Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhenchao; Shi, Hui; Wan, Chuan
Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanolmore » is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.« less
Emission and combustion profile study of unmodified research engine propelled with neat biofuels.
Devarajan, Yuvarajan; Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Nagappan, Beemkumar
2018-05-07
The current work focuses on the experimental investigation to analyze the combustion and emission characteristics of a direct injection diesel engine fueled with neat biodiesel (BD100) and different proportions of cyclohexanol blends as a fuel additive in various volume fractions. Cyclohexanol is dispersed into a neat biodiesel in a volume fraction of 10, 20, and 30 vol%. The biodiesel is produced from neem oil by the conventional transesterification process. The experimental results revealed that with the increased cyclohexanol fraction, the combustion was found smooth. The addition of cyclohexanol has a positive influence on various physical and chemical properties of neat biodiesel. The in-cylinder pressure is comparatively low for diesel followed by cyclohexanol and biodiesel blends when compared with neat biodiesel. This is due to shorter ignition delay period. The heat-release rate of neat biodiesel is the highest among all fuels. The overall HC emission of BD70COH30 is 12.19% lower than BD100 and 16.34% lower than diesel. The overall CO 2 emission of BD70COH30 is 13.91% higher than BD100 and 19.5% higher than diesel. The overall NO x emission of BD70COH30 is 5.31% lower than BD100 at all load engine operations. The presence of 10, 20, and 30% of cyclohexanol in biodiesel decreased smoke emissions as compared with neat biodiesel and diesel. The overall smoke emission of BD70COH30 is 19.23% lower than BD100 and 25.51% lower than diesel. The overall CO emission of cyclohexanol blended with biodiesel by 30 vol% (BD70COH30) is 17% lower than neat biodiesel and 21.8% lower than diesel. Based on the outcome of this study, neem oil biodiesel and cyclohexanol blends can be employed as a potential alternative fuel for existing unmodified diesel engines owing to its lesser emission characteristics.
NASA Technical Reports Server (NTRS)
Kaukler, W. F.; Frazier, D. O.; Facemire, B.
1984-01-01
Equilibrium temperature-composition diagrams were determined for the two organic systems, succinonitrile-benzene and succinonitrile-cyclohexanol. Measurements were made using the common thermal analysis methods and UV spectrophotometry. Succinonitrile-benzene monotectic was chosen for its low affinity for water and because UV analysis would be simplified. Succinonitrile-cyclohexanol was chosen because both components are transparent models for metallic solidification, as opposed to the other known succinonitrile-based monotectics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable tomore » metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
ERIC Educational Resources Information Center
Friesen, J. Brent; Schretzman, Robert
2011-01-01
The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…
USDA-ARS?s Scientific Manuscript database
GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,2-Benzenedicarboxylic acid, mixed... Substances § 721.10457 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1... reporting. (1) The chemical substance identified as 1,2-benzenedicarboxylic acid, mixed esters with benzyl...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,2-Benzenedicarboxylic acid, mixed... Substances § 721.10457 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1... reporting. (1) The chemical substance identified as 1,2-benzenedicarboxylic acid, mixed esters with benzyl...
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.
2012-01-01
A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…
NASA Astrophysics Data System (ADS)
Beć, Krzysztof B.; Grabska, Justyna; Czarnecki, Mirosław A.
2018-05-01
We investigated near-infrared (7500-4000 cm-1) spectra of n-hexanol, cyclohexanol and phenol in CCl4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules.
ERIC Educational Resources Information Center
Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa
2016-01-01
In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…
Beć, Krzysztof B; Grabska, Justyna; Czarnecki, Mirosław A
2018-05-15
We investigated near-infrared (7500-4000 cm -1 ) spectra of n-hexanol, cyclohexanol and phenol in CCl 4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.; ...
2016-07-22
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M
2018-06-01
Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.
Hwang, Chi-Ching; Chang, Pei-Ru; Wang, Tzu-Pin
2017-10-01
3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) catalyzes the oxidation of androsterone with NAD + to form androstanedione and NADH with the rate limiting step being the release of NADH. In this study, we elucidate the role of remote substrate binding interactions contributing to the rate enhancement by 3α-HSD/CR through steady-state kinetic studies with the truncated substrate analogs. No enzyme activity was detected for methanol, ethanol, and 2-propanol, which lack the steroid scaffold of androsterone, implying that the steroid scaffold plays an important role in enzyme catalytic specificity. As compared to cyclohexanol, the activity for 2-decalol, androstenol, and androsterone increases by 0.9-, 90-, and 200-fold in k cat , and 37-, 1.9 × 10 6 -, and 1.8 × 10 6 -fold in k cat /K B , respectively. The rate limiting step is hydride transfer for 3α-HSD/CR catalyzing the reaction of cyclohexanol with NAD + based on the observed rapid equilibrium ordered mechanism and equal deuterium isotope effects of 3.9 on V and V/K for cyclohexanol. The k cat /K B value results in ΔG ‡ of 14.7, 12.6, 6.2, and 6.2 kcal/mol for the 3α-HSD/CR catalyzed reaction of cyclohexanol, 2-decalol, androstenol, and androsterone, respectively. Thus, the uniform binding energy from the B-ring of steroids with the active site of 3α-HSD/CR equally contributes 2.1 kcal/mol to stabilize both the transition state and ground state of the ternary complex, leading to the similarity in k cat for 2-decalol and cyclohexanol. Differential binding interactions of the remote BCD-ring and CD-ring of androsterone with the active site of 3α-HSD/CR contribute 8.5 and 6.4 kcal/mol to the stabilization of the transition state, respectively. The removal of the carbonyl group at C17 of androsterone has small effects on catalysis. Both uniform and differential binding energies from the remote sites of androsterone compared to cyclohexanol contribute to the 3α-HSD/CR catalysis, resulting in the increases in k cat and k cat /K B . Copyright © 2017 Elsevier B.V. All rights reserved.
Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.
Sökmen, Ilkay; Sevin, Fatma
2003-08-01
The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.
Bell, Stephen G; Spence, Justin T J; Liu, Shenglan; George, Jonathan H; Wong, Luet-Lok
2014-04-21
Protected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site. The addition of the double bond in the cyclohexyl ring of the benzoate ester protected cyclohex-2-enol has a debilitative effect on the activity of the Tyr96Ala mutant with this substrate. However, the Phe87Ala/Tyr96Phe double mutant, which introduces space at a different location in the active site than the Tyr96Ala mutant, was able to efficiently hydroxylate the C-H bonds of 1-cyclohex-2-enyl benzoate at the allylic C-4 position. Mutations at Phe87 improved the selectivity of the oxidation of 1-phenyl-1-cyclohexylethylene to trans-4-phenyl-ethenylcyclohexanol (92%) when compared to single mutants at Tyr96 of P450cam.
Chen, C H; Hoye, K; Roth, L G
1996-09-15
To further investigate factors contributing to the action of alcohol in the solute-induced lipid interdigitation phase, thermodynamic and fluorescence polarization measurements were carried out to study the interaction of benzyl alcohol with dipalmitoyl phosphatidylcholine bilayer vesicles. The obtained results were compared with those previously reported for ethanol and cyclohexanol (L. G. Roth and C-H. Chen, Arch. Biochem. Biophys. 296, 207, 1992). Similar to ethanol, benzyl alcohol was found to exhibit a biphasic effect on the enthalpy (delta Hm) and the temperature (tm) of the lipid-phase transition and the steady-state fluorescence polarization (P) monitored by 1,6-diphenyl-1,3,5-hexatriene. At a total concentration of benzyl alcohol < 30 mg/ml (the alcohol concentration in lipid phase < 21 mg/ml), benzyl alcohol was found to exhibit large increases in delta Hm and P, which were correlated with the formation of a lipid interdigitated phase, as evidenced by reported X-ray diffraction data. Combining the results with benzyl alcohol and ethanol suggested that simultaneously large changes in delta Hm and P can be used as an indication of the occurrence of a solute-induced lipid interdigitated phase. The overall interacting force in the formation of this lipid phase, as derived from the interactions of the hydroxyl portion of an alcohol with the lipid phosphate head group and the hydrophobic portion of an alcohol with the lipid hydrocarbon chains, may or may not be dominated by hydrophobic interaction. Although lipid/water partition coefficients and the contribution of hydrophobic interaction to the overall interacting force were comparable between benzyl alcohol and cyclohexanol, benzyl alcohol induced lipid interdigitated phase, but not for cyclohexanol. This was due to the ability of benzyl alcohol to be more effective than cyclohexanol in simultaneously interacting with the phosphate head group and the hydrocarbon chains of lipid.
The metabolites of cyclohexylamine in man and certain animals
Renwick, A. G.; Williams, R. T.
1972-01-01
1. [1-14C]Cyclohexylamine hydrochloride was synthesized and given orally or intraperitoneally to rats, rabbits and guinea pigs (dose 50–500mg/kg) and orally to humans (dose 25 or 200mg/person). The 14C is excreted mainly in the urine, most of the excretion occurring in the first day after dosing. Only small amounts (1–7%) are found in the faeces. 2. In the rat, guinea pig and man, the amine is largely excreted unchanged, only 4–5% of the dose being metabolized in 24h in the rat and guinea pig and 1–2% in man. In the rabbit about two-thirds of the dose is excreted unchanged and about 30% is metabolized. 3. In the rat, five minor metabolites were found, namely cyclohexanol (0.05%), trans-3- (2.2%), cis-4- (1.7%), trans-4- (0.5%) and cis-3-aminocyclohexanol (0.1% of the dose in 24h). 4. In the rabbit, eight metabolites were identified, namely cyclohexanol (9.3%), trans-cyclohexane-1,2-diol (4.7%), cyclohexanone (0.2%), cyclohexylhydroxylamine (0.2%) and trans-3- (11.3%), cis-3- (0.6%), trans-4- (0.4%) and cis-4-aminocyclohexanol (0.2%). 5. In the guinea pig, six minor metabolites were found, namely cyclohexanol (0.5%), trans-cyclohexane-1,2-diol (2.5%) and trans-3- (1.2%), cis-3- (0.2%), trans-4- (0.2%) and cis-4-aminocyclohexanol (0.2%). 6. In man only two metabolites were definitely identified, namely cyclohexanol (0.2%) and trans-cyclohexane-1,2-diol (1.4% of the dose), but man had been given a smaller dose (3mg/kg) than the other species (50mg/kg). 7. The hydroxylated metabolites of cyclohexylamine were excreted in the urine in both free and conjugated forms. 8. Although cyclohexylamine is metabolized to only a minor extent, in rats the metabolism was mainly through hydroxylation of the cyclohexane ring, in man by deamination and in guinea pigs and rabbits by ring hydroxylation and deamination. PMID:4655821
Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oosterkamp, Margreet J.; Veuskens, Teun; Saia, Flavia Talarico
2013-01-01
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacteriummore » that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.« less
Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T
Talarico Saia, Flávia; Weelink, Sander A. B.; Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.; Land, Miriam L.; Hauser, Loren J.; Langenhoff, Alette A. M.; Gerritse, Jan; van Berkel, Willem J. H.; Pieper, Dietmar H.; Junca, Howard; Smidt, Hauke; Schraa, Gosse; Davids, Mark; Schaap, Peter J.; Plugge, Caroline M.; Stams, Alfons J. M.
2013-01-01
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far. PMID:23825601
A HIGHLY EFFICIENT OXIDATION OF CYCLOHEXANE OVER VPO CATALYSTS USING HYDROGEN PEROXIDE
An unprecedented and highly efficient oxidation of cyclohexane to cyclohexanol and cyclohexanone is accomplished over calcined vanadium phosphorus oxide (VPO) catalysts in a relatively mild condition using hydrogen peroxide under a nitrogen atmosphere.
Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M
2017-03-17
The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.
Reactions of sterols with pyridinium chlorochromate.
Ifzal, S M; Ahmed, R; Haque, I U
1988-01-01
Reaction of pyridinium chlorochromate with cyclohexanol and several C(3)-sterols have been investigated. It has been found that the equatorieal C(3)-sterols axe easily oxidised in good yield to give corresponding ketosteioids while the axial sterols give poor yields.
Process for stabilization of coal liquid fractions
Davies, Geoffrey; El-Toukhy, Ahmed
1987-01-01
Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt, Sandy; Scherkus, Christian; Muschiol, Jan; Menyes, Ulf; Winkler, Till; Hummel, Werner; Gröger, Harald; Liese, Andreas; Herz, Hans-Georg; Bornscheuer, Uwe T
2015-02-23
Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hintermeier, Peter H.; Eckstein, Sebastian; Mei, Donghai
Hydronium ions in the pores of zeolite H-ZSM5 show high catalytic activity in the elimination of water from cyclohexanol in aqueous phase. Substitution induces subtle changes in rates and reaction pathways, which are concluded to be related to steric effects. Exploring the reaction pathways of 2-, 3-, and 4-methylcyclohexanol (2-McyOH, 3-McyOH, and 4-McyOH), 2- and 4-ethylcyclohexanol (2-EcyOH and 4-EcyOH), 2- n-propylcyclohexanol (2-PcyOH), and cyclohexanol (CyOH) it is shown that the E2 character increases with closer positioning of the alkyl and hydroxyl groups. Thus, 4-McyOH dehydration proceeds via an E1-type elimination, while cis-2-McyOH preferentially reacts via an E2 pathway. The entropymore » of activation decreased with increasing alkyl chain length (ca. 20 J mol -1 K -1 per CH 2 unit) for 2-substituted alcohols, which is concluded to result from constraints influencing the configurational entropy of the transition states.« less
The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...
Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi
2011-11-28
Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols.
Federal and State Water Quality Standards/Guidelines for Selected Parameters.
1979-02-01
isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total
Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F
2015-05-22
Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation of cyclohexanol or....3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of this chapter; 0.45...
Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.
1999-07-26
The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for alkane functionalization in water will be presented.
The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol
2007-10-01
Analysis Samples from kinetic studies were quantitativelymon- itored using a Hewlett-Packard (HP) gas chromato- graph (GC) 5890 with a flame ionization...excluded from the reaction mixture and the COL concentration was approximately doubled (4.9–9 ppm). Product Study Analysis Reactant mixtures and standards...from product identi- fication experiments were sampled by exposing a 100% polydimethylsiloxane solid phase microextrac- tion fiber (SPME) in the
Sealed rotors for in situ high temperature high pressure MAS NMR
Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...
2015-07-06
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less
Sealed rotors for in situ high temperature high pressure MAS NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less
Radulović, Niko; Dorđević, Nevenka; Denić, Marija; Pinheiro, Mariana Martins Gomes; Fernandes, Patricia Dias; Boylan, Fabio
2012-02-01
2-Pentylpiperidine, named conmaculatin, a novel volatile alkaloid related to coniine was identified from the renowned toxic weed Conium maculatum L. (Apiaceae). The structure of conmaculatin was corroborated by synthesis (8 steps starting from cyclohexanol, overall yield 12%). Conmaculatin's strong peripheral and central antinociceptive activity in mice was observed in a narrow dose range (10-20mg/kg). It was found to be lethal in doses higher than 20mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.
1992-06-01
Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.
Marshall, I. G.
1970-01-01
1. The neuromuscular blocking activities of AH 5183 (2-(4-phenylpiperidino) cyclohexanol) and its N-methyl quaternary analogue (AH 5954) were compared in rapidly stimulated nerve-skeletal muscle preparations of the rat, chicken and cat. 2. The evidence indicated that in isolated preparations the neuromuscular block produced by both AH 5183 and AH 5954 was primarily pre-junctional in origin. That produced by AH 5954 was readily reversible either by washing the tissue or by reducing the stimulation frequency, whereas that produced by AH 5183 was difficult to reverse in these ways. 3. Low doses of AH 5954 sensitized the rat hemidiaphragm preparation to the neuromuscular blocking action of choline. The neuromuscular block produced by choline was reversible by tetraethylammonium but not by neostigmine. This suggested that the blocking action of choline is at least partly pre-junctional in nature. 4. In anaesthetized cats AH 5954 possessed a biphasic neuromuscular blocking action. The initial phase was rapid in onset, suggestive of a post-junctional action, whereas the second phase was prolonged and reversible by choline, suggestive of a prejunctional inhibitory action on the choline transport mechanism. AH 5183 produced no initial blocking action and was irreversible by choline. 5. Both AH 5183 and AH 5954 possessed local anaesthetic and α-adrenoceptor blocking actions. These actions and the neuromuscular blocking action were affected to different degrees by quaternization, suggesting that the three main actions of the two drugs are independent. 6. It was concluded that AH 5954 and AH 5183 act at different pre-junctional sites at the neuromuscular junction, AH 5954 acting extraneuronally by inhibiting choline transport and AH 5183 intraneuronally at the level of the synaptic vesicle membrane. PMID:4395087
Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation.
Kasakov, Stanislav; Zhao, Chen; Baráth, Eszter; Chase, Zizwe A; Fulton, John L; Camaioni, Donald M; Vjunov, Aleksei; Shi, Hui; Lercher, Johannes A
2015-01-19
Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalysed the reduction of phenol to cyclohexanol in water. The state of 3-5 nm grafted Ni particles was analysed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in the presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt % C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atsriku, Christian; Hoffmann, Matthew; Moghaddam, Mehran; Kumar, Gondi; Surapaneni, Sekhar
2015-01-01
1. In vitro metabolism of Tanzisertib [(1S,4R)-4-(9-((S)tetrahydrofuran-3-yl)-8-(2,4,6-trifluorophenylamino)-9H-purin-2-ylamino) cyclohexanol], a potent, selective c-Jun amino-terminal kinase (JNK) inhibitor, was investigated in mouse, rat, rabbit, dog, monkey and human hepatocytes over 4 h. The extent of metabolism of [(14)C]tanzisertib was variable, with <10% metabolized in dog and human, <20% metabolized in rabbit and monkey and >75% metabolized in rat and mouse. Primary metabolic pathways in human and dog hepatocytes, were direct glucuronidation and oxidation of cyclohexanol to a keto metabolite, which was subsequently reduced to parent or cis-isomer, followed by glucuronidation. Rat and mouse produced oxidative metabolites and cis-isomer, including direct glucuronides and sulfates of tanzisertib and cis-isomer. 2. Enzymology of oxido-reductive pathways revealed that human aldo-keto reductases AKR1C1, 1C2, 1C3 and 1C4 were responsible for oxido-reduction of tanzisertib, CC-418424 and keto tanzisertib. Characterizations of enzyme kinetics revealed that AKR1C4 had a high affinity for reduction of keto tanzisertib to tanzisertib compared to other isoforms. These results demonstrate unique stereoselectivity of the reductive properties documented by human AKR1C enzymes for the same substrate. 3. Characterization of UGT isoenzymes in glucuronidation of tanzisertib and CC-418424 revealed that, tanzisertib glucuronide was catalyzed by: UGT1A1, 1A4, 1A10 and 2B4, while CC-418424 glucuronidation was catalyzed by UGT2B4 and 2B7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, W.J.; Donohue, M.T.; Singal, M.
Environmental and brathing zone samples were analyzed for di(2-ethylhexyl)adipate, hydrogen-chloride, cyclohexanol, dicyclohexyl-phthalate, phthalic-anhydride, and total particulates at Ashland Super Valu, Ashland, Wisconsin in June, 1984. The evaluation was requested by a company representative due to complaints of respiratory problems by one of the meat department employees. Four meat department employees were interviewed. The authors conclude that it is not possible to determine whether or not the symptoms reported by the meat packer are due to emissions from heated meat wrap or label adhesive. Recommendations included not operating the cool rod cutter at a temperature above 280 degrees-F and installing localmore » exhaust ventilation.« less
Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.
Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin
2015-06-01
Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of monolithic columns for microfluidic devices
NASA Astrophysics Data System (ADS)
Pagaduan, Jayson V.; Yang, Weichun; Woolley, Adam T.
2011-06-01
Monolithic columns offer advantages as solid-phase extractors because they offer high surface area that can be tailored to a specific function, fast mass transport, and ease of fabrication. Porous glycidyl methacrylate-ethylene glycol dimethacrylate monoliths were polymerized in-situ in microfluidic devices, without pre-treatment of the poly(methyl methacrylate) channel surface. Cyclohexanol, 1-dodecanol and Tween 20 were used to control the pore size of the monoliths. The epoxy groups on the monolith surface can be utilized to immobilize target-specific probes such as antibodies, aptamers, or DNA for biomarker detection. Microfluidic devices integrated with solid-phase extractors should be useful for point-of-care diagnostics in detecting specific biomarkers from complex biological fluids.
Mathews, Airek R; Que Hee, Shane S
2017-04-01
The aim was to develop a whole glove permeation method for cyclohexanol to generate permeation parameter data for a non-moving dextrous robot hand (normalized breakthrough time t b , standardized breakthrough time t s , steady state permeation rate P s , and diffusion coefficient D). Four types of disposable powderless, unsupported, and unlined nitrile gloves from the same producer were investigated: Safeskin Blue and Kimtech Science Blue, Purple, and Sterling. The whole glove method developed involved a peristaltic pump for water circulation through chemically resistant Viton tubing to continually wash the inner surface of the test glove via holes in the tubing, a dextrous robot hand operated by a microprocessor, a chemically protective nitrile glove to protect the robot hand, an incubator to maintain 35°C temperature, and a hot plate to maintain 35°C at the sampling point of the circulating water. Aliquots of 1.0 mL were sampled at regular time intervals for the first 60 min followed by removal of 0.5 mL aliquots every hour to 8 hr. Quantification was by the internal standard method after gas chromatography-selective ion electron impact mass spectrometry using a non-polar capillary column. The individual glove values of t b and t s differed for the ASTM closed loop method except for Safeskin Blue, but did not for the whole glove method. Most of the kinetic parameters agreed within an order of magnitude for the two techniques. The order of most protective to least protective glove was Blue and Safeskin, then Purple followed by Sterling for the whole gloves. The analogous order for the modified F739 ASTM closed loop method was: Safeskin, Blue, Purple, and Sterling, almost the same as for the whole glove. The Sterling glove was "not recommended" from the modified ASTM data, and was "poor" from the whole glove data.
Erukainure, Ochuko L; Mesaik, Ahmed M; Muhammad, Aliyu; Chukwuma, Chika I; Manhas, Neha; Singh, Parvesh; Aremu, Oluwole S; Islam, Md Shahidul
2016-10-01
The immunomodulatory potentials of the crude methanolic extract and fractions [n-hexane (Hex), n-dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH)] of Clerodendrum volubile flowers were investigated on whole blood phagocytic oxidative burst using luminol-amplified chemiluminescence technique. They were also investigated for their free radicals scavenging activities. The DCM fraction showed significant (p<0.05) anti-oxidative burst and free radical scavenging activities indicating high immunomodulatory and antioxidant potencies respectively. Cytotoxicity assay of the DCM fraction revealed a cytotoxic effect on CC-1 normal cell line. GCMS analysis revealed the presence of triacetin; 3,6-dimethyl-3-octanol; 2R - Acetoxymethyl-1,3,3-trimethtyl - 4t - (3-methyl-2-buten-1-yl) - 1c - cyclohexanol and Stigmastan - 3,5-diene in DCM fraction. These compounds were docked with the active sites of cyclooxygenase-2 (COX-2). Triacetin, 3,6-dimethyl-3-Octanol, and 2R-Acetoxymethyl-1,3,3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclohexanol docked comfortably with COX-2 with good scoring function (-CDocker energy) indicating their inhibitory potency against COX-2. 3,6-dimethyl-3-Octanol, displayed the lowest predicted free energy of binding (-21.4kcalmol -1 ) suggesting its stronger interaction with COX-2, this was followed by 2R - Acetoxymethyl-1, 3, 3-trimethtyl-4t-(3-methyl-2-buten-1-yl)-1c-cyclhexanol (BE=-20.5kcalmol -1 ), and triacetin (BE=-10.9kcalmol -1 ). Stigmastan - 3,5-diene failed to dock with COX-2. The observed suppressive effect of the DCM fraction of C. volubile flower methanolic extract on phagocytic oxidative burst indicates an immunomodulatory potential. This is further reflected in its free scavenging activities and synergetic modulation of COX-2 activities by its identified compounds in silico. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Catalytic Hydroxylation of Polyethylenes
2017-01-01
Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of mCPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C–C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C–H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and mCPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting properties and serve as macroinitiators to synthesize graft polycaprolactones that compatibilize polyethylene–polycaprolactone blends. PMID:28852704
Adsorption of polypropylene from dilute solutions on a zeolite column packing.
Macko, Tibor; Pasch, Harald; Denayer, Joeri F
2005-01-01
Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.
Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.
Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O
2000-09-01
A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.
Highly dispersed SiO x/Al 2O 3 catalysts illuminate the reactivity of isolated silanol sites
Mouat, Aidan R.; George, Cassandra; Kobayashi, Takeshi; ...
2015-09-23
The reaction of γ-alumina with tetraethylorthosilicate (TEOS) vapor at low temperatures selectively yields monomeric SiO x species on the alumina surface. These isolated (-AlO) 3Si(OH) sites are characterized by PXRD, XPS, DRIFTS of adsorbed NH 3, CO, and pyridine, and 29Si and 27Al DNP-enhanced solid-state NMR spectroscopy. The formation of isolated sites suggests that TEOS reacts preferentially at strong Lewis acid sites on the γ-Al 2O 3 surface, functionalizing the surface with “mild” Brønsted acid sites. As a result, for liquid-phase catalytic cyclohexanol dehydration, these SiO x sites exhibit up to 3.5-fold higher specific activity than the parent alumina withmore » identical selectivity.« less
Dragancea, Diana; Talmaci, Natalia; Shova, Sergiu; Novitchi, Ghenadie; Darvasiová, Denisa; Rapta, Peter; Breza, Martin; Galanski, Markus; Kožı́šek, Jozef; Martins, Nuno M R; Martins, Luísa M D R S; Pombeiro, Armando J L; Arion, Vladimir B
2016-09-19
Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.
Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions
NASA Astrophysics Data System (ADS)
Shi, Hui; Eckstein, Sebastian; Vjunov, Aleksei; Camaioni, Donald M.; Lercher, Johannes A.
2017-05-01
Acid catalysis by hydronium ions is ubiquitous in aqueous-phase organic reactions. Here we show that hydronium ion catalysis, exemplified by intramolecular dehydration of cyclohexanol, is markedly influenced by steric constraints, yielding turnover rates that increase by up to two orders of magnitude in tight confines relative to an aqueous solution of a Brønsted acid. The higher activities in zeolites BEA and FAU than in water are caused by more positive activation entropies that more than offset higher activation enthalpies. The higher activity in zeolite MFI with pores smaller than BEA and FAU is caused by a lower activation enthalpy in the tighter confines that more than offsets a less positive activation entropy. Molecularly sized pores significantly enhance the association between hydronium ions and alcohols in a steric environment resembling the constraints in pockets of enzymes stabilizing active sites.
Spectral characteristics of tramadol in different solvents and β-cyclodextrin
NASA Astrophysics Data System (ADS)
Anton Smith, A.; Manavalan, R.; Kannan, K.; Rajendiran, N.
2009-10-01
Effect of solvents and β-cyclodextrin on the absorption and fluorescence spectra of tramadol drug has been investigated and compared with anisole. The solid inclusion complex of tramadol with β-CD is investigated by FT-IR, 1H NMR, scanning electron microscope (SEM), DSC and semiempirical methods. The thermodynamic parameter (Δ G) of inclusion process is determined. A solvent study shows (i) the spectral behaviour of both tramadol and anisole molecules is similar to each other and (ii) the cyclohexanol group in tramadol is not effectively conjugated with anisole group. However, in β-CD, due to space restriction of the CD cavity, a weak interaction is present between the above groups in tramadol. β-Cyclodextrin studies show that tramadol forms 1:2 inclusion complex with β-CD. A mechanism is proposed for the inclusion process.
Ciuffi, Katia J; de Faria, Emerson H; Marçal, Liziane; Rocha, Lucas A; Calefi, Paulo S; Nassar, Eduardo J; Pepe, Iuri; da Rocha, Zênis N; Vicente, Miguel A; Trujillano, Raquel; Gil, Antonio; Korili, Sophia A
2012-05-01
The catalytic efficiency of takovite-aluminosilicate-chromium catalysts obtained by adsorption of Cr(3+) ions from aqueous solutions by a takovite-aluminosilicate nanocomposite adsorbent is reported. The adsorbent was synthesized by the coprecipitation method. The catalytic activity of the final Cr-catalysts depended on the amount of adsorbed chromium. (Z)-cyclooctene conversion up to 90% with total selectivity for the epoxide was achieved when the oxidation was carried out with hydrogen peroxide, at room temperature. After five consecutive runs, the catalysts maintained high activity, although after the sixth reuse, the epoxide yields strongly decreased to 35%. The catalysts were also efficient for cyclohexane oxidation, reaching up to 18% conversion, with cyclohexanone/cyclohexanol selectivity close to 1.2. On the whole, their use as catalysts gives a very interesting application for the solids obtained by adsorption of a contaminant cation such as Cr(3+).
Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation
NASA Astrophysics Data System (ADS)
Stensitzki, Till; Yang, Yang; Kozich, Valeri; Ahmed, Ashour A.; Kössl, Florian; Kühn, Oliver; Heyne, Karsten
2018-02-01
Infrared (IR) excitation of vibrations that participate in the reaction coordinate of an otherwise thermally driven chemical reaction are believed to lead to its acceleration. Attempts at the practical realization of this concept have been hampered so far by competing processes leading to sample heating. Here we demonstrate, using femtosecond IR-pump IR-probe experiments, the acceleration of urethane and polyurethane formation due to vibrational excitation of the reactants for 1:1 mixtures of phenylisocyanate and cyclohexanol, and toluene-2,4-diisocyanate and 2,2,2-trichloroethane-1,1-diol, respectively. We measured reaction rate changes upon selective vibrational excitation with negligible heating of the sample and observed an increase of the reaction rate up to 24%. The observation is rationalized using reactant and transition-state structures obtained from quantum chemical calculations. We subsequently used IR-driven reaction acceleration to write a polyurethane square on sample windows using a femtosecond IR pulse.
Genome sequences of Alicycliphilus denitrificans strain BC and K601(T)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oosterkamp, Margreet J.; Veuskens, Teun; Plugge, Caroline M.
2011-01-01
Alicycliphilus denitrificans strain BC and A. denitrificans strain K601T degrade cyclic hydrocarbons. These strains have been isolated from a mixture of wastewater treatment plant material and benzene-polluted soil and from a wastewater treatment plant, respectively, suggesting their role in bioremediation of soil and water. Although the strains are phylogenetically closely related, there are some clear physiological differences. The hydrocarbon cyclohexanol, for example, can be degraded by strain K601T but not by strain BC. Furthermore, both strains can use nitrate and oxygen as an electron acceptor, but only strain BC can use chlorate as electron acceptor. To better understand the nitratemore » and chlorate reduction mechanisms coupled to the oxidation of cyclic compounds, the genomes of A. denitrificans strains BC and K601T were sequenced. Here, we report the complete genome sequences of A. denitrificans strains BC and K601T.« less
Heinänen, M; Barbas, C
2001-03-01
A method is described for ambroxol, trans-4-(2-amino-3,5-dibromobenzylamino) cyclohexanol hydrochloride, and benzoic acid separation by HPLC with UV detection at 247 nm in a syrup as pharmaceutical presentation. Optimal conditions were: Column Symmetry Shield RPC8, 5 microm 250 x 4.6 mm, and methanol/(H(3)PO(4) 8.5 mM/triethylamine pH=2.8) 40:60 v/v. Validation was performed using standards and the pharmaceutical preparation which contains the compounds described above. Results from both standards and samples show suitable validation parameters. The pharmaceutical grade substances were tested by factors that could influence the chemical stability. These reaction mixtures were analysed to evaluate the capability of the method to separate degradation products. Degradation products did not interfere with the determination of the substances tested by the assay.
Wu, Ben-Zen; Sun, Yu-Jie; Chen, Yan-Hua; Yak, Hwa Kwang; Yu, Jya-Jyun; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming
2016-08-01
Al-powder-supported Pd, Rh, and Rh-Pd catalysts were synthesized through a spontaneous redox reaction in aqueous solutions. These catalysts hydrodebrominated 4- and 4,4'-bromodiphenyl ethers in supercritical carbon dioxide at 200 atm CO2 containing 10 atm H2 and 80 °C in 1 h. Diphenyl ether was the major product of Pd/Al. Rh/Al and Rh-Pd/Al further hydrogenated two benzene rings of diphenyl ether to form dicyclohexyl ether. The hydrogenolysis of CO bonds on diphenyl ether over Rh/Al and Rh-Pd/Al was observed to generate cyclohexanol and cyclohexane (<1%). With respect to hydrodebromination efficiency and catalyst stability, Rh-Pd/Al among three catalysts is suggested to be used for ex situ degradation of polybrominated diphenyl ethers in supercritical carbon dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu
2017-04-01
This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.
Hong, Yun; Sun, Dalei; Fang, Yanxiong
2018-04-04
The oxidation of cyclohexane under mild conditions occupies an important position in the chemical industry. A few soluble transition metals were widely used as homogeneous catalysts in the industrial oxidation of cyclohexane. Because heterogeneous catalysts are more manageable than homogeneous catalysts as regards separation and recycling, in our study, we hydrothermally synthesized and used pure berlinite (AlPO 4 ) and vanadium-incorporated berlinite (VAlPO 4 ) as heterogeneous catalysts in the selective oxidation of cyclohexane with molecular oxygen under atmospheric pressure. The catalysts were characterized by means of by XRD, FT-IR, XPS and SEM. Various influencing factors, such as the kind of solvents, reaction temperature, and reaction time were investigated systematically. The XRD characterization identified a berlinite structure associated with both the AlPO 4 and VAlPO 4 catalysts. The FT-IR result confirmed the incorporation of vanadium into the berlinite framework for VAlPO 4 . The XPS measurement revealed that the oxygen ions in the VAlPO 4 structure possessed a higher binding energy than those in V 2 O 5 , and as a result, the lattice oxygen was existed on the surface of the VAlPO 4 catalyst. It was found that VAlPO 4 catalyzed the selective oxidation of cyclohexane with molecular oxygen under atmospheric pressure, while no activity was detected on using AlPO 4 . Under optimum reaction conditions (i.e. a 100 mL cyclohexane, 0.1 MPa O 2 , 353 K, 4 h, 5 mg VAlPO 4 and 20 mL acetic acid solvent), a selectivity of KA oil (both cyclohexanol and cyclohexanone) up to 97.2% (with almost 6.8% conversion of cyclohexane) was obtained. Based on these results, a possible mechanism for the selective oxidation of cyclohexane over VAlPO 4 was also proposed. As a heterogeneous catalyst VAlPO 4 berlinite is both high active and strong stable for the selective oxidation of cyclohexane with molecular oxygen. We propose that KA oil is formed via a catalytic cycle, which involves activation of the cyclohexane by a key active intermediate species, formed from the nucleophilic addition of the lattice oxygen ion with the carbon in cyclohexane, as well as an oxygen vacancy formed at the VAlPO 4 catalyst surface.
Viscous hydrodynamic instability theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Dhir, V. K.
1972-01-01
Liquid viscosity was included in the Bellman-Pennington theory of the Taylor wave in a liquid vapor interface. Predictions of the most susceptible wavelength, and of the wave frequency, were made as a function of a liquid viscosity parameter and the Bond number. The stability of a gas jet in a viscous liquid was studied and the result is used to predict the peak heat flux on large horizontal heaters. Experimental measurements of the dominant Taylor wave and its growth rate were made during the film boiling of cyclohexanol on cylindrical heaters. The results bear out the predictions quite well. The thickness of the vapor blanket surrounding a cylindrical heater was measured and a correlation suggested. The effect of large fluxes of vapor volume on the dominant wavelength was also noted. Theoretical results of the peak heat flux are compared with the experimental data, and the effect of finite geometry of flat plate heaters on the peak heat flux is also discussed.
Thomas, J M; Raja, R; Sankar, G; Bell, R G
2001-03-01
Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.
Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T
2008-07-01
Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.
Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun
2018-03-26
Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart
2016-02-01
In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 < Pr < 800 was derived from the data: {Nu}t = 0.0085 \\cdot Re^{0.2} \\cdot {Pr^{0.65}} The correlation has been compared to literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.
Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons
Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; ...
2015-10-15
The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn 0.5Ce 0.5O x solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn 0.5Ce 0.5O xmore » solid solution with an ultrahigh manganese doping concentration in the CeO 2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn 4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less
Flight 1 technical report for experiment 74-37 contained polycrystalline solidification in low-G
NASA Technical Reports Server (NTRS)
Papaziak, J. M.; Kattamis, T. Z.
1976-01-01
A .005 M solution of fluorescein in cyclohexanol was directionally solidified in a standard 10 x 10 x 45mm UV silica cuvette, using a bottom thermoelectric chilling device. Progress of the experiment was monitored by time lapse photography. During flight (SPAR I) the camera malfunctioned and only one quarter of the expected data were collected. Comparison of flight and ground specimens indicated that: (1) The dark green layer observed ahead of the solid-liquid interface which is most likely the solute-enriched zone, appears to be wider in the flight specimen; (2) Parasitic nucleation ahead of the solid-liquid interface in the flight sample led to an irregularly shaped interface, smaller grain size, equiaxed grain morphology and a larger average macroscopic growth rate; (3) The formation of equiaxed grains ahead of the solid-liquid interface in the flight specimen may be attributed to ordered islands within the liquid, which survived remelting because of the low degree of superheating (approximately equal to 1.5 C), did not settle because of reduced gravity and acted as nuclei during cooling.
Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.
Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W
2011-06-14
We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.
Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons
Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng
2015-01-01
The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface. PMID:26469151
Catalytic conversion of nonfood woody biomass solids to organic liquids.
Barta, Katalin; Ford, Peter C
2014-05-20
This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels would reduce society's dependence on nonrenewable petroleum resources while easing the atmospheric carbon dioxide burden. The major nonfood component of biomass is lignocellulose, a matrix of the biopolymers cellulose, hemicellulose, and lignin. New approaches are needed to effect facile conversion of lignocellulose solids to liquid fuels and to other chemical precursors without the formation of intractable side products and with sufficient specificity to give economically sustainable product streams. We have devised a novel catalytic system whereby the renewable feedstocks cellulose, organosolv lignin, and even lignocellulose composites such as sawdust are transformed into organic liquids. The reaction medium is supercritical methanol (sc-MeOH), while the catalyst is a copper-doped porous metal oxide (PMO) prepared from inexpensive, Earth-abundant starting materials. This transformation occurs in a single stage reactor operating at 300-320 °C and 160-220 bar. The reducing equivalents for these transformations are derived by the reforming of MeOH (to H2 and CO), which thereby serves as a "liquid syngas" in the present case. Water generated by deoxygenation processes is quickly removed by the water-gas shift reaction. The Cu-doped PMO serves multiple purposes, catalyzing substrate hydrogenolysis and hydrogenation as well as the methanol reforming and shift reactions. This one-pot "UCSB process" is quantitative, giving little or no biochar residual. Provided is an overview of these catalysis studies beginning with reactions of the model compound dihydrobenzofuran that help define the key processes occurring. The initial step is phenyl-ether bond hydrogenolysis, and this is followed by aromatic ring hydrogenation. The complete catalytic disassembly of the more complex organosolv lignin to monomeric units, largely propyl-cyclohexanol derivatives is then described. Operational indices based on (1)H NMR analysis are also presented that facilitate holistic evaluation of these product streams that within several hours consist largely of propyl-cyclohexanol derivatives. Lastly, we describe the application of this methodology with several types of wood (pine sawdust, etc.) and with cellulose fibers. The product distribution, albeit still complex, displays unprecedented selectivity toward the production of aliphatic alcohols and methylated derivatives thereof. These observations clearly indicate that the Cu-doped solid metal oxide catalyst combined with sc-MeOH is capable of breaking down the complex biomass derived substrates to markedly deoxygenated monomeric units with increased hydrogen content. Possible implementations of this promising system on a larger scale are discussed.
Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun
2017-06-06
Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte, Stephanie; Wendisch, Volker F
2014-10-15
Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.
The genomic potential of Marinobacter aquaeolei - A biogeochemical opportunotroph
NASA Astrophysics Data System (ADS)
Singer, E.; Webb, E.; Nelson, W.; Heidelberg, J.; Edwards, K. J.
2009-12-01
The family of Marinobacter is one of the most ubiquitous in the ocean. Members of this genus are found throughout the water column, in the deep sea, and are often associated with hydrothermal plume particles and marine snow. They are known to degrade hydrocarbons and show some extremophilic lifestyles, such as pyschrophily, oligotrophy and halotolerance. This study has determined the genomic potential of one particular strain - Marinobacter aquaeolei VT8, which relies on a very large set of survival strategies. Isolated from an oil well in Southern Vietnam, M. aquaeolei was known to be a facultative anaerobe with the ability to utilize various carbon sources. Fitting with these observations, genome annotation has revealed: four variations of the TCA cycle, complete pathways of glycolysis and the degradation of more complex hydrocarbons (including octane oxidation and cyclohexanol degradation), alternative phosphorous and nitrogen sources, genes for the use of nitrate and sulfate as electron acceptors as well as complete pathways for sulfite oxidation, denitrification and iron oxidation. The versatility and interrelatedness of these metabolic potentials coin the opportunistic character of M. aquaeolei and help to more completely define the biogeochemical niche of the genus.
Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)
NASA Astrophysics Data System (ADS)
Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu
2018-06-01
The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.
Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junming; Karim, Ayman M.; Zhang, He
2013-10-01
Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene,more » phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.« less
NASA Technical Reports Server (NTRS)
Kesy, J. M.; Bandurski, R. S.
1990-01-01
A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.
Disposition, profiling and identification of emixustat and its metabolites in humans.
Fitzsimmons, Michael E; Sun, Gang; Kuksa, Vladimir; Reid, Michael J
2018-06-01
1. Emixustat is a small molecule that potently inhibits retinal pigment epithelium 65 isomerohydrolase. Emixustat is in clinical development for the treatment of various retinopathies (i.e. Stargardt disease and diabetic retinopathy). 2. A human absorption, distribution, metabolism, and excretion (ADME) study was conducted with a single dose of [ 14 C]-emixustat in healthy male subjects. Total 14 C content in plasma, urine, and faeces was determined using accelerator mass spectrometry (AMS), and metabolic profiles in pooled plasma and urine were investigated by both HPLC-AMS and 2D LC-MS/MS. 3. After a single, oral 40-mg dose of [ 14 C]-emixustat, recovery of total 14 C was nearly complete within 24 h. Urine was the major route of 14 C elimination; accounting for > 90% of the administered dose. 4. Biotransformation of emixustat occurred primarily at two structural moieties; oxidation of the cyclohexyl moiety and oxidative deamination of the 3R-hydroxypropylamine, both independently and in combination to produce secondary metabolites. Metabolite profiling in pooled plasma samples identified 3 major metabolites: ACU-5124, ACU-5116 and ACU-5149, accounting for 29.0%, 11.5%, and 10.6% of total 14 C, respectively. Emixustat was metabolized in human hepatocytes with unchanged emixustat accounting for 33.7% of sample radioactivity and predominantly cyclohexanol metabolites observed.
Oxidative deamination of alicyclic primary amines by liver microsomes from rats and rabbits.
Kurebayashi, H; Tanaka, A; Yamaha, T; Tatahashi, A
1988-09-01
1. Substrate selectivity and species difference in the oxidative deamination of the alicyclic primary amines, cyclopentylamine, cyclohexylamine, cycloheptylamine, 1- and 2-aminoindane, and 1- and 2-aminotetralin were studied using liver microsomes from rats and rabbits. 2. The deamination rates of the amines were much greater with liver microsomes from rabbits than from rats. Substrate selectivity resulted in much faster deamination of 1-aminoindane and 1-aminotetralin than of the corresponding 2-amino compounds, especially in rats. 3. When 1-aminoindane and 1-aminotetralin were incubated with rat liver microsomes and NADPH under 18O2, oxygen-18 was incorporated into the deaminated products, 1-indanone and 1-tetralone. The carbinolamine is a key intermediate in the oxidative deamination by rat liver microsomes, indicating the contribution of cytochrome P-450-dependent alpha-C-oxidation to the reaction. 4. Alicyclic primary amines gave type II binding spectra with rat and rabbit liver microsomes, but the spectra appeared to contain type I components. 5. The ratios of the alcohols, cyclohexanol, 2-tetralol and 2-indanol in the deaminated products were high in both rats and rabbits. The ketones were precursors of the alcohols, and substrate selectivity in reduction of the alicyclic ketones with NADPH was similar in both species.
Chandra, Ram; Kumar, Vineet
2017-01-01
Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ. PMID:28567033
Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS.
Habibollahi, Saeed; Tavakkoli, Nahid; Nasirian, Vahid; Khani, Hossein
2015-01-01
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed for preconcentration and determination of tramadol, ((±)-cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol-HCl), in aqueous and biological samples (urine, blood). DLLME is a simple, rapid and efficient method for determination of drugs in aqueous samples. Efficient factors on the DLLME process has defined and optimized for extraction of tramadol including type of extraction and disperser solvents and their volumes, pH of donor phase, time of extraction and ionic strength of donor phase. Based on the results of this study, under optimal conditions and by using 2-nitro phenol as internal standard, tramadol was determined by GC-MS, and the figures of merit of this work were evaluated. The enrichment factor, relative recovery and limit of detection were obtained 420, 99.2% and 0.08 µg L(-1), respectively. The linear range was between 0.26 and 220.00 µg L(-1) (R(2) = 0.9970). The relative standard deviation for 50.00 µg L(-1) of tramadol in aqueous samples by using 2-nitro phenol as IS was 3.6% (n = 7). Finally, the performance of DLLME was evaluated for analysis of tramadol in urine and blood. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir
Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized withmore » concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resende, Karen A.; Teles, Camila A.; Jacobs, Gary
Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less
Arya, Rekha; Ravikumar, R; Santhosh, R S; Princy, S Adline
2015-01-01
Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.
Thomas, Brian F; Lefever, Timothy W; Cortes, Ricardo A; Grabenauer, Megan; Kovach, Alexander L; Cox, Anderson O; Patel, Purvi R; Pollard, Gerald T; Marusich, Julie A; Kevin, Richard C; Gamage, Thomas F; Wiley, Jenny L
2017-04-01
Synthetic cannabinoids are manufactured clandestinely with little quality control and are distributed as herbal "spice" for smoking or as bulk compound for mixing with a solvent and inhalation via electronic vaporizers. Intoxication with synthetic cannabinoids has been associated with seizure, excited delirium, coma, kidney damage, and other disorders. The chemical alterations produced by heating these structurally novel compounds for consumption are largely unknown. Here, we show that heating synthetic cannabinoids containing tetramethylcyclopropyl-ring substituents produced thermal degradants with pharmacological activity that varied considerably from their parent compounds. Moreover, these degradants were formed under conditions simulating smoking. Some products of combustion retained high affinity at the cannabinoid 1 (CB 1 ) and CB 2 receptors, were more efficacious than (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) in stimulating CB 1 receptor-mediated guanosine 5'-O-(3-thiotriphosphate) (GTPγS) binding, and were potent in producing Δ 9 -tetrahydrocannabinol-like effects in laboratory animals, whereas other compounds had low affinity and efficacy and were devoid of cannabimimetic activity. Degradants that retained affinity and efficacy also substituted in drug discrimination tests for the prototypical synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)indole (JWH-018), and are likely to produce psychotropic effects in humans. Hence, it is important to take into consideration the actual chemical exposures that occur during use of synthetic cannabinoid formulations to better comprehend the relationships between dose and effect. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates
Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; ...
2016-04-28
The reaction of CoCl 2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlTo M) in tetrahydrofuran (THF) provides To MCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (To M) 2Co (2) and {HTo M}CoCl 2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis ofmore » To MCoCl in combination with the paramagnetic nature of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the To MCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of To MCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give To MCoOtBu (4) and To MCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less
Resende, Karen A.; Teles, Camila A.; Jacobs, Gary; ...
2018-03-21
Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less
2018-01-01
5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl2. ZnCl2 and similarly effective Zn(OTf)2 and Fe(OTf)2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf)4 and Sc(OTf)3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al2O3 combined with AlCl3 or Al(OTf)3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2′,4,4′,5,5′-hexahydroxybiphenyl (5,5′-BTO dimer) was identified. PMID:29607267
Kumalaputri, Angela J; Randolph, Caelan; Otten, Edwin; Heeres, Hero J; Deuss, Peter J
2018-03-05
5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl 2 . ZnCl 2 and similarly effective Zn(OTf) 2 and Fe(OTf) 2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf) 4 and Sc(OTf) 3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al 2 O 3 combined with AlCl 3 or Al(OTf) 3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2',4,4',5,5'-hexahydroxybiphenyl (5,5'-BTO dimer) was identified.
Cell-specific modulation of surfactant proteins by ambroxol treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifart, Carola; Clostermann, Ursula; Seifart, Ulf
2005-02-15
Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNAmore » content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.« less
Metal oxide electrocatalysts for alternative energy technologies
NASA Astrophysics Data System (ADS)
Pacquette, Adele Lawren
This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve photocatalytic activity. Another disadvantageous property of semiconductors is that photocorrosion of metal chalcogenides such as CdS occurs. In an attempt to prevent this, these materials were coated with more stable oxides such as Cu2O and TiO2. The photocatalytic activity of these CdS multipods protected by the stable oxides was enhanced in comparison to CdS particles. The third section describes the synthesis and the use of mixed metal oxides for alcohol oxidation. Presently, Pt is the most active and efficient metal catalyst for alcohol oxidation in fuel cells. It is necessary to develop cheaper, earth abundant metals that can replace Pt. Mixed metal oxides based on Mo-V-(Te,Nb)-O were synthesized under hydrothermal conditions. These materials were incorporated into an electrochemical cell and used to oxidize cyclohexanol. At low temperatures of 60°C, cyclohexanol was converted to cyclohexanone, cyclohexene, and adipic acid on Mo-V-O, Mo-V-Te-O, and Mo-V-Te-Nb-O respectively. The present work showed that these interesting materials might potentially be utilized as a catalyst in complex alcohol fuel cell technologies. In the final section, the electrochemical actuation in conducting polymers is studied. Conducting polymers, such as polypyrrole (PPy), and polythiophene (PTh), are often incorporated into actuators, sensors, and energy storage devices such as supercapacitors. The mechanism of the actuation in these polymers due to the insertion/removal of ions was studied. Electrochemical quartz crystal microbalance (EQCM) studies and in situ electrochemical stress measurements were the techniques used to study and to understand the observed actuation mechanism. The bilayer polypyrrole/polythiophene (PPy PTh) polymer film showed potential for enhancing the actuation and capacitance in energy storage devices.
Electrochemical Studies of Graphene-like materials Synthesized by the Thermolyzed Asphalt Reaction
NASA Astrophysics Data System (ADS)
Xie, Yuqun
Developing a facile and cost effective synthetic method for producing graphene materials has been an attractive research topic in several disciplines. Chapter 3 demenstrates sheets of multilayered graphene-like paper materials more than 10 cm2 in area were synthesized in the "Thermolyzed Asphalt Reaction (TAR)". TAR is processed within open containers at 650 °C under atmospheric pressure without the need to exclude oxygen, which is the lowest reported temperature for chemical vapor deposition of graphene-based materials. It was found that multilayered graphene-like materials can be grown on amorphous substrates without catalysts. In chapter 4, further studies of the TAR mechanism have allowed sulfur to be identified as an important co-factor in multilayer graphene-like materials formation. Graphene-like material was produced from simple precursors such as elemental sulfur and cyclohexanol. A proposed scheme illustrates sulfur's role in the growth of graphene-like material based on thermogravimetric analyses. We hypothesize that elemental sulfur is involved with the dehydration/dehydrogenation and eventual crosslinking of cyclohexanol between 100-140 °C. In the range of 240-400 °C further dehydrogenation steps occur yielding an unidentified intermediate with a sharp Raman peak at 1450 cm-1 At 550 °C graphene-like Raman D and G bands appear along with the 1450 cm band of the intermediate. At 600 °C and higher temperatures, the intermediate peak is lost with only bands characteristic of graphene-like material being seen in the spectrum of the material synthesized from the University of Idaho Thermolyzed Asphalt Reaction (GUITAR). Sulfur as a key co-factor for GUITAR synthesis is reinforced by results found with other hydrocarbons. Other organics succeeded or failed in GUITAR formation based on melting and boiling considerations. The failure of the compounds with a boiling point below -89°C, melting point above 300°C is reasoned with the volatility of the dehydration products and lacking of sulfur cross-linking in solid state. Chapter 5 established GUITAR as a suitable material for dimensionally stable anodes (DSAs) because of its remarkable anodic stability revealed by electrochemical characterization. Cyclic voltammetric evaluation of GUITAR with Ru(NH3)63+/2+ and Fe(CN)6 3-/4- redox couples suggests that GUITAR enables faster electron transfer than chemical vapor deposition (CVD) grown graphene and highly ordered pyrolytic graphite (HOPG), even though GUITAR shares a common morphological phenomenon with HOPG, namely an atomically flat basal plane. At a current density of 200 muAcm -2, the anodic limit of GUITAR is 2.7 V vs SHE in 1MH2SO 4, GUITAR as a new material for DSAs was reinforced by its performance on methylene blue degradation, the normalized methylene blue degradation rate constant obtained with GUITAR was 10 times higher than that of boron doped dimond anode. In chapter 6, GUITAR formed on the surface of silica nanosprings composites was employed as the electrode material for an ultracapacitor. A 2.35 nm thin graphene film on the silica nanosprings surface offered a straight electron path through the high surface area of the silica nanosprings. Additionally, the high porosity of the silica nanosprings backbone enables facile electrolyte access to the graphene surface, resulting in the maxmum surface area utilization of a graphene-like films coated silica nanosprings composite electrode. The specific capacitance of 337 F g-1 was obtained in a concentrated H2SO4 electrolyte with a scan rate of 0.01 Vs -1. Nearly perfect capacitive behavior was observed with symmetric static charge /discharge curves at various current rates. A low equivalent series resistance (0.4 O) was measured with graphenelike silica nanosprings composites configured as an ultracapacitor. Superior electrochemical performance of graphene-like silica nanosprings composites as the electrode of an ultracapacitor was achieved when compared to ultracapacitors based on reduced graphene oxide and carbon nano-tubes.
Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones
NASA Astrophysics Data System (ADS)
Lu, Yujie; Beeman, Richard W.; Campbell, James F.; Park, Yoonseong; Aikins, Michael J.; Mori, Kenji; Akasaka, Kazuaki; Tamogami, Shigeyuki; Phillips, Thomas W.
2011-09-01
We report that the abdominal epidermis and associated tissues are the predominant sources of male-produced pheromones in the red flour beetle, Tribolium castaneum and, for the first time, describe the stereoisomeric composition of the natural blend of isomers of the aggregation pheromone 4,8-dimethyldecanal (DMD) in this important pest species. Quantitative analyses via gas chromatography-mass spectrometry showed that the average amount of DMD released daily by single feeding males of T. castaneum was 878 ± 72 ng (SE). Analysis of different body parts identified the abdominal epidermis as the major source of aggregation pheromone; the thorax was a minor source, while no DMD was detectable in the head. No internal organs or obvious male-specific glands were associated with pheromone deposition. Complete separation of all four stereoisomers of DMD was achieved following oxidation to the corresponding acid, derivatization with (1 R, 2 R)- and (1 S, 2 S)-2-(anthracene-2,3-dicarboximido)cyclohexanol to diastereomeric esters, and their separation on reversed-phase high-performance liquid chromatography at -54°C. Analysis of the hexane eluate from Porapak-Q-collected volatiles from feeding males revealed the presence of all four isomers (4 R,8 R)/(4 R,8 S)/(4 S,8 R)/(4 S,8 S) at a ratio of approximately 4:4:1:1. A walking orientation bioassay in a wind tunnel with various blends of the four synthetic isomers further indicated that the attractive potency of the reconstituted natural blend of 4:4:1:1 was equivalent to that of the natural pheromone and greater than that of the 1:1 blend of (4 R,8 R)/(4 R,8 S) used in commercial lures.
Glucose- and Cellulose-Derived Ni/C-SO3H Catalysts for Liquid Phase Phenol Hydrodeoxygenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasakov, Stanislav; Zhao, Chen; Barath, Eszter
2015-01-19
Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalyzed the reduction of phenol to cyclohexanolmore » in water. The state of 3 – 5 nm grafted Ni particles was analyzed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt.% C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.« less
Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C
2016-06-01
GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols.
Vjunov, Aleksei; Derewinski, Miroslaw A; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A
2015-08-19
The location and stability of Brønsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cyclohexanol. The catalytically active hydronium ions originate from Brønsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Brønsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Brønsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.
NASA Astrophysics Data System (ADS)
Schill, G. P.; Tolbert, M. A.
2013-05-01
Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.
Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L
2010-12-06
The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.
Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connor, O.A.
1992-01-01
The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid estersmore » (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun
Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oilmore » was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.« less
Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng
2012-11-23
The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%. Copyright © 2012 Elsevier B.V. All rights reserved.
Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluckstein, Jeffrey A; Hu, Michael Z.; Kidder, Michelle
2010-12-01
Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave andmore » deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.« less
Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W
2015-06-05
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cawston, Erin E; Redmond, William J; Breen, Courtney M; Grimsey, Natasha L; Connor, Mark; Glass, Michelle
2013-10-01
The cannabinoid receptor type 1 (CB1 ) has an allosteric binding site. The drugs ORG27569 {5-chloro-3-ethyl-N-[2-[4-(1-piperidinyl)phenyl]ethyl]-1H-indole-2-carboxamide} and PSNCBAM-1 {1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea} have been extensively characterized with regard to their effects on signalling of the orthosteric ligand CP55,940 {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol}, and studies have suggested that these allosteric modulators increase binding affinity but act as non-competitive antagonists in functional assays. To gain a deeper understanding of allosteric modulation of CB1 , we examined real-time signalling and trafficking responses of the receptor in the presence of allosteric modulators. Studies of CB1 signalling were carried out in HEK 293 and AtT20 cells expressing haemagglutinin-tagged human and rat CB1 . We measured real-time accumulation of cAMP, activation and desensitization of potassium channel-mediated cellular hyperpolarization and CB1 internalization. ORG27569 and PSNCBAM-1 produce a complex, concentration and time-dependent modulation of agonist-mediated regulation of cAMP levels, as well as an increased rate of desensitization of CB1 -mediated cellular hyperpolarization and a decrease in agonist-induced receptor internalization. Contrary to previous studies characterizing allosteric modulators at CB1, this study suggests that the mechanism of action is not non-competitive antagonism of signalling, but rather that enhanced binding results in an increased rate of receptor desensitization and reduced internalization, which results in time-dependent modulation of cAMP signalling. The observed effect of the allosteric modulators is therefore dependent on the time frame over which the signalling response occurs. This finding may have important consequences for the potential therapeutic application of these compounds. © 2013 The British Pharmacological Society.
Kwilasz, Andrew J.
2012-01-01
Cannabinoid receptor agonists produce reliable antinociception in most preclinical pain assays but have inconsistent analgesic efficacy in humans. This disparity suggests that conventional preclinical assays of nociception are not sufficient for the prediction of cannabinoid effects related to clinical analgesia. To extend the range of preclinical cannabinoid assessment, this study compared the effects of the marijuana constituent and low-efficacy cannabinoid agonist Δ9-tetrahydrocannabinol (THC) and the high-efficacy synthetic cannabinoid agonist 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol (CP55940) in assays of pain-stimulated and pain-depressed behavior. Intraperitoneal injection of dilute lactic acid (1.8% in 1 ml/kg) stimulated a stretching response or depressed intracranial self-stimulation (ICSS) in separate groups of male Sprague-Dawley rats. THC (0.1–10 mg/kg) and CP55940 (0.0032–0.32 mg/kg) dose-dependently blocked acid- stimulated stretching but only exacerbated acid-induced depression of ICSS at doses that also decreased control ICSS in the absence of a noxious stimulus. Repeated THC produced tolerance to sedative rate-decreasing effects of THC on control ICSS in the absence of the noxious stimulus but failed to unmask antinociception in the presence of the noxious stimulus. THC and CP55940 also failed to block pain-related depression of feeding in rats, although THC did attenuate satiation-related depression of feeding. In contrast to the effects of the cannabinoid agonists, the clinically effective analgesic and nonsteroidal anti-inflammatory drug ketoprofen (1 mg/kg) blocked acid-stimulated stretching and acid-induced depression of both ICSS and feeding. The poor efficacy of THC and CP55940 to block acute pain-related depression of behavior in rats agrees with the poor efficacy of cannabinoids to treat acute pain in humans. PMID:22892341
Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats
Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.
2015-01-01
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189
Secundo, Francesco; Russo, Consiglia; Giordano, Antonietta; Carrea, Giacomo; Rossi, Mosè; Raia, Carlo A
2005-08-23
A combination of hydrogen/deuterium exchange, fluorescence quenching, and kinetic studies was used to acquire experimental evidence for the crystallographically hypothesized increase in local flexibility which occurs in thermophilic NAD(+)-dependent Sulfolobus solfataricus alcohol dehydrogenase (SsADH) upon substitution Asn249Tyr. The substitution, located at the adenine-binding site, proved to decrease the affinity for both coenzyme and substrate, rendering the mutant enzyme 6-fold more active when compared to the wild-type enzyme [Esposito et al. (2003) FEBS Lett. 539, 14-18]. The amide H/D exchange data show that the wild-type and mutant enzymes have similar global flexibility at 22 and 60 degrees C. However, the temperature dependence of the Stern-Volmer constant determined by acrylamide quenching shows that the increase in temperature affects the local flexibility differently, since the K(SV) increment is significantly higher for the wild-type than for the mutant enzyme over the range 18-45 degrees C. Interestingly, the corresponding van't Hoff plot (log K(SV) vs 1/T) proves nonlinear for the apo and holo wild-type and apo mutant enzymes, with a break at approximately 45 degrees C in all three cases due to a conformational change affecting the tryptophan microenvironment experienced by the quencher molecules. The Arrhenius and van't Hoff plots derived from the k(cat) and K(M) thermodependence measured with cyclohexanol and NAD(+) at different temperatures display an abrupt change of slope at 45-50 degrees C. This proves more pronounced in the case of the mutant enzyme compared to the wild-type enzyme due to a conformational change in the structure rather than to an overlapping of two or more rate-limiting reaction steps with different temperature dependencies of their rate constants. Three-dimensional analysis indicates that the observed conformational change induced by temperature is associated with the flexible loops directly involved in the substrate and coenzyme binding.
In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben, Haoxi; Ferrell, III, Jack R.
The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less
In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR
Ben, Haoxi; Ferrell, III, Jack R.
2016-01-29
The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less
Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate
NASA Astrophysics Data System (ADS)
Konecki, Christina
Industrial coating formulations are often made for volatile organic content compliance and ease of application, with little regard for the solvent impact on resultant performance characteristics. Our research objective was to understand the effect of both solvent retention and chemical structure on water transport through polymer films and resultant corrosion area growth of coated steel substrates. A clear, unpigmented Phenoxy(TM) thermoplastic polymer (PKHH) was formulated into resin solutions with three separate solvent blends selected by Hansen solubility parameter (HSP), boiling point, and ability to solubilize PKHH. Polymer films cast from MEK/PGME (methyl ethyl ketone/ propylene glycol methyl ether), dried under ambient conditions (AMB, > 6wt.% residual solvent) produced a porous morphology, which resulted in a corrosion area greater than 50%. We attributed this to the water-soluble solvent used in film preparation, which enabled residual PGME to be extracted by water. The resin solution prepared with CYCOH/DXL (Cyclohexanol/ 1,3 dioxolane) was selected because CYCOH is a solid at room temperature which acts as a pigment in the final film. Therefore, increasing the tortuosity of water transport, as well as a high hydrogen bonding character, which caused more interactions with water, slowing diffusion, producing a nodular morphology, and 37% less corrosion area than MEK/PGME AMB. The HSP of PKHH and EEP (ethyl 3-ethoxypropionate) are within 5% of each other, which produced a homogeneous morphology and resulted in comparable corrosion rates regardless of residual solvent content. We utilized electrochemical techniques and attenuated total reflectance- Fourier transform infrared spectroscopy to elucidate dynamic water absorption and solvent extraction in the exposed model formulations. We found that water absorption resulted in a loss of barrier properties, and increased corrosion due to the voids formed by solvent extraction. The polymer films were rejuvenated (removal of water) as an attempt to decrease the number of water transport pathways during exposure. Results found that samples rejuvenated at temperatures above the glass transition temperature of the samples achieved lower moisture content and consequently, lower corrosion growth rates. In commercial systems, rejuvenation lowered the corrosion rate up to 60% indicating better coating formulations and maintenance cycles would control the corrosion rate.
Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.
The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact themore » catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract # DE-AC05-76RL0-1830« less
Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G
2015-07-01
Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Lieder, Barbara; Zaunschirm, Mathias; Holik, Ann-Katrin; Ley, Jakob P.; Hans, Joachim; Krammer, Gerhard E.; Somoza, Veronika
2017-01-01
Adipose tissue is an important endocrine organ in the human body. However, pathological overgrowth is associated with chronic illness. Regulation of adipogenesis and maturation of adipocytes via bioactive compounds in our daily diet has been in focus of research in the past years and showed promising results for agonists of the ion channels transient receptor potential channel (TRP) V1 and A1. Here, we investigated the anti-adipogenic potential and underlying mechanisms of the alkamide trans-pellitorine present in Piper nigrum via TRPV1 and TRPA1 in 3T3-L1 cells. trans-pellitorine was found to suppress mean lipid accumulation, when applied during differentiation and maturation, but also during maturation phase solely of 3T3-L1 cells in a concentration range between 1 nM and 1 μM by up to 8.84 ± 4.97 or 7.49 ± 5.08%, respectively. Blockage of TRPV1 using the specific inhibitor trans-tert-butyl-cyclohexanol demonstrated that the anti-adipogenic activity of trans-pellitorine depends on TRPV1. In addition, blockage of the TRPA1 channel using the antagonist AP-18 showed a TRPA1-dependent signaling in the early to intermediate stages of adipogenesis. On a mechanistic level, treatment with trans-pellitorine during adipogenesis led to reduced PPARγ expression on gene and protein level via activation of TRPV1 and TRPA1, and increased expression of the microRNA mmu-let-7b, which has been associated with reduced PPARγ levels. In addition, cells treated with trans-pellitorine showed decreased expression of the gene encoding for fatty acid synthase, increased expression of microRNA-103 and a decreased short-term fatty acid uptake on the functional level. In summary, these data point to an involvement of the TRPV1 and TRPA1 cation channels in the anti-adipogenic activity of trans-pellitorine via microRNA-let7b and PPARγ. Since trans-pellitorine does not directly activate TRPV1 or TRPA1, an indirect modulation of the channel activity is assumed and warrants further investigation. PMID:28620299
Hata, Takeshi; Sujaku, Shiro; Hirone, Naoki; Nakano, Kirihiro; Imoto, Junsuke; Imade, Haduki; Urabe, Hirokazu
2011-12-16
Treatment of ethyl (E)-5,5-bis[(benzyloxy)methyl]-8-(N,N-diethylcarbamoyl)-2-octen-7-ynoate with an iron reagent generated from FeCl(2) and tBuMgCl in a ratio of 1:4 (abbreviated as FeCl(2)/4 tBuMgCl) afforded ethyl [4,4-bis[(benzyloxy)methyl]-2-[(E)-(N,N-diethylcarbamoyl)methylene]cyclopent-1-yl]acetate in good yield. Deuteriolysis of an identical reaction mixture afforded the bis-deuterated product ethyl [4,4-bis[(benzyloxy)methyl]-2-[(E)-(N,N-diethylcarbamoyl)deuteriomethylene]cyclopent-1-yl]deuterioacetate, thus confirming the existence of the corresponding dimetalated intermediate. The latter intermediate can react with halogens or aldehydes to facilitate further synthetic transformations. The amount of FeCl(2) was reduced to catalytic levels (10 mol % relative to enyne), and catalytic cyclizations of this sort proceeded with yields comparable to those of the aforementioned stoichiometric reactions. The cyclization of diethyl (E,E)-2,7-nonadienedioate with a stoichiometric amount of FeCl(2)/4 tBuMgCl, followed by the addition of sBuOH as a proton source, afforded a mixture of 2-(ethoxycarbonyl)-3-bicyclo[3.3.0]octanone and its enol form in good yield. The use of aldehyde or ketone in place of sBuOH afforded 2-(ethoxycarbonyl)-3-bicyclo[3.3.0]octanone, which has an additional hydroxyalkyl side chain. Additionally, the metalation of a carbon-carbon unsaturated bond in N,N-diethyl-5,5-bis[(benzyloxy)methyl]-7,8-epoxy-2-octynamide or (E)-3,3-dimethyl-6-(N,N-diethylcarbamoyl)-5-hexenyl p-toluenesulfonate with FeCl(2)/4 tBuMgCl or FeCl(2)/4 PhMgBr was followed by an intramolecular alkylation with an epoxide or alkyl p-toluenesulfonate to afford 5,5-bis[(benzyloxy)methyl]-3-[(E)-(N,N-diethylcarbamoyl)methylene]-1-cyclohexanol or N,N-diethyl(3,3-dimethylcyclopentyl)acetamide after hydrolysis. In both cases, the remaining metalated portion α to the amide group was confirmed by deuteriolysis and could be utilized for an alkylation with methyl iodide. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutyser, Wouter; Van den Bossche, Gil; Raaffels, Anton
2016-10-03
Recent lignin-first catalytic lignocellulosic biorefineries produce large quantities of two potential platform chemicals, 4-n-propylguaiacol (PG) and 4-n-propylsyringol. Because conversion into 4-n-propylcyclohexanol (PCol), a precursor for novel polymer building blocks, presents a promising valorization route, reductive demethoxylation of PG was examined here in the liquid-phase over three commercial hydrogenation catalysts, viz. 5 wt % Ru/C, 5 wt % Pd/C and 65 wt % Ni/SiO2-Al2O3, at elevated temperatures ranging from 200 to 300 degrees C under hydrogen atmosphere. Kinetic profiles suggest two parallel conversion pathways: Pathway I involves PG hydrogenation to 4-n-propyl-2-methoxycyclohexanol (PMCol), followed by its demethoxylation to PCol, whereas Pathway IImore » constitutes PG hydrodemethoxylation to 4-n-propylphenol (PPh), followed by its hydrogenation into PCol. The slowest step in the catalytic formation of PCol is the reductive methoxy removal from PMCol. Moreover, under the applied reaction conditions, PCol may react further into hydrocarbons. The following criteria are therefore essential to reach a high PCol yield: (i) catalytic pathway II is preferred as this route does not involve stable intermediates; (ii) reactivity of PMCol should be higher than that of PCol, and (iii) the overall carbon balance should be high. Both the catalyst type and the reaction conditions have a substantial impact on the PCol yield. Only the commercial Ni catalyst meets the three criteria, provided the reaction is performed at 250 degrees C in hexadecane. Additional advantages of this solvent choice are a high boiling point (low operational pressure in closed reactor systems), high solubility of PG and derived products, high thermal, reductive stability, and easy derivability from fatty biomass feedstock. This Ni catalyst also showed an excellent stability in recycling runs and is capable of converting highly concentrated (up to 20 wt %) PG in hexadecane. Ru and Pd on carbon showed a low PCol yield, as they are not conform the three criteria. Low hydrogen pressure favors Pathway II, resulting in a very high PCol yield of 85% at 10 bar. Catalytic conversion of guaiacol, 4-methyl- and 4-ethylguaiacol in comparable circumstances showed similarly high yields of the corresponding cyclohexanols.« less
Fride, Ester; Foox, Anat; Rosenberg, Elana; Faigenboim, Moran; Cohen, Vickey; Barda, Lena; Blau, Hannah; Mechoulam, Raphael
2003-02-07
Cannabinoids, whether plant-derived, synthetic or endogenous, have been shown to stimulate appetite in the adult organism. We have reported previously that cannabinoid receptors play a critical role during the early suckling period: The selective cannabinoid CB(1) receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141617A) permanently prevented milk ingestion in a dose-dependent manner, when administered to (Sabra, albino) mouse pups, within 1 day of birth. As a consequence, these pups died within the first week of life. We now generalize this finding to a different strain of mice (C57BL/6). Further, we show that cannabinoid CB(1) receptor blockade (20 mg/kg SR141716A) must occur within 24 h after birth as injection of SR141716A into 2- or 5-day-old pups had a much smaller effect or no effect at all, respectively. Cannabinoid CB(1) receptor knockout mice did not ingest milk on the first day of life, similarly to SR141716A-treated normal pups, as measured by the appearance of "milkbands". However, the knockout pups started to display milkbands from day 2 of life. Survival rates of cannabinoid CB(1) receptor knockout mice were affected significantly, but to a lesser extent than normal pups, by the administration of SR141716A. Daily administration of the endocannabinoid 2-arachidonoyl glycerol, or the synthetic agonists (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55,212-2, 5 mg/kg) or (-)-cis-3-[2-Hydroxy4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940, 5 or 20 mg/kg) did not promote survival or weight gain in CB(1)(-/-) pups. Our data support previous evidence for a critical role of cannabinoid CB(1) receptors for the initiation of suckling. Further, the present observations support the existence of an unknown cannabinoid receptor, with partial control over milk ingestion in newborns. Our data also suggest that the CB(1)(-/-) neonates possess a compensatory mechanism which helps them overcome the lack of cannabinoid CB(1) receptors.
NASA Astrophysics Data System (ADS)
Hackbusch, Sven
This dissertation encompasses work related to synthetic methods for the formation of ester linkages in organic compounds, as well as the investigation of the conformational influence of the ester functional group on the flexibility of inter-saccharide linkages, specifically, and the solution phase structure of ester-containing carbohydrate derivatives, in general. Stereoselective reactions are an important part of the field of asymmetric synthesis and an understanding of their underlying mechanistic principles is essential for rational method development. Here, the exploration of a diastereoselective O-acylation reaction on a trans-2-substituted cyclohexanol scaffold is presented, along with possible reasons for the observed reversal of stereoselectivity dependent on the presence or absence of an achiral amine catalyst. In particular, this work establishes a structure-activity relationship with regard to the trans-2-substituent and its role as a chiral auxiliary in the reversal of diastereoselectivity. In the second part, the synthesis of various ester-linked carbohydrate derivatives, and their conformational analysis is presented. Using multidimensional NMR experiments and computational methods, the compounds' solution-phase structures were established and the effect of the ester functional group on the molecules' flexibility and three-dimensional (3D) structure was investigated and compared to ether or glycosidic linkages. To aid in this, a novel Karplus equation for the C(sp2)OCH angle in ester-linked carbohydrates was developed on the basis of a model ester-linked carbohydrate. This equation describes the sinusoidal relationship between the C(sp2)OCH dihedral angle and the corresponding 3JCH coupling constant that can be determined from a J-HMBC NMR experiment. The insights from this research will be useful in describing the 3D structure of naturally occurring and lab-made ester-linked derivatives of carbohydrates, as well as guiding the de novo-design of carbohydrate based compounds with specific shape constraints for its use as enzyme inhibitors or similar targets. In addition, the above project led to the development of a methodology for the synthesis of symmetrical ester molecules from primary alcohols using a mild oxidative esterification reaction, which proceeds in hydrous solvents using a nitrosyl radical catalyst. The reaction could be performed with a variety of alcohols and the resulting compounds are of interest in the fragrance and flavor industries.
Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal
2016-03-01
The main aim of the current study is to explore the bioactive potential of Streptomyces sp. VITJS8 isolated from the marine saltern. The cultural, biochemical, and morphological studies were performed to acquire the characteristic features of the potent isolate VITJS8. The 16Sr DNA sequencing was performed to investigate the phylogenetic relationship between the Streptomyces genera. The structure of the compound was elucidated by gas chromatography-mass spectrometry (GC-MS), infra-red (IR), and ultra-violet (UV) spectroscopic data analysis. The GC-MS showed the retention time at 22.39 with a single peak indicating the purity of the active compound, and the molecular formula was established as C14H9ONCl2 based on the peak at m/z 277 [M](+). Furthermore, separated by high-performance liquid chromatography (HPLC), their retention time (t r) 2.761 was observed with the absorption maxima at 310 nm. The active compound showed effective inhibitory potential against four clinical pathogens at 500 μg/mL. The antioxidant activity was found effective at the IC50 value of 500 μg/mL with 90 % inhibition. The 3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium bromide (MTT) assay revealed the cytotoxicity against HepG2 cells at IC50 of 250 μg/mL. The progression of apoptosis was evidenced by morphological changes by nuclear staining. The DNA fragmentation pattern was observed at 250 μg/mL concentration. Based on flow cytometric analysis, it was evident that the compound was effective in inhibiting the sub-G0/G1 phase of cell cycle. The in vitro findings were also supported by the binding mode molecular docking studies. The active compound revealed minimum binding energy of -7.84 and showed good affinity towards the active region of topoisomerase-2α that could be considered as a suitable inhibitor. Lastly, we performed 30 ns molecular dynamic simulation analysis using GROMACS to aid in better designing of anticancer drugs. Simulation result of root mean square deviation (RMSD) analysis showed that protein-ligand complex reaches equilibration state around 10 ns that illustrates the docked complex is stable. We propose the possible mechanism of sesquiterpenes to play a significant role in antitumor cascade. Hence, our studies open up a new facet for a potent drug as an anticancer agent.