−;p39

  1. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses.

    PubMed

    Verstegen, Anne M J; Tagliatti, Erica; Lignani, Gabriele; Marte, Antonella; Stolero, Tamar; Atias, Merav; Corradi, Anna; Valtorta, Flavia; Gitler, Daniel; Onofri, Franco; Fassio, Anna; Benfenati, Fabio

    2014-05-21

    Cyclin-dependent kinase-5 (Cdk5) was reported to downscale neurotransmission by sequestering synaptic vesicles (SVs) in the release-reluctant resting pool, but the molecular targets mediating this activity remain unknown. Synapsin I (SynI), a major SV phosphoprotein involved in the regulation of SV trafficking and neurotransmitter release, is one of the presynaptic substrates of Cdk5, which phosphorylates it in its C-terminal region at Ser(549) (site 6) and Ser(551) (site 7). Here we demonstrate that Cdk5 phosphorylation of SynI fine tunes the recruitment of SVs to the active recycling pool and contributes to the Cdk5-mediated homeostatic responses. Phosphorylation of SynI by Cdk5 is physiologically regulated and enhances its binding to F-actin. The effects of Cdk5 inhibition on the size and depletion kinetics of the recycling pool, as well as on SV distribution within the nerve terminal, are virtually abolished in mouse SynI knock-out (KO) neurons or in KO neurons expressing the dephosphomimetic SynI mutants at sites 6,7 or site 7 only. The observation that the single site-7 mutant phenocopies the effects of the deletion of SynI identifies this site as the central switch in mediating the synaptic effects of Cdk5 and demonstrates that SynI is necessary and sufficient for achieving the effects of the kinase on SV trafficking. The phosphorylation state of SynI by Cdk5 at site 7 is regulated during chronic modification of neuronal activity and is an essential downstream effector for the Cdk5-mediated homeostatic scaling. PMID:24849359

  2. Cyclin C is a haploinsufficient tumor suppressor

    PubMed Central

    Li, Na; Fassl, Anne; Chick, Joel; Inuzuka, Hiroyuki; Li, Xiaoyu; Mansour, Marc R.; Liu, Lijun; Wang, Haizhen; King, Bryan; Shaik, Shavali; Gutierrez, Alejandro; Ordureau, Alban; Otto, Tobias; Kreslavsky, Taras; Baitsch, Lukas; Bury, Leah; Meyer, Clifford A.; Ke, Nan; Mulry, Kristin A.; Kluk, Michael J.; Roy, Moni; Kim, Sunkyu; Zhang, Xiaowu; Geng, Yan; Zagozdzon, Agnieszka; Jenkinson, Sarah; Gale, Rosemary E.; Linch, David C.; Zhao, Jean J.; Mullighan, Charles G.; Harper, J. Wade; Aster, Jon C.; Aifantis, Iannis; von Boehmer, Harald; Gygi, Steven P.; Wei, Wenyi; Look, A. Thomas; Sicinski, Piotr

    2014-01-01

    Cyclin C was cloned as a growth-promoting G1 cyclin, and was also shown to regulate gene transcription. Here we report that in vivo cyclin C acts as a haploinsufficient tumor suppressor, by controlling Notch1 oncogene levels. Cyclin C activates an “orphan” CDK19 kinase, as well as CDK8 and CDK3. These cyclin C-CDK complexes phosphorylate Notch1 intracellular domain (ICN1) and promote ICN1 degradation. Genetic ablation of cyclin C blocks ICN1 phosphorylation in vivo, thereby elevating ICN1 levels in cyclin C-knockout mice. Cyclin C ablation or heterozygosity collaborate with other oncogenic lesions and accelerate development of T-cell-acute lymphoblastic leukemia (T-ALL). Furthermore, the cyclin C gene is heterozygously deleted in a significant fraction of human T-ALL, and these tumors express reduced cyclin C levels. We also describe point mutations in human T-ALL that render cyclin C-CDK unable to phosphorylate ICN1. Hence, tumor cells may develop different strategies to evade cyclin C inhibitory function. PMID:25344755

  3. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes*

    PubMed Central

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A.

    2015-01-01

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  4. Cyclin-Dependent Kinase 5 Modulates the Transcriptional Activity of the Mineralocorticoid Receptor and Regulates Expression of Brain-Derived Neurotrophic Factor

    PubMed Central

    Kino, Tomoshige; Jaffe, Howard; Amin, Niranjana D.; Chakrabarti, Mayukh; Zheng, Ya-Li; Chrousos, George P.; Pant, Harish C.

    2010-01-01

    Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system (CNS) and contribute to memory consolidation and emotional control through their intracellular receptors, the glucocorticoid and mineralocorticoid receptors. Cyclin-dependent kinase 5 (CDK5), on the other hand, plays important roles in the morphogenesis and functions of the central nervous system, and its aberrant activation has been associated with development of neurodegenerative disorders. We previously reported that CDK5 phosphorylated the glucocorticoid receptor and modulated its transcriptional activity. Here we found that CDK5 also regulated mineralocorticoid receptor-induced transcriptional activity by phosphorylating multiple serine and threonine residues located in its N-terminal domain through physical interaction. Aldosterone and dexamethasone, respectively, increased and suppressed mRNA/protein expression of brain-derived neurotrophic factor (BDNF) in rat cortical neuronal cells, whereas the endogenous glucocorticoid corticosterone showed a biphasic effect. CDK5 enhanced the effect of aldosterone and dexamethasone on BDNF expression. Because this neurotrophic factor plays critical roles in neuronal viability, synaptic plasticity, consolidation of memory, and emotional changes, we suggest that aberrant activation of CDK5 might influence these functions through corticosteroid receptors/BDNF. PMID:20357208

  5. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    SciTech Connect

    Akyuerek, Levent M.; Boehm, Manfred; Olive, Michelle; Zhou, Alex-Xianghua; San, Hong; Nabel, Elizabeth G.

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.

  6. Apoptosis of osteosarcoma cultures by the combination of the cyclin-dependent kinase inhibitor SCH727965 and a heat shock protein 90 inhibitor.

    PubMed

    Fu, W; Sharma, S S; Ma, L; Chu, B; Bui, M M; Reed, D; Pledger, W J

    2013-03-28

    Osteosarcoma (OS) is an aggressive bone cancer typically observed in adolescents and young adults. Metastatic relapse accounts primarily for treatment failure, and obstacles to improving cure rates include a lack of efficacious agents. Our studies show apoptosis of OS cells prepared from localized and metastatic tumors by a novel drug combination: SCH727965 (SCH), a cyclin-dependent kinase inhibitor, and NVP-AUY922 (AUY) or other heat shock protein 90 inhibitor. SCH and AUY induced apoptosis when added simultaneously to cells and when AUY was added to and removed from cells before SCH addition. Sequential treatment was most effective when cells received AUY for ~12 h and when SCH was presented to cells immediately after AUY removal. The apoptotic protein Bax accumulated in mitochondria of cotreated cells but was primarily cytosolic in cells receiving either agent alone. Additional data show that SCH and AUY cooperatively induce the apoptosis of other sarcoma cell types but not of normal osteoblasts or fibroblasts, and that SCH and AUY individually inhibit cell cycle progression throughout the cell cycle. We suggest that the combination of SCH and AUY may be an effective new strategy for treatment of OS.

  7. Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications.

    PubMed

    Ramos-Miguel, Alfredo; Meana, J Javier; García-Sevilla, Jesús A

    2013-04-01

    Cyclin-dependent kinase-5 (CDK5) and p35/p25 activators, interacting with the exocytotic machinery (e.g. munc18-1 and syntaxin-1A), play critical roles in neurosecretion. The basal status of CDK5/p35/p25 and the effect of psychotropic drugs (detected in blood/urine samples) were investigated in post-mortem prefrontal cortex (PFC)/Brodmann's area 9 of schizophrenia (SZ) and major depression (MD) subjects. In SZ (all subjects, n = 24), CDK5 and p35, but not p25, were reduced (-28 to -58%) compared to controls. In SZ antipsychotic-free (n = 12), activator p35 was decreased (-52%). In SZ antipsychotic-treated (n = 12), marked reductions of CDK5 (-47%), p35 (-76%) and p25 (-36%) were quantified. In MD (n = 13), including antidepressant-free/treated subgroups, CDK5, p35 and p25 were unaltered. In SZ (n = 24), CDK5, p35 or p25 correlated with munc18-1a, but not with syntaxin-1A. The results demonstrate reduced p35 basal content and down-regulation of CDK5/p35/p25 by antipsychotics in SZ. The suggested CDK5/munc18-1a functional interaction may lead to dysregulated neurosecretion in SZ PFC.

  8. Combined Inhibition of Cyclin-Dependent Kinases (Dinaciclib) and AKT (MK-2206) Blocks Pancreatic Tumor Growth and Metastases in Patient-Derived Xenograft Models.

    PubMed

    Hu, Chaoxin; Dadon, Tikva; Chenna, Venugopal; Yabuuchi, Shinichi; Bannerji, Rajat; Booher, Robert; Strack, Peter; Azad, Nilofer; Nelkin, Barry D; Maitra, Anirban

    2015-07-01

    KRAS is activated by mutation in the vast majority of cases of pancreatic cancer; unfortunately, therapeutic attempts to inhibit KRAS directly have been unsuccessful. Our previous studies showed that inhibition of cyclin-dependent kinase 5 (CDK5) reduces pancreatic cancer growth and progression, through blockage of the centrally important RAL effector pathway, downstream of KRAS. In the current study, the therapeutic effects of combining the CDK inhibitor dinaciclib (SCH727965; MK-7965) with the pan-AKT inhibitor MK-2206 were evaluated using orthotopic and subcutaneous patient-derived human pancreatic cancer xenograft models. The combination of dinaciclib (20 mg/kg, i.p., three times a week) and MK-2206 (60 mg/kg, orally, three times a week) dramatically blocked tumor growth and metastasis in all eight pancreatic cancer models examined. Remarkably, several complete responses were induced by the combination treatment of dinaciclib and MK-2206. The striking results obtained in these models demonstrate that the combination of dinaciclib with the pan-AKT inhibitor MK-2206 is promising for therapeutic evaluation in pancreatic cancer, and strongly suggest that blocking RAL in combination with other effector pathways downstream from KRAS may provide increased efficacy in pancreatic cancer. Based on these data, an NCI-CTEP-approved multicenter phase I clinical trial for pancreatic cancer of the combination of dinaciclib and MK-2206 (NCT01783171) has now been opened. PMID:25931518

  9. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells.

    PubMed

    Lindqvist, Julia; Imanishi, Susumu Y; Torvaldson, Elin; Malinen, Marjo; Remes, Mika; Örn, Fanny; Palvimo, Jorma J; Eriksson, John E

    2015-06-01

    Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in differentiated cells and its destructive activation in Alzheimer's disease. Recently, CDK5 has been implicated in a number of different cancers, but how it is able to stimulate cancer-related signaling pathways remains enigmatic. Our goal was to study the cancer-promoting mechanisms of CDK5 in prostate cancer. We observed that CDK5 is necessary for proliferation of several prostate cancer cell lines. Correspondingly, there was considerable growth promotion when CDK5 was overexpressed. When examining the reasons for the altered proliferation effects, we observed that CDK5 phosphorylates S308 on the androgen receptor (AR), resulting in its stabilization and differential expression of AR target genes including several growth-priming transcription factors. However, the amplified cell growth was found to be separated from AR signaling, further corroborated by CDK5-dependent proliferation of AR null cells. Instead, we found that the key growth-promoting effect was due to specific CDK5-mediated AKT activation. Down-regulation of CDK5 repressed AKT phosphorylation by altering its intracellular localization, immediately followed by prominent cell cycle inhibition. Taken together, these results suggest that CDK5 acts as a crucial signaling hub in prostate cancer cells by controlling androgen responses through AR, maintaining and accelerating cell proliferation through AKT activation, and releasing cell cycle breaks. PMID:25851605

  10. Small-molecule screening of PC3 prostate cancer cells identifies tilorone dihydrochloride to selectively inhibit cell growth based on cyclin-dependent kinase 5 expression.

    PubMed

    Wissing, Michel D; Dadon, Tikva; Kim, Eunice; Piontek, Klaus B; Shim, Joong S; Kaelber, Nadine S; Liu, Jun O; Kachhap, Sushant K; Nelkin, Barry D

    2014-07-01

    Cyclin-dependent kinase 5 (CDK5) is a potential target for prostate cancer treatment, the enzyme being essential for prostate tumor growth and formation of metastases. In the present study, we identified agents that target prostate cancer cells based on CDK5 expression. CDK5 activity was suppressed by transfection of PC3 prostate cancer cells with a dominant-negative construct (PC3 CDK5dn). PC3 CDK5dn and PC3 control cells were screened for compounds that selectively target cells based on CDK5 expression, utilizing the Johns Hopkins Drug Library. MTS proliferation, clonogenic and 3D growth assays were performed to validate the selected hits. Screening of 3,360 compounds identified rutilantin, ethacridine lactate and cetalkonium chloride as compounds that selectively target PC3 control cells and a tilorone analog as a selective inhibitor of PC3 CDK5dn cells. A PubMed literature study indicated that tilorone may have clinical use in patients. Validation experiments confirmed that tilorone treatment resulted in decreased PC3 cell growth and invasion; PC3 cells with inactive CDK5 were inhibited more effectively. Future studies are needed to unravel the mechanism of action of tilorone in CDK5 deficient prostate cancer cells and to test combination therapies with tilorone and a CDK5 inhibitor for its potential use in clinical practice. PMID:24841903

  11. Differential p16/INK4A cyclin-dependent kinase inhibitor expression correlates with chemotherapy efficacy in a cohort of 88 malignant pleural mesothelioma patients

    PubMed Central

    Jennings, C J; Murer, B; O'Grady, A; Hearn, L M; Harvey, B J; Kay, E W; Thomas, W

    2015-01-01

    Background: Malignant pleural mesothelioma (MPM) is a rare and essentially incurable malignancy most often linked with occupational exposure to asbestos fibres. In common with other malignancies, the development and progression of MPM is associated with extensive dysregulation of cell cycle checkpoint proteins that modulate cell proliferation, apoptosis, DNA repair and senescence. Methods: The expression of cyclin-dependent kinase inhibitor p16/INK4A was evaluated by immunohistochemistry using tumour biopsy specimens from 88 MPM cases and a semi-quantitative score for p16/INK4A expression was obtained. Post-diagnosis survival and the survival benefit of chemotherapeutic intervention was correlated with p16/INK4A expression. Results: A low, intermediate and high score for p16/INK4A expression was observed for 45 (51.1%), 28 (31.8%) and 15 (17.1%) of the MPM cases, respectively. Those cases with intermediate or high p16/INK4A tumour expression had a significantly better post-diagnosis survival than those cases whose tumours lost p16 expression (log-rank P<0.001). Those patients with sustained p16/INK4A expression who received chemotherapy also had a better survival than those treated patients whose tumours had lost p16/INK4A expression (log-rank P<0.001). Conclusions: Sustained p16/INK4A expression predicts better post-diagnosis survival in MPM and also better survival following chemotherapeutic intervention. PMID:26057448

  12. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer.

    PubMed

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  13. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15.

    PubMed Central

    Matsuoka, S; Thompson, J S; Edwards, M C; Bartletta, J M; Grundy, P; Kalikin, L M; Harper, J W; Elledge, S J; Feinberg, A P

    1996-01-01

    Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610162

  14. Cyclin-dependent kinase-5 and p35/p25 activators in schizophrenia and major depression prefrontal cortex: basal contents and effects of psychotropic medications.

    PubMed

    Ramos-Miguel, Alfredo; Meana, J Javier; García-Sevilla, Jesús A

    2013-04-01

    Cyclin-dependent kinase-5 (CDK5) and p35/p25 activators, interacting with the exocytotic machinery (e.g. munc18-1 and syntaxin-1A), play critical roles in neurosecretion. The basal status of CDK5/p35/p25 and the effect of psychotropic drugs (detected in blood/urine samples) were investigated in post-mortem prefrontal cortex (PFC)/Brodmann's area 9 of schizophrenia (SZ) and major depression (MD) subjects. In SZ (all subjects, n = 24), CDK5 and p35, but not p25, were reduced (-28 to -58%) compared to controls. In SZ antipsychotic-free (n = 12), activator p35 was decreased (-52%). In SZ antipsychotic-treated (n = 12), marked reductions of CDK5 (-47%), p35 (-76%) and p25 (-36%) were quantified. In MD (n = 13), including antidepressant-free/treated subgroups, CDK5, p35 and p25 were unaltered. In SZ (n = 24), CDK5, p35 or p25 correlated with munc18-1a, but not with syntaxin-1A. The results demonstrate reduced p35 basal content and down-regulation of CDK5/p35/p25 by antipsychotics in SZ. The suggested CDK5/munc18-1a functional interaction may lead to dysregulated neurosecretion in SZ PFC. PMID:22964075

  15. Molecular and phylogenetic analysis of PCR-amplified cyclin-dependent kinase (CDK) family sequences from representatives of the earliest available lineages of eukaryotes.

    PubMed

    Riley, D E; Krieger, J N

    1995-10-01

    Cyclin-dependent kinase (CDK) and cell division control (CDC2) sequences are strongly conserved among eukaryotes and may complement the use of other sequence families in eukaryotic phylogenetic inference. We synthesized degenerate PCR primers to amplify the catalytic region of CDK homologs in representatives of the earliest available lineages of eukaryotes. CDK family sequence-based, maximum-likelihood distance measurements with neighbor-joining, and Fitch-Margoliash least-squares analyses produced unrooted dendrograms that included protists, yeasts, and higher eukaryotes. Bootstrap confidence estimates supported CDK-based phylogenetic groupings among the protists, fungi, and vertebrates although resolution within these groups was often insignificant. However, Trichomonas vaginalis and Giardia lamblia exhibited two of the most divergent CDK-like sequences consistent with rRNA-phylogenetic inference of early divergence of these eukaryotic lineages. In the evolution from unicellular to multicellular organisms, a constellation of amino acid residues aligning with the human, CDK N-terminal beta sheet may have undergone abrupt replacement.

  16. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer

    PubMed Central

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2′-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  17. Fibroblast growth factor receptor 1 promotes MG63 cell proliferation and is associated with increased expression of cyclin-dependent kinase 1 in osteosarcoma

    PubMed Central

    ZHOU, WEI; ZHU, YUE; CHEN, SONG; XU, RUIJUN; WANG, KUNZHENG

    2016-01-01

    Osteosarcoma is the most common type of malignant bone tumor in adolescents and young adults. However, current understanding of osteosarcomagenesis remains limited. In the present study, the role of fibroblast growth factor receptor 1 (FGFR1) in human osteosarcoma cell proliferation was investigated, and the possible pathways that contribute to FGFR1-mediated osteosarcoma cell proliferation were examined using microarray analysis. The expression of FGFR1 in osteosarcoma tissues was assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. The results demonstrated that FGFR1 was markedly increased in osteosarcoma tissues, and that the overexpression of FGFR1 in MG63 cells significantly promoted cell proliferation, as observed using the cell viability assay. In addition, FGFR1-mediated cell proliferation was closely associated with cell cycle re-distribution, as determined by microarray analysis. Western blotting identified that the expression of cyclin-dependent kinase 1 (CDK1) was correspondingly increased in response to the overexpression of FGFR1. These results indicated that FGFR1 contributes to cell proliferation in osteosarcoma MG63 cells, and FGFR1 mediated cell proliferation may be attributed to the regulation of the cell cycle regulator, CDK1. These findings provide evidence to support the potential use of molecule target therapy against FGFR1 as a promising strategy in osteosarcoma treatment and prevention. PMID:26648125

  18. The upstream open reading frame of cyclin-dependent kinase inhibitor 1A mRNA negatively regulates translation of the downstream main open reading frame

    SciTech Connect

    Kim, Kyoung Mi; Cho, Hana; Kim, Yoon Ki

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinase inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.

  19. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-a]pyrimidines.

    PubMed

    Brahmkshatriya, Pathik S; Dobeš, Petr; Fanfrlik, Jindrich; Rezáç, Jan; Paruch, Kamil; Bronowska, Agnieszka; Lepšík, Martin; Hobza, Pavel

    2013-03-01

    A quantum mechanics (QM)-based scoring function has been applied to complexes of cyclin-dependent kinase 2 (CDK2) and thirty-one pyrazolo[1,5-a]pyrimidine-based inhibitors and their bioisosteres. A hybrid three-layer QM/MM setup (DFT-D/PM6-D3H4X/AMBER in generalized Born solvent) was used here for the first time as an extension of our previous full QM and SQM/MM (SQM means semiempirical QM) approaches. Two approaches to obtain the structures of the CDK2/inhibitor complexes were examined: i) building the modifications from one X-ray structure available coupled with a conformational search and ii) docking the compounds into CDK2. The QM-based scoring entailed a QM/SQM/MM optimization followed by calculations of the binding scores which were subsequently correlated with the experimental binding free energies. The correlation for the building protocol was good (r(2) = 0.64, predictive index = 0.81), whereas the docking approach failed. A decomposition of the interaction energies to ligand fragments enabled us to rationalize the differences in the binding affinities. In conclusion, we have developed and refined a QM-based scoring protocol and successfully applied it to reproduce the binding affinities in congeneric series of CDK2 inhibitors and to rationalize their potency. We thus propose that such a tool can be used in computer-aided rational drug design. PMID:23157414

  20. The Activators of Cyclin-Dependent Kinase 5 p35 and p39 Are Essential for Oligodendrocyte Maturation, Process Formation, and Myelination.

    PubMed

    Luo, Fucheng; Zhang, Jessie; Burke, Kathryn; Miller, Robert H; Yang, Yan

    2016-03-01

    The regulation of oligodendrocyte development and myelin formation in the CNS is poorly defined. Multiple signals influence the rate and extent of CNS myelination, including the noncanonical cyclin-dependent kinase 5 (Cdk5) whose functions are regulated by its activators p35 and p39. Here we show that selective loss of either p35 or p39 perturbed specific aspects of oligodendrocyte development, whereas loss of both p35 and p39 completely inhibited the development of mature oligodendrocytes and myelination. In the absence of p35, oligodendrocyte differentiation was delayed, process outgrowth was truncated in vitro, and the patterning and extent of myelination were perturbed in the CNS of p35(-/-) mice. In the absence of p39, oligodendrocyte maturation was transiently affected both in vitro and in vivo. However, loss of both p35 and p39 in oligodendrocyte lineage cells completely inhibited oligodendrocyte progenitor cell differentiation and myelination both in vitro and after transplantation into shiverer slice cultures. Loss of p35 and p39 had a more profound effect on oligodendrocyte development than simply the loss of Cdk5 and could not be rescued by Cdk5 overexpression. These data suggest p35 and p39 have specific and overlapping roles in oligodendrocyte development, some of which may be independent of Cdk5 activation.

  1. The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation.

    PubMed

    Zupkovitz, Gordin; Grausenburger, Reinhard; Brunmeir, Reinhard; Senese, Silvia; Tischler, Julia; Jurkin, Jennifer; Rembold, Martina; Meunier, Dominique; Egger, Gerda; Lagger, Sabine; Chiocca, Susanna; Propst, Fritz; Weitzer, Georg; Seiser, Christian

    2010-03-01

    Histone deacetylases (HDACs) are chromatin-modifying enzymes that are involved in the regulation of proliferation, differentiation and development. HDAC inhibitors induce cell cycle arrest, differentiation, or apoptosis in tumor cells and are therefore promising antitumor agents. Numerous genes were found to be deregulated upon HDAC inhibitor treatment; however, the relevant target enzymes are still unidentified. HDAC1 is required for mouse development and unrestricted proliferation of embryonic stem cells. We show here that HDAC1 reversibly regulates cellular proliferation and represses the cyclin-dependent kinase inhibitor p21 in embryonic stem cells. Disruption of the p21 gene rescues the proliferation phenotype of HDAC1(-/-) embryonic stem cells but not the embryonic lethality of HDAC1(-/-) mice. In the absence of HDAC1, mouse embryonic fibroblasts scarcely undergo spontaneous immortalization and display increased p21 expression. Chromatin immunoprecipitation assays demonstrate a direct regulation of the p21 gene by HDAC1 in mouse embryonic fibroblasts. Transformation with simian virus 40 large T antigen or ablation of p21 restores normal immortalization of primary HDAC1(-/-) fibroblasts. Our data demonstrate that repression of the p21 gene is crucial for HDAC1-mediated control of proliferation and immortalization. HDAC1 might therefore be one of the relevant targets for HDAC inhibitors as anticancer drugs.

  2. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes.

    PubMed

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A

    2015-12-18

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  3. Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination.

    PubMed

    Takasugi, Toshiyuki; Minegishi, Seiji; Asada, Akiko; Saito, Taro; Kawahara, Hiroyuki; Hisanaga, Shin-ichi

    2016-02-26

    Cdk5 is a versatile protein kinase that is involved in various neuronal activities, such as the migration of newborn neurons, neurite outgrowth, synaptic regulation, and neurodegenerative diseases. Cdk5 requires the p35 regulatory subunit for activation. Because Cdk5 is more abundantly expressed in neurons compared with p35, the p35 protein levels determine the kinase activity of Cdk5. p35 is a protein with a short half-life that is degraded by proteasomes. Although ubiquitination of p35 has been previously reported, the degradation mechanism of p35 is not yet known. Here, we intended to identify the ubiquitination site(s) in p35. Because p35 is myristoylated at the N-terminal glycine, the possible ubiquitination sites are the lysine residues in p35. We mutated all 23 Lys residues to Arg (p35 23R), but p35 23R was still rapidly degraded by proteasomes at a rate similar to wild-type p35. The degradation of p35 23R in primary neurons and the Cdk5 activation ability of p35 23R suggested the occurrence of ubiquitin-independent degradation of p35 in physiological conditions. We found that p35 has the amino acid sequence similar to the ubiquitin-independent degron in the NKX3.1 homeodomain transcription factor. An Ala mutation at Pro-247 in the degron-like sequence made p35 stable. These results suggest that p35 can be degraded by two degradation pathways: ubiquitin-dependent and ubiquitin-independent. The rapid degradation of p35 by two different methods would be a mechanism to suppress the production of p25, which overactivates Cdk5 to induce neuronal cell death.

  4. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes.

    PubMed

    Maldonado, Horacio; Ramírez, Eugenio; Utreras, Elias; Pando, María E; Kettlun, Ana M; Chiong, Mario; Kulkarni, Ashok B; Collados, Lucía; Puente, Javier; Cartier, Luis; Valenzuela, María A

    2011-09-01

    Human T-cell leukemia virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease characterized by selective loss of axons and myelin in the corticospinal tracts. This central axonopathy may originate from the impairment of anterograde axoplasmic transport. Previous work showed tau hyperphosphorylation at T(181) in cerebrospinal fluid of HAM/TSP patients. Similar hyperphosphorylation occurs in SH-SY5Y cells incubated with supernatant from MT-2 cells (HTLV-I-infected lymphocytes secreting viral proteins, including Tax) that produce neurite shortening. Tau phosphorylation at T(181) is attributable to glycogen synthase kinase 3-β (GSK3-β) and cyclin-dependent kinase 5 (CDK5) activation. Here we investigate whether neurite retraction in the SH-SY5Y model associates with concurrent changes in other tau hyperphosphorylable residues. Threonine 181 turned out to be the only tau hyperphosphorylated residue. We also evaluate the role of GSK3-β and CDK5 in this process by using specific kinase inhibitors (LiCl, TDZD-8, and roscovitine). Changes in both GSK3-β active and inactive forms were followed by measuring the regulatory phosphorylable sites (S(9) and Y(216) , inactivating and activating phosphorylation, respectively) together with changes in β-catenin protein levels. Our results showed that LiCl and TDZD-8 were unable to prevent MT-2 supernatant-mediated neurite retraction and also that neither Y(216) nor S(9) phosphorylations were changed in GSK3-β. Thus, GSK3-β seems not to play a role in T(181) hyperphosphorylation. On the other hand, the CDK5 involvement in tau phosphorylation was confirmed by both the increase in its enzymatic activity and the absence of MT-2 neurite retraction in the presence of roscovitine or CDK5 siRNA transfection. PMID:21671254

  5. Characterization of a Pyrazolo[4,3-d]pyrimidine Inhibitor of Cyclin-Dependent Kinases 2 and 5 and Aurora A With Pro-Apoptotic and Anti-Angiogenic Activity In Vitro.

    PubMed

    Řezníčková, Eva; Weitensteiner, Sabine; Havlíček, Libor; Jorda, Radek; Gucký, Tomáš; Berka, Karel; Bazgier, Václav; Zahler, Stefan; Kryštof, Vladimír; Strnad, Miroslav

    2015-12-01

    Selective inhibitors of kinases that regulate the cell cycle, such as cyclin-dependent kinases (CDKs) and aurora kinases, could potentially become powerful tools for the treatment of cancer. We prepared and studied a series of 3,5,7-trisubstituted pyrazolo[4,3-d]pyrimidines, a new CDK inhibitor scaffold, to assess their CDK2 inhibitory and antiproliferative activities. A new compound, 2i, which preferentially inhibits CDK2, CDK5, and aurora A was identified. Both biochemical and cellular assays indicated that treatment with compound 2i caused the downregulation of cyclins A and B, the dephosphorylation of histone H3 at Ser10, and the induction of mitochondrial apoptosis in the HCT-116 colon cancer cell line. It also reduced migration as well as tube and lamellipodia formation in human endothelial cells. The kinase inhibitory profile of compound 2i suggests that its anti-angiogenic activity is linked to CDK5 inhibition. This dual mode of action involving apoptosis induction in cancer cells and the blocking of angiogenesis-like activity in endothelial cells offers possible therapeutic potential. PMID:26198005

  6. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors.

    PubMed

    Boulahjar, Rajâa; Ouach, Aziz; Bourg, Stéphane; Bonnet, Pascal; Lozach, Olivier; Meijer, Laurent; Guguen-Guillouzo, Christiane; Le Guevel, Rémy; Lazar, Saïd; Akssira, Mohamed; Troin, Yves; Guillaumet, Gérald; Routier, Sylvain

    2015-08-28

    An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC50 GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC50 GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines. PMID:26142492

  7. Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125.

    PubMed

    Caporali, Simona; Alvino, Ester; Levati, Lauretta; Esposito, Alessia I; Ciomei, Marina; Brasca, Maria G; Del Bufalo, Donatella; Desideri, Marianna; Bonmassar, Enzo; Pfeffer, Ulrich; D'Atri, Stefania

    2012-09-01

    We previously demonstrated that PHA-848125, a cyclin-dependent kinase inhibitor presently under Phase II clinical investigation, impairs melanoma cell growth. In this study, gene expression profiling showed that PHA-848125 significantly modulated the expression of 128 genes, predominantly involved in cell cycle control, in the highly drug-sensitive GL-Mel (p53 wild-type) melanoma cells. Up-regulation of 4 selected genes (PDCD4, SESN2, DDIT4, DEPDC6), and down-regulation of 6 selected genes (PTTG1, CDC25A, AURKA, AURKB, PLK1, BIRC5) was confirmed at protein levels. The same protein analysis performed in PHA-848125-treated M10 melanoma cells - p53 mutated and less sensitive to the drug than GL-Mel cells - revealed no DEPDC6 expression and no changes of PTTG1, PDCD4 and BIRC5 levels. Upon PHA-848125 treatment, a marked PTTG1 down-modulation was also observed in A375 cells (p53 wild-type) but not in CN-Mel cells (p53 mutated). PTTG1 silencing significantly inhibited melanoma cell proliferation and induced senescence, with effects less pronounced in p53 mutated cells. PTTG1 silencing increased PHA-848125 sensitivity of p53 mutated cells but not that of A375 or GL-Mel cells. Accordingly, in M10 but not in A375 cells a higher level of senescence was detected in PHA-848125-treated/PTTG1-silenced cells with respect to PHA-848125-treated controls. In A375 and GL-Mel cells, TP53 silencing attenuated PHA-848125-induced down-modulation of PTTG1 and decreased cell sensitivity to the drug. These findings indicate that PHA-848125-induced down-regulation of PTTG1 depends, at least in part, on p53 function and contributes to the antiproliferative activity of the drug. Our study provides further molecular insight into the antitumor mechanism of PHA-848125.

  8. sud1+ targets cyclin-dependent kinase-phosphorylated Cdc18 and Rum1 proteins for degradation and stops unwanted diploidization in fission yeast

    PubMed Central

    Jallepalli, Prasad V.; Tien, Deborah; Kelly, Thomas J.

    1998-01-01

    In the fission yeast Schizosaccharomyces pombe, S phase is limited to a single round per cell cycle through cyclin-dependent kinase phosphorylation of critical replication factors, including the Cdc18 replication initiator protein. Because defects in Cdc18 phosphorylation lead to a hyperstable and hyperactive form of Cdc18 that promotes high levels of overreplication in vivo, we wished to identify the components of the Cdc18 proteolysis pathway in fission yeast. In this paper we describe one such component, encoded by the sud1+ gene. sud1+ shares homology with the budding yeast CDC4 gene and is required to prevent spontaneous re-replication in fission yeast. Cells lacking sud1+ accumulate high levels of Cdc18 and the CDK inhibitor Rum1, because they cannot degrade these two key cell cycle regulators. Through genetic analysis we show that hyperaccumulation of Rum1 contributes to re-replication in Δsud1 cells, but is not the cause of the defect in Cdc18 proteolysis. Rather, Sud1 itself is associated with the ubiquitin pathway in fission yeast and binds to Cdc18 in vivo. Most importantly, Sud1-Cdc18 binding requires prior phosphorylation of the Cdc18 polypeptide at CDK consensus sites. These results provide a biochemical mechanism for the phosphorylation-dependent degradation of Cdc18 and other cell cycle regulators, including Rum1. Evolutionary conservation of the Sud1/CDC4 pathway suggests that phosphorylation-coupled proteolysis may be a general feature of nearly all eukaryotic cell cycles. PMID:9653157

  9. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    SciTech Connect

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A. . E-mail: chales@partners.org

    2006-07-14

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension.

  10. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and Is Modulated by Phosphorylation.

    PubMed

    Bush, Maxwell S; Pierrat, Olivier; Nibau, Candida; Mikitova, Veronika; Zheng, Tao; Corke, Fiona M K; Vlachonasios, Konstantinos; Mayberry, Laura K; Browning, Karen S; Doonan, John H

    2016-09-01

    Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5'-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation. PMID:27388680

  11. PANDER-induced cell-death genetic networks in islets reveal central role for caspase-3 and cyclin-dependent kinase inhibitor 1A (p21).

    PubMed

    Burkhardt, Brant R; Greene, Scott R; White, Peter; Wong, Ryan K; Brestelli, John E; Yang, Jichun; Robert, Claudia E; Brusko, Todd M; Wasserfall, Clive H; Wu, Jianmei; Atkinson, Mark A; Gao, Zhiyong; Kaestner, Klaus H; Wolf, Bryan A

    2006-03-15

    PANcreatic DERived factor is an islet-specific cytokine that promotes apoptosis in primary islets and islet cell lines. To elucidate the genetic mechanisms of PANDER-induced cell death we performed expression profiling using the mouse PancChip version 5.0 in conjunction with Ingenuity Pathway Analysis. Murine islets were treated with PANDER and differentially expressed genes were identified at 48 and 72 h post-treatment. 64 genes were differentially expressed in response to PANDER treatment. 22 genes are associated with cell death. In addition, the genes with the highest fold change were linked with cell death or apoptosis. The most significantly affected gene at 48 h was the downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A or p21). Approximately half of the genes impacted at 72 h were linked to cell death. Cell death differentially expressed genes were confirmed by quantitative RT-PCR. Further analysis identified cell death genetic networks at both time points with 21 of the 22 cell death genes related in various biological pathways. Caspase-3 (CASP3) was biologically linked to CDKN1A in several genetic networks and these two genes were further examined. Elevated cleaved CASP3 levels in PANDER-treated beta-TC3 insulinoma cells were found to abrogate CDKN1A expression. Levels of CDKN1A were not affected in the absence of cleaved CASP3. PANDER-induced downregulation of CDKN1A expression coupled with induced CASP3-activation may serve a central role in islet cell death and offers further insight into the mechanisms of cytokine-induced beta-cell apoptosis.

  12. Cyclin-Dependent Kinase 5 (CDK5) Controls Melanoma Cell Motility, Invasiveness, and Metastatic Spread—Identification of a Promising Novel therapeutic target1

    PubMed Central

    Bisht, Savita; Nolting, Jens; Schütte, Ute; Haarmann, Jens; Jain, Prashi; Shah, Dhruv; Brossart, Peter; Flaherty, Patrick; Feldmann, Georg

    2015-01-01

    Despite considerable progress in recent years, the overall prognosis of metastatic malignant melanoma remains poor, and curative therapeutic options are lacking. Therefore, better understanding of molecular mechanisms underlying melanoma progression and metastasis, as well as identification of novel therapeutic targets that allow inhibition of metastatic spread, are urgently required. The current study provides evidence for aberrant cyclin-dependent kinase 5 (CDK5) activation in primary and metastatic melanoma lesions by overexpression of its activator protein CDK5R1/p35. Moreover, using melanoma in vitro model systems, shRNA-mediated inducible knockdown of CDK5 was found to cause marked inhibition of cell motility, invasiveness, and anchorage-independent growth, while at the same time net cell growth was not affected. In vivo, CDK5 knockdown inhibited growth of orthotopic xenografts as well as formation of lung and liver colonies in xenogenic injection models mimicking systemic metastases. Inhibition of lung metastasis was further validated in a syngenic murine melanoma model. CDK5 knockdown was accompanied by dephosphorylation and overexpression of caldesmon, and concomitant caldesmon knockdown rescued cell motility and proinvasive phenotype. Finally, it was found that pharmacological inhibition of CDK5 activity by means of roscovitine as well as by a novel small molecule CDK5-inhibitor, N-(5-isopropylthiazol-2-yl)-3-phenylpropanamide, similarly caused marked inhibition of invasion/migration, colony formation, and anchorage-independent growth of melanoma cells. Thus, experimental data presented here provide strong evidence for a crucial role of aberrantly activated CDK5 in melanoma progression and metastasis and establish CDK5 as promising target for therapeutic intervention. PMID:26310376

  13. Inactivation of p16INK4a (inhibitor of cyclin-dependent kinase 4A) immortalizes primary human keratinocytes by maintaining cells in the stem cell compartment.

    PubMed

    Maurelli, Riccardo; Zambruno, Giovanna; Guerra, Liliana; Abbruzzese, Claudia; Dimri, Goberdhan; Gellini, Mara; Bondanza, Sergio; Dellambra, Elena

    2006-07-01

    Replicative senescence of human keratinocytes is determined by a progressive decline of clonogenic and dividing cells, and its timing is controlled by clonal evolution (i.e., the transition from stem cells to transient amplifying and postmitotic cells). Progressive increase of p16INK4a (inhibitor of cyclin-dependent kinase 4A) expression has been shown to correlate with keratinocyte clonal evolution. Thus, the aim of our study is to understand whether p16INK4a accumulation is a triggering mechanism of epidermal clonal evolution or a secondary event. We show that inactivation of p16INK4a, by an antisense strategy, allows primary human keratinocytes to escape replicative senescence. Specifically, p16INK4a inactivation alone blocks clonal evolution and maintains keratinocytes in the stem cell compartment. Antisense excision is followed by keratinocyte senescence, confirming that persistent p16INK4a inactivation is required for maintenance of clonal evolution block. Immortalization is accompanied by resumption of B-Cell Specific Moloney murine leukemia virus site 1 (Bmi-1) expression and telomerase activity, hallmarks of tissue regenerative capacity. In turn, Bmi-1 expression is necessary to maintain the impairment of clonal evolution induced by p16INK4a inactivation. Finally, p16INK4a down-regulation in transient amplifying keratinocytes does not affect clonal evolution, and cells undergo senescence. Thus, p16INK4a inactivation appears to selectively prevent clonal conversion in cells endowed with a high proliferative potential. These data indicate that p16INK4a regulates keratinocyte clonal evolution and that inactivation of p16INK4a in epidermal stem cells is necessary for maintaining stemness. PMID:16754749

  14. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and Is Modulated by Phosphorylation1[OPEN

    PubMed Central

    Bush, Maxwell S.; Pierrat, Olivier; Nibau, Candida; Mikitova, Veronika; Zheng, Tao; Corke, Fiona M. K.; Mayberry, Laura K.; Browning, Karen S.

    2016-01-01

    Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5′-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation. PMID:27388680

  15. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    PubMed

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  16. Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling.

    PubMed

    Patel, Jatin; Wong, Ho Yi; Wang, Weili; Alexis, Josue; Shafiee, Abbas; Stevenson, Alexander J; Gabrielli, Brian; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2016-04-01

    Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential. PMID:26732848

  17. Induction of anergy in Th1 cells associated with increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1.

    PubMed

    Jackson, S K; DeLoose, A; Gilbert, K M

    2001-01-15

    Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.

  18. Biochemical characterizations reveal different properties between CDK4/cyclin D1 and CDK2/cyclin A.

    PubMed

    Kim, Dong-Myung; Yang, Kyungmi; Yang, Beom-Seok

    2003-10-31

    CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function. PMID:14646596

  19. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.

    PubMed

    Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R

    2015-10-01

    Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1

  20. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl)methanone (R547), A Potent and Selective Cyclin-Dependent Kinase Inhibitor with Significiant in Vivo Antitumor Activity

    SciTech Connect

    Chu,X.; DePinto, W.; Bartkovitz, D.; So, S.; Vu, B.; Packman, K.; Lukacs, C.; Ding, Q.; Jiang, N.; et al.

    2006-01-01

    The cyclin-dependent kinases (CDKs) and their cyclin partners are key regulators of the cell cycle. Since deregulation of CDKs is found with high frequency in many human cancer cells, pharmacological inhibition of CDKs with small molecules has the potential to provide an effective strategy for the treatment of cancer. The 2,4-diamino-5-ketopyrimidines 6 reported here represent a novel class of potent and ATP-competitive inhibitors that selectively target the cyclin-dependent kinase family. This diaminopyrimidine core with a substituted 4-piperidine moiety on the C2-amino position and 2-methoxybenzoyl at the C5 position has been identified as the critical structure responsible for the CDK inhibitory activity. Further optimization has led to a good number of analogues that show potent inhibitory activities against CDK1, CDK2, and CDK4 but are inactive against a large panel of serine/threonine and tyrosine kinases (K{sub i} > 10 {mu}M). As one of these representative analogues, compound 39 (R547) has the best CDK inhibitory activities (K{sub i} = 0.001, 0.003, and 0.001 M for CDK1, CDK2, and CDK4, respectively) and excellent in vitro cellular potency, inhibiting the growth of various human tumor cell lines including an HCT116 cell line (IC{sub 50} = 0.08 {mu}M). An X-ray crystal structure of 39 bound to CDK2 has been determined in this study, revealing a binding mode that is consistent with our SAR. Compound 39 demonstrates significant in vivo efficacy in the HCT116 human colorectal tumor xenograft model in nude mice with up to 95% tumor growth inhibition. On the basis of its superior overall profile, 39 was chosen for further evaluation and has progressed into Phase I clinical trial for the treatment of cancer.

  1. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b

    PubMed Central

    Zhou, Jie; Li, Zhiping; Jiao, Xuanmao; Li, Wayne W; Plomann, Markus; Xu, Zhishun; Lisanti, Michael P

    2011-01-01

    Cyclin D1 overexpression is a common feature of many human malignancies. Genomic deletion analysis has demonstrated a key role for cyclin D1 in cellular proliferation, angiogenesis and cellular migration. To investigate the mechanisms contributing to cyclin D1 functions, we purified cyclin D1a-associated complexes by affinity chromatography and identified the PACSIN 2 (protein kinase C and casein kinase substrate in neurons 2) protein by mass spectrometry. The PACSIN 2, but not the related PACSIN 1 and 3, directly bound wild-type cyclin D1 (cyclin D1a) at the carboxyl terminus and failed to bind cyclin D1b, the alternative splicing variant of cyclin D1. PACSIN 2 knockdown induced cellular migration and reduced cell spreading in LNCaP cells expressing cyclin D1a. In cyclin D1−/− mouse embryonic fibroblasts (MEFs), cyclin D1a, but not cyclin D1b, reduced the cell spreading to a polarized morphology. siPACSIN 2 had no effect on cellular migration of cyclin D1−/− MEFs. Cyclin D1a restored the migratory ability of cyclin D1−/− MEFs, which was further enhanced by knocking down PACSIN 2 with siRNA. The cyclin D1-associated protein, PACSIN 2, regulates cell spreading and migration, which are dependent on cyclin D1 expression. PMID:21200149

  2. TReP-132 Controls Cell Proliferation by Regulating the Expression of the Cyclin-Dependent Kinase Inhibitors p21WAF1/Cip1 and p27Kip1

    PubMed Central

    Gizard, Florence; Robillard, Romain; Barbier, Olivier; Quatannens, Brigitte; Faucompré, Anne; Révillion, Françoise; Peyrat, Jean-Philippe; Staels, Bart; Hum, Dean W.

    2005-01-01

    The transcriptional regulating protein of 132 kDa (TReP-132) has been identified in steroidogenic tissues, where it acts as a coactivator of steroidogenic factor 1 (SF-1). We show here that TReP-132 plays a role in the control of cell proliferation. In human HeLa cells, TReP-132 knockdown by using small interfering RNA resulted in increased G1→S cell cycle progression. The growth-inhibitory effects of TReP-132 was further shown to be mediated by induction of G1 cyclin-dependent kinase inhibitors p21WAF1 (p21) and p27KIP1 (p27) expression levels. As a consequence, G1 cyclin/cyclin-dependent kinase activities and pRB phosphorylation were markedly reduced, and cell cycle progression was blocked in the G1 phase. The stimulatory effect of TReP-132 on p21 and p27 gene transcription involved interaction of TReP-132 with the transcription factor Sp1 at proximal Sp1-binding sites in their promoters. Moreover, in different breast tumor cell lines, endogenous TReP-132 expression was positively related with a lower proliferation rate. In addition, TReP-132 knockdown resulted in enhanced cell proliferation and lowered p21 and p27 mRNA levels in the steroid-responsive and nonresponsive T-47D and MDA-MB-231 cell lines, respectively. Finally, a statistic profiling of human breast tumor samples highlighted that expression of TReP-132 is correlated with p21 and p27 levels and is associated with lower tumor incidence and aggressiveness. Together, these results identify TReP-132 as a basal cell cycle regulatory protein acting, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters. PMID:15899840

  3. Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells

    PubMed Central

    Douville, Josette M.; Cheung, David Y. C.; Herbert, Krista L.; Moffatt, Teri; Wigle, Jeffrey T.

    2011-01-01

    Senescence, the state of permanent cell cycle arrest, has been associated with endothelial cell dysfunction and atherosclerosis. The cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the G1/S cell cycle checkpoint and are essential for determining whether a cell enters into an arrested state. The homeodomain transcription factor MEOX2 is an important regulator of vascular cell proliferation and is a direct transcriptional activator of both p21CIP1/WAF1 and p16INK4a. MEOX1 and MEOX2 have been shown to be partially functionally redundant during development, suggesting that they regulate similar target genes in vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1 and p16INK4a expression and induce endothelial cell cycle arrest. Our results demonstrate for the first time that MEOX1 regulates the MEOX2 target genes p21CIP1/WAF1 and p16INK4a. In addition, increased expression of either of the MEOX homeodomain transcription factors leads to cell cycle arrest and endothelial cell senescence. Furthermore, we show that the mechanism of transcriptional activation of these cyclin dependent kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate p16INK4a in a DNA binding dependent manner, whereas they induce p21CIP1/WAF1 in a DNA binding independent manner. PMID:22206000

  4. The cyclin-dependent kinase inhibitor p57Kip2 is epigenetically regulated in carboplatin resistance and results in collateral sensitivity to the CDK inhibitor seliciclib in ovarian cancer

    PubMed Central

    Coley, H M; Safuwan, N A M; Chivers, P; Papacharalbous, E; Giannopoulos, T; Butler-Manuel, S; Madhuri, K; Lovell, D P; Crook, T

    2012-01-01

    Background: Carboplatin remains a first-line agent in the management of epithelial ovarian cancer (EOC). Unfortunately, platinum-resistant disease ultimately occurs in most patients. Using a novel EOC cell line with acquired resistance to carboplatin: PEO1CarbR, genome-wide micro-array profiling identified the cyclin-dependent kinase inhibitor p57Kip2 as specifically downregulated in carboplatin resistance. Presently, we describe confirmation of these preliminary data with a variety of approaches. Methods: Cytotoxicity testing (MTT) and cell cycle blockade assessed drug responsiveness. Methylation specific PCR and pyrosequencing identified sites of promoter methylation in p57Kip2. siRNA to p57Kip2 was used to look at the changes in apoptosis of carboplatin treated EOC cells. EOC tissues (20 cases) were assessed for mRNA levels of p57Kip2. Results: Carboplatin resistance was reversed using 5-aza-cytidine in vitro. Promoter methylation sites and preferential sensitivity to seliciclib were seen in PEO1CarbR cells. Silencing p57Kip2 decreased the apoptotic response to the effects of platinum but produced sensitisation to seliciclib. EOC biopsies indicated an association of high levels of p57Kip2mRNA with complete responses to chemotherapy and improved outcome. Conclusion: We conclude that p57Kip2 is a candidate biomarker of platinum sensitivity/resistance in EOC and such cases may show preferential response to the cyclin-dependent kinase inhibitor seliciclib. PMID:22233925

  5. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins.

    PubMed

    Wang, Guanfang; Kong, Hongzhi; Sun, Yujin; Zhang, Xiaohong; Zhang, Wei; Altman, Naomi; DePamphilis, Claude W; Ma, Hong

    2004-06-01

    Cyclins are primary regulators of the activity of cyclin-dependent kinases, which are known to play critical roles in controlling eukaryotic cell cycle progression. While there has been extensive research on cell cycle mechanisms and cyclin function in animals and yeasts, only a small number of plant cyclins have been characterized functionally. In this paper, we describe an exhaustive search for cyclin genes in the Arabidopsis genome and among available sequences from other vascular plants. Based on phylogenetic analysis, we define 10 classes of plant cyclins, four of which are plant-specific, and a fifth is shared between plants and protists but not animals. Microarray and reverse transcriptase-polymerase chain reaction analyses further provide expression profiles of cyclin genes in different tissues of wild-type Arabidopsis plants. Comparative phylogenetic studies of 174 plant cyclins were also performed. The phylogenetic results imply that the cyclin gene family in plants has experienced more gene duplication events than in animals. Expression patterns and phylogenetic analyses of Arabidopsis cyclin genes suggest potential gene redundancy among members belonging to the same group. We discuss possible divergence and conservation of some plant cyclins. Our study provides an opportunity to rapidly assess the position of plant cyclin genes in terms of evolution and classification, serving as a guide for further functional study of plant cyclins.

  6. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1. PMID:26966064

  7. Transforming growth factor-β1 induces cell cycle arrest by activating atypical cyclin-dependent kinase 5 through up-regulation of Smad3-dependent p35 expression in human MCF10A mammary epithelial cells.

    PubMed

    Park, Seong Ji; Yang, Sun Woo; Kim, Byung-Chul

    2016-04-01

    Cyclin-dependent kinases (Cdks) play important roles in control of cell division. Cdk5 is an atypical member of Cdk family with non-cyclin-like regulatory subunit, p35, but its role in cell cycle progression is still unclear. In the present study, we investigated the role of Cdk5/p35 on transforming growth factor-β1 (TGF-β1)-induced cell cycle arrest. In human MCF10A mammary epithelial cells, TGF-β1 induced cell cycle arrest at G1 phase and increased p27KIP1 expression. Interestingly, pretreatment with roscovitine, an inhibitor of Cdk5, or transfection with small interfering (si) RNAs specific to Cdk5 and p35 significantly attenuated the TGF-β1-induced p27KIP1 expression and cell cycle arrest. TGF-β1 increased Cdk5 activity via up-regulation of p35 gene at transcriptional level, and these effects were abolished by transfection with Smad3 siRNA or infection of adenovirus carrying Smad3 mutant at the C-tail (3SA). Chromatin immunoprecipitation assay further revealed that wild type Smad3, but not mutant Smad3 (3SA), binds to the region of the p35 promoter region (-1000--755) in a TGF-β1-dependent manner. These results for the first time demonstrate a role of Cdk5/p35 in the regulation of cell cycle progression modulated by TGF-β1.

  8. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases.

    PubMed

    Vymětalová, Ladislava; Havlíček, Libor; Šturc, Antonín; Skrášková, Zuzana; Jorda, Radek; Pospíšil, Tomáš; Strnad, Miroslav; Kryštof, Vladimír

    2016-03-01

    A series of 5-substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidine derivatives was synthesized and evaluated for their cyclin-dependent kinase (CDK) inhibition activity. The most potent compounds contained various hydroxyalkylamines at the 5 position and possessed low nanomolar IC50 values for CDK2 and CDK5. Preliminary profiling of one of the most active compounds on a panel of 50 protein kinases revealed its high selectivity for CDKs. The compounds arrested cells in S and G2/M phases, and induced apoptosis in various cancer cell lines. Significant dephosphorylation of the C-terminus of RNA polymerase II and focal adhesion kinase (FAK), well-established substrates of CDKs, has been found in treated cells. Cleavage of PARP-1, down-regulation of Mcl-1 and activation of caspases correlated well with CDK inhibition and confirmed apoptosis as the primary type of cell death induced in cancer cells treated with the compounds in vitro. A comparison of known purine-based CDK inhibitor CR8 with its pyrazolo[4,3-d]pyrimidine bioisosteres confirmed that the novel compounds are more potent in cellular assays than purines. Therefore, pyrazolo[4,3-d]pyrimidine may emerge as a novel scaffold in medicinal chemistry and as a source of potent CDK inhibitors. PMID:26851505

  9. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model.

    PubMed

    Parrish, Karen E; Pokorny, Jenny; Mittapalli, Rajendar K; Bakken, Katrina; Sarkaria, Jann N; Elmquist, William F

    2015-11-01

    6-Acetyl-8-cyclopentyl-5-methyl-2-([5-(piperazin-1-yl)pyridin-2-yl]amino)pyrido(2,3-d)pyrimidin-7(8H)-one [palbociclib (PD-0332991)] is a cyclin-dependent kinase 4/6 inhibitor approved for the treatment of metastatic breast cancer and is currently undergoing clinical trials for many solid tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and has limited treatment options. The cyclin-dependent kinase 4/6 pathway is commonly dysregulated in GBM and is a promising target in treating this devastating disease. The blood-brain barrier (BBB) limits the delivery of drugs to invasive regions of GBM, where the efflux transporters P-glycoprotein and breast cancer resistance protein can prevent treatments from reaching the tumor. The purpose of this study was to examine the mechanisms limiting the effectiveness of palbociclib therapy in an orthotopic xenograft model. The in vitro intracellular accumulation results demonstrated that palbociclib is a substrate for both P-glycoprotein and breast cancer resistance protein. In vivo studies in transgenic mice confirmed that efflux transport is responsible for the limited brain distribution of palbociclib. There was an ∼115-fold increase in brain exposure at steady state in the transporter deficient mice when compared with wild-type mice, and the efflux inhibitor elacridar significantly increased palbociclib brain distribution. Efficacy studies demonstrated that palbociclib is an effective therapy when GBM22 tumor cells are implanted in the flank, but ineffective in an orthotopic (intracranial) model. Moreover, doses designed to mimic brain exposure were ineffective in treating flank tumors. These results demonstrate that efflux transport in the BBB is involved in limiting the brain distribution of palbociclib and this has critical implications in determining effective dosing regimens of palbociclib therapy in the treatment of brain tumors. PMID:26354993

  10. Momilactone B induces apoptosis and G1 arrest of the cell cycle in human monocytic leukemia U937 cells through downregulation of pRB phosphorylation and induction of the cyclin-dependent kinase inhibitor p21Waf1/Cip1.

    PubMed

    Park, Cheol; Jeong, Na Young; Kim, Gi-Young; Han, Min Ho; Chung, Ill-Min; Kim, Wun-Jae; Yoo, Young Hyun; Choi, Yung Hyun

    2014-04-01

    Momilactone B, a terpenoid phytoalexin present in rice bran, has been shown to exhibit several biological activities. The present study was conducted using cultured human leukemia U937 cells to elucidate the possible mechanisms by which momilactone B exerts its anticancer activity, which to date has remained poorly understood. Momilactone B treatment of U937 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by chromatin condensation, DNA fragmentation, the cleavage of poly(ADP-ribose) polymerase and Annexin V-FITC staining. Flow cytometric analysis revealed that momilactone B resulted in G1 arrest in cell cycle progression, which was associated with the dephosphorylation of retinoblastoma protein (pRB) and enhanced binding of pRB with the E2F transcription factor family proteins. Treatment with momilactone B also increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1 in a p53-independent manner, without any noticeable changes in G1 cyclins and cyclin-dependent kinases (Cdks), except a slight decrease in cyclin E. Moreover, in vitro kinase assay indicated that momilactone B significantly decreased Cdk4- and Cdk6-associated kinase activities through a notably increased binding of p21 to Cdk4 and Cdk6. Our results demonstrated that momilactone B caused G1 cell cycle arrest and apoptosis in U937 cells through the induction of p21 expression, inhibition of Cdk/cyclin-associated kinase activities, and reduced phosphorylation of pRB, which may be related to anticancer activity.

  11. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21Cip1/Waf1*

    PubMed Central

    Datta, Debduti; Anbarasu, Kumaraswamy; Rajabather, Suryaraja; Priya, Rangasamy Sneha; Desai, Pavitra; Mahalingam, Sundarasamy

    2015-01-01

    Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway. PMID:26203195

  12. Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5)

    PubMed Central

    2015-01-01

    The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure–activity relationship trends that can be exploited in the design of potent kinase inhibitors. One compound, 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x), was found to be the most active, inducing apoptosis of tumor cells at a concentration of approximately 30–100 nM. In vitro kinase profiling revealed that 7x is a multikinase inhibitor with potent inhibitory activity against the CDK4/CYCLIN D1 and ARK5 kinases. Here, we report the synthesis, structure–activity relationship, kinase inhibitory profile, in vitro cytotoxicity, and in vivo tumor regression studies by this lead compound. PMID:24417566

  13. Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and AMPK-related kinase 5 (ARK5).

    PubMed

    Reddy, M V Ramana; Akula, Balireddy; Cosenza, Stephen C; Athuluridivakar, Saikrishna; Mallireddigari, Muralidhar R; Pallela, Venkat R; Billa, Vinay K; Subbaiah, D R C Venkata; Bharathi, E Vijaya; Vasquez-Del Carpio, Rodrigo; Padgaonkar, Amol; Baker, Stacey J; Reddy, E Premkumar

    2014-02-13

    The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure-activity relationship trends that can be exploited in the design of potent kinase inhibitors. One compound, 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x), was found to be the most active, inducing apoptosis of tumor cells at a concentration of approximately 30-100 nM. In vitro kinase profiling revealed that 7x is a multikinase inhibitor with potent inhibitory activity against the CDK4/CYCLIN D1 and ARK5 kinases. Here, we report the synthesis, structure-activity relationship, kinase inhibitory profile, in vitro cytotoxicity, and in vivo tumor regression studies by this lead compound.

  14. APOLLON Protein Promotes Early Mitotic CYCLIN A Degradation Independent of the Spindle Assembly Checkpoint*

    PubMed Central

    Kikuchi, Ryo; Ohata, Hirokazu; Ohoka, Nobumichi; Kawabata, Atsushi; Naito, Mikihiko

    2014-01-01

    In the mammalian cell cycle, both CYCLIN A and CYCLIN B are required for entry into mitosis, and their elimination is also essential to complete the process. During mitosis, CYCLIN A and CYCLIN B are ubiquitylated by the anaphase-promoting complex/cyclosome (APC/C) and then subjected to proteasomal degradation. However, CYCLIN A, but not CYCLIN B, begins to be degraded in the prometaphase when APC/C is inactivated by the spindle assembly checkpoint (SAC). Here, we show that APOLLON (also known as BRUCE or BIRC6) plays a role in SAC-independent degradation of CYCLIN A in early mitosis. APPOLON interacts with CYCLIN A that is not associated with cyclin-dependent kinases. APPOLON also interacts with APC/C, and it facilitates CYCLIN A ubiquitylation. In APPOLON-deficient cells, mitotic degradation of CYCLIN A is delayed, and the total, but not the cyclin-dependent kinase-bound, CYCLIN A level was increased. We propose APPOLON to be a novel regulator of mitotic CYCLIN A degradation independent of SAC. PMID:24302728

  15. A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos.

    PubMed

    Ciliberto, Andrea; Petrus, Matthew J; Tyson, John J; Sible, Jill C

    2003-07-01

    Early cell cycles of Xenopus laevis embryos are characterized by rapid oscillations in the activity of two cyclin-dependent kinases. Cdk1 activity peaks at mitosis, driven by periodic degradation of cyclins A and B. In contrast, Cdk2 activity oscillates twice per cell cycle, despite a constant level of its partner, cyclin E. Cyclin E degrades at a fixed time after fertilization, normally corresponding to the midblastula transition. Based on published data and new experiments, we constructed a mathematical model in which: (1) oscillations in Cdk2 activity depend upon changes in phosphorylation, (2) Cdk2 participates in a negative feedback loop with the inhibitory kinase Wee1; (3) cyclin E is cooperatively removed from the oscillatory system; and (4) removed cyclin E is degraded by a pathway activated by cyclin E/Cdk2 itself. The model's predictions about embryos injected with Xic1, a stoichiometric inhibitor of cyclin E/Cdk2, were experimentally validated. PMID:12914904

  16. Modulation of extracellular signal-related kinase, cyclin D1, glial fibrillary acidic protein, and vimentin expression in estradiol-pretreated astrocyte cultures treated with competence and progression growth factors.

    PubMed

    Bramanti, Vincenzo; Grasso, Sonia; Tibullo, Daniele; Giallongo, Cesarina; Raciti, Giuseppina; Viola, Maria; Avola, Roberto

    2015-09-01

    The present study seeks to elucidate the interactions between the "competence" growth factor basic fibroblast growth factor (bFGF) and/or estrogen 17β-estradiol and the "progression" growth factors epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and insulin (INS) on DNA labeling and also cyclin D1, extracellular signal-related kinase 1/2 (ERK1/2), glial fibrillary acidic protein (GFAP), and vimentin expression in astroglial cultures under different experimental conditions. Pretreatment for 24 hr with bFGF and subsequent exposure for 36 hr to estradiol (E2 ) and EGF, IGF-I, or INS stimulated DNA labeling in the last 12 hr, especially when the cultures were treated with progression growth factors. bFGF pretreatment and subsequent treatment with E2 for 36 hr stimulated DNA labeling. The 36-hr E2 treatment alone did not significantly decrease DNA labeling, but contemporary addition of E2 with two or three growth factors stimulated DNA labeling remarkably. When E2 was coadded with growth factors, a significantly increased DNA labeling was observed, demonstrating an astroglial synergistic mitogenic effect evoked by contemporary treatment with growth factors in the presence of estrogens. Cyclin D1 expression was markedly increased when astrocyte cultures were pretreated for 36 hr with E2 and subsequently treated with two or three competence and progression growth factors. A highly significant increase of ERK1/2 expression was observed after all the treatments (EGF, bFGF, INS, IGF-I alone or in combination with two or three growth factors). GFAP and vimentin expression was markedly increased when the cultures were treated with two or three growth factors. In conclusion, our data demonstrate estradiol-growth factor cross-talk during astroglial cell proliferation and differentiation in culture.

  17. Synergistic effects of AKAP95, Cyclin D1, Cyclin E1, and Cx43 in the development of rectal cancer

    PubMed Central

    Qi, Fengjie; Yuan, Yangyang; Zhi, Xuehong; Huang, Qian; Chen, Yuexin; Zhuang, Wenxin; Zhang, Dengcheng; Teng, Bogang; Kong, Xiangyu; Zhang, Yongxing

    2015-01-01

    Objective: To explore the expression of A-kinase anchor protein 95 (AKAP95), Cyclin D1, Cyclin E1, and Connexin43 (Cx43) in rectal cancer tissues and assess the associations between each of the proteins and pathological parameters, as well as their inter-relationships. Methods: AKAP95, Cyclin D1, Cyclin E1, and Cx43 protein expression rates were evaluated by immunohistochemistry in 50 rectal cancer specimens and 16 pericarcinoma tissues. Results: The positive rates of AKAP95, Cyclin E1, and Cyclin D1 proteins were 54.00 vs. 18.75%, 62.00 vs. 6.25%, and 72.00 vs. 31.25% in rectal cancer specimens and pericarcinoma tissues, respectively, representing statistically significant differences (P < 0.05). The positive rate of Cx43 protein expression in rectal cancer tissues was 44.00% and 62.50% in pericarcinoma tissues, and the difference between them was not significant (P > 0.05). No significant associations were found between protein expression of AKAP95, Cyclin E1, Cyclin D1, and Cx43, and the degree of differentiation, histological type, and lymph node metastasis of rectal cancer (P > 0.05). However, significant correlations were obtained between the expression rates of AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43, respectively (P < 0.05). Conclusion: AKAP95, Cyclin E1, and Cyclin D1 protein expression rates were significantly higher in rectal cancer tissues compared with pericarcinoma samples, suggesting an association between these proteins and the development and progression of rectal cancer. In addition, the significant correlations between the proteins (AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43) indicate the possible synergistic effects of these factors in the development and progression of rectal cancer. PMID:25973052

  18. Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-regulated Cell Cycle Withdrawal*

    PubMed Central

    Jiang, Weihua; Zhu, Jing; Zhuang, Xun; Zhang, Xiping; Luo, Tao; Esser, Karyn A.; Ren, Hongmei

    2015-01-01

    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration. PMID:26296887

  19. PaKRP, a cyclin-dependent kinase inhibitor from avocado, may facilitate exit from the cell cycle during fruit growth.

    PubMed

    Sabag, Michal; Ben Ari, Giora; Zviran, Tali; Biton, Iris; Goren, Moshe; Dahan, Yardena; Sadka, Avi; Irihimovitch, Vered

    2013-12-01

    Previous studies using 'Hass' avocado cultivar showed that its small-fruit (SF) phenotype is limited by cell number. To explore the molecular components affecting avocado cell production, we isolated four cDNAs encoding: an ICK/KRP protein, known to play cell cycle-regulating roles through modulation of CDK function; two CDK proteins and a D-type cyclin, and monitored their expression patterns, comparing NF (normal fruit) versus SF profiles. The accumulation of PaKRP gradually deceased during growth in both fruit populations. Despite these similarities, SF exhibited higher levels of PaKRP accumulation at early stages of growth. Moreover, in NF, augmented PaKRP expression coincided with a decrease in CDK and PaCYCD1 levels, whereas in SF, enhanced PaKPR expression was coupled with an earlier decline of CDK and PaCYCD1 levels. For both NF and SF, enhanced mesocarp PaKRP transcript accumulation, was associated with elevated abscisic acid (ABA) and ABA catabolites content. Nevertheless, the collective ABA levels, including catabolites, were substantially higher in SF tissues, as compared with NF tissues. Finally, additional expression analysis revealed that in cultured cells, PaKRP could be induced by ABA. Together, our data links PaKRP with exit from the fruit cell cycle and suggest a role for ABA in controlling its expression.

  20. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  1. Cyclin B-Cdk1 Kinase Stimulates ORC- and Cdc6-Independent Steps of Semiconservative Plasmid Replication in Yeast Nuclear Extracts

    PubMed Central

    Duncker, Bernard P.; Pasero, Philippe; Braguglia, Diego; Heun, Patrick; Weinreich, Michael; Gasser, Susan M.

    1999-01-01

    Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin recognition complex (ORC), Cdc6p, and an autonomously replicating sequence (ARS) consensus. Nonetheless, quantitative density gradient analysis showed that S- and M-phase nuclear extracts consistently promote semiconservative DNA replication more efficiently than G1-phase extracts. The observed semiconservative replication is compromised in S-phase nuclear extracts deficient for the Cdk1 kinase (Cdc28p) but not in extracts deficient for the Cdc7p kinase. In a cdc4-1 G1-phase extract, which accumulates high levels of the specific Clb-Cdk1 inhibitor p40SIC1, very low levels of semiconservative DNA replication were detected. Recombinant Clb5-Cdc28 restores replication in a cdc28-4 S-phase extract yet fails to do so in the cdc4-1 G1-phase extract. In contrast, the addition of recombinant Xenopus CycB-Cdc2, which is not sensitive to inhibition by p40SIC1, restores efficient replication to both extracts. Our results suggest that in addition to its well-characterized role in regulating the origin-specific prereplication complex, the Clb-Cdk1 complex modulates the efficiency of the replication machinery itself. PMID:9891057

  2. Cyclin-Dependent Kinase 11 (CDK11) Is Required for Ovarian Cancer Cell Growth In Vitro and In Vivo, and Its Inhibition Causes Apoptosis and Sensitizes Cells to Paclitaxel.

    PubMed

    Liu, Xianzhe; Gao, Yan; Shen, Jacson; Yang, Wen; Choy, Edwin; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2016-07-01

    Ovarian cancer is currently the most lethal gynecologic malignancy with limited treatment options. Improved targeted therapies are needed to combat ovarian cancer. Here, we report the identification of cyclin-dependent kinase 11 (CDK11) as a mediator of tumor cell growth and proliferation in ovarian cancer cells. Although CDK11 has not been implicated previously in this disease, we have found that its expression is upregulated in human ovarian cancer tissues and associated with malignant progression. Metastatic and recurrent tumors have significantly higher CDK11 expression when compared with the matched, original primary tumors. RNAi-mediated CDK11 silencing by synthetic siRNA or lentiviral shRNA decreased cell proliferation and induced apoptosis in ovarian cancer cells. Moreover, CDK11 knockdown enhances the cytotoxic effect of paclitaxel to inhibit cell growth in ovarian cancer cells. Systemic in vivo administration of CDK11 siRNA reduced the tumor growth in an ovarian cancer xenograft model. Our findings suggest that CDK11 may be a promising therapeutic target for the treatment of ovarian cancer patients. Mol Cancer Ther; 15(7); 1691-701. ©2016 AACR. PMID:27207777

  3. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression.

    PubMed

    Chhabria, Sagar V; Akbarsha, Mohammad A; Li, Albert P; Kharkar, Prashant S; Desai, Krutika B

    2015-10-01

    Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of substrate alliin with the enzyme alliinase (EC 4.4.1.4). Allicin has been shown to be toxic to several mammalian cells in vitro in a dose-dependent manner. In the present study this cytotoxicity was taken to advantage to develop a novel approach to cancer treatment, based on site directed generation of allicin. Alliinase was chemically conjugated to a monoclonal antibody (mAb) which was directed against a specific pancreatic cancer marker, CA19-9. After the CA19-9 mAb-alliinase conjugate was bound to targeted pancreatic cancer cells (MIA PaCa-2 cells), on addition of alliin, the cancer cell-localized alliinase produced allicin, which effectively induced apoptosis in MIA PaCa-2 cells. Specificity of anticancer activity of in situ generated allicin was demonstrated using a novel in vitro system-integrated discrete multiple organ co-culture technique. Further, allicin-induced caspase-3 expression, DNA fragmentation, cell cycle arrest, p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression, ROS generation, GSH depletion, and led to various epigenetic modifications which resulted in stimulation of apoptosis. This approach offers a new therapeutic strategy, wherein alliin and alliinase-bound antibody work together to produce allicin at targeted locations which would reverse gene silencing and suppress cancer cell growth, suggesting that combination of these targeted agents may improve pancreatic cancer therapy. PMID:26286853

  4. Real-time imaging of transcriptional activation in live cells reveals rapid up-regulation of the cyclin-dependent kinase inhibitor gene CDKN1A in replicative cellular senescence.

    PubMed

    Herbig, Utz; Wei, Wenyi; Dutriaux, Annie; Jobling, Wendy A; Sedivy, John M

    2003-12-01

    Cellular replicative senescence is a permanent growth arrest state that can be triggered by telomere shortening. The cyclin-dependent kinase (Cdk) inhibitor p21(CIP1/WAF1) (p21), encoded by the CDKN1A gene, is a critical cell cycle regulator whose expression increases as cells approach senescence. Although the pathways responsible for its up-regulation are not well understood, compelling evidence indicates that the upstream triggering event is telomere dysfunction. Studies of replicative senescence have been complicated by the asynchrony of its onset, which is caused by the continuous and stochastic variability in individual cell lifespans. In fact, the actual entry into senescence has never been observed in a single unperturbed cell. We report here a new in vitro human model system that allows entry into senescence to be monitored in real-time in individual viable cells. We used homologous recombination to generate non-immortalized fibroblast cells with the enhanced yellow fluorescence protein (EYFP) gene knocked into one CDKN1A gene copy, allowing promoter activity to be visualized as fluorescence intensity. Gamma irradiation, DNA-damaging drugs, expression of p14(ARF) or oncogenic Ras, and replicative exhaustion all resulted in elevated EYFP expression, demonstrating its proper control by physiological signalling circuits. Analysis by time-lapse microscopy of cultures approaching replicative senescence revealed that p21 levels rise abruptly in individual aging cells and remain elevated for extended periods of time. PMID:14677632

  5. Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study.

    PubMed

    Locatelli, Giuseppe; Bosotti, Roberta; Ciomei, Marina; Brasca, Maria G; Calogero, Raffaele; Mercurio, Ciro; Fiorentini, Francesco; Bertolotti, Matteo; Scacheri, Emanuela; Scaburri, Angela; Galvani, Arturo; Pesenti, Enrico; De Baere, Thierry; Soria, Jean-Charles; Lazar, Vladimir; Isacchi, Antonella

    2010-05-01

    A transcriptional signature of the pan-cyclin-dependent kinase (Cdk) inhibitor PHA-793887 was evaluated as a potential pharmacodynamic and/or response biomarker in tumor and skin biopsies from patients treated in a phase I clinical study. We first analyzed the expression of a number of known E2F-dependent genes that were predicted to be modulated after Cdk2 and Cdk4 inhibition in xenograft tumor and skin samples of mice treated with the compound. This panel of 58 selected genes was then analyzed in biopsies from seven patients treated with PHA-793887 in a phase I dose escalation clinical trial in solid tumors. Quantitative real-time PCR or microarray analyses were done in paired skin and tumor biopsies obtained at baseline and at cycle 1. Analysis by quantitative real-time PCR of the signature in skin biopsies of patients treated at three different doses showed significant transcriptional downregulation with a dose-response correlation. These data show that PHA-793887 modulates genes involved in cell cycle regulation and proliferation in a clinical setting. The observed changes are consistent with its mechanism of action and correlate with target modulation in skin and with clinical benefit in tumors. PMID:20423997

  6. Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study.

    PubMed

    Locatelli, Giuseppe; Bosotti, Roberta; Ciomei, Marina; Brasca, Maria G; Calogero, Raffaele; Mercurio, Ciro; Fiorentini, Francesco; Bertolotti, Matteo; Scacheri, Emanuela; Scaburri, Angela; Galvani, Arturo; Pesenti, Enrico; De Baere, Thierry; Soria, Jean-Charles; Lazar, Vladimir; Isacchi, Antonella

    2010-05-01

    A transcriptional signature of the pan-cyclin-dependent kinase (Cdk) inhibitor PHA-793887 was evaluated as a potential pharmacodynamic and/or response biomarker in tumor and skin biopsies from patients treated in a phase I clinical study. We first analyzed the expression of a number of known E2F-dependent genes that were predicted to be modulated after Cdk2 and Cdk4 inhibition in xenograft tumor and skin samples of mice treated with the compound. This panel of 58 selected genes was then analyzed in biopsies from seven patients treated with PHA-793887 in a phase I dose escalation clinical trial in solid tumors. Quantitative real-time PCR or microarray analyses were done in paired skin and tumor biopsies obtained at baseline and at cycle 1. Analysis by quantitative real-time PCR of the signature in skin biopsies of patients treated at three different doses showed significant transcriptional downregulation with a dose-response correlation. These data show that PHA-793887 modulates genes involved in cell cycle regulation and proliferation in a clinical setting. The observed changes are consistent with its mechanism of action and correlate with target modulation in skin and with clinical benefit in tumors.

  7. Expression of cyclin-dependent kinase inhibitor 2A 16, tumour protein 53 and epidermal growth factor receptor in salivary gland carcinomas is not associated with oncogenic virus infection.

    PubMed

    Senft, Ellen; Lemound, Juliana; Stucki-Koch, Angelika; Gellrich, Nils-Claudius; Kreipe, Hans; Hussein, Kais

    2015-03-01

    It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of HPV and its predictive markers in tumours of the major and minor salivary glands of the head and neck. We therefore assessed oral salivary gland neoplasms to identify associations between HPV and infection-related epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and tumour protein p53 (TP53). Formalin-fixed, paraffin-embedded tissue samples from oral salivary gland carcinomas (n=51) and benign tumours (n=26) were analysed by polymerase chain reaction (PCR) analysis for several HPV species, including high-risk types 16 and 18. Evaluation of EGFR, CDKN2A, TP53 and cytomegalovirus (CMV) was performed by immunohistochemistry. Epstein-Barr virus (EBV) was evaluated by EBV-encoded RNA in situ hybridisation. We demonstrated that salivary gland tumours are not associated with HPV infection. The expression of EGFR, CDKN2A and TP53 may be associated with tumour pathology but is not induced by HPV. CMV and EBV were not detectable. In contrast to oral squamous cell carcinomas, HPV, CMV and EBV infections are not associated with malignant or benign neoplastic lesions of the salivary glands.

  8. Therapeutic Targeting of the Cyclin D3:CDK4/6 Complex in T Cell Leukemia

    PubMed Central

    Sawai, Catherine; Freund, Jacquelyn; Oh, Philmo; Ndiaye-Lobry, Delphine; Bretz, Jamieson C.; Strikoudis, Alexandros; Genesca, Lali; Trimarchi, Thomas; Kelliher, Michelle A.; Clark, Marcus; Soulier, Jean; Chen-Kiang, Selina; Aifantis, Iannis

    2012-01-01

    SUMMARY D-type cyclins form complexes with cyclin dependent kinases (CDK4/6), and promote cell cycle progression. Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during blood differentiation. We show that only combined deletion of p27Kip1 and Rb is sufficient to rescue the development of Ccnd3−/− thymocytes. Furthermore, we show that a small molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this devastating blood tumor. PMID:23079656

  9. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma.

    PubMed

    Herzog, Julia; Ehrlich, Sandra M; Pfitzer, Lisa; Liebl, Johanna; Fröhlich, Thomas; Arnold, Georg J; Mikulits, Wolfgang; Haider, Christine; Vollmar, Angelika M; Zahler, Stefan

    2016-05-10

    We recently introduced CDK5 as target in HCC, regulating DNA damage response. Based on this and on our previous knowledge about vascular effects of CDK5, we investigated the role of CDK5 in angiogenesis in HCC, one of the most vascularized tumors. We put a special focus on the transcription factor HIF-1α, a master regulator of tumor angiogenesis.The interaction of CDK5 with HIF-1α was tested by Western blot, PCR, reporter gene assay, immunohistochemistry, kinase assay, co-immunoprecipitation, mass spectrometry, and mutation studies. In vivo, different murine HCC models, were either induced by diethylnitrosamine or subcutaneous injection of HUH7 or HepG2 cells. The correlation of vascular density and CDK5 was assessed by immunostaining of a microarray of liver tissues from HCC patients.Inhibition of CDK5 in endothelial or HCC cells reduced HIF-1α levels in vitro and in vivo, and transcription of HIF-1α target genes (VEGFA, VEGFR1, EphrinA1). Mass spectrometry and site directed mutagenesis revealed a stabilizing phosphorylation of HIF-1α at Ser687 by CDK5. Vascular density was decreased in murine HCC models by CDK5 inhibition.In conclusion, inhibiting CDK5 is a multi-modal systemic approach to treat HCC, hitting angiogenesis, as well as the tumor cells themselves. PMID:27027353

  10. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma

    PubMed Central

    Herzog, Julia; Ehrlich, Sandra M.; Pfitzer, Lisa; Liebl, Johanna; Fröhlich, Thomas; Arnold, Georg J.; Mikulits, Wolfgang; Haider, Christine; Vollmar, Angelika M.; Zahler, Stefan

    2016-01-01

    We recently introduced CDK5 as target in HCC, regulating DNA damage response. Based on this and on our previous knowledge about vascular effects of CDK5, we investigated the role of CDK5 in angiogenesis in HCC, one of the most vascularized tumors. We put a special focus on the transcription factor HIF-1α, a master regulator of tumor angiogenesis. The interaction of CDK5 with HIF-1α was tested by Western blot, PCR, reporter gene assay, immunohistochemistry, kinase assay, co-immunoprecipitation, mass spectrometry, and mutation studies. In vivo, different murine HCC models, were either induced by diethylnitrosamine or subcutaneous injection of HUH7 or HepG2 cells. The correlation of vascular density and CDK5 was assessed by immunostaining of a microarray of liver tissues from HCC patients. Inhibition of CDK5 in endothelial or HCC cells reduced HIF-1α levels in vitro and in vivo, and transcription of HIF-1α target genes (VEGFA, VEGFR1, EphrinA1). Mass spectrometry and site directed mutagenesis revealed a stabilizing phosphorylation of HIF-1α at Ser687 by CDK5. Vascular density was decreased in murine HCC models by CDK5 inhibition. In conclusion, inhibiting CDK5 is a multi-modal systemic approach to treat HCC, hitting angiogenesis, as well as the tumor cells themselves. PMID:27027353

  11. Cyclin-dependent kinase 5 regulates the proliferation, motility and invasiveness of lung cancer cells through its effects on cytoskeletal remodeling.

    PubMed

    Liu, Jun-Li; Gu, Run-Xia; Zhou, Xiao-Shu; Zhou, Fang-Zheng; Wu, Gang

    2015-09-01

    Determining the molecular phenotype is a key to understanding and predicting the metastatic potential and the prognosis for patients with lung cancer. Our previous study demonstrated that increased expression of cyclin‑dependent kinase 5 (CDK5) in patients with non‑small cell lung cancer (NSCLC) is associated with a poorer prognosis. The present study aimed to further investigate the underlying mechanism of CDK5 in vitro and in vivo using the A549 human NSCLC cell line. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was used to quantify the proliferation of the A549 cells; migration assay and invasiveness assays were performed using Transwell chambers and wound healing assays were used to assess cell motility, which was assessed by measuring the movement of cells. Inhibition of CDK5 by roscovitine and small interfering (si)RNA was used to investigate the mechanism of CDK5 in the process of A549 lung cancer cell proliferation, migration and invasion. The results demonstrated that functional inhibition of CDK5 using roscovitine and siRNA markedly suppressed the proliferation of A549 cells and resulted in a reduced tumor mass in vivo. In addition, the hinhibition of CDK5 reduced the migration and invasiveness of the A549 cells in vitro and in vivo. Notably, CDK5 inhibition also impaired tumor cell cytoskeletal remodeling and led to loss of cell polarity, which may partially explain the reduction of A549 cell mobility and invasiveness. The results of the present study revealed that CDK5 may be important in the regulation of migration and invasiveness in NSCLC through its effects on cytoskeletal remodeling. PMID:26018459

  12. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

    PubMed

    Walkup, Ward G; Washburn, Lorraine; Sweredoski, Michael J; Carlisle, Holly J; Graham, Robert L; Hess, Sonja; Kennedy, Mary B

    2015-02-20

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.

  13. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex.

    PubMed

    Suryadinata, Randy; Sadowski, Martin; Steel, Rohan; Sarcevic, Boris

    2011-02-18

    Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G(1)-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G(1)-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G(1) into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

  14. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells

    PubMed Central

    2013-01-01

    Background In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Methods Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. Results The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. Conclusion These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression. PMID:23343191

  15. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  16. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types

    PubMed Central

    Moussa, Rayan S.; Kovacevic, Zaklina; Richardson, Des R.

    2015-01-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75MDM2) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  17. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types.

    PubMed

    Moussa, Rayan S; Kovacevic, Zaklina; Richardson, Des R

    2015-10-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75(MDM2)) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  18. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast

    PubMed Central

    Silva, Richard C.; Dautel, Martina; Di Genova, Bruno M.; Amberg, David C.; Castilho, Beatriz A.; Sattlegger, Evelyn

    2015-01-01

    The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle. PMID:26176233

  19. Mechanisms and regulation of the degradation of cyclin B.

    PubMed Central

    Hershko, A

    1999-01-01

    The degradation of the cyclin B subunit of protein kinase Cdk1/cyclin B is required for inactivation of the kinase and exit from mitosis. Cyclin B is degraded by the ubiquitin pathway, a system involved in most selective protein degradation in eukaryotic cells. In this pathway, proteins are targeted for degradation by ligation to ubiquitin, a process carried out by the sequential action of three enzymes: the ubiquitin-activating enzyme E1, a ubiquitin-carrier protein E2 and a ubiquitin-protein ligase E3. In the system responsible for cyclin B degradation, the E3-like function is carried out by a large complex called cyclosome or anaphase-promoting complex (APC). In the early embryonic cell cycles, the cyclosome is inactive in the interphase, but becomes active at the end of mitosis. Activation requires phosphorylation of the cyclosome/APC by protein kinase Cdk1/cyclin B. The lag kinetics of cyclosome activation may be explained by Suc1-assisted multiple phosphorylations of partly phosphorylated complex. The presence of a Fizzy/Cdc20-like protein is necessary for maximal activity of the mitotic form of cyclosome/APC in cyclin-ubiquitin ligation. PMID:10582242

  20. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors.

    PubMed

    Zhao, Ping; Li, Yanzhong; Gao, Guangwei; Wang, Shuai; Yan, Yun; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin; Chen, Shaoxiong; Wang, Liqun

    2014-10-30

    A series of N-alkyl or aryl substituted isoindigo derivatives have been synthesized and their anti-proliferative activity was evaluated by Sulforhodamine B (SRB) assay. Some of the target compounds exhibited significant antitumor activity, including compounds 6h and 6k (against K562 cells), 6i (against HeLa cells) and 6j (against A549 cells). N-(p-methoxy-phenyl)-isoindigo (6k) exhibited a high and selective anti-proliferative activity against K562 cells (IC50 7.8 μM) and induced the apoptosis of K562 cells in a dose-dependent manner. Compound 6k arrested the cell cycle at S phase in K562 cells by decreasing the expression of cyclin A and CDK2, which played critical roles in DNA replication and passage through G2 phase. Moreover, compound 6k down-regulated the expression of p-GSK-3β (Ser9), β-catenin and c-myc proteins, up-regulated the expression of GSK-3β, consequently, suppressed Wnt/β-catenin signaling pathway and induced the apoptosis of K562 cells. The binding mode of compound 6k with GSK-3β was simulated using molecular docking tools. All of these studies gave a better understanding to the molecular mechanisms of this class of agents and clues to develop dual CDK2/GSK-3β (Ser9) phosphorylation inhibitors applied in cancer chemotherapy. PMID:25151579

  1. Phylogenetic analysis reveals the evolution and diversification of cyclins in eukaryotes.

    PubMed

    Ma, Zhaowu; Wu, Yuliang; Jin, Jialu; Yan, Jun; Kuang, Shuzhen; Zhou, Mi; Zhang, Yuexuan; Guo, An-Yuan

    2013-03-01

    Cyclins are a family of diverse proteins that play fundamental roles in regulating cell cycle progression in Eukaryotes. Cyclins have been identified from protists to higher Eukaryotes, while its evolution remains vague and the findings turn out controversial. Current classification of cyclins is mainly based on their functions, which may not be appropriate for the systematic evolutionary analysis. In this work, we performed comparative and phylogenetic analysis of cyclins to investigate their classification, origin and evolution. Cyclins originated in early Eukaryotes and evolved from protists to plants, fungi and animals. Based on the phylogenetic tree, cyclins can be divided into three major groups designated as the group I, II and III with different functions and features. Group I plays key roles in cell cycle, group II varied in actions are kingdom (plant, fungi and animal) specific, and group III functions in transcription regulation. Our results showed that the dominating cyclins (group I) diverged from protists to plants, fungi and animals, while divergence of the other cyclins (groups II and III) has occurred in protists. We also discussed the evolutionary relationships between cyclins and cyclin-dependent kinases (CDKs) and found that the cyclins have undergone divergence in protists before the divergence of animal CDKs. This reclassification and evolutionary analysis of cyclins might facilitate understanding eukaryotic cell cycle control.

  2. Regulation of cyclin E stability in Xenopus laevis embryos

    NASA Astrophysics Data System (ADS)

    Brandt-(Webb), Yekaterina

    Cyclin-Cdk complexes positively regulate cell cycle progression. Cyclins are regulatory subunits that bind to and activate cyclin-dependent kinases or Cdks. Cyclin E associates with Cdk2 to mediate G1/S phase transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how this protein is downregulated during development in order to determine if these mechanisms are disrupted during tumorigenesis, leading to its overexpression. Using Xenopus laevis embryos as a model, we have shown previously that during the first 12 embryonic cell cycles Cyclin E levels remain constant yet Cdk2 activity oscillates twice per cell cycle. Cyclin E is abruptly destabilized by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT). Based on work our work and work by others, we have hypothesized that differential phosphorylation and a change in localization result in Cyclin E degradation by the 26S proteasome at the MBT. To test this, we generated a series of point mutations in conserved threonine/serine residues implicated in degradation of human Cyclin E. Using Western blot analysis, we show that similarly to human Cyclin E, mutation of these residues to unphosphorylatable alanine stabilizes Cyclin E past the MBT when they are expressed in vivo. Cyclin E localization was studied by immunofluorescence analysis of endogenous and exogenous protein in pre-MBT, MBT, and post-MBT embryos. In addition, we developed a novel method of conjugating recombinant His6-tagged Cyclin E to fluorescent (CdSe)ZnS nanoparticles (quantum dots) capped with dihydrolipoic acid. Confocal microscopy was used to visualize His6Cyclin E-quantum dot complexes inside embryo cells in real time. We found that re-localization at the MBT from the cytoplasm to the nucleus

  3. Trichostatin A induces a unique set of microRNAs including miR-129-5p that blocks cyclin-dependent kinase 6 expression and proliferation in H9c2 cardiac myocytes.

    PubMed

    Majumdar, Gipsy; Raghow, Rajendra

    2016-04-01

    The pan-histone deacetylase inhibitor (HDACI), trichostatin A (TSA), was shown to normalize interleukin-18-induced cardiac hypertrophy in vivo and in vitro; evidently, this occurred via epigenetic mechanisms that profoundly altered cardiac gene expression (Majumdar et al. in, Physiol Genom, 43: 1392, 2011; BMC Genom, 13: 709, 2012). Here, we tested the hypothesis that TSA-induced changes in chromatin architecture also led to altered expression of microRNAs that in turn, contributed to the unique transcriptome of cardiac myocytes exposed to the HDACI. Using miRCURY LNA™ Universal microRNA PCR system, we demonstrate that H9c2 cells exposed to TSA for 6 and 24 h elicited differential expression of 19 and 16 microRNAs, respectively. H9c2 cells incubated in medium-containing 100 nM of TSA elicited a rapid and robust induction of miR-129-5p. Enhanced expression of miR-129-5p was also observed in the hearts of TSA-treated mice. Induction of miR-129-5p in H9c2 cells was accompanied by reduced expression of its direct target, cyclin-dependent kinase 6 (CDK6) that is a key regulator of cell cycle. Using cell division-dependent dilution of Cell Trace™ violet measurements we showed that concomitant induction of miR-129-5p and reduced CDK6 expression were mechanistically involved in TSA-induced inhibition of proliferation of H9c2 cells. Consistent with this scenario, cells expressing an antagomiR of miR-129-5p were resistant to the anti-proliferative actions of TSA. These data indicate that although TSA treatment led to altered expression of several microRNAs, the overarching action of TSA (i.e., inhibition of cell division) in H9c2 cells was achieved via miR-129-5p.

  4. Trichostatin A induces a unique set of microRNAs including miR-129-5p that blocks cyclin-dependent kinase 6 expression and proliferation in H9c2 cardiac myocytes.

    PubMed

    Majumdar, Gipsy; Raghow, Rajendra

    2016-04-01

    The pan-histone deacetylase inhibitor (HDACI), trichostatin A (TSA), was shown to normalize interleukin-18-induced cardiac hypertrophy in vivo and in vitro; evidently, this occurred via epigenetic mechanisms that profoundly altered cardiac gene expression (Majumdar et al. in, Physiol Genom, 43: 1392, 2011; BMC Genom, 13: 709, 2012). Here, we tested the hypothesis that TSA-induced changes in chromatin architecture also led to altered expression of microRNAs that in turn, contributed to the unique transcriptome of cardiac myocytes exposed to the HDACI. Using miRCURY LNA™ Universal microRNA PCR system, we demonstrate that H9c2 cells exposed to TSA for 6 and 24 h elicited differential expression of 19 and 16 microRNAs, respectively. H9c2 cells incubated in medium-containing 100 nM of TSA elicited a rapid and robust induction of miR-129-5p. Enhanced expression of miR-129-5p was also observed in the hearts of TSA-treated mice. Induction of miR-129-5p in H9c2 cells was accompanied by reduced expression of its direct target, cyclin-dependent kinase 6 (CDK6) that is a key regulator of cell cycle. Using cell division-dependent dilution of Cell Trace™ violet measurements we showed that concomitant induction of miR-129-5p and reduced CDK6 expression were mechanistically involved in TSA-induced inhibition of proliferation of H9c2 cells. Consistent with this scenario, cells expressing an antagomiR of miR-129-5p were resistant to the anti-proliferative actions of TSA. These data indicate that although TSA treatment led to altered expression of several microRNAs, the overarching action of TSA (i.e., inhibition of cell division) in H9c2 cells was achieved via miR-129-5p. PMID:26946427

  5. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.

    PubMed

    Khakhina, Svetlana; Cooper, Katrina F; Strich, Randy

    2014-09-15

    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.

  6. Cyclin A–CDK phosphorylates Sp1 and enhances Sp1-mediated transcription

    PubMed Central

    de Borja, Patrick Fojas; Collins, N.Keith; Du, Ping; Azizkhan-Clifford, Jane; Mudryj, Maria

    2001-01-01

    Cyclin A-mediated activation of cyclin-dependent kinases (CDKs) is essential for cell cycle transversal. Cyclin A activity is regulated on several levels and cyclin A elevation in a number of cancers suggests a role in tumorigenesis. In the present study, we used a modified DNA binding site selection and PCR amplification procedure to identify DNA binding proteins that are potential substrates of cyclin A–CDK. One of the sequences identified is the Sp1 transcription factor binding site. Co-immunoprecipitation experiments show that cyclin A and Sp1 can interact physically. In vitro and in vivo phosphorylation studies indicate that cyclin A–CDK complexes can phosphorylate Sp1. The phosphorylation site is located in the N-terminal region of the protein. Cells overexpressing cyclin A have elevated levels of Sp1 DNA binding activity, suggesting that cyclin A–CDK-mediated phosphorylation augments Sp1 DNA binding properties. In co-transfection studies, cyclin A expression stimulated transcription from an Sp1-regulated promoter. Mutation of the phosphorylation site abrogated cyclin A–CDK-dependent phosphorylation, augmentation of Sp1 transactivation function and DNA binding activity. PMID:11598016

  7. Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.

    PubMed

    Brasca, Maria Gabriella; Amboldi, Nadia; Ballinari, Dario; Cameron, Alexander; Casale, Elena; Cervi, Giovanni; Colombo, Maristella; Colotta, Francesco; Croci, Valter; D'Alessio, Roberto; Fiorentini, Francesco; Isacchi, Antonella; Mercurio, Ciro; Moretti, Walter; Panzeri, Achille; Pastori, Wilma; Pevarello, Paolo; Quartieri, Francesca; Roletto, Fulvia; Traquandi, Gabriella; Vianello, Paola; Vulpetti, Anna; Ciomei, Marina

    2009-08-27

    The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials. PMID:19603809

  8. A Conserved Gammaherpesvirus Cyclin Specifically Bypasses Host p18INK4c To Promote Reactivation from Latency

    PubMed Central

    Williams, Lisa M.; Niemeyer, Brian F.; Franklin, David S.; Clambey, Eric T.

    2015-01-01

    ABSTRACT Gammaherpesviruses (GHVs) carry homologs of cellular genes, including those encoding a viral cyclin that promotes reactivation from latent infection. The viral cyclin has reduced sensitivity to host cyclin-dependent kinase inhibitors in vitro; however, the in vivo significance of this is unclear. Here, we tested the genetic requirement for the viral cyclin in mice that lack the host inhibitors p27Kip1 and p18INK4c, two cyclin-dependent kinase inhibitors known to be important in regulating B cell proliferation and differentiation. While the viral cyclin was essential for reactivation in wild-type mice, strikingly, it was dispensable for reactivation in mice lacking p27Kip1 and p18INK4c. Further analysis revealed that genetic ablation of only p18INK4c alleviated the requirement for the viral cyclin for reactivation from latency. p18INK4c regulated reactivation in a dose-dependent manner so that the viral cyclin was dispensable in p18INK4c heterozygous mice. Finally, treatment of wild-type cells with the cytokine BAFF, a known attenuator of p18INK4c function in B lymphocytes, was also able to bypass the requirement for the viral cyclin in reactivation. These data show that the gammaherpesvirus viral cyclin functions specifically to bypass the cyclin-dependent kinase inhibitor p18INK4c, revealing an unanticipated specificity between a GHV cyclin and a single cyclin-dependent kinase inhibitor. IMPORTANCE The gammaherpesviruses (GHVs) cause lifelong infection and can cause chronic inflammatory diseases and cancer, especially in immunosuppressed individuals. Many GHVs encode a conserved viral cyclin that is required for infection and disease. While a common property of the viral cyclins is that they resist inhibition by normal cellular mechanisms, it remains unclear how important it is that the GHVs resist this inhibition. We used a mouse GHV that either contained or lacked a viral cyclin to test whether the viral cyclin lost importance when these inhibitory

  9. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin.

    PubMed Central

    Janss, A. J.; Maity, A.; Tang, C. B.; Muschel, R. J.; McKenna, W. G.; Sutton, L.; Phillips, P. C.

    2001-01-01

    DNA damage produces delayed mitosis (G2/M delay) in proliferating cells, and shortening the delay sensitizes human malignant glioma and medulloblastoma cells to cytotoxic chemotherapy. Although activation of the cyclin-dependent kinase CDC2 mediates G2/M transition in all tumor cells studied to date, regulation of CDC2 varies between tumor types. Persistent hyperphosphorylation of kinase and reduced cyclin expression have been implicated as mediators of treatment-induced G2 delay in different tumor models. To evaluate regulation of G2/M transition in human brain tumors, we studied the expression and/or activity of CDC2 kinase and cyclins A and B1 in U-251 MG and DAOY medulloblastoma cells after their treatment with camptothecin (CPT). Synchronized cells were treated during S phase, then harvested at predetermined intervals for evaluation of cell cycle kinetics, kinase activity mRNA, and protein expression. CPT produced G2 delay associated with decreased CDC2 kinase activity and cyclin B1 expression. Kinase activity was associated with CDC2 bound to cyclin B1, not cyclin A, in both cell lines. Cyclin A mRNA and protein expression were reduced after CPT treatment; however, decreased protein expression was short lived and moderate in the glioma and primitive neuroectodermal tumor/medulloblastoma cells, respectively. We conclude that G2 delay is a common response of brain tumor cells to chemotherapy with topoisomerase I inhibitors and that a mechanism of this delay may be reduced expression of cyclin B1. PMID:11305412

  10. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    SciTech Connect

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki . E-mail: mikeda.emb@tmd.ac.jp

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  11. Early Expressed Clb Proteins Allow Accumulation of Mitotic Cyclin by Inactivating Proteolytic Machinery during S Phase

    PubMed Central

    Yeong, Foong May; Lim, Hong Hwa; Wang, Ya; Surana, Uttam

    2001-01-01

    Periodic accumulation and destruction of mitotic cyclins are important for the initiation and termination of M phase. It is known that both APCCdc20 and APCHct1 collaborate to destroy mitotic cyclins during M phase. Here we show that this relationship between anaphase-promoting complex (APC) and Clb proteins is reversed in S phase such that the early Clb kinases (Clb3, Clb4, and Clb5 kinases) inactivate APCHct1 to allow Clb2 accumulation. This alternating antagonism between APC and Clb proteins during S and M phases constitutes an oscillatory system that generates undulations in the levels of mitotic cyclins. PMID:11438663

  12. Bcl-2 induces cyclin D1 promoter activity in human breast epithelial cells independent of cell anchorage.

    PubMed

    Lin, H M; Lee, Y J; Li, G; Pestell, R G; Kim, H R

    2001-01-01

    Cyclin D1 expression is co-regulated by growth factor and cell adhesion signaling. Cell adhesion to the extracellular matrix activates focal adhesion kinase (FAK), which is essential for cyclin D1 expression. Upon the loss of cell adhesion, cyclin D1 expression is downregulated, followed by apoptosis in normal epithelial cells. Since bcl-2 prevents apoptosis induced by the loss of cell adhesion, we hypothesized that bcl-2 induces survival signaling complementary to cell adhesion-mediated gene regulation. In the present study, we investigated the role of bcl-2 on FAK activity and cyclin D1 expression. We found that bcl-2 overexpression induces cyclin D1 expression in human breast epithelial cell line MCF10A independent of cell anchorage. Increased cyclin D1 expression in stable bcl-2 transfectants is not related to bcl-2-increased G1 duration, but results from cyclin D1 promoter activation. Transient transfection studies confirmed anchorage-independent bcl-2 induction of cyclin D1 promoter activity in human breast epithelial cell lines (MCF10A, BT549, and MCF-7). We provide evidence that bcl-2 induction of cyclin D1 expression involves constitutive activation of focal adhesion kinase, regardless of cell adhesion. The present study suggests a potential oncogenic activity for bcl-2 through cyclin D1 induction, and provides an insight into the distinct proliferation-independent pathway leading to increased cyclin D1 expression in breast cancer.

  13. D-type cyclins and G1 progression during liver development in the rat

    SciTech Connect

    Boylan, Joan M. . E-mail: Joan_Boylan@brown.edu; Gruppuso, Philip A. . E-mail: Philip_Gruppuso@brown.edu

    2005-05-13

    Initiation and progression through G1 requires the activity of signaling complexes containing cyclins (D- or E-type) and cyclin-dependent kinases (CDK4/6 and CDK2, respectively). We set out to identify the G1-phase cyclins and CDKs that are operative during late gestation liver development in the rat. This is a period during which hepatocytes show a high rate of proliferation that is, at least in part, independent of the mitogenic signaling pathways that are functional in mature hepatocytes. RNase protection assay and Western immunoblotting indicated that cyclin D1 is expressed at similar levels in fetal and adult liver. When cyclin D1 was induced after partial hepatectomy, its predominant CDK-binding partner was CDK4. In contrast, cyclins D2 and D3 predominated in fetal liver and were complexed with both CDK4 and CDK6. Little CDK6 protein was expressed in quiescent or regenerating adult liver. Cyclins E1 and E2 were both transcriptionally up-regulated in fetal liver. Activity of complexes containing cyclins E1 and E2 was higher in fetal liver, as was content of the cell cycle regulator, Rb. In fetal liver, Rb was highly phosphorylated at both cyclin D- and cyclin E-dependent sites. In conclusion, liver development is associated with a switch from cyclin D2/D3-containing complexes to cyclin D1:CDK4 complexes. We speculate that the switch in D-type cyclins may be associated with the dependence on mitogenic signaling that develops as hepatocytes mature.

  14. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction

    SciTech Connect

    Iwatani, Kazunori; Fujimoto, Tetsuhiro; Ito, Takaaki

    2010-09-24

    Research highlights: {yields} Cyclin D1 interacts with RUNX3 and inhibits the interaction and collaboration of RUNX3 with coactivator p300. {yields} Cyclin D1 blocks the ability of RUNX3 to induce the expression of cdk inhibitor p21. {yields} Cyclin D1 releases cancer cells from the inhibition of proliferation induced by RUNX3. -- Abstract: Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.

  15. Dissection of Cdk1–cyclin complexes in vivo

    PubMed Central

    Ear, Po Hien; Booth, Michael J.; Abd-Rabbo, Diala; Kowarzyk Moreno, Jacqueline; Hall, Conrad; Chen, Daici; Vogel, Jackie; Michnick, Stephen W.

    2013-01-01

    Cyclin-dependent kinases (Cdks) are regulatory enzymes with temporal and spatial selectivity for their protein substrates that are governed by cell cycle-regulated cyclin subunits. Specific cyclin–Cdk complexes bind to and phosphorylate target proteins, coupling their activity to cell cycle states. The identification of specific cyclin–Cdk substrates is challenging and so far, has largely been achieved through indirect correlation or use of in vitro techniques. Here, we use a protein-fragment complementation assay based on the optimized yeast cytosine deaminase to systematically identify candidate substrates of budding yeast Saccharomyces cerevisiae Cdk1 and show dependency on one or more regulatory cyclins. We identified known and candidate cyclin dependencies for many predicted protein kinase Cdk1 targets and showed elusory Clb3–Cdk1-specific phosphorylation of γ-tubulin, thus establishing the timing of this event in controlling assembly of the mitotic spindle. Our strategy can be generally applied to identify substrates and accessory subunits of multisubunit protein complexes. PMID:24019491

  16. Incomplete Folding upon Binding Mediates Cdk4/Cyclin D Complex Activation by Tyrosine Phosphorylation of Inhibitor p27 Protein*

    PubMed Central

    Ou, Li; Ferreira, Antonio M.; Otieno, Steve; Xiao, Limin; Bashford, Donald; Kriwacki, Richard W.

    2011-01-01

    p27Kip1 (p27), an intrinsically disordered protein, regulates the various Cdk/cyclin complexes that control cell cycle progression. The kinase inhibitory domain of p27 contains a cyclin-binding subdomain (D1), a Cdk-binding subdomain (D2), and a linker helix subdomain that connects D1 and D2. Here, we report that, despite extensive sequence conservation between Cdk4/cyclin D1 (hereafter Cdk4/cyclin D) and Cdk2/cyclin A, the thermodynamic details describing how the individual p27 subdomains contribute to equally high affinity binding to these two Cdk/cyclin complexes are strikingly different. Differences in enthalpy/entropy compensation revealed that the D2 subdomain of p27 folds incompletely when binding Cdk4/cyclin D versus Cdk2/cyclin A. Incomplete binding-induced folding exposes tyrosine 88 of p27 for phosphorylation by the nonreceptor tyrosine kinase Abl. Importantly, tyrosine phosphorylation (of p27) relieves Cdk inhibition by p27, enabling cell cycle entry. Furthermore, the interaction between a conserved hydrophobic patch on cyclin D and subdomain D1 is much weaker than that with cyclin A; consequently, a construct containing subdomains D1 and LH (p27-D1LH) does not inhibit substrate binding to Cdk4/cyclin D as it does to Cdk2/cyclin A. Our results provide a mechanism by which Cdk4 (within the p27/Cdk4/cyclin D complex) is poised to be activated by extrinsic mitogenic signals that impinge upon p27 at the earliest stage of cell division. More broadly, our results further illustrate the regulatory versatility of intrinsically disordered proteins. PMID:21715330

  17. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    SciTech Connect

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  18. Structural basis for CDK6 activation by a virus-encoded cyclin

    SciTech Connect

    Schulze-Gahmen, Ursula; Kim, Sung-Hou

    2002-01-17

    Cyclin from herpesvirus saimiri (Vcyclin) preferentially forms complexes with cyclin-dependent kinase 6 (CDK6) from primate host cells. These complexes show higher kinase activity than host cell CDK complexes with cellular cyclins and are resistant to cyclin-dependent inhibitory proteins (CDKIs). The crystal structure of human CDK6-Vcyclin in an active state was determined to 3.1 Angstrom resolution to get a better understanding of the structural basis of CDK6 activation by viral cyclins. The unphosphorylated CDK6 complexed to Vcyclin has many features characteristic of cyclinA-activated, phosphorylated CDK2. There are, however, differences in the conformation at the tip of the T-loop and its interactions with Vcyclin. Residues in the N-terminal extension of Vcyclin wrap around the tip of the CDK6 T-loop and form a short b-sheet with the T-loop backbone. These interactions lead to a 20 percent larger buried surface in the CDK6-Vcyclin interface than in the CDK2-cyclinA complex and are probably largely responsible for Vcyclin specificity for CDK6 and resistance of the complex to inhibition by INK-typeCDKIs.

  19. Expression and Purification of Recombinant Cyclins and CDKs for Activity Evaluation.

    PubMed

    Gallastegui, Edurne; Bachs, Oriol

    2016-01-01

    Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. Their activity is mainly regulated by association with regulatory subunits named cyclins but their activities are also regulated by phosphorylation, acetylation, and the association with specific inhibitory proteins (CKIs). The activity of different Cdks is deregulated in many different type of tumors, and thus, Cdks are considered targets for antitumoral therapy. For large screenings of inhibitors the use of purified recombinant Cdks and cyclins is recommended. We report here the current methods to determine their in vitro activity for large screenings of inhibitors.

  20. Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Jiao, Xuanmao; Katiyar, Sanjay; Casimiro, Mathew C; Prendergast, George C; Powell, Michael J; Pestell, Richard G

    2008-03-14

    Cyclin D1 is an important cell cycle regulator, but in cancer its overexpression also increases cellular migration mediated by p27 KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N terminus as the canonical cyclin D1a isoform but a distinct C terminus. In this study we show that these different isoforms have unique properties with regard to the cellular migration function of cyclin D1. Although they displayed little difference in transcriptional co-repression assays on idealized reporter genes, microarray cDNA expression analysis revealed differential regulation of genes, including those that influence cellular migration. Additionally, whereas cyclin D1a stabilized p27 KIP1 and inhibited RhoA-induced ROCK kinase activity, promoting cellular migration, cyclin D1b failed to stabilize p27 KIP1 or inhibit ROCK kinase activity and had no effect on migration. Our findings argue that alternate splicing is an important determinant of the function of cyclin D1 in cellular migration.

  1. Cyclin E in centrosome duplication and reduplication in sea urchin zygotes.

    PubMed

    Schnackenberg, Bradley J; Marzluff, William F; Sluder, Greenfield

    2008-12-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally approximately 1 h in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication.

  2. Cyclin E in Centrosome Duplication and Reduplication in Sea Urchin Zygotes

    PubMed Central

    Schnackenberg, Bradley J.; Marzluff, William F.; Sluder, Greenfield

    2010-01-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally ~1 hour in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication. PMID:18651565

  3. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium.

    PubMed

    Subramaniam, Gunasekaran; Campsteijn, Coen; Thompson, Eric M

    2015-01-01

    The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.

  4. Identification of a Myc-dependent step during the formation of active G1 cyclin-cdk complexes.

    PubMed Central

    Steiner, P; Philipp, A; Lukas, J; Godden-Kent, D; Pagano, M; Mittnacht, S; Bartek, J; Eilers, M

    1995-01-01

    Activation of conditional alleles of Myc can induce proliferation in quiescent cells. We now report that induction of Myc in density-arrested fibroblasts triggers rapid hyperphosphorylation of the retinoblastoma protein and activation of both cyclin D1- and cyclin E-associated kinase activities in the absence of significant changes in the amounts of cyclin-cdk complexes. Kinase activation by Myc is blocked by inhibitors of transcription and requires intact DNA binding and heterodimerization domains of Myc. Activation of cyclin E-cdk2 kinase in serum-starved cells occurs in two steps. The first is induced by Myc and involves the release of a 120 kDa cyclin E-cdk2 complex from a 250 kDa inactive complex that is present in starved cells. This is necessary, but not sufficient, to generate full kinase activity, as cdc25 phosphatase activity is limiting in the absence of external growth factors. In vivo cdc25 activity can be supplied by the addition of growth factors. In vitro recombinant cdc25a strongly activates the 120 kDa, but only poorly activates the 250 kDa cyclin E-cdk2 complex. Our data show that two distinct signals, one of which is supplied by Myc, are necessary for consecutive steps during growth factor-induced formation of active cyclin E-cdk2 complexes in G(o)-arrested rodent fibroblasts. Images PMID:7588611

  5. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  6. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth. PMID:11709714

  7. Complexes of D-type cyclins with CDKs during maize germination.

    PubMed

    Godínez-Palma, Silvia K; García, Elpidio; Sánchez, María de la Paz; Rosas, Fernando; Vázquez-Ramos, Jorge M

    2013-12-01

    The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation and advancement. Our aim has been to understand the role of D-type cyclins and type A and B CDKs in the cell cycle taking place during a developmental process such as maize seed germination. Results indicate that three maize D-type cyclins-D2;2, D4;2, and D5;3-(G1-S cyclins by definition) bind and activate two different types of CDK-A and B1;1-in a differential way during germination. Whereas CDKA-D-type cyclin complexes are more active at early germination times than at later times, it was surprising to observe that CDKB1;1, a supposedly G2-M kinase, bound in a differential way to all D-type cyclins tested during germination. Binding to cyclin D2;2 was detectable at all germination times, forming a complex with kinase activity, whereas binding to D4;2 and D5;3 was more variable; in particular, D5;3 was only detected at late germination times. Results are discussed in terms of cell cycle advancement and its importance for seed germination.

  8. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    PubMed

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  9. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3.

    PubMed Central

    Sigrist, S; Jacobs, H; Stratmann, R; Lehner, C F

    1995-01-01

    While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition. Images PMID:7588612

  10. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity.

    PubMed Central

    Lukas, J; Bartkova, J; Rohde, M; Strauss, M; Bartek, J

    1995-01-01

    To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle. PMID:7739541

  11. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism.

  12. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  13. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    PubMed

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  14. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  15. Cyclin A2: At the crossroads of cell cycle and cell invasion

    PubMed Central

    Loukil, Abdelhalim; Cheung, Caroline T; Bendris, Nawal; Lemmers, Bénédicte; Peter, Marion; Blanchard, Jean Marie

    2015-01-01

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis. PMID:26629317

  16. Cybip, a starfish cyclin B-binding protein, is involved in meiotic M-phase exit.

    PubMed

    Offner, Nicolas; Derancourt, Jean; Lozano, Jean Claude; Schatt, Philippe; Picard, André; Peaucellier, Gérard

    2003-01-01

    We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission.

  17. Cyclin A2: At the crossroads of cell cycle and cell invasion.

    PubMed

    Loukil, Abdelhalim; Cheung, Caroline T; Bendris, Nawal; Lemmers, Bénédicte; Peter, Marion; Blanchard, Jean Marie

    2015-11-26

    Cyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity. Since this GTPase is involved in both cell rounding early in mitosis and later, in the formation of the cleavage furrow, this suggests that cyclin A2 is a novel actor in cytokinesis. Taken together, these data point to this cyclin as a potential mediator of cell-niche interactions whose dysregulation could be taken as a hallmark of metastasis.

  18. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  19. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells

    PubMed Central

    Baldassarre, Gustavo; Belletti, Barbara; Bruni, Paola; Boccia, Angelo; Trapasso, Francesco; Pentimalli, Francesca; Barone, Maria Vittoria; Chiappetta, Gennaro; Vento, Maria Teresa; Spiezia, Stefania; Fusco, Alfredo; Viglietto, Giuseppe

    1999-01-01

    The majority of thyroid carcinomas maintain the expression of the cell growth suppressor p27, an inhibitor of cyclin-dependent kinase-2 (Cdk2). However, we find that 80% of p27-expressing tumors show an uncommon cytoplasmic localization of p27 protein, associated with high Cdk2 activity. To reproduce such a situation, a mutant p27 devoid of its COOH-terminal nuclear-localization signal was generated (p27-NLS). p27-NLS accumulates in the cytoplasm and fails to induce growth arrest in 2 different cell lines, indicating that cytoplasm-residing p27 is inactive as a growth inhibitor, presumably because it does not interact with nuclear Cdk2. Overexpression of cyclin D3 may account in part for p27 cytoplasmic localization. In thyroid tumors and cell lines, cyclin D3 expression was associated with cytoplasmic localization of p27. Moreover, expression of cyclin D3 in thyroid carcinoma cells induced cytoplasmic retention of cotransfected p27 and rescued p27-imposed growth arrest. Endogenous p27 also localized prevalently to the cytoplasm in normal thyrocytes engineered to stably overexpress cyclin D3 (PC-D3 cells). In these cells, cyclin D3 induced the formation of cytoplasmic p27–cyclin D3–Cdk complexes, which titrated p27 away from intranuclear complexes that contain cyclins A–E and Cdk2. Our results demonstrate a novel mechanism that may contribute to overcoming the p27 inhibitory threshold in transformed thyroid cells. PMID:10510327

  20. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  1. Arabidopsis PCNAs form complexes with selected D-type cyclins

    PubMed Central

    Strzalka, Wojciech K.; Aggarwal, Chhavi; Krzeszowiec, Weronika; Jakubowska, Agata; Sztatelman, Olga; Banas, Agnieszka K.

    2015-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key nuclear protein of eukaryotic cells. It has been shown to form complexes with cyclin dependent kinases, cyclin dependent kinase inhibitors and the D-type cyclins which are involved in the cell cycle control. In Arabidopsis two genes coding for PCNA1 and PCNA2 proteins have been identified. In this study by analyzing Arabidopsis PCNA/CycD complexes we tested the possible functional differentiation of PCNA1/2 proteins in cell cycle control. Most out of the 10 cyclins investigated showed only nuclear localization except CycD2;1, CycD4;1, and CycD4;2 which were observed both in the nucleus and cytoplasm. Using the Y2H, BiFC and FLIM-FRET techniques we identified D-type cyclins which formed complexes with either PCNA1 or PCNA2. Among the candidates tested only CycD1;1, CycD3;1, and CycD3;3 were not detected in a complex with the PCNA proteins. Moreover, our results indicate that the formation of CycD3;2/PCNA and CycD4;1/PCNA complexes can be regulated by other as yet unidentified factor(s). Additionally, FLIM-FRET analyses suggested that in planta the distance between PCNA1/CycD4;1, PCNA1/CycD6;1, PCNA1/CycD7;1, and PCNA2/CycD4;2 proteins was shorter than that between PCNA2/CycD4;1, PCNA2/CycD6;1, PCNA2/CycD7;1, and PCNA1/CycD4;2 pairs. These data indicate that the nine amino acid differences between PCNA1 and PCNA2 have an impact on the architecture of Arabidopsis CycD/PCNA complexes. PMID:26379676

  2. Cyclin B1 Vaccine Delays Spontaneous Tumors

    PubMed Central

    Laura A, Vella; Min, Yu; Amy, Phillips; Olivera J, Finn

    2012-01-01

    We previously identified cyclin B1-specific T cells and antibodies in cancer patients with cyclin B1+ tumors and also in some healthy individuals. We also demonstrated that these responses may be important in cancer immunosurveillance by showing that vaccination against cyclin B1 prevents growth of transplantable cyclin B1+ tumors in mice. Constitutive overexpression of cyclin B1 was determined to correlate with the lack of p53 function. This allowed us to use p53−/− mice as a model that better approximates human disease. p53−/− mice spontaneously develop cyclin B1+ tumors. At 5–6 weeks of age, when the mice were still healthy with no evidence of tumor, they received the cyclin B1 vaccine and were then observed for tumor growth. We demonstrate that cyclin B1 vaccination can delay spontaneous cyclin B1+ tumor growth and increases median survival of tumor bearing p53−/− mice. PMID:19769738

  3. Conformational Equilibrium of CDK/Cyclin Complexes by Molecular Dynamics with Excited Normal Modes

    PubMed Central

    Floquet, Nicolas; Costa, Mauricio G.S.; Batista, Paulo R.; Renault, Pedro; Bisch, Paulo M.; Raussin, Florent; Martinez, Jean; Morris, May C.; Perahia, David

    2015-01-01

    Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of

  4. Epstein-Barr Virus Nuclear Antigen 3C Facilitates G1-S Transition by Stabilizing and Enhancing the Function of Cyclin D1

    PubMed Central

    Saha, Abhik; Halder, Sabyasachi; Upadhyay, Santosh K.; Lu, Jie; Kumar, Pankaj; Murakami, Masanao; Cai, Qiliang; Robertson, Erle S.

    2011-01-01

    EBNA3C, one of the Epstein-Barr virus (EBV)-encoded latent antigens, is essential for primary B-cell transformation. Cyclin D1, a key regulator of G1 to S phase progression, is tightly associated and aberrantly expressed in numerous human cancers. Previously, EBNA3C was shown to bind to Cyclin D1 in vitro along with Cyclin A and Cyclin E. In the present study, we provide evidence which demonstrates that EBNA3C forms a complex with Cyclin D1 in human cells. Detailed mapping experiments show that a small N-terminal region which lies between amino acids 130–160 of EBNA3C binds to two different sites of Cyclin D1- the N-terminal pRb binding domain (residues 1–50), and C-terminal domain (residues 171–240), known to regulate Cyclin D1 stability. Cyclin D1 is short-lived and ubiquitin-mediated proteasomal degradation has been targeted as a means of therapeutic intervention. Here, we show that EBNA3C stabilizes Cyclin D1 through inhibition of its poly-ubiquitination, and also increases its nuclear localization by blocking GSK3β activity. We further show that EBNA3C enhances the kinase activity of Cyclin D1/CDK6 which enables subsequent ubiquitination and degradation of pRb. EBNA3C together with Cyclin D1-CDK6 complex also efficiently nullifies the inhibitory effect of pRb on cell growth. Moreover, an sh-RNA based strategy for knock-down of both cyclin D1 and EBNA3C genes in EBV transformed lymphoblastoid cell lines (LCLs) shows a significant reduction in cell-growth. Based on these results, we propose that EBNA3C can stabilize as well as enhance the functional activity of Cyclin D1 thereby facilitating the G1-S transition in EBV transformed lymphoblastoid cell lines. PMID:21347341

  5. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest

    SciTech Connect

    Arachchige Don, Aruni S.; Dallapiazza, Robert F.; Bennin, David A.; Brake, Tiffany; Cowan, Colleen E.; Horne, Mary C. . E-mail: mary-horne@uiowa.edu

    2006-12-10

    Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G{sub 1}/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles

  6. Two fission yeast B-type cyclins, cig2 and Cdc13, have different functions in mitosis.

    PubMed Central

    Bueno, A; Russell, P

    1993-01-01

    Cyclin B interacts with Cdc2 kinase to induce cell cycle events, particularly those of mitosis. The existence of cyclin B subtypes in several species has been known for some time, leading to speculation that key events of mitosis may be carried out by distinct functional classes of Cdc2/cyclin B. We report the discovery of cig2, a third B-type cyclin gene in Schizosaccharomyces pombe. Disruption of cig2 delays the onset of mitosis, to the degree that a cig2 null allele rescues mitotic catastrophe mutants, including those that are unable to carry out the inhibitory tyrosyl phosphorylation of Cdc2 kinase. Consistent with this, a cig2 null allele exhibits synthetic lethal interactions with cdc25ts and cdc2ts mutations. Mitotic phenotypes caused by disruption of cig2 are not reversed by increased production of Cdc13, the other fission yeast B-type cyclin that functions in mitosis. Likewise, a cdc13ts mutation is not rescued by increased gene dosage of cig2+. These data indicate that Cdc13 and Cig2 interact with Cdc2 to carry out different functions in mitosis. We suggest that some cyclin B subtypes found in other species, including humans, are also likely to have distinct, nonoverlapping functions in mitosis. Images PMID:8455610

  7. Cyclin D and cdk4 Are Required for Normal Development beyond the Blastula Stage in Sea Urchin Embryos

    PubMed Central

    Moore, Jennifer C.; Sumerel, Jan L.; Schnackenberg, Bradley J.; Nichols, Jason A.; Wikramanayake, Athula; Wessel, Gary M.; Marzluff, William F.

    2002-01-01

    cdk4 mRNA and protein are constitutively expressed in sea urchin eggs and throughout embryonic development. In contrast, cyclin D mRNA is barely detectable in eggs and early embryos, when the cell cycles consist of alternating S and M phases. Cyclin D mRNA increases dramatically in embryos at the early blastula stage and remains at a constant level throughout embryogenesis. An increase in cdk4 kinase activity occurs concomitantly with the increase in cyclin D mRNA. Ectopic expression of cyclin D mRNA in eggs arrests development before the 16-cell stage and causes eventual embryonic death, suggesting that activation of cyclin D/cdk4 in cleavage cell cycles is lethal to the embryo. In contrast, blocking cyclin D or cdk4 expression with morpholino antisense oligonucleotides results in normal development of early gastrula-stage embryos but abnormal, asymmetric larvae. These results suggest that in sea urchins, cyclin D and cdk4 are required for normal development and perhaps the patterning of the developing embryo, but may not be directly involved in regulating entry into the cell cycle. PMID:12052892

  8. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    PubMed

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  9. c-Jun induces apoptosis of starved BM2 monoblasts by activating cyclin A-CDK2

    SciTech Connect

    Vanhara, Petr; Bryja, Vitezslav; Horvath, Viktor; Kozubik, Alois; Hampl, Ales; Smarda, Jan . E-mail: smarda@sci.muni.cz

    2007-02-02

    c-Jun is one of the major components of the activating protein-1 (AP-1), the transcription factor that participates in regulation of proliferation, differentiation, and apoptosis. In this study, we explored functional interactions of the c-Jun protein with several regulators of the G1/S transition in serum-deprived v-myb-transformed chicken monoblasts BM2. We show that the c-Jun protein induces expression of cyclin A, thus up-regulating activity of cyclin A-associated cyclin-dependent kinase 2 (CDK2), and causing massive programmed cell death of starved BM2cJUN cells. Specific inhibition of CDK2 suppresses frequency of apoptosis of BM2cJUN cells. We conclude that up-regulation of cyclin A expression and CDK2 activity can represent important link between the c-Jun protein, cell cycle machinery, and programmed cell death pathway in leukemic cells.

  10. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1.

    PubMed Central

    Godden-Kent, D; Talbot, S J; Boshoff, C; Chang, Y; Moore, P; Weiss, R A; Mittnacht, S

    1997-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) is a novel gammaherpesvirus implicated in the cause of Kaposi's sarcoma and certain malignancies of lymphatic origin. One of the candidate genes possibly involved in promoting tumor development is an open reading frame (ORF) with sequence similarity to human type D cyclin genes. This cyclin-like gene, when expressed in tissue culture cells, promotes phosphorylation and inactivation of the retinoblastoma tumor suppressor protein and thereby may result in deregulation of cell division control. We report here the biochemical characterization of this cyclin (KSHV-cyc) and the kinase activity that it elicits upon expression in tissue culture cells. We demonstrate that the kinase activity associated with KSHV-cyc is sensitive to the cdk inhibitor p27 (KIP) and due to activation of cdk6. However, in contrast to cdk6 activated by cellular type D cyclins, the cdk6 activated by KSHV-cyc is capable of phosphorylating not only the retinoblastoma protein but also histone H1. This finding implies that activation by KSHV-cyc alters the substrate preference of this cdk. This may have important physiological consequences in that the kinase activity triggered by this viral cyclin may abrogate cell cycle checkpoints in addition to those targeted by cellular cyclin D-cdk6 kinase. PMID:9151805

  11. Caenorhabditis elegans Cyclin D/CDK4 and Cyclin E/CDK2 Induce Distinct Cell Cycle Re-Entry Programs in Differentiated Muscle Cells

    PubMed Central

    Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Prinsen, Martine B. W.; Portegijs, Vincent; Middelkoop, Teije C.; Groot Koerkamp, Marian J.; Holstege, Frank C. P.; Boxem, Mike; van den Heuvel, Sander

    2011-01-01

    Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators. PMID:22102824

  12. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  13. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins.

    PubMed

    Di Renzo, María Agostina; Laverrière, Marc; Schenkman, Sergio; Wehrendt, Diana Patricia; Tellez-Iñón, María Teresa; Potenza, Mariana

    2016-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin-proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi.

  14. Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange.

    PubMed

    Kontopidis, George; Andrews, Martin J I; McInnes, Campbell; Cowan, Angela; Powers, Helen; Innes, Lorraine; Plater, Andy; Griffiths, Gary; Paterson, Dougie; Zheleva, Daniella I; Lane, David P; Green, Stephen; Walkinshaw, Malcolm D; Fischer, Peter M

    2003-12-01

    Inhibition of CDK2/CA (cyclin-dependent kinase 2/cyclin A complex) activity through blocking of the substrate recognition site in the cyclin A subunit has been demonstrated to be an effective method for inducing apoptosis in tumor cells. We have used the cyclin binding motif (CBM) present in the tumor suppressor proteins p21(WAF1) and p27(KIP1) as a template to optimize the minimal sequence necessary for CDK2/CA inhibition. A series of peptides were prepared, containing nonnatural amino acids, which possess nano- to micromolar CDK2-inhibitory activity. Here we present X-ray structures of the protein complex CDK2/CA, together with the cyclin groove-bound peptides H-Ala-Ala-Abu-Arg-Ser-Leu-Ile-(p-F-Phe)-NH(2) (peptide 1), H-Arg-Arg-Leu-Ile-Phe-NH(2) (peptide 2), Ac-Arg-Arg-Leu-Asn-(m-Cl-Phe)-NH(2) (peptide 3), H-Arg-Arg-Leu-Asn-(p-F-Phe)-NH(2) (peptide 4), and H-Cit-Cit-Leu-Ile-(p-F-Phe)-NH(2) (peptide 5). Some of the peptide complexes presented here were obtained through the novel technique of ligand exchange within protein crystals. This method may find general application for obtaining complex structures of proteins with surface-bound ligands.

  15. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    SciTech Connect

    Yasmin, Tania; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-12-16

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of {beta}-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3{beta} (GSK-3{beta}) and inhibition of GSK-3{beta} attenuated the DIF-1-induced {beta}-catenin degradation, indicating the involvement of GSK-3{beta} in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/{beta}-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.

  16. Cyclin G2 is a Centrosome-associated Nucleocytoplasmic Shuttling Protein that Influences Microtubule Stability and Induces a p53-dependent Cell Cycle Arrest

    PubMed Central

    Arachchige Don, Aruni S.; Dallapiazza, Robert F.; Bennin, David A.; Brake, Tiffany; Cowan, Colleen E.; Horne, Mary C.

    2007-01-01

    Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition, and the formation of aberrant nuclei [1]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT), and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells, and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome, resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs, and a p53 dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin tagged centrioles, the mature centriole present at microtubule foci, indicate that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology, and microtubule growth and

  17. SYT-SSX is critical for cyclin D1 expression in synovial sarcoma cells: a gain of function of the t(X;18)(p11.2;q11.2) translocation.

    PubMed

    Xie, Yuntao; Skytting, Björn; Nilsson, Gunnar; Gasbarri, Alessandra; Haslam, Karl; Bartolazzi, Armando; Brodin, Bertha; Mandahl, Nils; Larsson, Olle

    2002-07-01

    The SYT-SSX fusion gene has been implicated in the malignant tumor cell growth of synovial sarcoma, but the underlying molecular mechanisms are still poorly understood. Here we demonstrate that SYT-SSX is critical for the protein level of cyclin D1 in synovial sarcoma cells. Antisense oligonucleotides to SYT-SSX mRNA rapidly and drastically decreased cyclin D1 and subsequently inhibited cell growth. This effect is specific for SYT-SSX, without involving the wild-type genes SYT or SSX. The decrease in cyclin D1 expression, which occurred shortly after inhibition of SYT-SSX expression, was found to be primarily dependent on an increased degradation of the cyclin D1 protein, as assessed by pulse-chase experiments using [(35)S]methionine. Furthermore, transfection of mouse fibroblasts with SYT-SSX cDNA increased the stability of cyclin D1. Because treatment with a proteasome inhibitor restored cyclin D1 expression, it seems like SYT-SSX interferes with ubiquitin-dependent degradation of cyclin D1. However, SYT-SSX-regulated cyclin D1 expression was proven to be independent of the glycogen synthetase kinase-3beta pathway. Taken together, our study provides evidence that SYT-SSX stabilizes cyclin D1 and is critical for cyclin D1 expression in synovial sarcoma cells. SYT-SSX-dependent expression of cyclin D1 may be an important mechanism in the development and progression of synovial sarcoma and also raises the possibility for targeted therapy.

  18. Hog1 Targets Whi5 and Msa1 Transcription Factors To Downregulate Cyclin Expression upon Stress

    PubMed Central

    González-Novo, Alberto; Jiménez, Javier; Clotet, Josep; Nadal-Ribelles, Mariona; Cavero, Santiago

    2015-01-01

    Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start. PMID:25733686

  19. Cyclin D1 functions in cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Prendergast, George C; Pestell, Richard G

    2006-11-01

    Cell migration is essential for developmental morphogenesis, tissue repair, and tumor metastasis. A recent study reveals that cyclin D1 acts to promote cell migration by inhibiting Rho/ROCK signaling and expression of thrombospondin-1 (TSP-1), an extracellular matrix protein that regulates cell migration in many settings including cancer. Given the frequent overexpression of cyclin D1 in cancer cells, due to its upregulation by Ras, Rho, Src, and other genes that drive malignant development, the new findings suggest that cyclin D1 may have a central role in mediating invasion and metastasis of cancer cells by controlling Rho/ROCK signaling and matrix deposition of TSP-1.

  20. Cell cycle-regulated degradation of Xenopus cyclin B2 requires binding to p34cdc2.

    PubMed Central

    van der Velden, H M; Lohka, M J

    1994-01-01

    The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2. Images PMID:7812041

  1. Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/cyclin B and DYRK1A.

    PubMed

    Marti, Guillaume; Eparvier, Véronique; Morleo, Barbara; Le Ven, Jessica; Apel, Cécile; Bodo, Bernard; Amand, Séverine; Dumontet, Vincent; Lozach, Olivier; Meijer, Laurent; Guéritte, Françoise; Litaudon, Marc

    2013-01-01

    In an effort to find potent inhibitors of the protein kinases DYRK1A and CDK1/Cyclin B, a systematic in vitro evaluation of 2,500 plant extracts from New Caledonia and French Guyana was performed. Some extracts were found to strongly inhibit the activity of these kinases. Four aristolactams and one lignan were purified from the ethyl acetate extracts of Oxandra asbeckii and Goniothalamus dumontetii, and eleven aporphine alkaloids were isolated from the alkaloid extracts of Siparuna pachyantha, S. decipiens, S. guianensis and S. poeppigii. Among these compounds, velutinam, aristolactam AIIIA and medioresinol showed submicromolar IC50 values on DYRK1A. PMID:23467012

  2. CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells

    PubMed Central

    Sun, Yuan; Luo, Dianzhong; Liao, D. Joshua

    2012-01-01

    Background: CyclinD1 is an essential sensor and activator of cell cycle initiation and progression; overexpression of cyclinD1 is linked to various human cancers, including breast cancer. The elevated cyclinD1 in some types of cancers is believed to be associated with tumor progression and response to systemic treatments. Aims: In this study, we anticipate to address the questions in human breast cancer; the function of cyclinD1 in mediating chemoresponses; and the signaling pathway cooperating with cyclinD1 to interfere with the drug functions. Materials and Methods: Using the cell clones, concurrent ectopic expression of the wild-type or K112E-mutated human cyclinD1 protein in the MCF7 and MDA-MB231 (MB231) breast cancer cells to study the function of cyclinD1 in responses to the chemotherapeutic treatments. Three drugs, cisplatin (CDDP), 5-fluorouracil (5-FU), and Gemzar were used in this study; the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and cell death analysis, clonogenic survival assay, acridine orange (AO)/ethidium bromide (EB) staining, and Western blot assay were conducted to evaluate the drugs’ effects in the cell clones. Results: The cell clones expressing the D1 protein in MCF7 and MB231 cells result in distinct effects on the responses to chemotherapeutic treatments. Particularly with Gemzar, ectopic expression of cyclinD1 protein in MCF7 cells results in a potentiated effect, which is CDK4 kinase activity dependent, whereas in MB231 cells, an opposite effect was observed. Moreover, our results suggested that the distinct chemosensitivities among those cell clones were not resulted from accelerated cell cycle, cell proliferation driven by the cyclinD1CDK4/6-Rb-E2F signaling chain, rather, they were results of the cell cycle-independent functions led by cyclinD1 alone or in complex with CDK4. Conclusions: Our results suggest that the functions of cyclinD1 protein in modulating chemoresponses in the MCF7

  3. DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3.

    PubMed

    Thompson, Benjamin J; Bhansali, Rahul; Diebold, Lauren; Cook, Daniel E; Stolzenburg, Lindsay; Casagrande, Anne-Sophie; Besson, Thierry; Leblond, Bertrand; Désiré, Laurent; Malinge, Sébastien; Crispino, John D

    2015-06-01

    Pre-B and pre-T lymphocytes must orchestrate a transition from a highly proliferative state to a quiescent one during development. Cyclin D3 is essential for these cells' proliferation, but little is known about its posttranslational regulation at this stage. Here, we show that the dual specificity tyrosine-regulated kinase 1A (DYRK1A) restrains Cyclin D3 protein levels by phosphorylating T283 to induce its degradation. Loss of DYRK1A activity, via genetic inactivation or pharmacologic inhibition in mice, caused accumulation of Cyclin D3 protein, incomplete repression of E2F-mediated gene transcription, and failure to properly couple cell cycle exit with differentiation. Expression of a nonphosphorylatable Cyclin D3 T283A mutant recapitulated these defects, whereas inhibition of Cyclin D:CDK4/6 mitigated the effects of DYRK1A inhibition or loss. These data uncover a previously unknown role for DYRK1A in lymphopoiesis, and demonstrate how Cyclin D3 protein stability is negatively regulated during exit from the proliferative phases of B and T cell development. PMID:26008897

  4. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM.

    PubMed Central

    Desdouets, C; Matesic, G; Molina, C A; Foulkes, N S; Sassone-Corsi, P; Brechot, C; Sobczak-Thepot, J

    1995-01-01

    Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated. We have investigated the role of the cyclic AMP (cAMP)-dependent signalling pathway in this cell cycle-dependent control. In human diploid fibroblasts (Hs 27), induction of cyclin A gene expression at G1/S is stimulated by 8-bromo-cAMP and suppressed by the protein kinase A inhibitor H89, which was found to delay S phase entry. Transfection experiments showed that the cyclin A promoter is inducible by activation of the adenylyl cyclase signalling pathway. Stimulation is mediated predominantly via a cAMP response element (CRE) located at positions -80 to -73 with respect to the transcription initiation site and is able to bind CRE-binding proteins and CRE modulators. Moreover, activation by phosphorylation of the activators CRE-binding proteins and CRE modulator tau and levels of the inducible cAMP early repressor are cell cycle regulated, which is consistent with the pattern of cyclin A inducibility by cAMP during the cell cycle. These results suggest that the CRE is, at least partly, implicated in stimulation of cyclin A transcription at G1/S. PMID:7760825

  5. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex.

    PubMed

    Dumitrescu, Adina; Aberdeen, Graham W; Pepe, Gerald J; Albrecht, Eugene D

    2014-12-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27(Kip1) and p57(Kip2) were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy.

  6. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  7. Folding of a Cyclin Box

    PubMed Central

    Chemes, Lucía B.; Noval, María G.; Sánchez, Ignacio E.; de Prat-Gay, Gonzalo

    2013-01-01

    The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a “hub” protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways. PMID:23632018

  8. Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes.

    PubMed

    Tane, Shoji; Kubota, Misae; Okayama, Hitomi; Ikenishi, Aiko; Yoshitome, Satoshi; Iwamoto, Noriko; Satoh, Yukio; Kusakabe, Aoi; Ogawa, Satoko; Kanai, Ayumi; Molkentin, Jeffery D; Nakamura, Kazuomi; Ohbayashi, Tetsuya; Takeuchi, Takashi

    2014-06-27

    The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.

  9. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways.

    PubMed

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P; Taub, Dennis D

    2014-12-20

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  10. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  11. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  12. Combined effect of cyclin D3 expression and abrogation of cyclin D1 prevent mouse skin tumor development

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Miliani de Marval, Paula L; Kim, Yongbaek

    2012-01-01

    We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1−/− compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1−/− compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis. PMID:22214766

  13. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells.

    PubMed

    The, Inge; Ruijtenberg, Suzan; Bouchet, Benjamin P; Cristobal, Alba; Prinsen, Martine B W; van Mourik, Tim; Koreth, John; Xu, Huihong; Heck, Albert J R; Akhmanova, Anna; Cuppen, Edwin; Boxem, Mike; Muñoz, Javier; van den Heuvel, Sander

    2015-01-01

    Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/C(FZR1) activity as an important determinant in response to CDK4/6-inhibitors.

  14. Rapid evolution of a cyclin A inhibitor gene, roughex, in Drosophila.

    PubMed

    Avedisov, S N; Rogozin, I B; Koonin, E V; Thomas, B J

    2001-11-01

    The recent sequencing of the complete genome of the fruit fly Drosophila melanogaster has yielded about 30% of the predicted genes with no obvious counterparts in other organisms. These rapidly evolving genes remain largely unexplored. Here, we present evidence for a striking variability in an important Drosophila cell cycle regulator encoded by the gene roughex (rux) in closely related fly species. The unusual level of Rux protein variability indicates that there are very low overall constraints on amino acid substitutions. Despite the lack of sequence similarity, certain common features, including the presence of a C-terminal nuclear localization signal and a functionally important N-terminal RXL cyclin-binding motif, exist between Rux and cyclin-dependent kinase inhibitors of the Cip/Kip family. These results indicate that even some genes involved in key regulatory processes in eukaryotes evolve at extremely high rates.

  15. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    PubMed

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  16. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    PubMed Central

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  17. Gaseous nitrogen oxides stimulate cell cycle progression by retinoblastoma phosphorylation via activation of cyclins/Cdks [correction].

    PubMed

    Chen, Jing-Hsien; Tseng, Tsui-Hwa; Ho, Yung-Chyan; Lin, Hui-Hsuan; Lin, Wea-Lung; Wang, Chau-Jong

    2003-11-01

    Nitrogen oxides (NOx) are important indoor and outdoor air pollutants. Many studies have indicated that NOx gas causes lung tissue damage by its oxidation properties and its free radicals. In a previous study we demonstrated that NOx gas induced proliferation of human lung fibroblast MRC-5 cells. In this study we show that NOx gas stimulates MRC-5 cell proliferation by retinoblastoma (Rb) phosphorylation via activation of cyclin-cell division protein kinase (cdk) complexes [correction]. Western blot and immunoprecipitation data showed that NOx gas increased the expressions of cyclinA/cdk2, cyclinD1/cdk4, and cyclinE/cdk2 complexes in the cells at 9 h after treatment. The levels of phospho-Rb were also increased and cdk inhibitors (CKIs) p27 and p16 were apparently decreased. These data suggested that NOx gas stimulates cell-cycle progression by Rb phosphorylation via activation of cyclin-cdk complexes and inhibition of CKIs. In conclusion, the NOx-gas that induced lung fibroblast cell proliferation by stimulation of cell-cycle progression may contribute to lung fibrosis by NOx pollutants.

  18. Nuclear envelope breakdown may deliver an inhibitor of protein phosphatase 1 which triggers cyclin B translation in starfish oocytes.

    PubMed

    Lapasset, Laure; Pradet-Balade, Bérengère; Lozano, Jean-Claude; Peaucellier, Gérard; Picard, André

    2005-09-01

    In vertebrates, enhanced translation of mRNAs in oocytes and early embryos entering M-phase is thought to occur through polyadenylation, involving binding, hyperphosphorylation and proteolytic degradation of Aurora-activated CPEB. In starfish, an unknown component of the oocyte nucleus is required for cyclin B synthesis following the release of G2/prophase block by hormonal stimulation. We have found that CPEB cannot be hyperphosphorylated following hormonal stimulation in starfish oocytes from which the nucleus has been removed. Activation of Aurora kinase, known to interact with protein phosphatase 1 and its specific inhibitor Inh-2, is also prevented. The microinjection of Inh-2 restores Aurora activation, CPEB hyperphosphorylation and cyclin B translation in enucleated oocytes. Nevertheless, we provide evidence that CPEB is in fact hyperphosphorylated by cdc2, without apparent involvement of Aurora or MAP kinase, and that cyclin B synthesis can be stimulated without previous degradation of phosphorylated CPEB. Thus, the regulation of cyclin B synthesis necessary for progression through meiosis can be explained by an equilibrium between CPEB phosphorylation and dephosphorylation, and both aspects of this control may rely on the sole activation of Cdc2 and subsequent nuclear breakdown.

  19. PP2A function toward mitotic kinases and substrates during the cell cycle

    PubMed Central

    Jeong, Ae Lee; Yang, Young

    2013-01-01

    To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294] PMID:23790971

  20. Cyclin D1 expression and HHV8 in Kaposi sarcoma.

    PubMed Central

    Kennedy, M M; Biddolph, S; Lucas, S B; Howells, D D; Picton, S; McGee, J O; Silva, I; Uhlmann, V; Luttich, K; O'Leary, J J

    1999-01-01

    BACKGROUND: Human herpesvirus 8 (HHV8) appears to be the agent responsible for Kaposi sarcoma. The mechanism remains undetermined but may involve cell cycle regulating genes including D type cyclins which are pivotal in cell cycle progression. Recent HHV8 genetic analysis has revealed the presence of a v-cyclin which is homologous to D type cyclins. AIMS: First, to assess whether there is an independent relation between endogenous cyclin D1 expression in Kaposi sarcoma and HHV8 status; second to determine whether v-cyclin mRNA expression varies with Kaposi sarcoma stage. METHODS: Cyclin D1 immunohistochemistry was performed on 17 paraffin embedded Kaposi sarcoma samples from 16 patients. HHV8 status was assessed in 15 of these using nested polymerase chain reaction (PCR) to ORF 26 and the newly described technique of TaqMan PCR. An additional 10 fresh Kaposi sarcoma samples (early and nodular) were examined for HHV8 v-cyclin RNA. RESULTS: One case, which did not contain amplifiable HHV8, showed strong cyclin D1 staining. The remaining cases were negative or weakly staining; v-cyclin transcript load was higher in early Kaposi sarcoma. CONCLUSIONS: While endogenous cyclin D1 expression is independent of HHV8 status, v-cyclin transcription is higher in early lesions, supporting the "viral hit" hypothesis. Images PMID:10645225

  1. Targeting the AKT/GSK3{beta}/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    SciTech Connect

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-06-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3{beta}-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3{beta}/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3{beta}/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor

  2. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes.

    PubMed

    Varadarajan, Ramya; Ayeni, Joseph; Jin, Zhigang; Homola, Ellen; Campbell, Shelagh D

    2016-07-01

    Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing. PMID:27170181

  3. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes

    PubMed Central

    Varadarajan, Ramya; Ayeni, Joseph; Jin, Zhigang; Homola, Ellen; Campbell, Shelagh D.

    2016-01-01

    Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing. PMID:27170181

  4. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate

    PubMed Central

    Lee, Young-Sam; Huang, Kexin; Quiocho, Florante A; O’Shea, Erin K

    2008-01-01

    When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin–cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action. PMID:18059263

  5. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E

    PubMed Central

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle. PMID:27158371

  6. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response.

    PubMed

    dos Santos, Nathália Villa; Matias, Andreza Cândido; Higa, Guilherme Shigueto Vilar; Kihara, Alexandre Hiroaki; Cerchiaro, Giselle

    2015-01-01

    The toxicologic effects of copper (Cu) on tumor cells have been studied during the past decades, and it is suggested that Cu ion may trigger antiproliferative effects in vitro. However, in normal cells the toxicologic effects of high exposures of free Cu are not well understood. In this work, Cu uptake, the expression of genes associated with cell cycle regulation, and the levels of ROS production and related oxidative processes were evaluated in Cu-treated mammary epithelial MCF10A nontumoral cells. We have shown that the Cu additive is associated with the activation of cyclin D1 and cyclin B1, as well as cyclin-dependent kinase 2 (CDK2). These nontumor cells respond to Cu-induced changes in the oxidative balance by increase of the levels of reduced intracellular glutathione (GSH), decrease of reactive oxygen species (ROS) generation, and accumulation during progression of the cell cycle, thus preventing the cell abnormal proliferation or death. Taken together, our findings revealed an effect that contributes to prevent a possible damage of normal cells exposed to chemotherapeutic effects of drugs containing the Cu ion.

  7. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E.

    PubMed

    Martin, L G; Demers, G W; Galloway, D A

    1998-02-01

    The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990

  8. Participation of cyclin A in Myc-induced apoptosis.

    PubMed Central

    Hoang, A T; Cohen, K J; Barrett, J F; Bergstrom, D A; Dang, C V

    1994-01-01

    The involvement of c-Myc in cellular proliferation or apoptosis has been linked to differential cyclin gene expression. We observed that in both proliferating cells and cells undergoing apoptosis, cyclin A (but not B, C, D1, and E) mRNA level was elevated in unsynchronized Myc-overexpressing cells when compared with parental Rat1a fibroblasts. We further demonstrated that Zn(2+)-inducible cyclin A expression was sufficient to cause apoptosis. When Myc-induced apoptosis was blocked by coexpression of Bcl-2, the levels of cyclin C, D1, and E mRNAs were also elevated. Thus, while apoptosis induced by c-Myc is associated with an elevated cyclin A mRNA level, protection from apoptosis by coexpressed Bcl-2 is associated with a complementary increase in cyclin C, D1, and E mRNAs. Images PMID:8041712

  9. Induction of Cyclin D2 in Rat Granulosa Cells Requires FSH-dependent Relief from FOXO1 Repression Coupled with Positive Signals from Smad*

    PubMed Central

    Park, Youngkyu; Maizels, Evelyn T.; Feiger, Zachary J.; Alam, Hena; Peters, Carl A.; Woodruff, Teresa K.; Unterman, Terry G.; Lee, Eun Jig; Jameson, J. Larry; Hunzicker-Dunn, Mary

    2006-01-01

    Ovarian follicles undergo exponential growth in response to follicle-stimulating hormone (FSH), largely as a result of the proliferation of granulosa cells (GCs). In vitro under serum-free conditions, rat GCs differentiate in response to FSH but do not proliferate unless activin is also present. In the presence of FSH plus activin, GCs exhibit enhanced expression of cyclin D2 as well as inhibin-α, aromatase, steroidogenic factor-1 (SF-1), cholesterol side chain (SCC), and epiregulin. In this report we sought to identify the signaling pathways by which FSH and activin promote GC proliferation and differentiation. Our results show that these responses are associated with prolonged Akt phosphorylation relative to time-matched controls and are dependent on phosphati-dylinositol 3-kinase (PI 3-kinase) and Smad2/3 signaling, based on the ability of the PI 3-kinase inhibitor LY294002 or infection with adenoviral dominant negative Smad3 (DN-Smad3) mutant to attenuate induction of cyclin D2, inhibin-α, aromatase, SCC, SF-1, and epiregulin. The DN-Smad3 mutant also abolished prolonged Akt phosphorylation stimulated by FSH plus activin 24 h post-treatment. Infection with the adenoviral constitutively active forkhead box-containing protein, O subfamily (FOXO)1 mutant suppressed induction of cyclin D2, aromatase, inhibin-α, SF-1, and epiregulin. Transient transfections of GCs with constitutively active FOXO1 mutant also suppressed cyclin D2, inhibin-α, and epiregulin promoter-reporter activities. Chromatin immunoprecipitation results demonstrate in vivo the association of FOXO1 with the cyclin D2 promoter in untreated GCs and release of FOXO1 from the cyclin D2 promoter upon addition of FSH plus activin. These results suggest that proliferation and differentiation of GCs in response to FSH plus activin requires both removal of FOXO1-dependent repression and positive signaling from Smad2/3. PMID:15613482

  10. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species.

    PubMed

    Burch, Peter M; Heintz, Nicholas H

    2005-01-01

    Reactive oxygen and nitrogen species inhibit or promote cell proliferation by modulating the cell signaling pathways that dictate decisions between cell survival, proliferation, and death. In the growth factor-dependent pathways that regulate mitogenesis, numerous positive and negative effectors of signaling are influenced by physiological fluctuations of oxidants, including receptor tyrosine kinases, small GTPases, mitogen-activated protein kinases, protein phosphatases, and transcription factors. The same mitogenic pathways that are sensitive to oxidant levels also directly regulate the expression of cyclin D1, a labile factor required for progression through the G1 phase on the cell cycle. Because the transition from G0 to G1 is the only phase of the cell cycle that is not regulated by cyclin-dependent kinases, but rather by redox-dependent signaling pathways, expression of cyclin D1 represents a primary regulatory node for the dose-dependent effects of oxidants on the induction of cell growth. We suggest that expression of cyclin D1 represents a useful marker for assessing the integration of proliferative and growth inhibitory effects of oxidants on the redox-dependent signaling events that control reentry into the cell cycle.

  11. Zebrafish Cyclin-Dependent Protein Kinase–Like 1 (zcdkl1): Identification and Functional Characterization

    PubMed Central

    Hsu, Li-Sung; Liang, Cyong-Jhih; Tseng, Chen-Yuan; Yeh, Chi-Wei; Tsai, Jen-Ning

    2011-01-01

    The cyclin-dependent protein kinase family regulates a wide range of cellular functions such as cell cycle progression, differentiation, and apoptosis. In this study, we identified a zebrafish cyclin-dependent protein kinase-like 1 protein called zebrafish cdkl1 (zcdkl1), which shared a high degree of homology and conserved synteny with mammalian orthologs. zcdkl1 exhibited abilities for phosphorylation of myelin basic protein and histone H1. RT-PCR analysis revealed that zcdkl1 was expressed starting from fertilization and continuing thereafter. In adult tissues, zcdkl1 was predominantly detected in brain, ovary, and testis, and was expressed at low levels in other tissues. At 50% epiboly stage, zcdkl1 was widely expressed. At 12 to 48 h post-fertilization, zcdkl1 was predominantly expressed in the hypochord, the medial and lateral floor plate, and the pronephric duct. Interference of zcdkl1 expression resulted in abnormalities, such as brain and eye malformation, pericardial edema, and body axis curvature. Disruption of zcdkl1 reduced neurogenin-1 in the brain and sonic hedgehog expression in the floor plate region. These deformities were apparently rescued by co-injection of zcdkl1 mRNA. Findings of this study indicate that zcdkl1 plays an essential role in zebrafish development. PMID:21747697

  12. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription

    PubMed Central

    Hossain, Manzar; Stillman, Bruce

    2016-01-01

    Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. DOI: http://dx.doi.org/10.7554/eLife.12785.001 PMID:27458800

  13. Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection

    PubMed Central

    Chen, Xuefeng; Niu, Hengyao; Yu, Yang; Wang, Jingjing; Zhu, Shuangyi; Zhou, Jianjie; Papusha, Alma; Cui, Dandan; Pan, Xuewen; Kwon, Youngho; Sung, Patrick; Ira, Grzegorz

    2016-01-01

    DNA double-strand breaks (DSBs) are one of the most cytotoxic types of DNA lesion challenging genome integrity. The activity of cyclin-dependent kinase Cdk1 is essential for DSB repair by homologous recombination and for DNA damage signaling. Here we identify the Fun30 chromatin remodeler as a new target of Cdk1. Fun30 is phosphorylated by Cdk1 on Serine 28 to stimulate its functions in DNA damage response including resection of DSB ends. Importantly, Cdk1-dependent phosphorylation of Fun30-S28 increases upon DNA damage and requires the recruitment of Fun30 to DSBs, suggesting that phosphorylation increases in situ at the DNA damage. Consistently, we find that Cdk1 and multiple cyclins become highly enriched at DSBs and that the recruitment of Cdk1 and cyclins Clb2 and Clb5 ensures optimal Fun30 phosphorylation and checkpoint activation. We propose that the enrichment of Cdk1-cyclin complexes at DSBs serves as a mechanism for enhanced targeting and modulating of the activity of DNA damage response proteins. PMID:26801641

  14. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription.

    PubMed

    Hossain, Manzar; Stillman, Bruce

    2016-01-01

    Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. PMID:27458800

  15. Cyclin Dl expression in B-cell non Hodgkin lymphoma.

    PubMed

    Aref, Salah; Mossad, Y; El-Khodary, T; Awad, M; El-Shahat, E

    2006-10-01

    Disorders of the cell cycle regulatory machinery play a key role in the pathogenesis of cancer. Over-expression of cyclin D1 protein has been reported in several solid tumors and certain lymphoid malignancies, but little is known about the effect of its expression on clinical behavior and outcome in B-cell Non-Hodgkin lymphoma (NHL). In this study, we investigated the expression of cyclin Dl in group of patients with NHL and correlated the results with the clinical and laboratory data. The degree of expression of cyclin Dl protein was evaluated by flow cytometry in a group of NHL patients (n = 46) and in normal control group (n = 10). Cyclin Dl over expression was detected in 10 out of 46 (21.7%) patients; they were 5/5-mantle cell lymphoma (MCL) (100%) and 5/28 large B-cell lymphoma (17.8%). All other NHL subtypes showed normal cyclin D1 expression. The clinical signs (hepatomegaly, splenomegaly and B-symptoms, clinical staging) and laboratory data (hemoglobin, white cell count (WBCs), platelet count, and bone marrow infiltration) were not significantly different between NHL subgroup with cyclin Dl over expression and that with normal cyclin Dl expression. Serum lactic dehydrogenase (LDH) levels and lymphadenopathy were significantly higher in NHL group with cyclin D1 over expression as compared to those without. Also, cyclin D1 over expression is associated with poor outcome of NHL patients. Cyclin Dl over expression was evident among all cases of MCL and few cases of large B-cell lymphoma. Cyclin Dl over expression might be used as adjuvant tool for diagnosis of MCL; has role in NHL biology and is bad prognostic index in NHL. PMID:17607588

  16. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages

    PubMed Central

    2014-01-01

    Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence. PMID:24433236

  17. Cyclin D1 expression is regulated by the retinoblastoma protein.

    PubMed Central

    Müller, H; Lukas, J; Schneider, A; Warthoe, P; Bartek, J; Eilers, M; Strauss, M

    1994-01-01

    The product of the retinoblastoma susceptibility gene, pRb, acts as a tumor suppressor and loss of its function is involved in the development of various types of cancer. DNA tumor viruses are supposed to disturb the normal regulation of the cell cycle by inactivating pRb. However, a direct function of pRb in regulation of the cell cycle has hitherto not been shown. We demonstrate here that the cell cycle-dependent expression of one of the G1-phase cyclins, cyclin D1, is dependent on the presence of a functional Rb protein. Rb-deficient tumor cell lines as well as cells expressing viral oncoproteins (large tumor antigen of simian virus 40, early region 1A of adenovirus, early region 7 of papillomavirus) have low or barely detectable levels of cyclin D1. Expression of cyclin D1, but not of cyclins A and E, is induced by transfection of the Rb gene into Rb-deficient tumor cells. Cotransfection of a reporter gene under the control of the D1 promoter, together with the Rb gene, into Rb-deficient cell lines demonstrates stimulation of the D1 promoter by Rb, which parallels the stimulation of endogenous cyclin D1 gene expression. Our finding that pRb stimulates expression of a key component of cell cycle control, cyclin D1, suggests the existence of a regulatory loop between pRb and cyclin D1 and extends existing models of tumor suppressor function. Images PMID:8159685

  18. mTORC1 Down-Regulates Cyclin-Dependent Kinase 8 (CDK8) and Cyclin C (CycC)

    PubMed Central

    Feng, Daorong; Youn, Dou Yeon; Zhao, Xiaoping; Gao, Yanguang; Quinn, William J.; Xiaoli, Alus M.; Sun, Yan; Birnbaum, Morris J.; Pessin, Jeffrey E.; Yang, Fajun

    2015-01-01

    In non-alcoholic fatty liver disease (NAFLD) and insulin resistance, hepatic de novo lipogenesis is often elevated, but the underlying mechanisms remain poorly understood. Recently, we show that CDK8 functions to suppress de novo lipogenesis. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a critical regulator of CDK8 and its activating partner CycC. Using pharmacologic and genetic approaches, we show that increased mTORC1 activation causes the reduction of the CDK8-CycC complex in vitro and in mouse liver in vivo. In addition, mTORC1 is more active in three mouse models of NAFLD, correlated with the lower abundance of the CDK8-CycC complex. Consistent with the inhibitory role of CDK8 on de novo lipogenesis, nuclear SREBP-1c proteins and lipogenic enzymes are accumulated in NAFLD models. Thus, our results suggest that mTORC1 activation in NAFLD and insulin resistance results in down-regulation of the CDK8-CycC complex and elevation of lipogenic protein expression. PMID:26042770

  19. Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization.

    PubMed

    Renaudin, J P; Doonan, J H; Freeman, D; Hashimoto, J; Hirt, H; Inzé, D; Jacobs, T; Kouchi, H; Rouzé, P; Sauter, M; Savouré, A; Sorrell, D A; Sundaresan, V; Murray, J A

    1996-12-01

    The comparative analysis of a large number of plant cyclins of the A/B family has recently revealed that plants possess two distinct B-type groups and three distinct A-type groups of cyclins. Despite earlier uncertainties, this large-scale comparative analysis has allowed an unequivocal definition of plant cyclins into either A or B classes. We present here the most important results obtained in this study, and extend them to the case of plant D-type cyclins, in which three groups are identified. For each of the plant cyclin groups, consensus sequences have been established and a new, rational, plant-wide naming system is proposed in accordance with the guidelines of the Commission on Plant Gene Nomenclature. This nomenclature is based on the animal system indicating cyclin classes by an upper-case roman letter, and distinct groups within these classes by an arabic numeral suffix. The naming of plant cyclin classes is chosen to indicate homology to their closest animal class. The revised nomenclature of all described plant cyclins is presented, with their classification into groups CycA1, CycA2, CycA3, CycB1, CycB2, CycD1, CycD2 and CycD3. PMID:9002599

  20. LIM kinase-2 induces programmed necrotic neuronal death via dysfunction of DRP1-mediated mitochondrial fission.

    PubMed

    Kim, J-E; Ryu, H J; Kim, M J; Kang, T-C

    2014-07-01

    Although the aberrant activation of cell cycle proteins has a critical role in neuronal death, effectors or mediators of cyclin D1/cyclin-dependent kinase 4 (CDK4)-mediated death signal are still unknown. Here, we describe a previously unsuspected role of LIM kinase 2 (LIMK2) in programmed necrotic neuronal death. Downregulation of p27(Kip1) expression by Rho kinase (ROCK) activation induced cyclin D1/CDK4 expression levels in neurons vulnerable to status epilepticus (SE). Cyclin D1/CDK4 complex subsequently increased LIMK2 expression independent of caspase-3 and receptor interacting protein kinase 1 activity. In turn, upregulated LIMK2 impaired dynamic-related protein-1 (DRP1)-mediated mitochondrial fission without alterations in cofilin phosphorylation/expression and finally resulted in necrotic neuronal death. Inhibition of LIMK2 expression and rescue of DRP1 function attenuated this programmed necrotic neuronal death induced by SE. Therefore, we suggest that the ROCK-p27(Kip1)-cyclin D1/CDK4-LIMK2-DRP1-mediated programmed necrosis may be new therapeutic targets for neuronal death.

  1. Human Papillomavirus Type 16 E1∧E4-Induced G2 Arrest Is Associated with Cytoplasmic Retention of Active Cdk1/Cyclin B1 Complexes

    PubMed Central

    Davy, Clare E.; Jackson, Deborah J.; Raj, Kenneth; Peh, Woei Ling; Southern, Shirley A.; Das, Papia; Sorathia, Rina; Laskey, Peter; Middleton, Kate; Nakahara, Tomomi; Wang, Qian; Masterson, Phillip J.; Lambert, Paul F.; Cuthill, Scott; Millar, Jonathan B. A.; Doorbar, John

    2005-01-01

    Human papillomavirus type 16 (HPV16) can cause cervical cancer. Expression of the viral E1∧E4 protein is lost during malignant progression, but in premalignant lesions, E1∧E4 is abundant in cells supporting viral DNA amplification. Expression of 16E1∧E4 in cell culture causes G2 cell cycle arrest. Here we show that unlike many other G2 arrest mechanisms, 16E1∧E4 does not inhibit the kinase activity of the Cdk1/cyclin B1 complex. Instead, 16E1∧E4 uses a novel mechanism in which it sequesters Cdk1/cyclin B1 onto the cytokeratin network. This prevents the accumulation of active Cdk1/cyclin B1 complexes in the nucleus and hence prevents mitosis. A mutant 16E1∧E4 (T22A, T23A) which does not bind cyclin B1 or alter its intracellular location fails to induce G2 arrest. The significance of these results is highlighted by the observation that in lesions induced by HPV16, there is evidence for Cdk1/cyclin B1 activity on the keratins of 16E1∧E4-expressing cells. We hypothesize that E1∧E4-induced G2 arrest may play a role in creating an environment optimal for viral DNA replication and that loss of E1∧E4 expression may contribute to malignant progression. PMID:15767402

  2. Early B-cell-specific inactivation of ATM synergizes with ectopic CyclinD1 expression to promote pre-germinal center B-cell lymphomas in mice.

    PubMed

    Yamamoto, K; Lee, B J; Li, C; Dubois, R L; Hobeika, E; Bhagat, G; Zha, S

    2015-06-01

    Ataxia telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response. ATM is frequently inactivated in human B-cell non-Hodgkin lymphomas, including ~50% of mantle cell lymphomas (MCLs) characterized by ectopic expression of CyclinD1. Here we report that early and robust deletion of ATM in precursor/progenitor B cells causes cell autonomous, clonal mature B-cell lymphomas of both pre- and post-germinal center (GC) origins. Unexpectedly, naive B-cell-specific deletion of ATM is not sufficient to induce lymphomas in mice, highlighting the important tumor suppressor function of ATM in immature B cells. Although EμCyclinD1 is not sufficient to induce lymphomas, EμCyclinD1 accelerates the kinetics and increases the incidence of clonal lymphomas in ATM-deficient B-cells and skews the lymphomas toward pre-GC-derived small lymphocytic neoplasms, sharing morphological features of human MCL. This is in part due to CyclinD1-driven expansion of ATM-deficient naive B cells with genomic instability, which promotes the deletions of additional tumor suppressor genes (i.e. Trp53, Mll2, Rb1 and Cdkn2a). Together these findings define a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis and provide a prototypic animal model to study the pathogenesis of human MCL. PMID:25676421

  3. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  4. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells.

    PubMed Central

    Sandhu, C; Garbe, J; Bhattacharya, N; Daksis, J; Pan, C H; Yaswen, P; Koh, J; Slingerland, J M; Stampfer, M R

    1997-01-01

    The effects of transforming growth factor beta (TGF-beta) were studied in closely related human mammary epithelial cells (HMEC), both finite-life-span 184 cells and immortal derivatives, 184A1S, and 184A1L5R, which differ in their cell cycle responses to TGF-beta but express type I and type II TGF-beta receptors and retain TGF-beta induction of extracellular matrix. The arrest-resistant phenotype was not due to loss of cyclin-dependent kinase (cdk) inhibitors. TGF-beta was shown to regulate p15INK4B expression at at least two levels: mRNA accumulation and protein stability. In TGF-beta-arrested HMEC, there was not only an increase in p15 mRNA but also a major increase in p5INK4B protein stability. As cdk4- and cdk6-associated p15INK4B increased during TGF-beta arrest of sensitive cells, there was a loss of cyclin D1, p21Cip1, and p27Kip1 from these kinase complexes, and cyclin E-cdk2-associated p27Kip1 increased. In HMEC, p15INK4B complexes did not contain detectable cyclin. p15INK4B from both sensitive and resistant cells could displace in vitro cyclin D1, p21Cip1, and p27Kip1 from cdk4 isolated from sensitive cells. Cyclin D1 could not be displaced from cdk4 in the resistant 184A1L5R cell lysates. Thus, in TGF-beta arrest, p15INK4B may displace already associated cyclin D1 from cdks and prevent new cyclin D1-cdk complexes from forming. Furthermore, p27Kip1 binding shifts from cdk4 to cyclin E-cdk2 during TGF-beta-mediated arrest. The importance of posttranslational regulation of p15INK4B by TGF-beta is underlined by the observation that in TGF-beta-resistant 184A1L5R, although the p15 transcript increased, p15INK4B protein was not stabilized and did not accumulate, and cyclin D1-cdk association and kinase activation were not inhibited. PMID:9111314

  5. Mitotic phosphorylation of eukaryotic initiation factor 4G1 (eIF4G1) at Ser1232 by Cdk1:cyclin B inhibits eIF4A helicase complex binding with RNA.

    PubMed

    Dobrikov, Mikhail I; Shveygert, Mayya; Brown, Michael C; Gromeier, Matthias

    2014-02-01

    During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and "ribosome adaptor," eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.

  6. c-Src regulates cell cycle proteins expression through protein kinase B/glycogen synthase kinase 3 beta and extracellular signal-regulated kinases 1/2 pathways in MCF-7 cells.

    PubMed

    Liu, Xiang; Du, Liying; Feng, Renqing

    2013-07-01

    We have demonstrated that c-Src suppression inhibited the epithelial to mesenchymal transition in human breast cancer cells. Here, we investigated the role of c-Src on the cell cycle progression using siRNAs and small molecule inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Western blot analysis demonstrated the down-regulation of cyclin D1 and cyclin E and up-regulation of p27 Kip1 after c-Src suppression by PP2. Incubation of cells in the presence of PP2 significantly blocked the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK3β). Specific pharmacological inhibitors of MEK1/2/ERK1/2 and phosphatidylinositide 3-kinase/AKT pathways were used to demonstrate the relationship between the signal cascade and cell cycle proteins expression. The expression of cyclin D1 and cyclin E were decreased after inhibition of ERK1/2 or AKT activity, whereas the p27 Kip1 expression was increased. In addition, knockdown of c-Src by siRNAs reduced cell proliferation and phosphorylation of ERK1/2, AKT, and GSK3β. After c-Src depletion by siRNAs, we observed significant down-regulation of cyclin D1 and cyclin E, and up-regulation of p27 Kip1. These results suggest that c-Src suppression by PP2 or siRNAs may regulate the progression of cell cycle through AKT/GSK3β and ERK1/2 pathways.

  7. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells.

    PubMed

    Adepoju, Adedamola; Micali, Nicola; Ogawa, Kazuya; Hoeppner, Daniel J; McKay, Ronald D G

    2014-03-01

    The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.

  8. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells.

    PubMed

    Conrad, P W; Rust, R T; Han, J; Millhorn, D E; Beitner-Johnson, D

    1999-08-13

    Hypoxic/ischemic trauma is a primary factor in the pathology of a multitude of disease states. The effects of hypoxia on the stress- and mitogen-activated protein kinase signaling pathways were studied in PC12 cells. Exposure to moderate hypoxia (5% O(2)) progressively stimulated phosphorylation and activation of p38gamma in particular, and also p38alpha, two stress-activated protein kinases. In contrast, hypoxia had no effect on enzyme activity of p38beta, p38beta(2), p38delta, or on c-Jun N-terminal kinase, another stress-activated protein kinase. Prolonged hypoxia also induced phosphorylation and activation of p42/p44 mitogen-activated protein kinase, although this activation was modest compared with nerve growth factor- and ultraviolet light-induced activation. Hypoxia also dramatically down-regulated immunoreactivity of cyclin D1, a gene that is known to be regulated negatively by p38 at the level of gene expression (Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996) J. Biol. Chem. 271, 20608-20616). This effect was partially blocked by SB203580, an inhibitor of p38alpha but not p38gamma. Overexpression of a kinase-inactive form of p38gamma was also able to reverse in part the effect of hypoxia on cyclin D1 levels, suggesting that p38alpha and p38gamma converge to regulate cyclin D1 during hypoxia. These studies demonstrate that an extremely typical physiological stress (hypoxia) causes selective activation of specific p38 signaling elements; and they also identify a downstream target of these pathways. PMID:10438538

  9. Expression patterns of cyclin D1 and related proteins regulating G1-S phase transition in uveal melanoma and retinoblastoma

    PubMed Central

    Coupland, S; Bechrakis, N; Schuler, A; Anagnostopoulos, I; Hummel, M; Bornfeld, N; Stein, H

    1998-01-01

    BACKGROUND/AIMS—A checkpoint mechanism in late G1, whose regulation via loss of retinoblastoma protein (pRB) or p16, or overexpression of cyclin D1 or cyclin dependent kinase 4 (CDK4), has been proposed to constitute a common pathway to malignancy. The aims of this study were (a) to compare markers of cell cycle G1-S phase transition in an intraocular tumour with known pRB deficiency (retinoblastoma) and compare it with one with an apparently functional pRB (uveal melanoma); (b) to determine if one of these markers may have a role in the pathogenesis of uveal melanoma; and (c) to determine if there is a difference in cell cycle marker expression following treatment of uveal melanoma and retinoblastoma.
METHODS—90 eyes were enucleated from 89 patients for retinoblastoma (n=24) or for choroidal or ciliary body melanoma (n=66). Conventional paraffin sections were assessed for cell type and degree of differentiation. Additional slides were investigated applying standard immunohistochemical methods with antibodies specific for cyclin D1 protein, pRB, p53, p21, p16, BCL-2, and MIB-1.
RESULTS—Cyclin D1 protein and pRB were negative in retinoblastoma using the applied antibodies. In contrast, cyclin D1 protein expression was observed in 65% of uveal melanomas; a positive correlation between cyclin D1 cell positivity and tumour cell type, location, growth fraction, as well as with pRB positivity was observed. p53, p21, and p16 could be demonstrated in both tumours. An inverse relation between p53 and p21 expression was demonstrated in most choroidal melanomas and in some retinoblastomas. Apart from a decrease in the growth fractions of the tumours as determined by MIB-1, a significant difference in the expression of G1-S phase transition markers in vital areas of uveal melanoma and retinoblastoma following treatment with radiotherapy and/or chemotherapy was not observed.
CONCLUSION—Retinoblastomas and uveal melanomas, two tumours of differing pRB status

  10. MicroRNA-520b Inhibits Growth of Hepatoma Cells by Targeting MEKK2 and Cyclin D1

    PubMed Central

    Zhang, Junping; Wang, Tao; Ye, Lihong; Zhang, Xiaodong

    2012-01-01

    Growing evidence indicates that the deregulation of microRNAs (miRNAs) contributes to the tumorigenesis. We previously revealed that microRNA-520b (miR-520b) was involved in the complement attack and migration of breast cancer cells. In this report, we show that miR-520b is an important miRNA in the development of hepatocellular carcinoma (HCC). Our data showed that the expression levels of miR-520b were significantly reduced in clinical HCC tissues and hepatoma cell lines. We observed that the introduction of miR-520b dramatically suppressed the growth of hepatoma cells by colony formation assays, 5-ethynyl-2-deoxyuridine (EdU) incorporation assays and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, ectopic expression of miR-520b was able to inhibit the growth of hepatoma cells in nude mice. Further studies revealed that the mitogen-activated protein kinase kinase kinase 2 (MEKK2) and cyclin D1 were two of direct target genes of miR-520b. Silencing of MEKK2 or cyclin D1 was able to inhibit the growth of hepatoma cells in vitro and in vivo, which is consistent with the effect of miR-520b overexpression on the growth of hepatoma cells. In addition, miR-520b significantly decreased the phosphorylation levels of c-Jun N-terminal kinase (p-JNK, a downstream effector of MEKK2) or retinoblastoma (p-Rb, a downstream effector of cyclin D1). In conclusion, miR-520b is able to inhibit the growth of hepatoma cells by targeting MEKK2 or cyclin D1 in vitro and in vivo. Our findings provide new insights into the role of miR-520b in the development of HCC, and implicate the potential application of miR-520b in cancer therapy. PMID:22319632

  11. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway.

    PubMed

    Jeoung, D I; Oehlen, L J; Cross, F R

    1998-01-01

    The Saccharomyces cerevisiae cell cycle is arrested in G1 phase by the mating factor pathway. Genetic evidence has suggested that the G1 cyclins Cln1, Cln2, and Cln3 are targets of this pathway whose inhibition results in G1 arrest. Inhibition of Cln1- and Cln2-associated kinase activity by the mating factor pathway acting through Far1 has been described. Here we report that Cln3-associated kinase activity is inhibited by mating factor treatment, with dose response and timing consistent with involvement in cell cycle arrest. No regulation of Cln3-associated kinase was observed in a fus3 kss1 strain deficient in mating factor pathway mitogen-activated protein (MAP) kinases. Inhibition occurs mainly at the level of specific activity of Cln3-Cdc28 complexes. Inhibition of the C-terminally truncated Cln3-1-associated kinase is not observed; such truncations were previously identified genetically as causing resistance to mating factor-induced cell cycle arrest. Regulation of Cln3-associated kinase specific activity by mating factor treatment requires Far1. Overexpression of Far1 restores inhibition of C-terminally truncated Cln3-1-associated kinase activity. G2/M-arrested cells are unable to regulate Cln3-associated kinase, possibly because of cell cycle regulation of Far1 abundance. Inhibition of Cln3-associated kinase activity by the mating factor pathway may allow this pathway to block the earliest step in normal cell cycle initiation, since Cln3 functions as the most upstream G1-acting cyclin, activating transcription of the G1 cyclins CLN1 and CLN2 as well as of the S-phase cyclins CLB5 and CLB6. PMID:9418890

  12. Ectopic expression of cyclin D3 corrects differentiation of DM1 myoblasts through activation of RNA CUG-binding protein, CUGBP1

    SciTech Connect

    Salisbury, Elizabeth; Sakai, Keiko; Schoser, Benedikt; Huichalaf, Claudia; Schneider-Gold, Christiane; Nguyen, Heather; Wang, Gou-Li; Albrecht, Jeffrey H.; Timchenko, Lubov T.

    2008-07-01

    Differentiation of myocytes is impaired in patients with myotonic dystrophy type 1, DM1. CUG repeat binding protein, CUGBP1, is a key regulator of translation of proteins that are involved in muscle development and differentiation. In this paper, we present evidence that RNA-binding activity of CUGBP1 and its interactions with initiation translation complex eIF2 are differentially regulated during myogenesis by specific phosphorylation and that this regulation is altered in DM1. In normal myoblasts, Akt kinase phosphorylates CUGBP1 at Ser28 and increases interactions of CUGBP1 with cyclin D1 mRNA. During differentiation, CUGBP1 is phosphorylated by cyclinD3-cdk4/6 at Ser302, which increases CUGBP1 binding with p21 and C/EBP{beta} mRNAs. While cyclin D3 and cdk4 are elevated in normal myotubes; DM1 differentiating cells do not increase these proteins. In normal myotubes, CUGBP1 interacts with cyclin D3/cdk4/6 and eIF2; however, interactions of CUGBP1 with eIF2 are reduced in DM1 differentiating cells and correlate with impaired muscle differentiation in DM1. Ectopic expression of cyclin D3 in DM1 cells increases the CUGBP1-eIF2 complex, corrects expression of differentiation markers, myogenin and desmin, and enhances fusion of DM1 myoblasts. Thus, normalization of cyclin D3 might be a therapeutic approach to correct differentiation of skeletal muscle in DM1 patients.

  13. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr{sup 286} in squamous cell carcinoma

    SciTech Connect

    Mori, Jun; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Miwa, Yoshikazu; Watanabe, Yutaka; Hirata, Masato; Morimoto, Sachio; Shirasuna, Kanemitsu; Sasaguri, Toshiyuki

    2005-11-01

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G{sub 0}/G{sub 1} phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3{beta} (GSK-3{beta}). Depletion of endogenous GSK-3{beta} by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3{beta} and found that DIF-1 dephosphorylated GSK-3{beta} on Ser{sup 9} and induced the nuclear translocation of GSK-3{beta}, suggesting that DIF-1 activated GSK-3{beta}. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr{sup 286} was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3{beta}-mediated phosphorylation of Thr{sup 286}.

  14. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  15. DNA damage control: regulation and functions of checkpoint kinase 1.

    PubMed

    Smits, Veronique A J; Gillespie, David A

    2015-10-01

    Checkpoint kinase 1 (Chk1) is a master regulator of the DNA damage and replication checkpoints in vertebrate cells. When activated via phosphorylation by its upstream regulatory kinase, ATR, Chk1 prevents cells with damaged or incompletely replicated DNA from entering mitosis, and acts to stabilize stalled replication forks and suppress replication origin firing when DNA synthesis is inhibited. Chk1 blocks mitosis by maintaining high levels of inhibitory tyrosine phosphorylation of the mitotic cyclin-dependent kinase 1; however, the mechanisms that underlie replication fork stabilization and suppression of origin firing are less well defined. Although Chk1 function is evidently acutely regulated during these responses, how this occurs at the molecular level is incompletely understood. Recent evidence that Chk1 contains a 'kinase-associated 1' domain within its regulatory C-terminal region promises new insights. Additional modifications catalysed by other protein kinases, such as cyclin-dependent kinase 1, Akt, and RSK, can combine with ubiquitylation to regulate Chk1 subcellular localization and protein stability. Interestingly, it is clear that Chk1 has less well-defined functions in homologous recombination, chromatin modification, gene expression, spindle checkpoint proficiency, and cytokinesis. Here, we provide an overview of Chk1 regulation and functions, with an emphasis on unresolved questions that merit further research. PMID:26216057

  16. Rho family-associated kinases PAK1 and rock.

    PubMed

    Maruta, Hiroshi; Nheu, Thao V; He, Hong; Hirokawa, Yumiko

    2003-01-01

    Rho family GTPases (Rho, Rac and CDC42) share around 30% sequence identity with RAS family GTPases, and are essential for RAS-induced malignant transformation, i.e., aberrant serum/anchorage-independent growth and actin cytoskeleton-linked morphological changes. Oncogenic RAS mutants such as v-Ha-RAS trigger cell cycle entry (G0-G1 transition) mainly by up-regulating cyclin D1, an activator of cyclin-dependent kinases (CDK), and down-regulating p27, a CDK inhibitor. Although both Rac and CDC42 are clearly activated by RAS, there is so far no evidence that RAS activates Rho. In this chapter, we will discuss the role of these Rho family GTPases and their effectors, in particular the Ser/Thr kinases PAK1 and Rock, in RAS-induced serum/anchorage-independent cell cycling, and discuss several potential therapeutics, peptides or chemical compounds, that could block this oncogenic cell cycle signalling pathway.

  17. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    PubMed

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer.

  18. Cdk-activating kinase complex is a component of human transcription factor TFIIH.

    PubMed

    Shiekhattar, R; Mermelstein, F; Fisher, R P; Drapkin, R; Dynlacht, B; Wessling, H C; Morgan, D O; Reinberg, D

    1995-03-16

    Transcription factor IIH (TFIIH) contains a kinase capable of phosphorylating the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII). Here we report the identification of the Cdk-activating kinase (Cak) complex (Cdk7 and cyclin H) as a component of TFIIH after extensive purification of TFIIH by chromatography. We find that affinity-purified antibodies directed against cyclin H inhibit TFIIH-dependent transcription and that both cyclin H and Cdk7 antibodies inhibit phosphorylation of the CTD of the largest subunit of the RNAPII in the preinitiation complex. Cak is present in at least two distinct complexes, TFIIH and a smaller complex that is unable to phosphorylate RNAPII in the preinitiation complex. Both Cak complexes, as well as recombinant Cak, phosphorylate a CTD peptide. Finally, TFIIH was shown to phosphorylate both Cdc2 and Cdk2, suggesting that there could be a link between transcription and the cell cycle machinery.

  19. The 3' Untranslated Region of the Cyclin B mRNA Is Not Sufficient to Enhance the Synthesis of Cyclin B during a Mitotic Block in Human Cells

    PubMed Central

    Schnerch, Dominik; Follo, Marie; Felthaus, Julia; Engelhardt, Monika; Wäsch, Ralph

    2013-01-01

    Antimitotic agents are frequently used to treat solid tumors and hematologic malignancies. However, one major limitation of antimitotic approaches is mitotic slippage, which is driven by slow degradation of cyclin B during a mitotic block. The extent to which cyclin B levels decline is proposed to be governed by an equilibrium between cyclin B synthesis and degradation. It was recently shown that the 3' untranslated region (UTR) of the murine cyclin B mRNA contributes to the synthesis of cyclin B during mitosis in murine cells. Using a novel live-cell imaging-based technique allowing us to study synthesis and degradation of cyclin B simultaneously at the single cell level, we tested here the role of the human cyclin B 3'UTR in regulating cyclin B synthesis during mitosis in human cells. We observed that the cyclin B 3'UTR was not sufficient to enhance cyclin B synthesis in human U2Os, HeLa or hTERT RPE-1 cells. A better understanding of how the equilibrium of cyclin B is regulated in mitosis may contribute to the development of improved therapeutic approaches to prevent mitotic slippage in cancer cells treated with antimitotic agents. PMID:24058555

  20. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T

    PubMed Central

    Fujinaga, Koh; Taube, Ran; Wimmer, Jörg; Cujec, Thomas P.; Peterlin, B. Matija

    1999-01-01

    The transcriptional transactivator Tat from HIV binds to the transactivation response element (TAR) RNA to increase rates of elongation of viral transcription. Human cyclin T supports these interactions between Tat and TAR. In this study, we report the sequence of mouse cyclin T and identify the residues from positions 1 to 281 in human cyclin T that bind to Tat and TAR. Mouse cyclin T binds to Tat weakly and is unable to facilitate interactions between Tat and TAR. Reciprocal exchanges of the cysteine and tyrosine at position 261 in human and mouse cyclin T proteins also render human cyclin T inactive and mouse cyclin T active. These findings reveal the molecular basis for the restriction of Tat transactivation in rodent cells. PMID:9990016

  1. Versatile templates for the development of novel kinase inhibitors: Discovery of novel CDK inhibitors

    SciTech Connect

    Dwyer, Michael P.; Paruch, Kamil; Alvarez, Carmen; Doll, Ronald J.; Keertikar, Kerry; Duca, Jose; Fischmann, Thierry O.; Hruza, Alan; Madison, Vincent; Lees, Emma; Parry, David; Seghezzi, Wolfgang; Sgambellone, Nicole; Shanahan, Frances; Wiswell, Derek; Guzi, Timothy J.

    2008-06-30

    A series of four bicyclic cores were prepared and evaluated as cyclin-dependent kinase-2 (CDK2) inhibitors. From the in-vitro and cell-based analysis, the pyrazolo[1,5-a]pyrimidine core (represented by 9) emerged as the superior core for further elaboration in the identification of novel CDK2 inhibitors.

  2. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  3. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  4. Overexpression of Reg3alpha increases cell growth and the levels of cyclin D1 and CDK4 in insulinoma cells.

    PubMed

    Cui, Wei; De Jesus, Kristine; Zhao, Hong; Takasawa, Shin; Shi, Bingyin; Srikant, Coimbatore B; Liu, Jun-Li

    2009-06-01

    Regenerating gene (Reg) family protein Reg3alpha is normally expressed in pancreatic acinar and endocrine cells. In order to explore its effect on islet beta-cell replication, insulinoma MIN6 cells were stably transfected with murine Reg3alpha cDNA. Determined using real-time PCR and Western blots, the levels of Reg3alpha mRNA and protein in Reg3alpha-transfected clones were increased 10- and 6-fold, respectively. Western blots also revealed that the protein was released into the culture medium, consistent with an endocrine effect. In MTT cell proliferation assay, Reg3alpha-overexpressing cells exhibited a 2-fold increase in the rate of cell growth. In order to investigate the intracellular mechanism, we studied cell cycle regulatory proteins. In Reg3alpha-expressing cells, we detected 2.2- and 2.5-fold increased levels of cyclin D1 and CDK4, respectively, which paralleled a 1.8-fold increase in the rate of Akt phosphorylation. It is established that beta-cell replication is associated with increased cyclin D1 and CDK4 levels; deficiency in CDK4 or cyclin D2 results in reduced beta-cell mass and diabetes. Our results suggest that Reg3alpha stimulates beta-cell replication, by activating Akt kinase and increasing the levels of cyclin D1/CDK4.

  5. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation.

    PubMed

    Kitisin, K; Ganesan, N; Tang, Y; Jogunoori, W; Volpe, E A; Kim, S S; Katuri, V; Kallakury, B; Pishvaian, M; Albanese, C; Mendelson, J; Zasloff, M; Rashid, A; Fishbein, T; Evans, S R T; Sidawy, A; Reddy, E P; Mishra, B; Johnson, L B; Shetty, K; Mishra, L

    2007-11-01

    Transforming growth factor-beta (TGF-beta) signaling members, TGF-beta receptor type II (TBRII), Smad2, Smad4 and Smad adaptor, embryonic liver fodrin (ELF), are prominent tumor suppressors in gastrointestinal cancers. Here, we show that 40% of elf(+/-) mice spontaneously develop hepatocellular cancer (HCC) with markedly increased cyclin D1, cyclin-dependent kinase 4 (Cdk4), c-Myc and MDM2 expression. Reduced ELF but not TBRII, or Smad4 was observed in 8 of 9 human HCCs (P<0.017). ELF and TBRII are also markedly decreased in human HCC cell lines SNU-398 and SNU-475. Restoration of ELF and TBRII in SNU-398 cells markedly decreases cyclin D1 as well as hyperphosphorylated-retinoblastoma (hyperphosphorylated-pRb). Thus, we show that TGF-beta signaling and Smad adaptor ELF suppress human hepatocarcinogenesis, potentially through cyclin D1 deregulation. Loss of ELF could serve as a primary event in progression toward a fully transformed phenotype and could hold promise for new therapeutic approaches in human HCCs.

  6. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins.

    PubMed Central

    Aristarkhov, A; Eytan, E; Moghe, A; Admon, A; Hershko, A; Ruderman, J V

    1996-01-01

    Ubiquitin-dependent proteolysis of the mitotic cyclins A and B is required for the completion of mitosis and entry into the next cell cycle. This process is catalyzed by the cyclosome, an approximately 22S particle that contains a cyclin-selective ubiquitin ligase activity, E3-C, that requires a cyclin-selective ubiquitin carrier protein (UBC) E2-C. Here we report the purification and cloning of E2-C from clam oocytes. The deduced amino acid sequence of E2-C indicates that it is a new UBC family member. Bacterially expressed recombinant E2-C is active in in vitro cyclin ubiquitination assays, where it exhibits the same substrate specificities seen with native E2-C. These results demonstrate that E2-C is not a homolog of UBC4 or UBC9, proteins previously suggested to be involved in cyclin ubiquitination, but is a new UBC family member with unique properties. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633058

  7. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.

    PubMed Central

    King, R W; Glotzer, M; Kirschner, M W

    1996-01-01

    Mitotic cyclins are abruptly degraded at the end of mitosis by a cell-cycle-regulated ubiquitin-dependent proteolytic system. To understand how cyclin is recognized for ubiquitin conjugation, we have performed a mutagenic analysis of the destruction signal of mitotic cyclins. We demonstrate that an N-terminal cyclin B segment as short as 27 residues, containing the 9-amino-acid destruction box, is sufficient to destabilize a heterologous protein in mitotic Xenopus extracts. Each of the three highly conserved residues of the cyclin B destruction box is essential for ubiquitination and subsequent degradation. Although an intact destruction box is essential for the degradation of both A- and B-type cyclins, we find that the Xenopus cyclin A1 destruction box cannot functionally substitute for its B-type counterpart, because it does not contain the highly conserved asparagine necessary for cyclin B proteolysis. Physical analysis of ubiquitinated cyclin B intermediates demonstrates that multiple lysine residues function as ubiquitin acceptor sites, and mutagenic studies indicate that no single lysine residue is essential for cyclin B degradation. This study defines the key residues of the destruction box that target cyclin for ubiquitination and suggests there are important differences in the way in which A- and B-type cyclins are recognized by the cyclin ubiquitination machinery. Images PMID:8885231

  8. Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    PubMed Central

    Yu, Wendong; Ramakrishnan, Rajesh; Wang, Yan; Chiang, Karen; Sung, Tzu-Ling; Rice, Andrew P.

    2008-01-01

    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors. PMID:18773076

  9. Modeling the cell division cycle: cdc2 and cyclin interactions.

    PubMed Central

    Tyson, J J

    1991-01-01

    The proteins cdc2 and cyclin form a heterodimer (maturation promoting factor) that controls the major events of the cell cycle. A mathematical model for the interactions of cdc2 and cyclin is constructed. Simulation and analysis of the model show that the control system can operate in three modes: as a steady state with high maturation promoting factor activity, as a spontaneous oscillator, or as an excitable switch. We associate the steady state with metaphase arrest in unfertilized eggs, the spontaneous oscillations with rapid division cycles in early embryos, and the excitable switch with growth-controlled division cycles typical of nonembryonic cells. PMID:1831270

  10. Kinase cascades regulating entry into apoptosis.

    PubMed Central

    Anderson, P

    1997-01-01

    All cells are constantly exposed to conflicting environment cues that signal cell survival or cell death. Survival signals are delivered by autocrine or paracrine factors that actively suppress a default death pathway. In addition to survival factor withdrawal, cell death can be triggered by environmental stresses such as heat, UV light, and hyperosmolarity or by dedicated death receptors (e.g., FAS/APO-1 and tumor necrosis factor [TNF] receptors) that are counterparts of growth factor or survival receptors at the cell surface. One of the ways that cells integrate conflicting exogenous stimuli is by phosphorylation (or dephosphorylation) of cellular constituents by interacting cascades of serine/threonine and tyrosine protein kinases (and phosphatases). Survival factors (e.g., growth factors and mitogens) activate receptor tyrosine kinases and selected mitogen-activated, cyclin-dependent, lipid-activated, nucleic acid-dependent, and cyclic AMP-dependent kinases to promote cell survival and proliferation, whereas environmental stress (or death factors such as FAS/APO-1 ligand and TNF-alpha) activates different members of these kinase families to inhibit cell growth and, under some circumstances, promote apoptotic cell death. Because individual kinase cascades can interact with one another, they are able to integrate conflicting exogenous stimuli and provide a link between cell surface receptors and the biochemical pathways leading to cell proliferation or cell death. PMID:9106363

  11. Cyclin D2 Overexpression in Transgenic Mice Induces Thymic and Epidermal Hyperplasia whereas Cyclin D3 Expression Results Only in Epidermal Hyperplasia

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; LaCava, Margaret; Miliani de Marval, Paula L.; Jorcano, Jose L.; Richie, Ellen R.; Conti, Claudio J.

    2000-01-01

    In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells. PMID:10980142

  12. Expression of δ-cyclins of Brassica rapa L. embryos by clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.

    Cyclins is one of the important regulators of cell cycle. There are several types of cyclins exists. They are responding for different phases of cycle and have high homology in plant's and mammalian's cells. δ -cyclins are specific for plants and controlling the presynthetic phase events. These cyclins likes to mammalian D-cyclins and have similar functions. This class consist three types of cyclins -- δ 1, δ 2 and δ 3. Cyclin δ 1 is responding for events in cell, which take place before exiting from stage of quiet (G0). Cyclin δ 1 is responding for entering and outputting from G0, and cyclin δ 3 -- for events, which happen in cell after stage of quiet, by entering to S-phase (phase of DNA's synthesis). In present research was used δ 1- and δ 3-cyclins. For determination of δ -cyclins gene's expression level was excreted RNA from embryos: 3-days (spherical stage), 6-days (heart-shaped stage) and 9-days (generated stage) seedlings of Brassica rapa L. in control and under clinorotation. For definition the cyclins gene's expression level applied Northern Blot Analysis. Obtained data testify about difference in level of gene's expression of cyclin δ 1 between control and clinorotation variants. After three days by pollination the expression of this gene in embryos was observed in control only. By clinorotation the gene's expression was detected on 6 days later, but it level was lower than in control variant. On 9 days it was gently expressed by clinorotation, where as by control it was not detected absolutely. Cyclin δ 3 gene's expression was observed during all time of the experiment. These data also confirm known one about expression δ 1- cyclin, which expressed on beginning of cell cycle only. And δ 3 --cyclin that express during whole presinthetic phase of cell cycle (Sony et al., 1995, Murray, 1994, Inze et al, 1999, Umeda, 2000).

  13. Mechanism of dual specificity kinase activity of DYRK1A.

    PubMed

    Walte, Agnes; Rüben, Katharina; Birner-Gruenberger, Ruth; Preisinger, Christian; Bamberg-Lemper, Simone; Hilz, Nikolaus; Bracher, Franz; Becker, Walter

    2013-09-01

    The function of many protein kinases is controlled by the phosphorylation of a critical tyrosine residue in the activation loop. Dual specificity tyrosine-phosphorylation-regulated kinases (DYRKs) autophosphorylate on this tyrosine residue but phosphorylate substrates on aliphatic amino acids. This study addresses the mechanism of dual specificity kinase activity in DYRK1A and related kinases. Tyrosine autophosphorylation of DYRK1A occurred rapidly during in vitro translation and did not depend on the non-catalytic domains or other proteins. Expression in bacteria as well as in mammalian cells revealed that tyrosine kinase activity of DYRK1A is not restricted to the co-translational autophosphorylation in the activation loop. Moreover, mature DYRK1A was still capable of tyrosine autophosphorylation. Point mutants of DYRK1A and DYRK2 lacking the activation loop tyrosine showed enhanced tyrosine kinase activity. A series of structurally diverse DYRK1A inhibitors was used to pharmacologically distinguish different conformational states of the catalytic domain that are hypothesized to account for the dual specificity kinase activity. All tested compounds inhibited substrate phosphorylation with higher potency than autophosphorylation but none of the tested inhibitors differentially inhibited threonine and tyrosine kinase activity. Finally, the related cyclin-dependent kinase-like kinases (CLKs), which lack the activation loop tyrosine, autophosphorylated on tyrosine both in vitro and in living cells. We propose a model of DYRK autoactivation in which tyrosine autophosphorylation in the activation loop stabilizes a conformation of the catalytic domain with enhanced serine/threonine kinase activity without disabling tyrosine phosphorylation. The mechanism of dual specificity kinase activity probably applies to related serine/threonine kinases that depend on tyrosine autophosphorylation for maturation. PMID:23809146

  14. An enhancer trap line associated with a D-class cyclin gene in Arabidopsis.

    PubMed

    Swaminathan, K; Yang, Y; Grotz, N; Campisi, L; Jack, T

    2000-12-01

    In yeast and animals, cyclins have been demonstrated to be important regulators of cell cycle progression. In recent years, a large number of A-, B-, and D-class cyclins have been isolated from a variety of plant species. One class of cyclins, the D-class cyclins, is important for progression through G1 phase of the cell cycle. In Arabidopsis, four D-class cyclins have been isolated and characterized (CYCLIN-D1;1, CYCLIN-D2;1, CYCLIN-D3;1, and CYCLIN-D4;1). In this report we describe the characterization of a fifth D-class cyclin gene, CYCLIN-D3;2 (CYCD3;2), from Arabidopsis. An enhancer trap line, line 5580, contains a T-DNA insertion in CYCD3;2. Enhancer trap line 5580 exhibits expression in young vegetative and floral primordia. In line 5580, T-DNA is inserted in the first exon of the CYCD3;2 gene; in homozygous 5580 plants CYCD3;2 RNA is not detectable. Even though CYCD3;2 gene function is eliminated, homozygous 5580 plants do not exhibit an obvious growth or developmental phenotype. Via in situ hybridization we demonstrate that CYCD3;2 RNA is expressed in developing vegetative and floral primordia. In addition, CYCD3;2 is also capable of rescuing a yeast strain that is deficient in G1 cyclin activity. PMID:11115883

  15. ATM is required for rapid degradation of cyclin D1 in response to {gamma}-irradiation

    SciTech Connect

    Choo, Dong Wan; Baek, Hye Jung; Motoyama, Noboru; Cho, Kwan Ho; Kim, Hye Sun; Kim, Sang Soo

    2009-01-23

    The cellular response to DNA damage induced by {gamma}-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon {gamma}-irradiation. Upon {gamma}-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3{beta} phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3{beta} failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by {gamma}-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.

  16. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C.

    PubMed

    Sahin, Bogachan; Shu, Hongjun; Fernandez, Joseph; El-Armouche, Ali; Molkentin, Jeffery D; Nairn, Angus C; Bibb, James A

    2006-08-25

    Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.

  17. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    SciTech Connect

    Li Chenchen Xing Tairan Tang Mingliang Yong Wu Yan Dan Deng Hongmin Wang Huili Wang Ming Chen Jutao Ruan Diyun

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.

  18. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    PubMed Central

    Lawless, Nathan; Blacklock, Kristin; Berrigan, Elizabeth; Verkhivker, Gennady

    2013-01-01

    A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4) kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock) kinase from the system during client loading (release) stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery. PMID:24287464

  19. CDKG1 protein kinase is essential for synapsis and male meiosis at high ambient temperature in Arabidopsis thaliana.

    PubMed

    Zheng, Tao; Nibau, Candida; Phillips, Dylan W; Jenkins, Glyn; Armstrong, Susan J; Doonan, John H

    2014-02-11

    The Arabidopsis cyclin-dependent kinase G (CDKG) gene defines a clade of cyclin-dependent protein kinases related to CDK10 and CDK11, as well as to the enigmatic Ph1-related kinases that are implicated in controlling homeologous chromosome pairing in wheat. Here we demonstrate that the CDKG1/CYCLINL complex is essential for synapsis and recombination during male meiosis. A transfer-DNA insertional mutation in the cdkg1 gene leads to a temperature-sensitive failure of meiosis in late Zygotene/Pachytene that is associated with defective formation of the synaptonemal complex, reduced bivalent formation and crossing over, and aneuploid gametes. An aphenotypic insertion in the cyclin L gene, a cognate cyclin for CDKG, strongly enhances the phenotype of cdkg1-1 mutants, indicating that this cdk-cyclin complex is essential for male meiosis. Since CYCLINL, CDKG, and their mammalian homologs have been previously shown to affect mRNA processing, particularly alternative splicing, our observations also suggest a mechanism to explain the widespread phenomenon of thermal sensitivity in male meiosis. PMID:24469829

  20. Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila

    PubMed Central

    Schulz, Adriana; Preiss, Anette; Nagel, Anja C.

    2015-01-01

    In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR) signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG) as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP). Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs) is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E), is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb), the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila. PMID:26274446

  1. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  2. Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity.

    PubMed Central

    Ruesch, M N; Laimins, L A

    1997-01-01

    The E6 and E7 proteins from the high-risk human papillomaviruses (HPVs) bind and inactivate the tumor suppressor proteins p53 and Rb, respectively. In HPV-positive cells, expression of E6 proteins from high-risk types results in increased turnover of p53, which leads to an abrogation of p21-mediated G1/S arrest in response to DNA-damaging agents. In contrast, keratinocytes which express E7 alone have increased levels of p53 but, interestingly, also fail to undergo a G1/S arrest. We investigated the mechanism by which E7 bypasses this p21 arrest by using both keratinocytes which stably express E7 as well as U20S cells which stably or transiently express E7. We observed that E7 does not affect the induction of p21 synthesis by p53. While glutathione S-transferase (GST)-E7 bound a low level of in vitro-translated p21, we were unable to detect E7 and p21 in the same complex by GST-E7 binding assays or immunoprecipitations from cell extracts. Furthermore, E7 did not prevent p21-mediated inhibition of cyclin E kinase activity. In keratinocytes expressing E7, increased levels of p53, p21, and cyclin E, as well as increased cyclin E kinase activity, were observed. To determine if this increase in cyclin E activity was necessary for E7's ability to overcome p21-mediated G1/S arrest, we examined U20S cells in which cyclin E levels are not increased in response to E7 expression. U20S cells which stably express E7 were found to initiate DNA synthesis in the presence of DNA-damaging agents despite the inhibition of cyclin E activity by p21. In transient assays, cotransfection of E7 or E2F-1 along with p21 into U20S cells rescued G1 arrest and resulted in S-phase entry, as measured by the ability to incorporate bromodeoxyuridine. These data indicate that E7 is able to overcome G1/S arrest without directly affecting p21 function and likely acts through deregulation of E2F activity. PMID:9188631

  3. Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons

    PubMed Central

    Veas-Pérez de Tudela, Miguel; Maestre, Carolina; Delgado-Esteban, María; Bolaños, Juan P.; Almeida, Angeles

    2015-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection. PMID:26658992

  4. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein.

    PubMed

    Hirschi, Alexander; Cecchini, Matthew; Steinhardt, Rachel C; Schamber, Michael R; Dick, Frederick A; Rubin, Seth M

    2010-09-01

    The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking. PMID:20694007

  5. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

    PubMed Central

    Sudakin, V; Ganoth, D; Dahan, A; Heller, H; Hershko, J; Luca, F C; Ruderman, J V; Hershko, A

    1995-01-01

    The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles. Images PMID:7787245

  6. Stimulation of hERG1 channel activity promotes a calcium-dependent degradation of cyclin E2, but not cyclin E1, in breast cancer cells.

    PubMed

    Perez-Neut, Mathew; Shum, Andrew; Cuevas, Bruce D; Miller, Richard; Gentile, Saverio

    2015-01-30

    Cyclin E2 gene amplification, but not cyclin E1, has been recently defined as marker for poor prognosis in breast cancer, and appears to play a major role in proliferation and therapeutic resistance in several breast cancer cells. Our laboratory has previously reported that stimulation of the hERG1 potassium channel with selective activators led to down-regulation of cyclin E2 in breast cancer cells. In this work, we demonstrate that stimulation of hERG1 promotes an ubiquitin-proteasome-dependent degradation of cyclin E2 in multiple breast cancer cell lines representing Luminal A, HER2+ and Trastuzumab-resistant breast cancer cells. In addition we have also reveal that hERG1 stimulation induces an increase in intracellular calcium that is required for cyclin E2 degradation. This novel function for hERG1 activity was specific for cyclin E2, as cyclins A, B, D E1 were unaltered by the treatment. Our results reveal a novel mechanism by which hERG1 activation impacts the tumor marker cyclin E2 that is independent of cyclin E1, and suggest a potential therapeutic use for hERG1 channel activators.

  7. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Absence of cyclin D2 expression is associated with promoter hypermethylation in gastric cancer.

    PubMed

    Yu, J; Leung, W K; Ebert, M P A; Leong, R W L; Tse, P C H; Chan, M W Y; Bai, A H C; To, K F; Malfertheiner, P; Sung, J J Y

    2003-05-19

    Expression of cyclin D2 is absent in 30-70% of gastric cancers. We investigated the role of promoter hypermethylation in the transcriptional silencing of cyclin D2 in five gastric cell lines and 47 primary gastric carcinomas. CpG island methylation status of the cyclin D2 gene was studied by methylation-specific polymerase chain reaction and bisulphite sequencing. RNA and protein expression was analysed by reverse transcription-PCR and Western blot, respectively. Dense methylation of cyclin D2 was detected in three cell lines (KATOIII, AGS and NCI-N87), which also lacked cyclin D2 mRNA and protein expression. Bisulphite DNA sequencing revealed that loss of cyclin D2 expression was closely associated with the density of methylation in the promoter region. Treatment with DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, restored the cyclin D2 expression level in methylated gastric cells. Among the 47 primary gastric cancers, cyclin D2 hypermethylation was detected in 23 (48.9%) cases. None of the 23 normal gastric biopsies from noncancer patients showed hypermethylation. Hypermethylation was associated with loss of mRNA (P&<0.001) and protein (P=0.006) expressions. Our study showed that cyclin D2 hypermethylation is associated with loss of cyclin D2 expression in a subset of gastric cancers, which may suggest an alternative gastric carcinogenesis pathway in the absence of cyclin D2 expression. PMID:12771922

  9. Identification of novel selective antagonists for cyclin C by homology modeling and virtual screening.

    PubMed

    Rajender, P Sarita; Vasavi, M; Vuruputuri, Uma

    2011-03-01

    Cancer is a global multidrug resistant calamity, demanding an urgent need to design a novel/potent anti cancer agent. CDK8, 3/cyclin C biosynthetic pathway plays a specific role in G(0)/G(1)/S phases of cell cycle. Cyclin C is identified as a potential anti cancer target candidate. In order to understand the mechanism of ligand binding and interaction between ligand and cyclin C, a 3D homology model for cyclin C is generated. The cyclin C binding groove can be checked by small ligand molecules leading to inhibition. Virtual screening of molecules from an online data base of ChemBank library throws light to arrive at possible inhibitors for cyclin C inhibition. The molecules with better docking scores and acceptable ADME properties were prioritised to obtain potential lead molecules as cyclin C inhibitors.

  10. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation

    PubMed Central

    Han, Yeming; Zhao, Shanshan; Gong, Yaoqin; Hou, Guihua

    2016-01-01

    Atherosclerotic coronary artery disease (CAD) is one of the most prevalent diseases worldwide. Atherosclerosis was considered to be the single most important contributor to CAD. In this study, a distinct serum protein expression pattern in CAD patients was demonstrated by proteomic analysis with two-dimensional gel electrophoresis coupled with mass spectrometry. In particular, CDK9 was found to be highly elevated in serum, monocytes and artery plaque samples of CAD patients. Furthermore, there was high infiltration of CD14+ monocytes/macrophages within artery plaques correlated with the expression of CDK9. Moreover, Flavopiridol (CDK9 inhibitor) could inhibit THP-1 cell (monocytic acute leukemia cell line) proliferation by targeting CDK9. Altogether, These findings indicate that CDK9 represent an important role for inflammation in the pathogenesis of atherosclerosis. It may be a potential biomarker of atherosclerotic inflammation and offer insights into the pathophysiology and targeted therapy for atherosclerotic CAD. PMID:26636538

  11. PHASE II TRIAL OF THE CYCLIN-DEPEDENT KINASE INHIBITOR PD 0332991 IN PATIENTS WITH CANCER

    ClinicalTrials.gov

    2016-08-24

    Adult Solid Tumor; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Benign Teratoma; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Familial Testicular Germ Cell Tumor; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Monodermal and Highly Specialized Teratoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Melanoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Rectal Cancer; Stage III Extragonadal Non-seminomatous Germ Cell Tumor; Stage III Extragonadal Seminoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Extragonadal Non-seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Melanoma; Stage IV Ovarian Germ Cell Tumor; Stage IV Rectal Cancer; Testicular Immature Teratoma; Testicular Mature Teratoma

  12. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    PubMed

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels.

  13. Interactions between Equine Cyclin T1, Tat, and TAR Are Disrupted by a Leucine-to-Valine Substitution Found in Human Cyclin T1

    PubMed Central

    Taube, Ran; Fujinaga, Koh; Irwin, Dan; Wimmer, Jörg; Geyer, Matthias; Peterlin, B. Matija

    2000-01-01

    Transcriptional transactivators (Tat) from human immunodeficiency and equine infectious anemia viruses (HIV and EIAV) interact with their transactivation response elements (TAR) to increase the rates of viral transcription. Whereas the human cyclin T1 is required for the binding of Tat to TAR from HIV, it is unknown how Tat from EIAV interacts with its TAR. Furthermore, Tat from EIAV functions in equine and canine cells but not in human cells. In this study, we present sequences of cyclins T1 from horse and dog and demonstrate that their N-terminal 300 residues rescue the transactivation of Tat from EIAV in human cells. Although human and equine cyclins T1 bind to this Tat, only the equine cyclin T1 supports the binding of Tat to TAR from EIAV. Finally, a reciprocal exchange of the valine for the leucine at position 29 in human and equine cyclins T1, respectively, renders the human cyclin T1 active and the equine cyclin T1 inactive for Tat transactivation from EIAV. Thus, the collaboration between a specific cyclin T1 and Tat for their high-affinity interaction with TAR is a common theme of lentiviral transactivation. PMID:10623752

  14. Recent developments of protein kinase inhibitors as potential AD therapeutics.

    PubMed

    Tell, Volkmar; Hilgeroth, Andreas

    2013-01-01

    Present Alzheimer's disease (AD) therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3) β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit. PMID:24312003

  15. Recent developments of protein kinase inhibitors as potential AD therapeutics

    PubMed Central

    Tell, Volkmar; Hilgeroth, Andreas

    2013-01-01

    Present Alzheimer’s disease (AD) therapies suffer from inefficient effects on AD symptoms like memory or cognition, especially in later states of the disease. Used acteylcholine esterase inhibitors or the NMDA receptor antagonist memantine address one target structure which is involved in a complex, multifactorial disease progression. So the benefit for patients is presently poor. A more close insight in the AD progression identified more suggested target structures for drug development. Strategies of AD drug development concentrate on novel target structures combined with the established ones dedicated for combined therapy regimes, preferably by the use of one drug which may address two target structures. Protein kinases have been identified as promising target structures because they are involved in AD progression pathways like pathophysiological tau protein phosphorylations and amyloid β toxicity. The review article will shortly view early inhibitors of single protein kinases like glycogen synthase kinase (gsk3) β and cyclin dependent kinase 5. Novel inhibitors will be discussed which address novel AD relevant protein kinases like dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Moreover, multitargeting inhibitors will be presented which target several protein kinases and those which are suspected in influencing other AD relevant processes. Such a multitargeting is the most promising strategy to effectively hamper the multifactorial disease progression and thus gives perspective hopes for a future better patient benefit. PMID:24312003

  16. Calcineurin Regulates Cyclin D1 Accumulation in Growth-stimulated Fibroblasts

    PubMed Central

    Kahl, Christina R.; Means, Anthony R.

    2004-01-01

    Calcium (Ca2+) and calmodulin (CaM) are required for progression of mammalian cells from quiescence into S phase. In multiple cell types, cyclosporin A causes a G1 cell cycle arrest, implicating the serine/threonine phosphatase calcineurin as one Ca2+/CaM-dependent enzyme required for G1 transit. Here, we show, in diploid human fibroblasts, that cyclosporin A arrested cells in G1 before cyclin D/cdk4 complex activation and retinoblastoma hyperphosphorylation. This arrest occurred in early G1 with low levels of cyclin D1 protein. Because cyclin D1 mRNA was induced normally in the cyclosporin A-treated cells, we analyzed the half-life of cyclin D1 in the presence of cyclosporin A and found no difference from control cells. However, cyclosporin A treatment dramatically reduced cyclin D1 protein synthesis. Although these pharmacological experiments suggested that calcineurin regulates cyclin D1 synthesis, we evaluated the effects of overexpression of activated calcineurin on cyclin D1 synthesis. In contrast to the reduction of cyclin D1 with cyclosporin A, ectopic expression of calcium/calmodulin-independent calcineurin promoted synthesis of cyclin D1 during G1 progression. Therefore, calcineurin is a Ca2+/CaM-dependent target that regulates cyclin D1 accumulation in G1. PMID:14767060

  17. Down-regulation of SOSTDC1 promotes thyroid cancer cell proliferation via regulating cyclin A2 and cyclin E2

    PubMed Central

    He, Xiaoying; Ke, Weijian; Xu, Lijuan; Liu, Liehua; Xiao, Haipeng; Li, Yanbing

    2015-01-01

    Sclerostin domain containing protein 1 (SOSTDC1) is down-regulated and acts as a tumor suppressor in some kinds of cancers. However, the expression pattern and biological significance of SOSTDC1 in thyroid cancer are largely unknown. We demonstrated that SOSTDC1 was significantly down-regulated in thyroid cancer. Ectopic over-expression of SOSTDC1 inhibited proliferation and induced G1/S arrest in thyroid cancer cells. Moreover, SOSTDC1 over-expression suppressed the growth of tumor xenografts in nude mice. We also found that elevated SOSTDC1 led to inhibition of cyclin A2 and cyclin E2. Together, our results demonstrate that SOSTDC1 is down-regulated in thyroid cancer and might be a potential therapeutic target in the treatment of thyroid cancer. PMID:26378658

  18. TSG101 expression in gynecological tumors: relationship to cyclin D1, cyclin E, p53 and p16 proteins.

    PubMed

    Bennett, N A; Pattillo, R A; Lin, R S; Hsieh, C Y; Murphy, T; Lyn, D

    2001-11-01

    Recent studies have shown that in vitro steady-state expression of the tumor susceptibility gene TSG101 is important for maintenance of genomic stability and cell cycle regulation. To determine the contribution of TSG101 expression in neoplastic formation, expression of TSG101 protein levels were evaluated in primary ovarian and endometrial adenocarcinoma tumors. Expression of TSG101 was also examined in various tumor cell lines (PA-1, AN3CA, HeLa, HS578T, HCT116). Full-length TSG101 protein was detected in these tumors and cell lines indicating that intragenic deletions were not characteristic of TSG101. In addition, TSG101 protein levels were compared with aberrations of prominent cell cycle regulatory molecules such as cyclin D1, cyclin E, p16 and p53. Reduced TSG101 protein was observed in 36% (8/22) of ovarian and 17% (1/6) of endometrial adenocarcinoma. Aberrant levels of p53, p16, cyclin D or E were comparable to published studies indicating that the clinicopathological distribution of these cases did not favor advanced stage tumors. Altogether, these findings suggest that a down-regulation of TSG101 is associated with tumorigenesis in a subgroup of gynecological tumors. PMID:11838966

  19. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus

    PubMed Central

    Liu, Pengda; Begley, Michael; Michowski, Wojciech; Inuzuka, Hiroyuki; Ginzberg, Miriam; Gao, Daming; Tsou, Peiling; Gan, Wenjian; Papa, Antonella; Kim, Byeong Mo; Wan, Lixin; Singh, Amrik; Zhai, Bo; Yuan, Min; Wang, Zhiwei; Gygi, Steven P.; Lee, Tae Ho; Lu, Kun-Ping; Toker, Alex; Pandolfi, Pier Paolo; Asara, John M.; Kirschner, Marc W.; Sicinski, Piotr; Cantley, Lewis; Wei, Wenyi

    2014-01-01

    Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer. PMID:24670654

  20. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome.

    PubMed

    Najas, Sònia; Arranz, Juan; Lochhead, Pamela A; Ashford, Anne L; Oxley, David; Delabar, Jean M; Cook, Simon J; Barallobre, María José; Arbonés, Maria L

    2015-01-01

    Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia) cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome. PMID:26137553

  1. Colony-stimulating Factor-1 Receptor Utilizes Multiple Signaling Pathways to Induce Cyclin D2 Expression

    PubMed Central

    Dey, Arunangsu; She, Hongyun; Kim, Leopold; Boruch, Allan; Guris, Deborah L.; Carlberg, Kristen; Sebti, Saïd M.; Woodley, David T.; Imamoto, Akira; Li, Wei

    2000-01-01

    Colony-stimulating factor-1 (CSF-1) induces expression of immediate early gene, such as c-myc and c-fos and delayed early genes such as D-type cyclins (D1 and D2), whose products play essential roles in the G1 to S phase transition of the cell cycle. Little is known, however, about the cytoplasmic signal transduction pathways that connect the surface CSF-1 receptor to these genes in the nucleus. We have investigated the signaling mechanism of CSF-1-induced D2 expression. Analyses of CSF-1 receptor autophosphorylation mutants show that, although certain individual mutation has a partial inhibitory effect, only multiple combined mutations completely block induction of D2 in response to CSF-1. We report that at least three parallel pathways, the Src pathway, the MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, and the c-myc pathway, are involved. Induction of D2 is partially inhibited in Src−/− bone marrow-derived macrophages and by Src inhibitor PP1 and is enhanced in v-Src-overexpressing cells. Activation of myc's transactivating activity selectively induces D2 but not D1. Blockade of c-myc expression partially blocks CSF-1-induced D2 expression. Complete inhibition of the MEK/ERK pathway causes 50% decrease of D2 expression. Finally, simultaneous inhibition of Src, MEK activation, and c-myc expression additively blocks CSF-1-induced D2 expression. This study indicates that multiple signaling pathways are involved in full induction of a single gene, and this finding may also apply broadly to other growth factor-inducible genes. PMID:11071910

  2. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E.

    PubMed

    Lai, Weiyan; Tang, Ying; Huang, Xiao R; Ming-Kuen Tang, Patrick; Xu, Anping; Szalai, Alexander J; Lou, Tan-Qi; Lan, Hui Y

    2016-09-01

    Acute kidney injury (AKI) is exacerbated in C-reactive protein transgenic mice but alleviated in Smad3 knockout mice. Here we used C-reactive protein transgenic/Smad3 wild-type and C-reactive protein transgenic/Smad3 knockout mice to investigate the signaling mechanisms by which C-reactive protein promotes AKI. Serum creatinine was elevated, and the extent of tubular epithelial cell necrosis following ischemia/reperfusion-induced AKI was greater in C-reactive protein transgenics but was blunted when Smad3 was deleted. Exacerbation of AKI in C-reactive protein transgenics was associated with increased TGF-β/Smad3 signaling and expression of the cyclin kinase inhibitor p27, but decreased phosphorylated CDK2 and expression of cyclin E. Concomitantly, tubular epithelial cell proliferation was arrested at the G1 phase in C-reactive protein transgenics with fewer cells entering the S-phase cell cycle as evidenced by fewer bromodeoxyuridine-positive cells. In contrast, the protection from AKI in C-reactive protein transgenic/Smad3 knockout mice was associated with decreased expression of p27 and promotion of CDK2/cyclin E-dependent G1/S transition of tubular epithelial cells. In vitro studies using tubular epithelial cells showed that C-reactive protein activates Smad3 via both TGF-β-dependent and ERK/MAPK cross talk mechanisms, Smad3 bound directly to p27, and blockade of Smad3 or the Fc receptor CD32 prevented C-reactive protein-induced p27-dependent G1 cell cycle arrest. In vivo, treatment of C-reactive protein transgenics with a Smad3 inhibitor largely improved AKI outcomes. Thus, C-reactive protein may promote AKI by impairing tubular epithelial cell regeneration via the CD32-Smad3-p27-driven inhibition of the CDK2/cyclin E complex. Targeting Smad3 may offer a new treatment approach for AKI. PMID:27470679

  3. Foci of cyclin A2 interact with actin and RhoA in mitosis

    PubMed Central

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-01-01

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis. PMID:27279564

  4. Dual activators of Protein Kinase R (PKR) and Protein Kinase R Like Kinase (PERK) Identify Common and Divergent Catalytic Targets

    PubMed Central

    Ming, Jie; Sun, Hong; Cao, Peng; Fusco, Dahlene N.; Chung, Raymond T.; Chorev, Michael; Jin, Qi; Aktas, Bertal H.

    2013-01-01

    Chemical genetics has evolved into a powerful tool for studying gene function in normal- and patho-biology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and recently identified inhibitors. In contrast, activating probes for studying the role of catalytic activity of these kinases are not available. We identified a 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as specific dual activator of PKR and PERK by screening a chemical library of 20,000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and preliminary structure-activity relationship of DHBDC, which phosphorylate eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation; inducing CHOP and suppressing cyclin D1 expression and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits proliferation of human hepatitis C virus. Finally, DHBDC induces phosphorylation of Ikβα, and activates NF-κB pathway. Surprisingly, activation of NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal- and patho-biology. PMID:23784735

  5. The MAPKKKs Ste11 and Bck1 jointly transduce the high oxidative stress signal through the cell wall integrity MAP kinase pathway

    PubMed Central

    Jin, Chunyan; Kim, Stephen K.; Willis, Stephen D.; Cooper, Katrina F.

    2016-01-01

    Oxidative stress stimulates the Rho1 GTPase, which in turn induces the cell wall integrity (CWI) MAP kinase cascade. CWI activation promotes stress-responsive gene expression through activation of transcription factors (Rlm1, SBF) and nuclear release and subsequent destruction of the repressor cyclin C. This study reports that, in response to high hydrogen peroxide exposure, or in the presence of constitutively active Rho1, cyclin C still translocates to the cytoplasm and is degraded in cells lacking Bck1, the MAPKKK of the CWI pathway. However, in mutants defective for both Bck1 and Ste11, the MAPKKK from the high osmolarity, pseudohyphal and mating MAPK pathways, cyclin C nuclear to cytoplasmic relocalization and destruction is prevented. Further analysis revealed that cyclin C goes from a diffuse nuclear signal to a terminal nucleolar localization in this double mutant. Live cell imaging confirmed that cyclin C transiently passes through the nucleolus prior to cytoplasmic entry in wild-type cells. Taken together with previous studies, these results indicate that under low levels of oxidative stress, Bck1 activation is sufficient to induce cyclin C translocation and degradation. However, higher stress conditions also stimulate Ste11, which reinforces the stress signal to cyclin C and other transcription factors. This model would provide a mechanism by which different stress levels can be sensed and interpreted by the cell. PMID:27135035

  6. A novel function for Cyclin A2: Control of cell invasion via RhoA signaling

    PubMed Central

    Arsic, Nikola; Bendris, Nawal; Peter, Marion; Begon-Pescia, Christina; Rebouissou, Cosette; Gadéa, Gilles; Bouquier, Nathalie; Bibeau, Frédéric

    2012-01-01

    Cyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2–depleted cells display a cortical distribution of actin filaments and increased migration. These defects are rescued by restoration of wild-type Cyclin A2, which directly interacts with RhoA, or by a Cyclin A2 mutant unable to associate with Cdk. In vitro, Cyclin A2 po