Sample records for cyclohexanone

  1. Synthesis of ketones from biomass-derived feedstock.

    PubMed

    Meng, Qinglei; Hou, Minqiang; Liu, Huizhen; Song, Jinliang; Han, Buxing

    2017-01-31

    Cyclohexanone and its derivatives are very important chemicals, which are currently produced mainly by oxidation of cyclohexane or alkylcyclohexane, hydrogenation of phenols, and alkylation of cyclohexanone. Here we report that bromide salt-modified Pd/C in H 2 O/CH 2 Cl 2 can efficiently catalyse the transformation of aromatic ethers, which can be derived from biomass, to cyclohexanone and its derivatives via hydrogenation and hydrolysis processes. The yield of cyclohexanone from anisole can reach 96%, and the yields of cyclohexanone derivatives produced from the aromatic ethers, which can be extracted from plants or derived from lignin, are also satisfactory. Detailed study shows that the Pd, bromide salt and H 2 O/CH 2 Cl 2 work cooperatively to promote the desired reaction and inhibit the side reaction. Thus high yields of desired products can be obtained. This work opens the way for production of ketones from aromatic ethers that can be derived from biomass.

  2. Validated HPLC determination of 2-[(dimethylamino)methyl]cyclohexanone, an impurity in tramadol, using a precolumn derivatisation reaction with 2,4-dinitrophenylhydrazine.

    PubMed

    Medvedovici, Andrei; Albu, Florin; Farca, Alexandru; David, Victor

    2004-01-27

    A new method for the determination of 2-[(dimethylamino)methyl]cyclohexanone (DAMC) in Tramadol (as active substance or active ingredient in pharmaceutical formulations) is described. The method is based on the derivatisation of 2-[(dimethylamino)methyl]cyclohexanone with 2,4-dinitrophenylhydrazine (2,4-DNPH) in acidic conditions followed by a reversed-phase liquid chromatographic separation with UV detection. The method is simple, selective, quantitative and allows the determination of 2-[(dimethylamino)methyl]cyclohexanone at the low ppm level. The proposed method was validated with respect to selectivity, precision, linearity, accuracy and robustness.

  3. Cyclohexanone

    Integrated Risk Information System (IRIS)

    Cyclohexanone ; CASRN 108 - 94 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  4. Emission of volatile organic compounds from medical equipment inside neonatal incubators.

    PubMed

    Colareta Ugarte, U; Prazad, P; Puppala, B L; Schweig, L; Donovan, R; Cortes, D R; Gulati, A

    2014-08-01

    To determine emission of volatile organic compounds (VOCs) from plastic medical equipment within an incubator. Air samples from incubators before and after adding medical equipment were analyzed using EPA TO-15 methodology. Headspace analysis was used to identify VOC emissions from each medical equipment item. Air changes per hour (ACH) of each incubator were determined and used to calculate the emission rate of identified VOCs. Cyclohexanone was identified in all incubator air samples. At 28 °C, the mean concentration before and after adding medical equipment items was 2.1 ± 0.6 and 57.2 ± 14.9 μg m(-3),respectively (P<0.01). Concentrations increased to a mean of 83.8 ± 23.8 μg m(-)(3) (P<0.01) at 37(o)C and 93.0 ± 45.1 μg m(-)(3) (P=0.39) after adding 50% humidity. Intravenous tubing contributed 89% of cyclohexanone emissions. ACH were determined with access doors closed and open with means of 11.5 ± 1.7 and 44.1 ± 6.7 h(-1), respectively. Cyclohexanone emission rate increased from a mean of 102.2 μg h(-1) at 28(°C to 148.8 μg h(-1) (P<0.01) at 37 °C. Cyclohexanone was quantified in all incubator air samples containing plastic medical equipment. The concentration of cyclohexanone within the incubator was inversely related to ACH in the closed mode. The cyclohexanone concentration as well as the emission rate increased with higher temperature.

  5. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.C.; Weng, H.S.

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reactionmore » rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.« less

  6. Organic Process Technology Valuation: Cyclohexanone Oxime Syntheses

    ERIC Educational Resources Information Center

    Cannon, Kevin C.; Breen, Maureen P.

    2010-01-01

    Three contemporary processes for cyclohexanone oxime synthesis are evaluated in a case study. The case study introduces organic chemistry students to basic cost accounting to determine the most economical technology. Technical and financial aspects of these processes are evaluated with problem-based exercises that may be completed by students…

  7. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; Buckingham, Grant; Troy, Tyler; Kostko, Oleg; Ahmed, Musahid; Stanton, John F.; Daily, John W.; Ellison, Barney

    2016-06-01

    he thermal decomposition of cyclohexanone (C_6H10=O) has been studied in a set of flash-pyrolysis micro-reactors. Samples of C_6H10=O were first observed to decompose at 1200 K. Short residence times of 100 μsec and dilution of samples (<0.1%) isolate unimolecular decomposition. Products were identified by tunable VUV photoionization mass spectroscopy, photoionization appearance thresholds, and complementary matrix infrared absorption spectroscopy. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways pictured to the right. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C_6H_9OH), is followed by retro-Diels-Alder cleavage to CH_2=CH_2 and CH_2=C(OH)-CH=CH_2. Further isomerization of CH_2=C(OH)CH=CH_2 to methyl vinyl ketone (CH_3COCH=CH_2, MVK) was also observed. Photoionization spectra identified both enols, C_6H_9OH and CH=C(OH)CH=CH_2, and the ionization threshold of C_6H_9OH was measured to be 8.2 ± 0.1 eV. At 1200 K, the products of cyclohexanone pyrolysis were found to be: C_6H_9OH, CH_2=C(OH)CH=CH_2, MVK, CH_2CHCH_2, CO, CH_2=C=O, CH_3, CH_2=C=CH_2, CH_2=CH-CH=CH_2, CH_2=CHCH_2CH_3, CH_2=CH_2, and HCCH.

  8. Efficient synthesis of optically active 4-nitro-cyclohexanones via bifunctional thiourea-base catalyzed double-Michael addition of nitromethane to dienones.

    PubMed

    Wu, Bin; Liu, Guo-Gui; Li, Mei-Qiu; Zhang, Yong; Zhang, Shao-Yun; Qiu, Jun-Ru; Xu, Xiao-Ping; Ji, Shun-Jun; Wang, Xing-Wang

    2011-04-07

    Thiourea-modified cinchona alkaloids as bifunctional catalysts and a base could catalyze a stepwise [5+1] cyclization of divinyl ketones with nitromethane via double Michael additions, furnishing optically active 4-nitro-cyclohexanones with good yields, excellent diastereoselectivities (>20 : 1) and high enantiomeric ratios (up to 97 : 3).

  9. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    NASA Astrophysics Data System (ADS)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  10. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    NASA Astrophysics Data System (ADS)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  11. Crystal structure of 5''-benzyl-idene-1'-methyl-4'-phenyl-tri-spiro-[ace-naphthyl-ene-1,2'-pyrrolidine-3',1''-cyclo-hexane-3'',2'''-[1,3]dioxane]-2,6''-dione.

    PubMed

    Chandralekha, Kuppan; Gavaskar, Deivasigamani; Sureshbabu, Adukamparai Rajukrishnan; Lakshmi, Srinivasakannan

    2016-03-01

    In the title compound, C36H31NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace-naphthyl-ene and cyclo-hexa-none rings. The cyclo-hexa-none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace-naphthylen-1-one ring system adopts a flattened envelope conformation with the ketonic C atom as flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo-hexa-none ring assumes a boat conformation. Three intra-molecular C-H⋯O hydrogen bonds involving both ketonic O atoms as acceptors are present. In the crystal, C-H⋯O hydrogen bonds connect centrosymmetrically related mol-ecule into chains parallel to the b axis, forming rings of R 2 (2)(10)and R 2 (2)(8) graph-set motifs.

  12. Continuous Production of Biorenewable, Polymer‐Grade Lactone Monomers through Sn‐β‐Catalyzed Baeyer–Villiger Oxidation with H2O2

    PubMed Central

    Yakabi, Keiko; Mathieux, Thibault; Milne, Kirstie; López‐Vidal, Eva M.; Buchard, Antoine

    2017-01-01

    Abstract The Baeyer–Villiger oxidation is a key transformation for sustainable chemical synthesis, especially when H2O2 and solid materials are employed as oxidant and catalyst, respectively. 4‐substituted cycloketones, which are readily available from renewables, present excellent platforms for Baeyer–Villiger upgrading. Such substrates exhibit substantially higher levels of activity and produce lactones at higher levels of lactone selectivity at all values of substrate conversion, relative to non‐substituted cyclohexanone. For 4‐isopropyl cyclohexanone, which is readily available from β‐pinene, continuous upgrading was evaluated in a plug‐flow reactor. Excellent selectivity (85 % at 65 % conversion), stability, and productivity were observed over 56 h, with over 1000 turnovers (mol product per mol Sn) being achieved with no loss of activity. A maximum space–time yield that was almost twice that for non‐substituted cyclohexanone was also obtained for this substrate [1173 vs. 607 g(product) kg(catalyst)−1 cm−3 h−1]. The lactone produced is also shown to be of suitable quality for ring opening polymerization. In addition to demonstrating the viability of the Sn‐β/H2O2 system to produce renewable lactone monomers suitable for polymer applications, the substituted alkyl cyclohexanones studied also help to elucidate steric, electronic, and thermodynamic elements of this transformation in greater detail than previously achieved. PMID:28804968

  13. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  14. Prioritization and Sensitivity Analysis of the Inhalation/Ocular Hazard of Industrial Chemicals

    DTIC Science & Technology

    2011-10-28

    contact hazards (certain compounds of this class are strongly degrading to plastics and coatings). They are widely produced and used in the production...17804-35-2 0.84 5.00 1.00 3.75 1.00 3.75 3.75 1.00 117 Cyclohexanone #(T3) 108-94-1 700.00 2.00 0.00 5.00 2.00 2.50 3.75 2.50 118 Paracetamol #(E3-phenol...chloride-T3* 115 1,3-Butadiene 116 Benomyl 117 Cyclohexanone #(T3) 118 Paracetamol #(E3-phenol) 119 Phenol #(E3) 120 Boron trichloride T3 121

  15. Influence of Alumina Binder Content on Catalytic Performance of Ni/HZSM-5 for Hydrodeoxygenation of Cyclohexanone

    PubMed Central

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst. PMID:25009974

  16. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    PubMed

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  17. Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-05-01

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Simultaneous determination of airborne acetaldehyde, acetone, 2-butanone, and cyclohexanone using sampling tubes with 2,4-dinitrophenylhydrazine-coated solid sorbent.

    PubMed

    Binding, N; Schilder, K; Czeschinski, P A; Witting, U

    1998-08-01

    The 2,4-dinitrophenylhydrazine (2,4-DNPH) derivatization method mainly used for the determination of airborne formaldehyde was extended for acetaldehyde, acetone, 2-butanone, and cyclohexanone, the next four carbonyl compounds of industrial importance. Sampling devices and sampling conditions were adjusted for the respective limit value regulations. Analytical reliability criteria were established and compared to those of other recommended methods. With a minimum analytical range from one tenth to the 3-fold limit value in all cases and with relative standard deviations below 5%, the adjusted method meets all requirements for the reliable quantification of the four compounds in workplace air as well as in ambient air.

  19. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  20. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor.

    PubMed

    Porterfield, Jessica P; Nguyen, Thanh Lam; Baraban, Joshua H; Buckingham, Grant T; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Stanton, John F; Daily, John W; Ellison, G Barney

    2015-12-24

    The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH.

  1. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor

    DOE PAGES

    Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; ...

    2015-11-30

    Here, the thermal decomposition of cyclohexanone (C 6H 10=O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C 6H 10=O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of whichmore » open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C 6H 9OH), is followed by retro-Diels–Alder cleavage to CH 2=CH 2 and CH 2=C(OH)–CH=CH 2. Further isomerization of CH 2=C(OH)–CH=CH 2 to methyl vinyl ketone (CH 3CO–CH=CH 2, MVK) was also observed. Photoionization spectra identified both enols, C 6H 9OH and CH 2=C(OH)–CH=CH 2, and the ionization threshold of C 6H 9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be Δ fH 298(cis-CH 3CO–CH=CH 2) = -26.1 ± 0.5 kcal mol –1 and Δ fH 298(s-cis-1-CH 2=C(OH)–CH=CH 2) = -13.7 ± 0.5 kcal mol –1. The reaction enthalpy Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + s-cis-1-CH 2=C(OH)–CH=CH 2) is 53 ± 1 kcal mol –1 and Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + cis-CH 3CO–CH=CH 2) is 41 ± 1 kcal mol –1. At 1200 K, the products of cyclohexanone pyrolysis were found to be C 6H 9OH, CH 2=C(OH)–CH=CH 2, MVK, CH 2CHCH 2, CO, CH 2=C=O, CH 3, CH 2=C=CH 2, CH 2=CH–CH=CH 2, CH 2=CHCH 2CH 3, CH 2=CH 2, and HC≡CH.« less

  2. Quantification of organic solvents in aquatic toys and swimming learning devices and evaluation of their influence on the smell properties of the corresponding products.

    PubMed

    Wiedmer, Christoph; Buettner, Andrea

    2018-04-01

    Based on the observation that the characteristic odour of inflatable aquatic toys for children is predominantly caused by residues of hazardous organic solvents, the concentrations of cyclohexanone, isophorone and phenol were determined in a selection of 20 products obtained from online suppliers located in Germany. Analytes were extracted with dichloromethane after the addition of non-labelled internal standards, and the volatile fraction was isolated using solvent-assisted flavour evaporation (SAFE). Extracts were then concentrated by Vigreux distillation and analysed by means of gas chromatography with mass spectrometric detection (GC-MS). Furthermore, each sample was evaluated regarding its specific olfactory properties by an expert sensory panel. While some samples did not contain significant amounts of solvents, cyclohexanone concentrations above the lower limit of quantification (LLOQ) were determined in nine samples with six samples containing high concentrations ranging from about 1 to 7 g/kg cyclohexanone. Isophorone concentrations above the LLOQ were observed in eight samples. Thereby, six products contained between 0.3 and 1.6 g/kg isophorone and the remaining two samples contained even about 5 g/kg isophorone, each. Likewise, phenol concentrations exceeded the LLOQ in 14 cases, with four samples containing elevated amounts ranging from about 140 to 280 mg/kg phenol.

  3. Study on Solution Properties of Binary Mixtures of Some Industrially Important Solvents with Cyclohexylamine and Cyclohexanone at 298.15 K

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Das, Rajesh Kumar; Chanda, Riju

    2010-03-01

    Densities and viscosities were measured for the binary mixtures of cyclohexylamine and cyclohexanone with butyl acetate, butanone, butylamine, tert-butylamine, and 2-butoxyethanol at 298.15 K over the entire composition range. From density data, the values of the excess molar volume ( V E) have been calculated. The experimental viscosity data were correlated by means of the equation of Grunberg-Nissan. The density and viscosity data have been analyzed in terms of some semiempirical viscosity models. The results are discussed in terms of molecular interactions and structural effects. The excess molar volume is found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures and is discussed in terms of molecular interactions and structural changes.

  4. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    PubMed

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Twist on Facial Selectivity of Hydride Reductions of Cyclic Ketones: Twist-Boat Conformers in Cyclohexanone, Piperidone, and Tropinone Reactions

    PubMed Central

    2015-01-01

    The role of twist-boat conformers of cyclohexanones in hydride reductions was explored. The hydride reductions of a cis-2,6-disubstituted N-acylpiperidone, an N-acyltropinone, and tert-butylcyclohexanone by lithium aluminum hydride and by a bulky borohydride reagent were investigated computationally and compared to experiment. Our results indicate that in certain cases, factors such as substrate conformation, nucleophile bulkiness, and remote steric features can affect stereoselectivity in ways that are difficult to predict by the general Felkin–Anh model. In particular, we have calculated that a twist-boat conformation is relevant to the reactivity and facial selectivity of hydride reduction of cis-2,6-disubstituted N-acylpiperidones with a small hydride reagent (LiAlH4) but not with a bulky hydride (lithium triisopropylborohydride). PMID:25372509

  6. Asymmetric Fluorination of α-Branched Cyclohexanones Enabled by a Combination of Chiral Anion Phase-Transfer Catalysis and Enamine Catalysis using Protected Amino Acids

    PubMed Central

    2015-01-01

    We report a study involving the successful merger of two separate chiral catalytic cycles: a chiral anion phase-transfer catalysis cycle to activate Selectfluor and an enamine activation cycle, using a protected amino acid as organocatalyst. We have demonstrated the viability of this approach with the direct asymmetric fluorination of α-substituted cyclohexanones to generate quaternary fluorine-containing stereocenters. With these two chiral catalytic cycles operating together in a matched sense, high enantioselectivites can be achieved, and we envisage that this dual catalysis method has the potential to be more broadly applicable, given the breadth of enamine catalysis. It also represents a rare example of chiral enamine catalysis operating successfully on α-branched ketones, substrates commonly inert to this activation mode. PMID:24684209

  7. A role for solvents in the toxicity of agricultural organophosphorus pesticides

    PubMed Central

    Eddleston, Michael; Street, Jonathan M.; Self, Ian; Thompson, Adrian; King, Tim; Williams, Nicola; Naredo, Gregorio; Dissanayake, Kosala; Yu, Ly-Mee; Worek, Franz; John, Harald; Smith, Sionagh; Thiermann, Horst; Harris, John B.; Eddie Clutton, R.

    2012-01-01

    Organophosphorus (OP) insecticide self-poisoning is responsible for about one-quarter of global suicides. Treatment focuses on the fact that OP compounds inhibit acetylcholinesterase (AChE); however, AChE-reactivating drugs do not benefit poisoned humans. We therefore studied the role of solvent coformulants in OP toxicity in a novel minipig model of agricultural OP poisoning. Gottingen minipigs were orally poisoned with clinically relevant doses of agricultural emulsifiable concentrate (EC) dimethoate, dimethoate active ingredient (AI) alone, or solvents. Cardiorespiratory physiology and neuromuscular (NMJ) function, blood AChE activity, and arterial lactate concentration were monitored for 12 h to assess poisoning severity. Poisoning with agricultural dimethoate EC40, but not saline, caused respiratory arrest within 30 min, severe distributive shock and NMJ dysfunction, that was similar to human poisoning. Mean arterial lactate rose to 15.6 [SD 2.8] mM in poisoned pigs compared to 1.4 [0.4] in controls. Moderate toxicity resulted from poisoning with dimethoate AI alone, or the major solvent cyclohexanone. Combining dimethoate with cyclohexanone reproduced severe poisoning characteristic of agricultural dimethoate EC poisoning. A formulation without cyclohexanone showed less mammalian toxicity. These results indicate that solvents play a crucial role in dimethoate toxicity. Regulatory assessment of pesticide toxicity should include solvents as well as the AIs which currently dominate the assessment. Reformulation of OP insecticides to ensure that the agricultural product has lower mammalian toxicity could result in fewer deaths after suicidal ingestion and rapidly reduce global suicide rates. PMID:22365945

  8. A HIGHLY EFFICIENT OXIDATION OF CYCLOHEXANE OVER VPO CATALYSTS USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An unprecedented and highly efficient oxidation of cyclohexane to cyclohexanol and cyclohexanone is accomplished over calcined vanadium phosphorus oxide (VPO) catalysts in a relatively mild condition using hydrogen peroxide under a nitrogen atmosphere.

  9. Crystal structure of 5''-(4-chloro-benzyl-idene)-4'-(4-chloro-phen-yl)-1'-methyltri-spiro[acenapthylene-1,2'-pyrrolidine-3',1''-cyclo-hexane-3'',2'''-[1,3]dioxane]-2(1H),6''-dione.

    PubMed

    Chandralekha, Kuppan; Gavaskar, Deivasigamani; Sureshbabu, Adukamparai Rajukrishnan; Lakshmi, Srinivasakannan

    2015-11-01

    In the title compound, C36H29Cl2NO4, two spiro links connect the methyl-substituted pyrrolidine ring to the ace-naphthyl-ene and cyclo-hexa-none rings. The cyclo-hexa-none ring is further connected to the dioxalane ring by a third spiro junction. The five-membered ring of the ace-naphthylen-1-one ring system adopts a flattened envelope conformation, with the ketonic C atom as the flap, whereas the dioxalane and pyrrolidine rings each have a twist conformation. The cyclo-hexenone ring assumes a boat conformation. An intra-molecular C-H⋯O hydrogen-bond inter-action is present. In the crystal, mol-ecules are linked by non-classical C-H⋯O hydrogen bonds, forming chains extending parallel to the a axis.

  10. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  11. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  12. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  13. Synthesis, spectral, thermal, optical and theoretical studies of (2E,6E)-2-benzylidene-6-(4-methoxybenzylidene)cyclohexanone.

    PubMed

    Meenatchi, V; Muthu, K; Rajasekar, M; Meenakshisundaram, Sp

    2014-01-01

    Single crystals of (2E,6E)-2-benzylidine-6-(4-methoxybenzylidine)cyclohexanone are grown by slow evaporation of ethanolic solution at room temperature. The characteristic functional groups present in the molecule are confirmed by Fourier transform infrared and Fourier transform Raman analyses. The scanning electron microscopy study reveals the surface morphology of the material. Thermogravimetric/differential thermal analysis study reveals the purity of the material and the crystal is transparent in the visible region having a lower optical cut-off at ∼487nm. The second harmonic generation efficiency of as-grown material is estimated by Kurtz and Perry technique. Optimized geometry has been derived using Hartree-Fock calculations performed at the level 6-31G (d,p) and the first-order molecular hyperpolarizability (β) is estimated. The specimen is further characterized by nuclear magnetic resonance spectroscopy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Extractive recovery of phenol and p-alkylphenols from aqueous solutions with hydrophobic ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenman, Ya.I.; Ermolaeva, T.N.; Podolina, E.A.

    1994-03-10

    Aliphatic and cyclic hydrophobic ketones were used for extractive recovery of phenol and p-alkylphenols from aqueous solutions, giving a 95-98% extraction of toxicants under the recommended conditions. The extracting agents were cyclohexanone, methylcyclohexanone, butyl methyl ketone, and isobutyl methyl ketone.

  15. SYNTHESIZING ALCOHOLS AND KETONES BY PHOTOINDUCED CATALYTIC PARTIAL-OXIDATION OF HYDROCARBONS IN TI02 FILM REACTORS PREPARED BY THREE DIFFERENT METHODS

    EPA Science Inventory

    The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...

  16. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  17. Federal and State Water Quality Standards/Guidelines for Selected Parameters.

    DTIC Science & Technology

    1979-02-01

    isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total

  18. Transition-metal-free one-pot synthesis of biaryls from Grignard reagents and substituted cyclohexanones.

    PubMed

    Zhou, Feng; Simon, Marc-Oliver; Li, Chao-Jun

    2013-05-27

    A new strategy for the construction of biaryls by a transition-metal-free process is presented. A sequence of a Grignard reaction, dehydration, and oxidative aromatization affords the desired products in a one-pot fashion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in cyclohexanone at 30 °C is not less than 0.50 deciliter per gram as determined by ASTM method D1243... copol-ymer per 100 grams of sample tested as determined from the organic chlorine content. The organic... extractives. All determinations shall be done in duplicate using duplicate blanks. Approximately 400 grams of...

  20. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  1. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.

    PubMed

    Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F

    2015-05-22

    Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 21 CFR 176.300 - Slimicides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) cyclohexanone 1,2-Bis(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton... Methylenebisbutanethiolsulfonate Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0...)phosphonium sulfate (CAS Reg. No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive...

  3. 21 CFR 176.300 - Slimicides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) cyclohexanone 1,2-Bis(monobromoacetoxy) ethane [CA Reg. No. 3785-34-0] At a maximum level of 0.10 pound per ton... Methylenebisbutanethiolsulfonate Methylenebisthiocyanate 2-Nitrobutyl bromoacetate [CA Reg. No. 32815-96-6] At a maximum level of 0...)phosphonium sulfate (CAS Reg. No. 55566-30-8) Maximum use level of 84 mg/kg in the pulp slurry. The additive...

  4. Efficient methods for enol phosphate synthesis using carbon-centred magnesium bases.

    PubMed

    Kerr, William J; Lindsay, David M; Patel, Vipulkumar K; Rajamanickam, Muralikrishnan

    2015-10-28

    Efficient conversion of ketones into kinetic enol phosphates under mild and accessible conditions has been realised using the developed methods with di-tert-butylmagnesium and bismesitylmagnesium. Optimisation of the quench protocol resulted in high yields of enol phosphates from a range of cyclohexanones and aryl methyl ketones, with tolerance of a range of additional functional units.

  5. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  6. Novel nano-semiconductor film layer supported nano-Pd Complex Nanostructured Catalyst Pd/Ⓕ-MeOx/AC for High Efficient Selective Hydrogenation of Phenol to Cyclohexanone.

    PubMed

    Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng

    2017-04-28

    Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.

  7. Genetic Manipulation of the COP9 Signalosome Subunit PfCsnE Leads to the Discovery of Pestaloficins in Pestalotiopsis fici.

    PubMed

    Zheng, Yanjing; Ma, Ke; Lyu, Haining; Huang, Ying; Liu, Hongwei; Liu, Ling; Che, Yongsheng; Liu, Xingzhong; Zou, Huixi; Yin, Wen-Bing

    2017-09-01

    By deleting the COP9 signalosome subunit PfcsnE from Pestalotiopsis fici, seven compounds that were newly produced by the mutant could be characterized, including five new structures, pestaloficins A-E (1 and 3-6). Pestaloficin A (1) represents a new type of dimeric cyclohexanone derivative linked through an unprecedented pentacyclic spiral ring.

  8. Characterization of Cyclohexanone Inclusions in Class 1 RDX

    DTIC Science & Technology

    2014-06-01

    characterized with respect to solvent inclusions in support of a U.S. Army Research Laboratory (ARL) program to model Multiscale Response of Energetic...pertinent to their modeling effort under the Multiscale Response of Energetic Materials (MREM) program, and the Weapons and Materials Research...support of a U.S. Army Research Laboratory (ARL) initiative called “ Multiscale Modeling of Energetic Materials” (MREM). The MREM program aims, for

  9. An exceptionally rapid and selective hydrogenation of 2-cyclohexen-1-one in supercritical carbon dioxide.

    PubMed

    Chatterjee, Maya; Yokoyama, Toshirou; Kawanami, Hajime; Sato, Masahiro; Suzuki, Toshishige

    2009-02-14

    Selective hydrogenation of 2-cyclohexen-1-one over Pt-MCM-41 proceeds at a very high rate and produces cyclohexanone with selectivity of 100% in a batch reactor; a marked increase in the reaction rate (TOF) from 2283 min(-1) to 5051 min(-1) is observed on increasing the pressure from 7 MPa to 14 MPa at 40 degrees C.

  10. Lithium Enolates of Simple Ketones: Structure Determination Using the Method of Continuous Variation

    PubMed Central

    Liou, Lara R.; McNeil, Anne J.; Ramirez, Antonio; Toombes, Gilman E. S.; Gruver, Jocelyn M.

    2009-01-01

    The method of continuous variation in conjunction with 6Li NMR spectroscopy was used to characterize lithium enolates derived from 1-indanone, cyclohexanone, and cyclopentanone in solution. The strategy relies on forming ensembles of homo- and heteroaggregated enolates. The enolates form exclusively chelated dimers in N,N,N’,N’-tetramethylethylenediamine and cubic tetramers in tetrahydrofuran and 1,2-dimethoxyethane. PMID:18336025

  11. Biomimetic Oxidation Studies. 11. Alkane Functionalization in Aqueous Solution Utilizing in Situ Formed [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+), as an MMO Model Precatalyst, Embedded in Surface-Derivatized Silica and Contained in Micelles.

    PubMed

    Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.

    1999-07-26

    The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for alkane functionalization in water will be presented.

  12. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable tomore » metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.« less

  13. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint.

    PubMed

    Mwakaboko, Alinanuswe S; Zwanenburg, Binne

    2011-04-01

    Strigolactones are important signaling compounds in the plant kingdom. Here we focus on their germination stimulatory effect on seeds of the parasitic weeds Striga and Orobanche spp. and more particularly on the design and synthesis of new active strigolactone analogs derived from simple cyclic ketones. New analogs derived from 1-indanone, 1-tetralone, cyclopentanone, cyclohexanone and a series of substituted cyclohexanones (including carvone and pulegone) are prepared by formylation of the ketones with ethyl formate followed by coupling with a halo butenolide. Both enantiomers of the analog derived from 1-tetralone have been prepared by employing a homochiral synthon for the coupling reaction. For three other strigolactone analogs the antipodes have been obtained by chromatography on a chiral column. All analogs have an appreciable germinating activity towards seeds of Striga hermomonthica and Orobanche crenata and O. cernua. Stereoisomers having the same configuration at the D-ring as in naturally occurring strigol have a higher stimulatory effect than the corresponding antipodes. The analogs obtained from 1-indanone and 1-tetralone have an activity comparable with that of the well known stimulant GR 24. Analogs derived from 2-phenyl-cylohexanone, carvone and pulegone also have a good germinating response. The results show that the working model for designing new bioactive strigolactones is applicable.

  14. [Polymethylene derivatives of nucleic bases with omega-functional groups: VII. Cytotoxicity in the series of N-(2-oxocyclohexyl)-omega-oxoalkyl substituted purines and pyrimidines].

    PubMed

    Komissarov, V V; Volgareva, G M; Ol'shanskaia, Ia S; Chernyshova, M E; Zavalishina, L E; Frank, G A; Shtil', A A; Kritsyn, A M

    2009-01-01

    New polymethylene derivatives of nucleic bases with a beta-diketo function in the omega-position were obtained by alkylation of uracil, thymine, cytosine, hypoxanthine, adenine, and N(2)-isobutyryl guanine with 2-omega-chloroal-kanoyl)cyclohexanones. The physical and chemical characteristics of the compounds synthesized and their effect on the K562 and HCT116 tumor cell lines were studied.

  15. Hetero Bis-Addition of Spiro-Acetalized or Cyclohexanone Ring to 58π Fullerene Impacts Solubility and Mobility Balance in Polymer Solar Cells.

    PubMed

    Mikie, Tsubasa; Saeki, Akinori; Ikuma, Naohiko; Kokubo, Ken; Seki, Shu

    2015-06-17

    Fullerene bis-adducts are increasingly being studied to gain a high open circuit voltage (Voc) in bulk heterojunction organic photovoltaics (OPVs). We designed and synthesized homo and hetero bis-adduct [60]fullerenes by combining fused cyclohexanone or a five-membered spiro-acetalized unit (SAF5) with 1,2-dihydromethano (CH2), indene, or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These new eight 56π fullerenes showed a rational rise of the lowest unoccupied molecular orbital (LUMO). We perform a systematic study on the electrochemical property, solubility, morphology, and space-charge-limited current (SCLC) mobility. The best power conversion efficiency (PCE) of 4.43% (average, 4.36%) with the Voc of 0.80 V was obtained for poly(3-hexylthiophene) (P3HT) blended with SAF5/indene hetero bis-adduct, which is a marked advancement in PCE compared to the 0.9% of SAF5 monoadduct. More importantly, we elucidate an important role of mobility balance between hole and electron that correlates with the device PCEs. Besides, an empirical equation to extrapolate the solubilities of hetero bis-adducts is proposed on the basis of those of counter monoadducts. Our work offers a guide to mitigate barriers for exploring a large number of hetero bis-adduct fullerenes for efficient OPVs.

  16. Controlling the biodegradability of poly(butylene succinate-co-butylene adipate) (PBSA) by solvents used in the dried-gel process

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hana; Kamitabira, Saya; Maeda, Tomoki; Hotta, Atsushi

    Considering an environmentally friendly material, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the attractive biodegradable plastics that can be eventually degraded into H2O and CO2 by neighboring water molecules and microorganisms after the disposal. In order to expand the application of PBSA, the precise control of the biodegradability of PBSA is necessary. In this study, the dried-gel process was introduced to control the biodegradability of PBSA. The dried PBSA gels were prepared by using three different solvents (toluene, cyclohexanone, and o-dichlorobenzene). The scanning electron microscopy (SEM) micrographs revealed that the PBSA prepared by toluene had smaller spherocrystals than the other PBSA dried-gels prepared by cyclohexanone or o-dichlorobenzene. The biodegradability testing by immersing the three types of PBSA in NaOH aq. showed that the percentage of the weight loss of the PBSA produced by toluene was the highest. The results indicated that the microstructures of PBSA could be controlled by changing solvents during the gel preparations, and that the biodegradability of PBSA could therefore be efficiently modified by changing solvents. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  17. Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbons derived from ZIF-67: Role of dicyandiamide

    NASA Astrophysics Data System (ADS)

    Ding, Shuaishuai; Zhang, Chunhua; Liu, Yefei; Jiang, Hong; Chen, Rizhi

    2017-12-01

    Highly efficient Pd@CN catalysts for selective hydrogenation of phenol to cyclohexanone in water were successfully fabricated by loading Pd nanoparticles (NPs) in N-doped carbons (CN) derived from ZIF-67 with dicyandiamide (DICY) as the additional nitrogen source. For comparison, polyvinylpyrrolidone (PVP) was also used as the additional nitrogen source during the ZIF-67 synthesis. The results showed that the PVP and DICY had significantly different impacts on the microstructures of as-obtained CN materials and the catalytic performance of Pd@CN catalysts in the phenol hydrogenation. The addition of DICY had the positive promotion effect on the surface area of the obtained CN materials. Moreover, the introduction of DICY could increase the nitrogen content of CN and then prevent the re-oxidation of Pd NPs during air contact, resulting in higher Pd0 ratio. In comparison with PVP, the DICY was more suitable as the additional nitrogen source for the formation of CN and Pd@CN (Pd@CND, Pd@CNP). The Pd@CND exhibited superior catalytic activity as compared to Pd@CNP (phenol conversion 96.9% vs. 67.4%). More importantly, the as-prepared Pd@CND catalyst could be reused for four times without catalytic performance reduction. The work would aid the development of Pd@CN catalysts with superior catalytic properties.

  18. Biomimetic methane oxidation

    NASA Astrophysics Data System (ADS)

    Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.

    1992-06-01

    Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.

  19. Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.

    PubMed

    Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B

    2006-05-03

    We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.

  20. Synthesis of renewable high-density fuel with isophorone.

    PubMed

    Wang, Wei; Liu, Yanting; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2017-07-21

    1,1,3-Trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane, a renewable high density fuel, was first produced in a high overall carbon yield (~70%) with isophorone which can be derived from hemicellulose. The synthetic route used this work contains three steps. In the first step, 3,3,5-trimethylcyclohexanone was synthesized by the selective hydrogenation of isophorone. Among the investigated catalysts, the Pd/C exhibited the highest activity and selectivity. Over this catalyst, a high carbon yield (99.0%) of 3,3,5-trimethylcyclohexanone was achieved under mild conditions (298 K, 2 MPa H 2 , 1 h). In the second step, 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was produced in a high carbon yield (76.4%) by the NaOH catalyzed self-aldol condensation of 3,3,5-trimethylcyclohexanone which was carried out in a round bottom flask attached to the Dean-Stark apparatus. In the third step, the 3,5,5-trimethyl-2-(3,3,5-trimethylcyclohexylidene)cyclohexanone was hydrodeoxygenated under solvent-free conditions. High carbon yield (93.4%) of 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane was obtained over the Ni/SiO 2 catalyst. The 1,1,3-trimethyl-5-(2,4,4-trimethylcyclohexyl)cyclohexane as obtained has a density of 0.858 g mL -1 and a freezing point of 222.2 K. As a potential application, it can be blended into conventional fuels (such as RP-1, RG-1, etc.) for rocket propulsion.

  1. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants

    PubMed Central

    Willis, Daniel N.; Liu, Boyi; Ha, Michael A.; Jordt, Sven-Eric; Morris, John B.

    2011-01-01

    Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.— Willis, D. N., Liu, B., Ha, M. A., Jordt, S.-E., Morris, J. B. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. PMID:21903934

  2. Wireless gas detection with a smartphone via rf communication

    PubMed Central

    Azzarelli, Joseph M.; Mirica, Katherine A.; Ravnsbæk, Jens B.; Swager, Timothy M.

    2014-01-01

    Chemical sensing is of critical importance to human health, safety, and security, yet it is not broadly implemented because existing sensors often require trained personnel, expensive and bulky equipment, and have large power requirements. This study reports the development of a smartphone-based sensing strategy that employs chemiresponsive nanomaterials integrated into the circuitry of commercial near-field communication tags to achieve non-line-of-sight, portable, and inexpensive detection and discrimination of gas-phase chemicals (e.g., ammonia, hydrogen peroxide, cyclohexanone, and water) at part-per-thousand and part-per-million concentrations. PMID:25489066

  3. Biodegradation of Cyclohexylamine by Brevibacterium oxydans IH-35A

    PubMed Central

    Iwaki, Hiroaki; Shimizu, Masatake; Tokuyama, Tai; Hasegawa, Yoshie

    1999-01-01

    A bacterial strain capable of growing on cyclohexylamine (CHAM) was isolated by using enrichment and isolation techniques. The strain isolated, strain IH-35A, was classified as a member of the genus Brevibacterium. The results of growth and enzyme studies are consistent with degradation of CHAM via cyclohexanone (CHnone), 6-hexanolactone, 6-hydroxyhexanoate, and adipate. Cell extracts obtained from this strain grown on CHAM contained CHAM oxidase, and the model for CHAM oxidation by this enzyme was similar to the model for deamino oxidation of amine by amine oxidase. PMID:10224025

  4. Metal reduction at point-of-use filtration

    NASA Astrophysics Data System (ADS)

    Umeda, Toru; Daikoku, Shusaku; Varanasi, Rao; Tsuzuki, Shuichi

    2016-03-01

    We explored the metal removal efficiency of Nylon 6,6 and HDPE (High Density Polyethylene) membrane based filters, in solvents of varying degree of polarity such as Cyclohexanone and 70:30 mixture of PGME (Propylene Glycol Monomethyl Ether) and PGMEA (Propylene Glycol Monomethyl Ether), In all the solvents tested, Nylon 6,6 membrane filtration was found to be significantly more effective in removing metals than HDPE membranes, regardless of their respective membrane pore sizes. Hydrophilic interaction chromatography (HILIC) mechanism was invoked to rationalize metal removal efficiency dependence on solvent hydrophobicity.

  5. Development of novel purifiers with appropriate functional groups based on solvent polarities at bulk filtration

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki

    2017-03-01

    Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.

  6. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Fuels Research

    DTIC Science & Technology

    1992-11-01

    octanol ), through the addition of additives to typical JP-8. Fuel and ketone (2- octanone ) were added to the fuel, and the Pri~F-2827 is a non-hydx-o-treated...40.97 propylbenzene 59. 41.30 propynylbenzene 60. 42.02 3,4-dimethyl2,5-furnandione 61. 42.43 1- octanol ? 62. 42.69 I-phenylethanone 63. 42.76 ? 64...23. 17.47 3-methylcyclopentanone 24. 19.51 2-heptanone 25. 19.86 cyclohexanone 26. 20.56 Incomplete MS, pentyl acetate? 27. 22.43 2- octanone 11 0 CD

  7. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro.

    PubMed

    Lee, Ka-Heng; Abas, Faridah; Mohamed Alitheen, Noorjahan Banu; Shaari, Khozirah; Lajis, Nordin Haji; Israf, Daud Ahmad; Syahida, Ahmad

    2015-07-01

    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  8. Lewis Acid Catalyzed Conversion of 5-Hydroxymethylfurfural to 1,2,4-Benzenetriol, an Overlooked Biobased Compound

    PubMed Central

    2018-01-01

    5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl2. ZnCl2 and similarly effective Zn(OTf)2 and Fe(OTf)2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf)4 and Sc(OTf)3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al2O3 combined with AlCl3 or Al(OTf)3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2′,4,4′,5,5′-hexahydroxybiphenyl (5,5′-BTO dimer) was identified. PMID:29607267

  9. Lewis Acid Catalyzed Conversion of 5-Hydroxymethylfurfural to 1,2,4-Benzenetriol, an Overlooked Biobased Compound.

    PubMed

    Kumalaputri, Angela J; Randolph, Caelan; Otten, Edwin; Heeres, Hero J; Deuss, Peter J

    2018-03-05

    5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl 2 . ZnCl 2 and similarly effective Zn(OTf) 2 and Fe(OTf) 2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf) 4 and Sc(OTf) 3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al 2 O 3 combined with AlCl 3 or Al(OTf) 3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2',4,4',5,5'-hexahydroxybiphenyl (5,5'-BTO dimer) was identified.

  10. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  11. Production of permeable cellulose triacetate membranes

    DOEpatents

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  12. Quartz tuning fork based sensor for detection of volatile organic compounds: towards breath analysis

    NASA Astrophysics Data System (ADS)

    Sampson, Abraham; Panchal, Suresh; Phadke, Apoorva; Kashyap, A.; Suman, Jilma; Unnikrishnan, G.; Datar, Suwarna

    2018-04-01

    Several volatile organic compounds (VOCs) are present in the exhaled human breath whose concentration can vary depending on the physiological changes occurring within a human being. These changes in the concentration or the occurrence of a particular VOC can be used as signature of a particular disease in a person. In the present work, a sensor has been developed to detect VOCs such as 1,4-dimethoxy-2,3-butanediol (BD), and cyclohexanone (CH), acetone, methanol and ethanol. Except for BD and CH, the rest of the VOCs are present in a healthy person in ppm levels. CH and BD have been reported to be present in the exhaled human breath of breast cancer patients in ppm levels and can be used to distinguish between a healthy person and a person with breast cancer. The selectivity of the sensor towards these two compounds in the presence of other VOCs commonly present in human breath like acetone, ethanol and methanol has been studied. The sensor has been developed using modified Quartz Tuning Forks (QTFs) with the intent of developing an array of such sensors identifying different VOCs present in a healthy human’s breath. Two differently modified QTFs have been used to detect 1 ppm of 1,4-dimethoxy-2,3-butanediol and 20 ppm of cyclohexanone. Linear Discriminants Analysis (LDA) has been used to classify seven different VOCs. For this purpose, features extracted from sensor responses -shift in resonant frequency, response time and recovery time of the sensors- have been used as features in the model. Differently modified array of QTFs along with the use of LDA can be a useful pathway towards development of a QTF based sensor array for human breath analysis.

  13. O2-(6-Oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolates: a new class of nitric oxide donors activatable by GSH/GSTπ with both anti-proliferative and anti-metastatic activities against melanoma.

    PubMed

    Bai, Chengfeng; Xue, Rongfang; Wu, Jianbing; Lv, Tian; Luo, Xiaojun; Huang, Yun; Gong, Yan; Zhang, Honghua; Zhang, Yihua; Huang, Zhangjian

    2017-05-02

    The new nitric oxide (NO) donor O 2 -(6-oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolate 3c could simultaneously liberate NO as well as an active 3-glutathionyl-2-exomethylene-cyclohexanone 2 in the presence of GSH/GSTπ; exhibit potent antiproliferative activity; repress migration, invasion, and lateral migration of metastatic B16-BL6 cells; and significantly decrease hetero-adhesion of B16-BL6 cells to human umbilical vein endothelial cells.

  14. Asymmetric synthesis of 5-arylcyclohexenones by rhodium(I)-catalyzed conjugate arylation of racemic 5-(trimethylsilyl)cyclohexenone with arylboronic acids.

    PubMed

    Chen, Qian; Kuriyama, Masami; Soeta, Takahiro; Hao, Xinyu; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2005-09-29

    [reaction: see text] A catalytic asymmetric conjugate arylation of racemic 5-(trimethylsilyl)cyclohex-2-enone with arylboronic acids was catalyzed by 3 mol % chiral amidophosphane- or BINAP-Rh(I) in dioxane-water (10:1) to afford trans- and cis-3-aryl-5-(trimethylsilyl)cyclohexanones in high enantioselectivity. Dehydrosilylation of the product mixture with cupric chloride in DMF gave 5-arylcyclohex-2-enones with up to 93% ee in good yield. Enantiofacial selectivity with chiral phosphane-Rh(I) exceeds the trans-diastereoselectivity that is maintained in the achiral or racemic phosphane-Rh(I)-catalyzed conjugate arylation of 5-(trimethylsilyl)cyclohexenone.

  15. Synthesis and synergistic, additive inhibitory effects of novel spiro derivatives against ringworm infections.

    PubMed

    Sharma, Gajanand; Sharma, Richa; Dandia, Anshu; Bansal, Preeti

    2013-01-01

    An environmentally benign solvent free synthesis of various spiro-1,4-dihydropyridines (1,4-DHPs) incorporating 2-oxindole/piperidines is performed in 5-8 min with reasonable purity in 80-90% yield under microwave irradiation using montmorillonite KSF as an inorganic solid support. The reaction is found to be general with respect to various cyclic carbonyl compounds, e.g. cyclohexanone, substituted indole-2,3-dione, and piperidinone derivatives. In our study, these compounds were also found effective against dermatophytes and other fungal organisms. Our results suggest that novel spiro derivatives can be used for the treatment of dermatophytosis or ringworm infections.

  16. Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (+/-)-alpha-agarofuran.

    PubMed

    Jiao, Lei; Lin, Mu; Zhuo, Lian-Gang; Yu, Zhi-Xiang

    2010-06-04

    A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, alpha-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.

  17. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Structural study of ethyl 3-methyl-9-oxo-3-azabicyclo63.3.19nonane-1-carboxylate by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arias-Pérez, M. S.; Alejo, A.; Gálvez, E.; Pérez, S. M.; Santos, M. J.

    1995-04-01

    Ethyl 3-methyl-9-oxo-3-azabicyclo[3.3.1]nonane-1-carboxylate has been studied by 1H, 13C and 2D NMR spectroscopy in order to establish its conformational behaviour. The combined use of COSY and 1H- 13C correlation spectra helped in the unambiguous and complete assignment of the bicyclic carbon and proton resonances. It is found that the piperidone ring displays a slightly fattened chair conformation with the N-methyl group in the equatorial position, while a twist-chair form seems to be favoured for the cyclohexanone one. Two preferred orientations migth be proposed for the ethoxycarbonyl moiety.

  19. Camellianols A-G, Barrigenol-like Triterpenoids with PTP1B Inhibitory Effects from the Endangered Ornamental Plant Camellia crapnelliana.

    PubMed

    Xiong, Juan; Wan, Jiang; Ding, Jie; Wang, Pei-Pei; Ma, Guang-Lei; Li, Jia; Hu, Jin-Feng

    2017-11-22

    Seven new naturally occurring barrigenol-like compounds, camellianols A-G (1-7), and 10 known triterpenoids were isolated from the twigs and leaves of the cultivated endangered ornamental plant Camellia crapnelliana. According to the ECD octant rule for saturated cyclohexanones, the absolute configurations of camellianols D (4) and E (5) were defined. The backbones of the remaining new isolates are assumed to have the same absolute configuration as compounds 4, 5, and harpullone (12). Compounds 2, 3, 9, 10, 13, and 16 exhibited inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme, with IC 50 values less than 10 μM.

  20. Sesquiterpenes from Curcuma wenyujin with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    PubMed

    Gao, Suyu; Xia, Guiyang; Wang, Liqing; Zhou, Li; Zhao, Feng; Huang, Jian; Chen, Lixia

    2017-03-01

    One new sesquiterpene, 7α,11-epoxy-6α-hydroxy-carabrane-4,8-dione, along with 10 known ones were isolated from the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Their structures were established based on extensive spectroscopic analysis. The absolute configuration of compound 1 was determined by the CD analysis of the insitu formed [Rh 2 (OCOCF 3 ) 4 ] complex, and the CD data analysis based on the octane rule of cyclohexanone. The inhibitory effects of these sesquiterpenes on nitric oxide production in lipopolysaccharide-activated macrophages were also evaluated. Furthermore, the biosynthesis pathway of the isolated compounds was proposed.

  1. Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ3-4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas putida ATCC 17453

    PubMed Central

    Leisch, Hannes; Shi, Rong; Grosse, Stephan; Morley, Krista; Bergeron, Hélène; Cygler, Miroslaw; Iwaki, Hiroaki; Hasegawa, Yoshie

    2012-01-01

    A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140–152, 1983). Here we cloned and overexpressed the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP+ at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP+. A comparison of several crystal forms of OTEMO bound to FAD and NADP+ revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (kcat/Km) favors 2-n-hexyl cyclopentanone (4.3 × 105 M−1 s−1) as a substrate, although its affinity (Km = 32 μM) was lower than that of the CoA-activated substrate (Km = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members. PMID:22267661

  2. Catalytic Hydroxylation of Polyethylenes

    PubMed Central

    2017-01-01

    Polyolefins account for 60% of global plastic consumption, but many potential applications of polyolefins require that their properties, such as compatibility with polar polymers, adhesion, gas permeability, and surface wetting, be improved. A strategy to overcome these deficiencies would involve the introduction of polar functionalities onto the polymer chain. Here, we describe the Ni-catalyzed hydroxylation of polyethylenes (LDPE, HDPE, and LLDPE) in the presence of mCPBA as an oxidant. Studies with cycloalkanes and pure, long-chain alkanes were conducted to assess precisely the selectivity of the reaction and the degree to which potential C–C bond cleavage of a radical intermediate occurs. Among the nickel catalysts we tested, [Ni(Me4Phen)3](BPh4)2 (Me4Phen = 3,4,7,8,-tetramethyl-1,10-phenanthroline) reacted with the highest turnover number (TON) for hydroxylation of cyclohexane and the highest selectivity for the formation of cyclohexanol over cyclohexanone (TON, 5560; cyclohexanol/(cyclohexanone + ε-caprolactone) ratio, 10.5). The oxidation of n-octadecane occurred at the secondary C–H bonds with 15.5:1 selectivity for formation of an alcohol over a ketone and 660 TON. Consistent with these data, the hydroxylation of various polyethylene materials by the combination of [Ni(Me4Phen)3](BPh4)2 and mCPBA led to the introduction of 2.0 to 5.5 functional groups (alcohol, ketone, alkyl chloride) per 100 monomer units with up to 88% selectivity for formation of alcohols over ketones or chloride. In contrast to more classical radical functionalizations of polyethylene, this catalytic process occurred without significant modification of the molecular weight of the polymer that would result from chain cleavage or cross-linking. Thus, the resulting materials are new compositions in which hydroxyl groups are located along the main chain of commercial, high molecular weight LDPE, HDPE, and LLDPE materials. These hydroxylated polyethylenes have improved wetting properties and serve as macroinitiators to synthesize graft polycaprolactones that compatibilize polyethylene–polycaprolactone blends. PMID:28852704

  3. Curcumin and its cyclohexanone analogue inhibited human Equilibrative nucleoside transporter 1 (ENT1) in pancreatic cancer cells.

    PubMed

    Revalde, Jezrael L; Li, Yan; Wijeratne, Tharaka S; Bugde, Piyush; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2017-05-15

    Our group investigated combining the phytochemical curcumin and gemcitabine in a liposome, to improve gemcitabine's activity against pancreatic tumours. While optimising the curcumin: gemcitabine ratio for co-encapsulation, we found that increasing curcumin concentrations relative to gemcitabine resulted in antagonistic interactions. As curcumin is a promiscuous transporter inhibitor; we suspected that increased resistance occurred via inhibition of Equilibrative nucleoside transporter 1 (ENT1)-mediated gemcitabine uptake. To test our hypothesis, we determined whether curcumin and a related analogue, 2,6-bis((3-methoxy-4-hydroxyphenyl)methylene)-cyclohexanone (or A13), inhibited ENT1-mediated accumulation of [ 3 H]uridine and [ 3 H]gemcitabine into pancreatic cancer cells. We then confirmed the inhibition of gemcitabine accumulation by investigating whether curcumin/A13 could increase gemcitabine resistance in growth inhibition assays. We found that curcumin and A13 concentration-dependently inhibited the ENT1-mediated accumulation of both uridine and gemcitabine in MIA PaCa-2 and PANC-1 cells. We also found that non-toxic concentrations of curcumin and A13 significantly increased the resistance of both cell lines to gemcitabine. Increased resistance only occurred when curcumin/A13 was co-incubated with gemcitabine, and not with sequential exposure (i.e., curcumin first, followed by gemcitabine, or vice versa). We also found that the curcumin analogue (3E,5E)-3,5-bis[(2-fluorophenyl)methylene]-4-piperidinone (or EF24) did not inhibit gemcitabine accumulation, making it more suitable in combinations than curcumin/A13. From these results, we concluded that curcumin and A13 are inhibitors of the ENT1 transporter, but only at high concentrations (2-20µM). Curcumin is unlikely to inhibit gemcitabine uptake in tumours but may interfere with the oral absorption of ENT1 substrates due to high gut concentrations readily achievable from over-the-counter tablets/capsules. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lithium Diisopropylamide-Mediated Reactions of Imines, Unsaturated Esters, Epoxides, and Aryl Carbamates: Influence of Hexamethylphosphoramide and Ethereal Cosolvents on Reaction Mechanisms

    PubMed Central

    Ma, Yun

    2010-01-01

    Several reactions mediated by lithium diisopropylamide (LDA) with added hex-amethylphosphoramide (HMPA) are described. The N-isopropylimine of cyclohex-anone lithiates via an ensemble of monomer-based pathways. Conjugate addition of LDA/HMPA to an unsaturated ester proceeds via di- and tetra-HMPA-solvated dimers. Deprotonation of norbornene epoxide by LDA/HMPA proceeds via an intermediate metalated epoxide as a mixed dimer with LDA. Ortholithiation of an aryl carbamate proceeds via a mono-HMPA-solvated monomer-based pathway. Dependencies on THF and other ethereal cosolvents suggest that secondary-shell solvation effects are important in some instances. The origins of the inordinate mechanistic complexity are discussed. PMID:17985891

  5. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions and kinetic resolution of resultant alpha-silyloxyketones.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2010-05-21

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic alpha-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant alpha-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction.

  6. Preparation of immobilized L-prolinamide via enzymatic polymerization of phenolic L-prolinamide and evaluation of its catalytic performance for direct asymmetric aldol reaction.

    PubMed

    Qu, Chengke; Zhao, Wenshan; Zhang, Lei; Cui, Yuanchen

    2014-04-01

    Phenolic L-prolinamide was allowed to participate in enzymatic polymerization with horseradish peroxidase as the catalyst, generating immobilized L-prolinamide. The catalytic performance of the resultant polymer-supported L-prolinamide for direct asymmetric aldol reaction between aromatic aldehyde and cyclohexanone was studied. The results show that as prepared L-prolinamide can catalyze the aldol reaction at room temperature in the presence of H2O. Relevant aldol addition products are obtained with good yields (up to 91%), high diastereoselectivities (up to 6:94 dr), and medium enantioselectivities (up to 87% ee). Moreover, the title polymer-supported catalyst can be recovered and reused for at least five cycles while the activity remains almost unchanged. Copyright © 2014 Wiley Periodicals, Inc.

  7. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions and Kinetic Resolution of Resultant α-Silyloxyketones

    PubMed Central

    Tarr, James C.

    2010-01-01

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic α-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant α-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction. PMID:20392127

  8. Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane.

    PubMed

    Dragancea, Diana; Talmaci, Natalia; Shova, Sergiu; Novitchi, Ghenadie; Darvasiová, Denisa; Rapta, Peter; Breza, Martin; Galanski, Markus; Kožı́šek, Jozef; Martins, Nuno M R; Martins, Luísa M D R S; Pombeiro, Armando J L; Arion, Vladimir B

    2016-09-19

    Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

  9. A new paradigm for designing ring construction strategies for green organic synthesis: implications for the discovery of multicomponent reactions to build molecules containing a single ring

    PubMed Central

    2016-01-01

    A new way of developing novel synthesis strategies for the construction of monocyclic rings found in organic molecules is presented. The method is based on the visual application of integer partitioning to chemical structures. Two problems are addressed: (1) the determination of the total number of possible ways to construct a given ring by 2-, 3-, and 4-component couplings; and (2) the systematic enumeration of those possibilities. The results of the method are illustrated using cyclohexanone, pyrazole, and the Biginelli adduct as target ring systems with a view to discover new and greener strategies for their construction using multicomponent reactions. The application of the method is also extended to various heterocycles found in many natural products and pharmaceuticals. PMID:28144310

  10. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    PubMed

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-08

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis.

    PubMed

    Kille, Sabrina; Acevedo-Rocha, Carlos G; Parra, Loreto P; Zhang, Zhi-Gang; Opperman, Diederik J; Reetz, Manfred T; Acevedo, Juan Pablo

    2013-02-15

    Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.

  12. Takovite-aluminosilicate-Cr materials prepared by adsorption of Cr3+ from industrial effluents as catalysts for hydrocarbon oxidation reactions.

    PubMed

    Ciuffi, Katia J; de Faria, Emerson H; Marçal, Liziane; Rocha, Lucas A; Calefi, Paulo S; Nassar, Eduardo J; Pepe, Iuri; da Rocha, Zênis N; Vicente, Miguel A; Trujillano, Raquel; Gil, Antonio; Korili, Sophia A

    2012-05-01

    The catalytic efficiency of takovite-aluminosilicate-chromium catalysts obtained by adsorption of Cr(3+) ions from aqueous solutions by a takovite-aluminosilicate nanocomposite adsorbent is reported. The adsorbent was synthesized by the coprecipitation method. The catalytic activity of the final Cr-catalysts depended on the amount of adsorbed chromium. (Z)-cyclooctene conversion up to 90% with total selectivity for the epoxide was achieved when the oxidation was carried out with hydrogen peroxide, at room temperature. After five consecutive runs, the catalysts maintained high activity, although after the sixth reuse, the epoxide yields strongly decreased to 35%. The catalysts were also efficient for cyclohexane oxidation, reaching up to 18% conversion, with cyclohexanone/cyclohexanol selectivity close to 1.2. On the whole, their use as catalysts gives a very interesting application for the solids obtained by adsorption of a contaminant cation such as Cr(3+).

  13. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  14. Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents

    PubMed Central

    Brenna, Davide; Massolo, Elisabetta; Puglisi, Alessandra; Rossi, Sergio; Celentano, Giuseppe; Capriati, Vito

    2016-01-01

    Different deep eutectic solvent (DES) mixtures were studied as reaction media for the continuous synthesis of enantiomerically enriched products by testing different experimental set-ups. L-Proline-catalysed cross-aldol reactions were efficiently performed in continuo, with high yield (99%), anti-stereoselectivity, and enantioselectivity (up to 97% ee). Moreover, using two different DES mixtures, the diastereoselectivity of the process could be tuned, thereby leading to the formation, under different experimental conditions, to both the syn- and the anti-isomer with very high enantioselectivity. The excess of cyclohexanone was recovered and reused, and the reaction could be run and the product isolated without the use of any organic solvent by a proper choice of DES components. The dramatic influence of the reaction media on the reaction rate and stereoselectivity of the process suggests that the intimate architecture of DESs deeply influences the reactivity of different species involved in the catalytic cycle. PMID:28144332

  15. From the street to the laboratory: analytical profiles of methoxetamine, 3-methoxyeticyclidine and 3-methoxyphencyclidine and their determination in three biological matrices.

    PubMed

    De Paoli, Giorgia; Brandt, Simon D; Wallach, Jason; Archer, Roland P; Pounder, Derrick J

    2013-06-01

    Three psychoactive arylcyclohexylamines, advertised as "research chemicals," were obtained from an online retailer and characterized by gas chromatography ion trap electron and chemical ionization mass spectrometry, nuclear magnetic resonance spectroscopy and diode array detection. The three phencyclidines were identified as 2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone (methoxetamine), N-ethyl-1-(3-methoxyphenyl)cyclohexanamine and 1-[1-(3-methoxyphenyl)cyclohexyl]piperidine. A qualitative/quantitative method of analysis was developed and validated using liquid chromatography (HPLC) electrospray tandem mass spectrometry and ultraviolet (UV) detection for the determination of these compounds in blood, urine and vitreous humor. HPLC-UV proved to be a robust, accurate and precise method for the qualitative and quantitative analysis of these substances in biological fluids (0.16-5.0 mg/L), whereas the mass spectrometer was useful as a confirmatory tool.

  16. Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham.

    PubMed

    Martín, Alberto; Benito, María J; Aranda, Emilio; Ruiz-Moyano, Santiago; Córdoba, Juan J; Córdoba, María G

    2010-08-01

    In the present study, volatile compounds of spoiled dry-cured Iberian ham with deep spoilage or "bone taint" were analyzed and correlated with level of spoilage and the microorganisms detected. Volatile compounds extracted by a solid phase micro-extraction technique were assayed by gas chromatography/mass spectrometry. The spoiled hams were evaluated sensorially, and the correlations among volatile compounds, spoilage level, and microbial counts were studied. The spoiled hams had higher concentrations of hydrocarbons, alcohols, acids, esters, pyrazines, sulfur compounds, and other minor volatile compounds than unspoiled hams. The sensorial analysis showed that the spoilage level of hams correlated with several volatile compounds, most of them associated with Gram-positive catalase positive cocci and Enterobacteriaceae counts. Cyclic compounds such as cyclohexanone, some ethers, and pyrazines should be considered as indicators to monitor incipient microbial deep spoilage in the elaboration of this meat product.

  17. Analysis of Taiwan patents for the medicinal mushroom "Niu-Chang- Chih".

    PubMed

    Chen, Yu-Fen; Lu, Wen-Ling; Wu, Ming-Der; Yuan, Gwo-Fang

    2013-04-01

    "Niu-Chang-Chih" (Antrodia cinnanomea) is a medicinal mushroom that has only been collected from the aromatic tree, Cinnamomum kanehirai, which is native to Taiwan. A total of 105 Taiwan patent applications and patents for "Niu-Chang-Chih" were collected and analyzed. Patent applications and granted patents claiming newly identified functional components from "Niu-Chang-Chih," biologically pure cultures of the mushroom strain, and cultivation of "Niu-Chang-Chih" were examined. Several applications and patents claim identified active compounds from "Niu-Chang- Chih," which provide better patent protection. These newly identified functional compounds include cyclohexanones, maleic and succinic acid derivatives, labdane diterpenoids, and benzenoids. Newly identified functional proteins include a glutathione-dependent formaldehyde dehydrogenase (GFD), a glycoprotein named ACA1, and a laccase. Newly identified functional polysaccharides include ACP1, ACP2, and ACP3. The number of patents for newly identified compounds and their uses are expected to continue growing.

  18. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    NASA Astrophysics Data System (ADS)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  19. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  20. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    PubMed

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  1. Face-Dependent Solvent Adsorption: A Comparative Study on the Interfaces of HMX Crystal with Three Solvents.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Ma, Yiding; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2017-07-27

    To understand the crystal-solvent interfacial interactions on the molecular scale, the interfaces between three solvents, that is, acetone, γ-butyrolactone, and cyclohexanone, and three growth faces of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) crystal have been investigated with the aid of theoretical chemistry. The results show that the structural features of crystal faces play a critical role in the energetic, structural, and dynamic properties at the interfaces. For each solvent, the same change trend of some properties among the three faces of HMX crystal is observed, including adsorption affinity, local mass density, and solvent diffusion. For example, the rate of solvent diffusion at the three faces ranks as (011) > (110) > (020) regardless of solvent species. This can be attributed to the similar adsorption sites for solvent incorporation at the same face, which are concentrated at the cavities formed by surficial HMX molecules.

  2. The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO4 berlinite by oxygen under atmospheric pressure.

    PubMed

    Hong, Yun; Sun, Dalei; Fang, Yanxiong

    2018-04-04

    The oxidation of cyclohexane under mild conditions occupies an important position in the chemical industry. A few soluble transition metals were widely used as homogeneous catalysts in the industrial oxidation of cyclohexane. Because heterogeneous catalysts are more manageable than homogeneous catalysts as regards separation and recycling, in our study, we hydrothermally synthesized and used pure berlinite (AlPO 4 ) and vanadium-incorporated berlinite (VAlPO 4 ) as heterogeneous catalysts in the selective oxidation of cyclohexane with molecular oxygen under atmospheric pressure. The catalysts were characterized by means of by XRD, FT-IR, XPS and SEM. Various influencing factors, such as the kind of solvents, reaction temperature, and reaction time were investigated systematically. The XRD characterization identified a berlinite structure associated with both the AlPO 4 and VAlPO 4 catalysts. The FT-IR result confirmed the incorporation of vanadium into the berlinite framework for VAlPO 4 . The XPS measurement revealed that the oxygen ions in the VAlPO 4 structure possessed a higher binding energy than those in V 2 O 5 , and as a result, the lattice oxygen was existed on the surface of the VAlPO 4 catalyst. It was found that VAlPO 4 catalyzed the selective oxidation of cyclohexane with molecular oxygen under atmospheric pressure, while no activity was detected on using AlPO 4 . Under optimum reaction conditions (i.e. a 100 mL cyclohexane, 0.1 MPa O 2 , 353 K, 4 h, 5 mg VAlPO 4 and 20 mL acetic acid solvent), a selectivity of KA oil (both cyclohexanol and cyclohexanone) up to 97.2% (with almost 6.8% conversion of cyclohexane) was obtained. Based on these results, a possible mechanism for the selective oxidation of cyclohexane over VAlPO 4 was also proposed. As a heterogeneous catalyst VAlPO 4 berlinite is both high active and strong stable for the selective oxidation of cyclohexane with molecular oxygen. We propose that KA oil is formed via a catalytic cycle, which involves activation of the cyclohexane by a key active intermediate species, formed from the nucleophilic addition of the lattice oxygen ion with the carbon in cyclohexane, as well as an oxygen vacancy formed at the VAlPO 4 catalyst surface.

  3. Process for stabilization of coal liquid fractions

    DOEpatents

    Davies, Geoffrey; El-Toukhy, Ahmed

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  4. Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications

    NASA Astrophysics Data System (ADS)

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil

    2015-02-01

    A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.

  5. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones.

    PubMed

    Quezada, M A; Carballeira, J D; Sinisterra, J V

    2012-05-01

    Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Membrane inlet mass spectrometry for homeland security and forensic applications.

    PubMed

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil

    2015-02-01

    A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.

  7. An enzyme cascade synthesis of ε-caprolactone and its oligomers.

    PubMed

    Schmidt, Sandy; Scherkus, Christian; Muschiol, Jan; Menyes, Ulf; Winkler, Till; Hummel, Werner; Gröger, Harald; Liese, Andreas; Herz, Hans-Georg; Bornscheuer, Uwe T

    2015-02-23

    Poly-ε-caprolactone (PCL) is chemically produced on an industrial scale in spite of the need for hazardous peracetic acid as an oxidation reagent. Although Baeyer-Villiger monooxygenases (BVMO) in principle enable the enzymatic synthesis of ε-caprolactone (ε-CL) directly from cyclohexanone with molecular oxygen, current systems suffer from low productivity and are subject to substrate and product inhibition. The major limitations for such a biocatalytic route to produce this bulk chemical were overcome by combining an alcohol dehydrogenase with a BVMO to enable the efficient oxidation of cyclohexanol to ε-CL. Key to success was a subsequent direct ring-opening oligomerization of in situ formed ε-CL in the aqueous phase by using lipase A from Candida antarctica, thus efficiently solving the product inhibition problem and leading to the formation of oligo-ε-CL at more than 20 g L(-1) when starting from 200 mM cyclohexanol. This oligomer is easily chemically polymerized to PCL. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development

    NASA Technical Reports Server (NTRS)

    Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.

    2004-01-01

    Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.

  9. Molecular sieve catalysts for the regioselective and shape- selective oxyfunctionalization of alkanes in air.

    PubMed

    Thomas, J M; Raja, R; Sankar, G; Bell, R G

    2001-03-01

    Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.

  10. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.

    PubMed

    Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun

    2018-03-26

    Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of N4-(Substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and Identification of New Microtubule Disrupting Compounds that are Effective against Multidrug Resistant Cells1

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Devambatla, Ravi Kumar Vyas; Raghavan, Sudhir; Westbrook, Cara D.; Dybdal-Hargreaves, Nicholas F.; Hamel, Ernest; Mooberry, Susan L.

    2013-01-01

    A series of fourteen N4-(substituted phenyl)-N4-methyl/desmethyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug reisistence. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site. PMID:23332369

  12. Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons

    DOE PAGES

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; ...

    2015-10-15

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn 0.5Ce 0.5O x solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn 0.5Ce 0.5O xmore » solid solution with an ultrahigh manganese doping concentration in the CeO 2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn 4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less

  13. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  14. Ketone EC50 values in the Microtox test.

    PubMed

    Chen, H F; Hee, S S

    1995-03-01

    The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.

  15. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    PubMed Central

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-01-01

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface. PMID:26469151

  16. The constituents of essential oil: antimicrobial and antioxidant activity of Micromeria congesta Boiss. & Hausskn. ex Boiss. from East Anatolia.

    PubMed

    Herken, Emine Nur; Celik, Ali; Aslan, Mustafa; Aydınlık, Nilüfer

    2012-09-01

    The chemical composition, antimicrobial activity, total phenol content, total antioxidant activity, and total oxidant status of the essential oil from Micromeria congesta Boiss. & Hausskn. ex Boiss. were investigated. Steam distillation was used to obtain the essential oil, and the chemical analyses were performed by gas chromatography-mass spectrometry. The antimicrobial activity was tested by an agar disc diffusion method against the tested microorganisms: Bacillus subtilis NRRL B-744, Bacillus cereus NRRL B-3711, Staphylococcus aureus ATCC 12598, S. aureus ATCC 25923, S. aureus ATCC 25933, Escherichia coli 0157H7, E. coli ATCC25922, Micrococcus luteus NRLL B-4375, Enterococcus faecalis ATCC 19433, Proteus vulgaris RSKK 96026, and Yersinia enterecolitica RSKK 1501. The major compounds found in volatiles of M. congesta were piperitone oxide, linalool oxide, veratrole, pulegone, dihydro carvone, naphthalene, iso-menthone, para-menthone, and cyclohexanone. Compared to that of reference antibiotics, the antibacterial activity of the essential oil is considered as significant. Results showed that M. congesta has the potential for being used in food and medicine depending on its antioxidant and antibacterial activity.

  17. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  18. Determination of Carbonyl Compounds in Cork Agglomerates by GDME-HPLC-UV: Identification of the Extracted Compounds by HPLC-MS/MS.

    PubMed

    Brandão, Pedro Francisco; Ramos, Rui Miguel; Almeida, Paulo Joaquim; Rodrigues, José António

    2017-02-08

    A new approach is proposed for the extraction and determination of carbonyl compounds in solid samples, such as wood or cork materials. Cork products are used as building materials due to their singular characteristics; however, little is known about its aldehyde emission potential and content. Sample preparation was done by using a gas-diffusion microextraction (GDME) device for the direct extraction of volatile aldehydes and derivatization with 2,4-dinitrophenylhydrazine. Analytical determination of the extracts was done by HPLC-UV, with detection at 360 nm. The developed methodology proved to be a reliable tool for aldehyde determination in cork agglomerate samples with suitable method features. Mass spectrometry studies were performed for each sample, which enabled the identification, in the extracts, of the derivatization products of a total of 13 aldehydes (formaldehyde, acetaldehyde, furfural, propanal, 5-methylfurfural, butanal, benzaldehyde, pentanal, hexanal, trans-2-heptenal, heptanal, octanal, and trans-2-nonenal) and 4 ketones (3-hydroxy-2-butanone, acetone, cyclohexanone, and acetophenone). This new analytical methodology simultaneously proved to be consistent for the identification and determination of aldehydes in cork agglomerates and a very simple and straightforward procedure.

  19. The role of the reactor wall in hydrothermal biomass conversions.

    PubMed

    Fábos, Viktória; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2012-11-01

    The processing of renewable feedstocks to platform chemicals and, to a lesser degree, fuels is a key part of sustainable development. In particular, the combination of lignocellulosic biomass with hydrothermal upgrading (HTU), using high temperature and pressure water (HTPW), is experiencing a renaissance. One of the many steps in this complicated process is the in-situ hydrogenation of intermediate compounds. As formic acid and related low-molecular-weight oxygenates are among the species generated, it is conceivable that they act as a hydrogen source. Such hydrogenations have been suggested to be catalyzed by water, by bases like NaOH, and/or to involve "reactive/nascent hydrogen". To achieve the temperatures and pressures required for HTU, it is necessary to conduct the reactions in high-pressure vessels. Metals are typical components of their walls and/or internal fittings. Here, using cyclohexanone as a model compound for more complex biomass-derived molecules, iron in the wall of high-pressure stainless steel reactors is shown to be responsible for the hydrogenation of ketones with low-molecular-weight oxygenates acting as a hydrogen source in combination with water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Behavioural and Genetic Evidence for C. elegans' Ability to Detect Volatile Chemicals Associated with Explosives

    PubMed Central

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-01-01

    Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309

  1. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination.

    PubMed

    Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun

    2017-06-06

    Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.

  2. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    NASA Astrophysics Data System (ADS)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  3. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  4. [Ketamine--dreams and realities].

    PubMed

    Arditti, J; Spadari, M; de Haro, L; Brun, A; Bourdon, J H; Valli, M

    2002-01-01

    Ketamine is an anaesthetic used in human medicine and veterinary practice, synthesised on 1962 and marketed on 1970 in France. Recreational uses were described during 1992 in the medical community and in 1996 in the dance settings. The chemical name of ketamine is 2--(2chlorophenyl)2-(methylamine)-cyclohexanone, an aryl cyclohexylamine, structurally related to phencyclidine. Ketamine is known under the following street names: Keta K, Kate, Special K, Vitamin K, la Golden, la Vétérinaire. Ketamine is used intranasally, orally and intramusculary in recreational use. Ketamine is manufactured by the chemical industry. Due to the complicated synthesis, it is sold illicitly for recreational use. Ketamine is a dissociative drug, and the user enters in a psychedelic dream with hallucinations, floating sensation, feeling of dissociation of the mind from the body. The dream is forgotten, the user full in reality with loss of self control, risk of acute intoxication. In long-term exposure, tolerance, dependence, withdrawal signs and flash back are described. Ketamine trademarks are subject to control in France through medicine legislation Ketamine and its salts are subject to control under the national legislation on narcotics and psychotropics substance. From September 2001, the theft of medical and veterinary trademarks have to be declared to police, care health authority Pharmacy control authority and French Health Products Safety Agency.

  5. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Zhang, He

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene,more » phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.« less

  6. Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure-activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters.

    PubMed

    Assaf, Zeinab; Larsen, Anja P; Venskutonytė, Raminta; Han, Liwei; Abrahamsen, Bjarke; Nielsen, Birgitte; Gajhede, Michael; Kastrup, Jette S; Jensen, Anders A; Pickering, Darryl S; Frydenvang, Karla; Gefflaut, Thierry; Bunch, Lennart

    2013-02-28

    In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3. Pharmacological characterization at the iGluRs and EAAT1-3 subtypes revealed analogue 2i as a selective GluK1 ligand with low nanomolar affinity. Two X-ray crystal structures of the key analogue 2i in the ligand-binding domain (LBD) of GluA2 and GluK3 were determined. Partial domain closure was seen in the GluA2-LBD complex with 2i comparable to that induced by kainate. In contrast, full domain closure was observed in the GluK3-LBD complex with 2i, similar to that of GluK3-LBD with glutamate bound.

  7. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    PubMed

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  8. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro(and thieno)[2, 3-b]-quinolines, and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo(and thieno)-[2, 3-b]pyridines.

    PubMed

    Marco, José L; De Los Ríos, Cristóbal; Carreiras, María C; Baños, Josep E; Badia, Albert; Vivas, Nuria M

    2002-07-01

    The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedländer condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine. The butyrylcholinesterase inhibition activity is significant only in compounds 10 and133, which are ten-fold less active than tacrine. It is found that the products 11 and 12 strongly inhibit acetylcholinesterase, and show excellent selectivity regarding butyrylcholinesterase.

  9. Synthesis of molecularly imprinted polymers by atom transfer radical polymerization for the solid-phase extraction of phthalate esters in edible oil.

    PubMed

    Chen, Ningning; He, Juan; Wu, Chaojun; Li, Yuanyuan; Suo, An; Wei, Hongliang; He, Lijun; Zhang, Shusheng

    2017-03-01

    Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1-chlorine-1-ethyl benzene as initiator and 2,2-bipyridyl as cross-linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid-phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10-0.25 μg/mL, and the recoveries of spiked samples were 82.5-101.4% with relative standard deviations of 1.24-5.37% (n = 6). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis, structure and luminescence of novel co-crystals based on bispyridyl-substituted α,β-unsaturated ketones with coformers

    NASA Astrophysics Data System (ADS)

    Li, Hong-Juan; Wang, Lei; Zhao, Juan-Juan; Sun, Ju-Feng; Sun, Ji-Liang; Wang, Chun-Hua; Hou, Gui-Ge

    2015-01-01

    Based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A) and N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (B) with coformers, three novel macrocyclic co-crystals, (A)ṡ(resorcinol) (1), (A)ṡ(1,3,5-benzenetriol) (2), (B)2ṡ(1,3,5-benzenetriol)2 (3) and three chain co-crystals, (A)ṡ(hydroquinone) (4), (A)ṡ(isophthalic acid) (5), (B)ṡ(isophthalic acid) (6) have been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. Structural analysis indicates that four-component macrocycles in 1-3 are generated from "clip-like" resorcinol templates and building blocks, while 4-6 show infinite H-bonding chains. In addition, the luminescent properties of A, B and 1-6 are investigated primarily in the solid state. Compared with free building blocks, 1-6 are blue-shifted 55-60 nm with decreasing emission intensities in spite of the enhancement in 6. The change of luminescent properties might be caused mainly by incorporation of coformers into co-crystals, including H-bonds, molecular conformations, arranging dispositions and π-π characteristics. It might have potential applications for crystal engineering to construct patentable crystals with interesting luminescent properties.

  11. Pyrolytic fate of piperidinocyclohexanecarbonitrile, a contaminant of phencyclidine, during smoking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue, L.P.; Scimeca, J.A.; Thomas, B.F.

    The pyrolysis products of 1-(1-piperidino)cyclo-hexanecarbonitrile (PCC), the major contaminant of illicit phencyclidine (PCP), have not been previously reported. In order to quantify PCC in mainstream smoke as well as to identify the pyrolysis products, (/sup 3/H)piperidino-(/sup 14/C)cyano-PCC was synthesized. Marijuana placebo cigarettes were impregnated with this double-labeled PCC and burned with an apparatus that simulated smoking. The mainstream smoke was passed through a series of traps containing glass wool, H/sub 2/SO/sub 4/, or NaOH. Approximately 75% of the /sup 3/H was collected in these traps, and 46, 11, and 5% of the /sup 14/C was found in the glass wool,more » H/sub 2/SO/sub 4/, and NaOH traps, respectively. Contents of the traps were analyzed by GC/MS. The glass wool trap contained 1-(1-piperidino)-1-cyclo-hexene, PCC, piperidine, and N-acetylpiperidine, and cyanide ion was detected in all three traps. Approximately 47% of the PCC was found intact in mainstream smoke. Approximately 58% was cleaved to form cyanide and 1-(1-piperidino)-1-cyclohexene. The latter was further broken down to cyclohexanone (which represented 21% of the starting material), piperidine (29%), and N-acetylpiperidine (7%), and about 2% remained intact.« less

  12. Identification of potential hazards associated with new residential construction.

    PubMed

    Methner, M M

    2000-02-01

    There were several advantages and limitations of this observational study. The most important advantage of this study was the opportunity to observe residential construction workers performing their jobs. By observing work practices, valuable information was gathered about specific trades and their potential exposure to various chemical and physical agents. This information will be useful in guiding subsequent exposure assessments. Probably the greatest limitation of this study was the lack of participation by homebuilders. Ideally, observations of construction processes would have been more objective if the study included the participation of more than one homebuilder. Aside from one worker who was observed to wear safety glasses, leather gloves, and a dust mask, virtually no personal protective equipment (PPE) was observed onsite. Often small contractors do not have the financial resources necessary to procure the appropriate PPE and issue these items to the workers. Based on hazard prevalence, professional judgement, and the degree of hazardous product use, potential exposures that warrant quantitative sampling efforts during Phase 2 of this study are: bulldozer/backhoe operators--noise, vibration, diesel exhaust; concrete workers--naphtha, mineral spirits, Portland cement; asphalt workers--petroleum hydrocarbons, asphalt, mineral spirits; plumbers--methylethyl ketone, acetone, tetrahydrofuran, cyclohexanone; drywall finishers--total and respirable dust, hexane, acetone; painters--ethylene glycol, VOCs; masons--dust (during the preparation of mortar); floor preparation technicians--total and respirable dust; and ceramic tile installers--toluene, naphtha, silica (from grout powder).

  13. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma

    PubMed Central

    WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU

    2016-01-01

    Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408

  14. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol.

    PubMed

    Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R

    2007-11-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.

  15. Preparation, crystal structure and thermal decomposition kinetics of 1-(2,4-dinitrophenyl)azo-1-nitrocyclohexane

    NASA Astrophysics Data System (ADS)

    Yang, Desuo; Ma, Haixia; Hu, Rongzu; Song, Jirong; Zhao, Fengqi

    2005-11-01

    A new three-nitro-group compound of 1-(2,4-dinitrophenyl)azo-1-nitrocyclohexane was prepared by the reaction of cyclohexanone-2,4-dinitrophenylhydrazine with nitric oxide at ambient temperature. The single crystal structure has been determined by a four-circle X-ray diffractometer. The compound is monoclinic with space group P2(1)/ c and unit-cell parameters a=11.300(2) Å, b=12.993(2) Å, c=10.155(1) Å, β=98.33(1) o, F(000)=672, the unit-cell volume V=1475.2(5) Å 3, the molecule number in one unit-cell Z=4, the absorption coefficient μ=1.19 cm -1, the calculated density Dc=1.456 g cm -3. The exothermic decomposition reaction kinetics of the compound has been studied by DSC. The kinetic model function in differential form, apparent activation energy and pre-exponential constant of this reaction are (3/4)(1-α)[-ln(1-α)] 1/4, 123.88 kJ mol -1 and 10 11.49 s -1, respectively. The critical temperature of thermal explosion of the title compound is 161.15 oC and the entropy of activation (ΔS), enthalpy of activation (ΔH), and free energy of activation (ΔG) are -34.16 J mol -1 K -1, 115.7, and 130.48 kJ mol -1, respectively.

  16. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    PubMed

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of HuperTacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer's disease.

    PubMed

    Chioua, Mourad; Pérez, Marta; Bautista-Aguilera, Oscar M; Yañez, Matilde; López, Manuela G; Romero, Alejandro; Cacabelos, Ramón; de la Bellacasa, Raimon Puig; Brogi, Simone; Butini, Stefania; Borrell, José I; Marco-Contelles, Jose

    2015-01-01

    This paper describes our preliminary results on the ADMET, synthesis, biochemical evaluation, and molecular modeling of racemic HuperTacrines (HT), new hybrids resulting from the juxtaposition of huperzine A and tacrine for the potential treatment of Alzheimer's disease (AD). The synthesis of these HT was executed by Friedländer-type reactions of 2-amino-6-oxo-1,6-dihydropyridine-3-carbonitriles, or 7-amino-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitriles, with cyclohexanone. In the biochemical evaluation, initial and particular attention was devoted to test their toxicity on human hepatoma cells, followed by the in vitro inhibition of human cholinesterases (hAChE, and hBuChE), and the kinetics/mechanism of the inhibition of the most potent HT; simultaneous molecular modeling on the best HT provided the key binding interactions with the human cholinesterases. >From these analyses, (±)-5-amino-3-methyl- 3,4,6,7,8,9-hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT1) and (±)-5-amino-3-(2,6-dichlorophenyl)-3,4,6,7,8,9- hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT3) have emerged as characterized by extremely low liver toxicity reversible mixed-type, selective hAChE and, quite selective irreversible hBuChEIs, respectively, showing also good druglike properties for AD-targeted drugs.

  18. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model wasmore » based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.« less

  19. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  20. Characterization of odorants in inflatable aquatic toys and swimming learning devices-which substances are causative for the characteristic odor and potentially harmful?

    PubMed

    Wiedmer, Christoph; Velasco-Schön, Cristina; Buettner, Andrea

    2017-06-01

    Based on the observation of intense and offensive smells in the product group of aquatic toys, four representative products were exemplarily chosen and sensorially characterized by an expert panel. Panellists reported mostly almond- and rubber-like notes for three of the four samples, whereas the smell of the fourth sample was dominated by organic solvent-associated notes such as "nail polish-like." To elucidate the molecular reasons of these smells, we isolated the volatile fraction of the product by solvent extraction and high vacuum distillation, and identified the main odorants by aroma extract dilution analysis (AEDA), followed by one- and two-dimensional gas chromatography, with parallel mass spectrometric and olfactometric detection. Additionally, the materials of the samples were identified by means of differential scanning calorimetry (DSC), attenuated total reflectance spectroscopy (ATR-spectroscopy), and Beilstein halogen test. Between 32 and 46 odors could be detected in each sample by means of AEDA, whereby five to 13 of these compounds were detectable with by far the highest dilution factors, and were found to primarily correlate with the smells of the respective products. Focussing the subsequent identification on these causative substances led to the successful identification of the majority of these odorants. Among them were several mono- or di-unsaturated carbonyl compounds and their epoxidized derivatives, which are typical odorous artefacts from fatty acid oxidation, but also odor-active organic solvents such as cyclohexanone, isophorone, and phenol.

  1. Effects of curcumin analogues for inhibiting human prostate cancer cells and the growth of human PC-3 prostate xenografts in immunodeficient mice.

    PubMed

    Zhou, Dai-Ying; Ding, Ning; Van Doren, Jeremiah; Wei, Xing-Chuan; Du, Zhi-Yun; Conney, Allan H; Zhang, Kun; Zheng, Xi

    2014-01-01

    Four curcumin analogues ((2E,6E)-2,6-bis(thiophen-3-methylene) cyclohexanone (AS), (2E,5E)-2,5-bis(thiophen-3-methylene) cyclopentanone (BS), (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydropyran-4-one (ES) and (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydrothiopyran-4-one (FS) as shown in Fig. 1) with different linker groups were investigated for their effects in human prostate cancer CWR-22Rv1 and PC-3 cells. Compounds FS and ES had stronger inhibitory effects than curcumin, AS and BS on the growth of cultured CWR-22Rv1 and PC-3 cells, as well as on the androgen receptor (AR) and nuclear factor kappa B (NF-κB) activity. The strong activities of ES and FS may be correlated with a heteroatom linker. In animal studies, severe combined immunodeficient (SCID) mice were injected subcutaneously (s.c.) with PC-3 cells in Matrigel. After 4 to 6 weeks, mice with PC-3 tumors (about 0.6 cm wide and 0.6 cm long) received daily intraperitoneal (i.p.) injections of vehicle, ES and FS (10 µg/g body weight) for 31 d. FS had a potent effect in inhibiting the growth and progression of PC-3 tumors. Our results indicate that FS may be useful for inhibiting human prostate tumors growth.

  2. Electrophysiological and Behavioral Responses of Male Fall Webworm Moths (Hyphantria cunea) to Herbivory-Induced Mulberry (Morus alba) Leaf Volatiles

    PubMed Central

    Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning

    2012-01-01

    Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol. PMID:23166622

  3. Synthesis and oxidation catalysis of [tris(oxazolinyl)borato]cobalt(II) scorpionates

    DOE PAGES

    Reinig, Regina R.; Mukherjee, Debabrata; Weinstein, Zachary B.; ...

    2016-04-28

    The reaction of CoCl 2·THF and thallium tris(4,4-dimethyl-2-oxazolinyl)phenylborate (TlTo M) in tetrahydrofuran (THF) provides To MCoCl (1) in 95 % yield; however, appropriate solvents and starting materials are required to favor 1 over two other readily formed side-products, (To M) 2Co (2) and {HTo M}CoCl 2 (3). ESR, NMR, FTIR, and UV/Vis spectroscopies were used to distinguish these cobalt(II) products and probe their electronic and structural properties. Even after the structures indicated by these methods were confirmed by X-ray crystallography, the spectroscopic identification of trace contaminants in the material was challenging. The recognition of possible contaminants in the synthesis ofmore » To MCoCl in combination with the paramagnetic nature of these complexes provided impetus for the utilization of X-ray powder diffraction to measure the purity of the To MCoCl bulk sample. Furthermore, the X-ray powder diffraction results provide support for the bulk-phase purity of To MCoCl in preparations that avoid 2 and 3. Thus, 1 is a precursor for new [tris(oxazolinyl)borato]cobalt chemistry, as exemplified by its reactions with KOtBu and NaOAc to give To MCoOtBu (4) and To MCoOAc (5), respectively. Compound 5 is a catalyst for the oxidation of cyclohexane with meta-chloroperoxybenzoic acid (mCPBA), and the rate constants and selectivity for cyclohexanol versus cyclohexanone and ϵ-caprolactone were assessed.« less

  4. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE PAGES

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary; ...

    2018-03-21

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  5. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    PubMed

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  6. Polycyclic ferrocenyl(dihydro)thiazepine derivatives: Diastereo-selective synthesis, characterization, electrochemical behavior, theoretical and biological investigation.

    PubMed

    Sánchez García, Jessica J; Toledano-Magaña, Yanis; Flores-Alamo, Marcos; Martínez-Klimova, Elena; Galindo-Murillo, Rodrigo; Hernández-Ayala, Luis F; Ortiz-Frade, Luis; García-Ramos, Juan C; Klimova, Elena I

    2017-01-01

    The reaction of E-2-ferrocenylmethylidenetetralones and E,E-2,6-bis-(ferrocenylmethylidene)-cyclohexanone with 2-aminothiophenol proceed with high diastereoselectivity, forming the ~4.5:1 mixture of trans- and cis-isomers of polycyclic ferrocenylthiazepines, respectively. The reactions of E,E-2,5-bis-(ferrocenylmethylidene)cyclopentanone and E,E-3,5-bis-(ferrocenylmethylidene)-1-methyl-4-piperidone with 2-aminothiophenol take place stereo specifically to form the diastereomeric tricyclic thiazepines of cis- and trans-configuration, respectively. The structures of the obtained compounds were established by IR, 1 H and 13 C NMR spectroscopy and mass-spectrometry. The structures of the trans-tetralino[1,2a]-, trans-5,7-dimethyltetralino[1,2a]-2-ferrocenyl [1,5]benzo-2,3-dihydrothiazepines and cis-5-ferrocenyl-methylidenecyclopentano[1,2a]-2-ferrocenyl- [1,5]benzo-2,3-dihydrothiazepine were confirmed by X-ray diffraction analysis. An electrochemical study reveals that the diferrocenyl derivatives belong to a Class I compounds of the Robin-Day classification. This behavior is explained by the analysis of frontier orbitals as calculated by density functional theory, showing that only one ferrocenyl unit participates in the generation of HOMO and LUMO orbitals. Compounds 4a and 4c showed similar capacity to inhibit the proliferation of HM1: IMSS trophozoite cultures than the first choice drug for human amoebiasis treatment, metronidazole. Morphological changes induced in the trophozoites after drug exposure suggest a redox in balance as the probable mechanism of the parasite death. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  8. Synthesis of mesoporous zeolite single crystals with cheap porogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  9. Migration from polyamide 'microwave and roasting bags' into roast chicken.

    PubMed

    Gramshaw, J W; Soto-Valdez, H

    1998-04-01

    Migration of non-volatile and volatile compounds from 'microwave and roasting bags' (MRB), made of Nylon 6,6 (and some Nylon 6), into chicken meat, skin, and juices during roasting (200 degrees C/2 h) in a conventional oven was determined. For measurement of migration of non-volatile compounds, cooked chicken was freeze-dried, extracted with methanol after addition of 2-azacyclononane (internal standard) and the extract cleaned-up using liquid-solid adsorption chromatography (silica gel). High performance liquid chromatography (HPLC) in the reverse phase mode using a linear gradient of methanol in water was used to quantify seven Nylon 6 and Nylon 6,6 cyclic monomers and oligomers of molecular mass up to 678 daltons. Migration into chicken was 7.48 micrograms/g (8.26 mg/bag; 3.94 micrograms/cm2), 16% of the total non-volatile compounds contained in the MRB material. Individual migrants were also quantified. Migration of one volatile compound, 2-cyclopentyl cyclopentanone, into the roast chicken parts was measured. Extraction with diethyl ether, using a modified Likens-Nickerson system of concurrent steam distillation-solvent extraction with an internal standard (cyclohexanone) was performed for 10 h. Gas chromatography/mass spectrometry (GC/MS) in the selected ion mode (SIM) was used for quantification. An average of 14.0 (+/- 4.36) micrograms/bag (or micrograms/chicken) migrated, being 0.08% of the total 2-cyclopentyl cyclopentanone present in MRB. Loss of volatile compounds to the atmosphere is believed to have occurred since there was another, more volatile compound (cyclopentanone), present in MRB, at levels higher than 2-cyclopentyl cyclopentanone, but this was not detected in roast chicken. In general, the transference of MRB components into roast chicken can be considered not to present a hazard.

  10. Water-enhanced solvation of organics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jane H.

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γ s vs x w/x s curve. From graph shape Δ(log γ s) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid,more » propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γ acid)/Δ(x w/x acid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.« less

  11. Catalytic activation of carbon–carbon bonds in cyclopentanones

    PubMed Central

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2017-01-01

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds1–13. The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds6,14. The most common tactic starts with a three- or four-membered carbon-ring system9–13, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate. PMID:27806379

  12. Self-assembled 3D heterometallic Cu(II)/Fe(II) coordination polymers with octahedral net skeletons: structural features, molecular magnetism, thermal and oxidation catalytic properties.

    PubMed

    Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L

    2010-12-06

    The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.

  13. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.

    PubMed

    Ong, Ta-Hsuan; Mendum, Ted; Geurtsen, Geoff; Kelley, Jude; Ostrinskaya, Alla; Kunz, Roderick

    2017-06-20

    Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants. Existing methodology assumes that the handler's intention is an adequate surrogate for actual knowledge of the odors cuing the canine, but canines are easily exposed to unintentional explosive odors through training material cross-contamination. A sensitive, real-time (∼1 s) vapor analysis mass spectrometer was developed to provide tools, techniques, and knowledge to better understand, train, and utilize canines. The instrument has a detection library of nine explosives and explosive-related materials consisting of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), triacetone triperoxide (TATP), hexamethylene triperoxide diamine (HMTD), and cyclohexanone, with detection limits in the parts-per-trillion to parts-per-quadrillion range by volume. The instrument can illustrate aspects of vapor plume dynamics, such as detecting plume filaments at a distance. The instrument was deployed to support canine training in the field, detecting cross-contamination among training materials, and developing an evaluation method based on the odor environment. Support for training material production and handling was provided by studying the dynamic headspace of a nonexplosive HMTD training aid that is in development. These results supported existing canine training and identified certain areas that may be improved.

  14. Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, O.A.

    1992-01-01

    The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid estersmore » (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.« less

  15. On the smell of Composition C-4.

    PubMed

    Kranz, William; Kitts, Kelley; Strange, Nicholas; Cummins, Joshua; Lotspeich, Erica; Goodpaster, John

    2014-03-01

    In efforts to locate hidden explosives, humans have had few allies as valuable as the explosives-detecting canine. The unrivaled sensitivity and selectivity of the canine nose have combined to make these animals an attractive choice for law enforcement, military, and private security applications. Although the efficacy of trained detector dogs is well-established, the question of which chemical compounds are responsible for causing a dog to recognize a particular odor and alert to it remains a subject of debate for several explosive formulations--including, perhaps most notably, Composition C-4. Previous studies have indicated that cyclohexanone, 2,3-dimethyl-2,3-dinitrobutane, and 2-ethyl-1-hexanol are the chemicals that may cause canines to alert to C-4. This has led to the suggestion that these substances could be used as a substitute for genuine C-4 in the training, testing, and maintenance of explosives-detecting canines. In this paper, we present an alternative view. Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we have discovered that 2-ethyl-1-hexanol off-gasses not only from C-4, but also from benign sources, such as the common plasticizers bis(2-ethylhexyl)adipate, bis(2-ethylhexyl)sebacate, and bis(2-ethylhexyl)phthalate; as well as several plasticized items common to our everyday world, including PVC tile, PVC pipe, electrical tape, and credit cards. This observation may potentially discourage the use of 2-ethyl-1-hexanol for training purposes. We also present the results of our own canine field trials focused on the detection of C-4. Through the use of contingency tables and statistical testing, we demonstrate the failure of trained law enforcement dogs in our study to respond in any significant way to these potential odor compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.

    2003-09-01

    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development and comparisons of limits of detection. These instrumental methods are being optimized in order to detect the same target odor chemicals used by detector dogs to reliably locate explosives and ignitable liquids.

  17. Menthol attenuates respiratory irritation and elevates blood cotinine in cigarette smoke exposed mice.

    PubMed

    Ha, Michael A; Smith, Gregory J; Cichocki, Joseph A; Fan, Lu; Liu, Yi-Shiuan; Caceres, Ana I; Jordt, Sven Eric; Morris, John B

    2015-01-01

    Addition of menthol to cigarettes may be associated with increased initiation of smoking. The potential mechanisms underlying this association are not known. Menthol, likely due to its effects on cold-sensing peripheral sensory neurons, is known to inhibit the sensation of irritation elicited by respiratory irritants. However, it remains unclear whether menthol modulates cigarette smoke irritancy and nicotine absorption during initial exposures to cigarettes, thereby facilitating smoking initiation. Using plethysmography in a C57Bl/6J mouse model, we examined the effects of L-menthol, the menthol isomer added to cigarettes, on the respiratory sensory irritation response to primary smoke irritants (acrolein and cyclohexanone) and smoke of Kentucky reference 2R4 cigarettes. We also studied L-menthol's effect on blood levels of the nicotine metabolite, cotinine, immediately after exposure to cigarette smoke. L-menthol suppressed the irritation response to acrolein with an apparent IC₅₀ of 4 ppm. Suppression was observed even at acrolein levels well above those necessary to produce a maximal response. Cigarette smoke, at exposure levels of 10 mg/m³ or higher, caused an immediate and marked sensory irritation response in mice. This response was significantly suppressed by L-menthol even at smoke concentrations as high as 300 mg/m³. Counterirritation by L-menthol was abolished by treatment with a selective inhibitor of Transient Receptor Potential Melastatin 8 (TRPM8), the neuronal cold/menthol receptor. Inclusion of menthol in the cigarette smoke resulted in roughly a 1.5-fold increase in plasma cotinine levels over those observed in mice exposed to smoke without added menthol. These findings document that, L-menthol, through TRPM8, is a strong suppressor of respiratory irritation responses, even during highly noxious exposures to cigarette smoke or smoke irritants, and increases blood cotinine. Therefore, L-menthol, as a cigarette additive, may promote smoking initiation and nicotine addiction.

  18. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame.

    PubMed

    Scheurer, Marco; Godejohann, Markus; Wick, Arne; Happel, Oliver; Ternes, Thomas A; Brauch, Heinz-Jürgen; Ruck, Wolfgang K L; Lange, Frank Thomas

    2012-05-01

    The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed. For the separation and detection of the OPs, several analytical techniques, including nuclear magnetic resonance experiments, were applied. In order to distinguish between direct ozone reaction and a radical mechanism, experiments were carried out at different pH values with and without scavenging OH radicals. Kinetic experiments were used for confirmation that the OPs are formed during short ozone contact time applied in waterworks. Samples from a waterworks using bank filtrate as raw water were analyzed in order to prove that the identified OPs are formed in real and full-scale ozone applications. In the case of CYC, oxidation mainly occurs at the carbon atom, where the sulfonamide moiety is bound to the cyclohexyl ring. Consequently, amidosulfonic acid and cyclohexanone are formed as main OPs of CYC. When ozone reacts at another carbon atom of the ring a keto moiety is introduced into the CYC molecule. Acetic acid and the product ACE OP170, an anionic compound with m/z=170 and an aldehyde hydrate moiety, were identified as the main OPs for ACE. The observed reaction products suggest an ozone reaction according to the Criegee mechanism due to the presence of a C=C double bond. ACE OP170 was also detected after the ozonation unit of a full-scale drinking water treatment plant which uses surface water-influenced bank filtrate as raw water. Acesulfame can be expected to be found in anthropogenic-influenced raw water used for drinking water production. However, when ACE OP170 is formed during ozonation, it is not expected to cause any problem for drinking water suppliers, because the primary findings suggest its removal in subsequent treatment steps, such as activated carbon filters.

  19. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE PAGES

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; ...

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  20. Oxorhenium complexes bearing the water-soluble tris(pyrazol-1-yl)methanesulfonate, 1,3,5-triaza-7-phosphaadamantane, or related ligands, as catalysts for Baeyer-Villiger oxidation of ketones.

    PubMed

    Martins, Luísa M D R S; Alegria, Elisabete C B A; Smoleński, Piotr; Kuznetsov, Maxim L; Pombeiro, Armando J L

    2013-04-15

    New rhenium(VII or III) complexes [ReO3(PTA)2][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4]I (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)2][ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(η(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)3, pz = pyrazolyl], [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)3(-)] and [ReCl2{N2C(O)Ph}(PTA)3] (7) have been prepared from the Re(VII) oxide Re2O7 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.

  1. Comet assay in reconstructed 3D human epidermal skin models--investigation of intra- and inter-laboratory reproducibility with coded chemicals.

    PubMed

    Reus, Astrid A; Reisinger, Kerstin; Downs, Thomas R; Carr, Gregory J; Zeller, Andreas; Corvi, Raffaella; Krul, Cyrille A M; Pfuhler, Stefan

    2013-11-01

    Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure.

  2. Two Enzymes of a Complete Degradation Pathway for Linear Alkylbenzenesulfonate (LAS) Surfactants: 4-Sulfoacetophenone Baeyer-Villiger Monooxygenase and 4-Sulfophenylacetate Esterase in Comamonas testosteroni KF-1

    PubMed Central

    Weiss, Michael; Denger, Karin; Huhn, Thomas

    2012-01-01

    Complete biodegradation of the surfactant linear alkylbenzenesulfonate (LAS) is accomplished by complex bacterial communities in two steps. First, all LAS congeners are degraded into about 50 sulfophenylcarboxylates (SPC), one of which is 3-(4-sulfophenyl)butyrate (3-C4-SPC). Second, these SPCs are mineralized. 3-C4-SPC is mineralized by Comamonas testosteroni KF-1 in a process involving 4-sulfoacetophenone (SAP) as a metabolite and an unknown inducible Baeyer-Villiger monooxygenase (BVMO) to yield 4-sulfophenyl acetate (SPAc) from SAP (SAPMO enzyme); hydrolysis of SPAc to 4-sulfophenol and acetate is catalyzed by an unknown inducible esterase (SPAc esterase). Transcriptional analysis showed that one of four candidate genes for BVMOs in the genome of strain KF-1, as well as an SPAc esterase candidate gene directly upstream, was inducibly transcribed during growth with 3-C4-SPC. The same genes were identified by enzyme purification and peptide fingerprinting-mass spectrometry when SAPMO was enriched and SPAc esterase purified to homogeneity by protein chromatography. Heterologously overproduced pure SAPMO converted SAP to SPAc and was active with phenylacetone and 4-hydroxyacetophenone but not with cyclohexanone and progesterone. SAPMO showed the highest sequence homology to the archetypal phenylacetone BVMO (57%), followed by steroid BVMO (55%) and 4-hydroxyacetophenone BVMO (30%). Finally, the two pure enzymes added sequentially, SAPMO with NADPH and SAP, and then SPAc esterase, catalyzed the conversion of SAP via SPAc to 4-sulfophenol and acetate in a 1:1:1:1 molar ratio. Hence, the first two enzymes of a complete LAS degradation pathway were identified, giving evidence for the recruitment of members of the very versatile type I BVMO and carboxylester hydrolase enzyme families for the utilization of a xenobiotic compound by bacteria. PMID:23001656

  3. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  4. Comet assay in reconstructed 3D human epidermal skin models—investigation of intra- and inter-laboratory reproducibility with coded chemicals

    PubMed Central

    Pfuhler, Stefan

    2013-01-01

    Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure. PMID:24150594

  5. Menthol Attenuates Respiratory Irritation and Elevates Blood Cotinine in Cigarette Smoke Exposed Mice

    PubMed Central

    Ha, Michael A.; Smith, Gregory J.; Cichocki, Joseph A.; Fan, Lu; Liu, Yi-Shiuan; Caceres, Ana I.; Jordt, Sven Eric; Morris, John B.

    2015-01-01

    Addition of menthol to cigarettes may be associated with increased initiation of smoking. The potential mechanisms underlying this association are not known. Menthol, likely due to its effects on cold-sensing peripheral sensory neurons, is known to inhibit the sensation of irritation elicited by respiratory irritants. However, it remains unclear whether menthol modulates cigarette smoke irritancy and nicotine absorption during initial exposures to cigarettes, thereby facilitating smoking initiation. Using plethysmography in a C57Bl/6J mouse model, we examined the effects of L-menthol, the menthol isomer added to cigarettes, on the respiratory sensory irritation response to primary smoke irritants (acrolein and cyclohexanone) and smoke of Kentucky reference 2R4 cigarettes. We also studied L-menthol’s effect on blood levels of the nicotine metabolite, cotinine, immediately after exposure to cigarette smoke. L-menthol suppressed the irritation response to acrolein with an apparent IC₅₀ of 4 ppm. Suppression was observed even at acrolein levels well above those necessary to produce a maximal response. Cigarette smoke, at exposure levels of 10 mg/m³ or higher, caused an immediate and marked sensory irritation response in mice. This response was significantly suppressed by L-menthol even at smoke concentrations as high as 300 mg/m³. Counterirritation by L-menthol was abolished by treatment with a selective inhibitor of Transient Receptor Potential Melastatin 8 (TRPM8), the neuronal cold/menthol receptor. Inclusion of menthol in the cigarette smoke resulted in roughly a 1.5-fold increase in plasma cotinine levels over those observed in mice exposed to smoke without added menthol. These findings document that, L-menthol, through TRPM8, is a strong suppressor of respiratory irritation responses, even during highly noxious exposures to cigarette smoke or smoke irritants, and increases blood cotinine. Therefore, L-menthol, as a cigarette additive, may promote smoking initiation and nicotine addiction. PMID:25679525

  6. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  7. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Maalej, Emna; Chabchoub, Fakher; Oset-Gasque, María Jesús; Esquivias-Pérez, Mario; González, María P; Monjas, Leticia; Pérez, Concepción; de los Ríos, Cristóbal; Rodríguez-Franco, María Isabel; Iriepa, Isabel; Moraleda, Ignacio; Chioua, Mourad; Romero, Alejandro; Marco-Contelles, José; Samadi, Abdelouahid

    2012-08-01

    The synthesis, pharmacological analysis and molecular modeling of the readily available racemic tacrine analogs 21-30, bearing the 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amine heterocyclic ring system (II), prepared by Friedländer reaction of 2-amino-4-aryl-4H-benzo[h]chromene-3-carbonitriles (11-20) with cyclohexanone, are described in this paper. Molecules 21-30 are potent and selective inhibitors of hAChE, in the low micromolar range, one of the most potent inhibitors, 4-(8-amino-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-7-yl)-2-methoxyphenol (25), showing a IC(50) (hAChE) = 0.33 ± 0.04 μM. Kinetic studies of compound 25 proved that this compound is a mixed type inhibitor for EeAChE (K(i) = 81 nM). Accordingly, molecular modeling of inhibitor 25 showed that both enantiomers have two major predicted binding modes at the active and at the peripheral anionic sites of AChE. Inhibitor 25 has an excellent antioxidant profile as determined in the ORAC experiment (1.47 ± 0.10 Trolox equiv). Inhibitors 26-28 and 30 are permeable to BBB as determined in the PAMPA assay. Compared to tacrine, selected compounds 26-28 and 30 showed less hepatic toxicity in HepG2 cells. Moreover, cell viability-related studies in cortical neurons in primary cultures show that compounds 26-28 and 30 (0.1-50 μM) have significant neuroprotective effects against mitochondrial chain blockers-induced cell death, and, unlike tacrine, are not neurotoxic at concentrations lower than 50 μM. It is worth highlighting that compound 27 has the best neuroprotective properties out of all assayed compounds and shows no neurotoxicity. To sum up, these tacrine analogs can be considered as attractive multipotent therapeutic molecules on pharmacological receptors playing key roles in the progress of Alzheimer's disease. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Cholinergic and neuroprotective drugs for the treatment of Alzheimer and neuronal vascular diseases. II. Synthesis, biological assessment, and molecular modelling of new tacrine analogues from highly substituted 2-aminopyridine-3-carbonitriles.

    PubMed

    Samadi, Abdelouahid; Valderas, Carolina; de los Ríos, Cristóbal; Bastida, Agatha; Chioua, Mourad; González-Lafuente, Laura; Colmena, Inés; Gandía, Luis; Romero, Alejandro; Del Barrio, Laura; Martín-de-Saavedra, María D; López, Manuela G; Villarroya, Mercedes; Marco-Contelles, José

    2011-01-01

    The synthesis, biological assessment, and molecular modelling of new tacrine analogues 11-22 is described. Compounds 11-22 have been obtained by Friedländer-type reaction of 2-aminopyridine-3-carbonitriles 1-10 with cyclohexanone or 1-benzyl-4-piperidone. The biological evaluation showed that some of these molecules were good AChE inhibitors, in the nanomolar range, and quite selective regarding the inhibition of BuChE, the most potent being 5-amino-2-(dimethylamino)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (11) [IC(50) (EeAChE: 14nM); IC(50) (eqBuChE: 5.2μM]. Kinetic studies on the easily available and potent anticholinesterasic compound 5-amino-2-(methoxy)-6,7,8,9-tetrahydrobenzo[1,8-b]-naphthyridine-3-carbonitrile (16) [IC(50) (EeAChE: 64nM); IC(50) (eqBuChE: 9.6μM] showed that this compound is a mixed-type inhibitor (K(i)=69.2nM) of EeAChE. Molecular modelling on inhibitor 16 confirms that this compound, as expected and similarly to tacrine, binds at the catalytic active site of EeAChE. The neuroprotective profile of molecules 11-22 has been investigated in SH-SY5Y neuroblastoma cells stressed with a mixture of oligomycin-A/rotenone. Compound 16 was also able to rescue by 50% cell death induced by okadaic acid in SH-SY5Y cells. From these results we conclude that the neuroprotective profile of these molecules is moderate, the most potent being compounds 12 and 17 which reduced cell death by 29%. Compound 16 does not affect ACh- nor K(+)-induced calcium signals in bovine chromaffin cells. Consequently, tacrine analogues 11-22 can be considered attractive therapeutic molecules on two key pharmacological targets playing key roles in the progression of Alzheimer, that is, cholinergic dysfunction and oxidative stress, as well as in neuronal cerebrovascular diseases. Copyright © 2010. Published by Elsevier Ltd.

  9. Orbital cortex neuronal responses during an odor-based conditioned associative task in rats.

    PubMed

    Yonemori, M; Nishijo, H; Uwano, T; Tamura, R; Furuta, I; Kawasaki, M; Takashima, Y; Ono, T

    2000-01-01

    Neuronal activity in the rat orbital cortex during discrimination of various odors [five volatile organic compounds (acetophenone, isoamyl acetate, cyclohexanone, p-cymene and 1,8-cineole), and food- and cosmetic-related odorants (black pepper, cheese, rose and perfume)] and other conditioned sensory stimuli (tones, light and air puff) was recorded and compared with behavioral responses to the same odors (black pepper, cheese, rose and perfume). In a neurophysiological study, the rats were trained to lick a spout that protruded close to its mouth to obtain sucrose or intracranial self-stimulation reward after presentation of conditioned stimuli. Of 150 orbital cortex neurons recorded during the task, 65 responded to one or more types of sensory stimuli. Of these, 73.8% (48/65) responded during presentation of an odor. Although the mean breadth of responsiveness (entropy) of the olfactory neurons based on the responses to five volatile organic compounds and air (control) was rather high (0.795), these stimuli were well discriminated in an odor space resulting from multidimensional scaling using Pearson's correlation coefficients between the stimuli. In a behavioral study, a rat was housed in an equilateral octagonal cage, with free access to food and choice among eight levers, four of which elicited only water (no odor, controls), and four of which elicited both water and one of four odors (black pepper, cheese, rose or perfume). Lever presses for each odor and control were counted. Distributions of these five stimuli (four odors and air) in an odor space derived from the multidimensional scaling using Pearson's correlation coefficients based on behavioral responses were very similar to those based on neuronal responses to the same five stimuli. Furthermore, Pearson's correlation coefficients between the same five stimuli based on the neuronal responses and those based on behavioral responses were significantly correlated. The results demonstrated a pivotal role of the rat orbital cortex in olfactory sensory processing and suggest that the orbital cortex is important in the manifestation of various motivated behaviors of the animals, including odor-guided motivational behaviors (odor preference).

  10. The metabolites of cyclohexylamine in man and certain animals

    PubMed Central

    Renwick, A. G.; Williams, R. T.

    1972-01-01

    1. [1-14C]Cyclohexylamine hydrochloride was synthesized and given orally or intraperitoneally to rats, rabbits and guinea pigs (dose 50–500mg/kg) and orally to humans (dose 25 or 200mg/person). The 14C is excreted mainly in the urine, most of the excretion occurring in the first day after dosing. Only small amounts (1–7%) are found in the faeces. 2. In the rat, guinea pig and man, the amine is largely excreted unchanged, only 4–5% of the dose being metabolized in 24h in the rat and guinea pig and 1–2% in man. In the rabbit about two-thirds of the dose is excreted unchanged and about 30% is metabolized. 3. In the rat, five minor metabolites were found, namely cyclohexanol (0.05%), trans-3- (2.2%), cis-4- (1.7%), trans-4- (0.5%) and cis-3-aminocyclohexanol (0.1% of the dose in 24h). 4. In the rabbit, eight metabolites were identified, namely cyclohexanol (9.3%), trans-cyclohexane-1,2-diol (4.7%), cyclohexanone (0.2%), cyclohexylhydroxylamine (0.2%) and trans-3- (11.3%), cis-3- (0.6%), trans-4- (0.4%) and cis-4-aminocyclohexanol (0.2%). 5. In the guinea pig, six minor metabolites were found, namely cyclohexanol (0.5%), trans-cyclohexane-1,2-diol (2.5%) and trans-3- (1.2%), cis-3- (0.2%), trans-4- (0.2%) and cis-4-aminocyclohexanol (0.2%). 6. In man only two metabolites were definitely identified, namely cyclohexanol (0.2%) and trans-cyclohexane-1,2-diol (1.4% of the dose), but man had been given a smaller dose (3mg/kg) than the other species (50mg/kg). 7. The hydroxylated metabolites of cyclohexylamine were excreted in the urine in both free and conjugated forms. 8. Although cyclohexylamine is metabolized to only a minor extent, in rats the metabolism was mainly through hydroxylation of the cyclohexane ring, in man by deamination and in guinea pigs and rabbits by ring hydroxylation and deamination. PMID:4655821

  11. Urine analysis concerning xenon for doping control purposes.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Schaefer, Maximilian S; Schneemann, Julia; Kienbaum, Peter; Schänzer, Wilhelm

    2015-01-15

    On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. Since xenon has been considered a prohibited substance according to WADA regulations in September 2014, its analysis from common specimens of routine sports drug testing is desirable. In previous studies, its traceability in whole blood and plasma was shown, and herein a complementary approach utilizing doping control urine samples for the GC/MS/MS analysis of xenon was reported. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Energy dependence of radiation interaction parameters of some organic compounds

    NASA Astrophysics Data System (ADS)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan

    2018-04-01

    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using WinXcom software package, and are found in good agreement.

  13. Gas-phase ozonolysis of the monoterpenoids ( S)-(+)-carvone, ( R)-(-)-carvone, (-)-carveol, geraniol and citral

    NASA Astrophysics Data System (ADS)

    Nunes, Fabíola Maria N.; Veloso, M. C. C.; de P. Pereira, P. A.; de Andrade, J. B.

    Biogenic emissions of volatile organic compounds (VOCs) play a fundamental role in atmospheric chemistry. Vegetation is the most abundant natural source of VOCs, while terpenoids, as limonene, α and β pinene and mircene, top the plants emission list. Much interest has been demonstrated in oxidation and photooxidation reactions of VOCs, particularly of monoterpenoids, owing to their diversity and to uncertainties regarding their mechanism of reaction. Quantification of primary carbonylic compounds, as well as of biradical reaction components, is highly relevant to the understanding of the major reactions. In this context, taking into account both structural factors and the fact that these compounds are found in the essential oils of plants typically found in Brazil and that they may be present in the atmosphere from emission by the plants, the monoterpenoids ( S)-(+)-carvone, ( R)-(-)-carvone, (-)-carveol, geraniol and citral (a mixture of the isomers geranial and neral) were selected for this study. The ozonolysis reactions of the monoterpenoids were carried out under dark conditions for all experiments, due to their photochemical reactivity. The analysis of the results lets us propose a mechanism by which these reactions occur. The observed results of the ozonolysis of S and R carvone suggest that the stereochemistry of asymmetric carbon does not affect either in the yields of both formaldehyde and of OH radicals produced in the reaction, or in the reactivity of these compounds, for which the rate constants were in the scale of 10 -6 s -1. We found that, in the (-)-carveol's cis and trans mixture, even though the hydroxyl in the axial position—in the case of trans-(C) and cis-(D') isomers—favors the attack by the ozone molecule on the external double bond, thus increasing the mixture's reactivity (k=2.0×10-4s), it affects the average production of formaldehyde. The presence of geraniol and citral led to the production of formaldehyde, propanone, glyoxal, methyl-glyoxal and cyclohexanone (OH radicals) as reaction products. The influence of an electron attractor group bonded to the carbon of the double bond, on the reactivity of the double bond, could not be observed in the case of citral, due to strong interference occurring in the instrument in all experiments with this monoterpenoid. For this reason, only the kinetics of geraniol was monitored (k=9.0×10-4s).

  14. The Utilization of Bark to Make Rigid Polyurethane Foams

    NASA Astrophysics Data System (ADS)

    D'Souza, Jason

    This work focused on the characterization of polyols derived from the liquefaction or alkoxylation of bark. Regarding liquefaction, it was found that both temperature and solvent structure played a significant role in polyol properties. High temperature liquefaction resulted in the degradation of sugars, while liquefaction at mild temperatures preserved sugar structures as shown by 31P-NMR. It was also shown that liquefaction at 130°C was ideal in terms of producing a polyol with a relatively at, broad, plateau of molecular weight distribution, whereas liquefaction at 90 and 160°C produced polyols with a large amount of low molecular weight compounds. Regarding solvent structure, it was found that polyhydric alcohols with short chain primary hydroxyls resulted in less sugar degradation products and less formation of condensation side-products. It is proposed that the highly polar environment promoted grafting and prevented condensation onto other biopolymers. Using organic solvents it was found that ketonic solvents like acetyl acetone and cyclohexanone, through their highly polar carbonyl group could engage in hydrogen bonding through electron donation/proton accepting interactions. These enabled the solvent to reduce the amount of condensation reactions and improve liquefaction yield. The liquefied bark-based polyols were then used to make polyurethane foams. It was found that when a diversity of hydroxyl groups were present the foaming rate was reduced and this may react a slower rate of curing and explain why the bark foams had a greater amount of cells that underwent coalescence. It was also observed that the bark foams had a low amount of closed-cell content. Since closed-cell content plays a role in dictating elastic compression, this may explain why the bark foams exhibited a lower elastic modulus. Finally, as a contrast to liquefaction, bark was alkoxylated. It was observed that the conversion yield was higher than liquefaction. The polyols had a high average molecular weight with a broad distribution and far greater solubility. It is proposed that alkoxylation is far less degradative than liquefaction. This may explain why the foams showed improved compressive behaviour compared to the foams made from liqueed bark-based polyols. Through greater characterization of the structure of polyols produced via liquefaction and alkoxylation the relationships between reaction parameters, polyol structure, and foam properties can be better understood. This is an important step towards the utilization of bark to make polyurethane foams.

  15. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton conductivity, even with blends of these and blends with Nafion membranes. Other alternative studied was the functionalization of the membranes SIBS with metallic cations, which decreased the methanol permeability in the membranes containing the cations Mg2+, Zn2+ and Al 3+, while the proton conductivity was maintained more or less constant. The permeation of methanol vapor was investigated and the behavior through the membranes studied followed a pattern of Fick's Law, while the pattern shown by the permeation in liquid phase was non-Fickian.

  16. Alterations in the stereochemistry of the kappa-selective opioid agonist U50,488 result in high-affinity sigma ligands.

    PubMed

    de Costa, B R; Bowen, W D; Hellewell, S B; George, C; Rothman, R B; Reid, A A; Walker, J M; Jacobson, A E; Rice, K C

    1989-08-01

    The synthesis and in vitro sigma receptor activity of the two diastereomers of U50,488 [(+/-)-2], namely, (1R,2S)-(+)- cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacet ami de [(+)-1] and (1S,2R)-(-)-cis-3,4-dichloro- N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide [(-)-1], are described. (+)-1 and (-)-1 were synthesized from (+/-)-trans-N-methyl-2-aminocyclohexanol [(+/-)-3]. Pyridinium chlorochromate (PCC) oxidation of the N-t-Boc-protected derivative of (+/-)-3 afforded (+/-)-2-[N- [(tert-butyloxy)carbonyl]-N-methylamino]cyclohexanone [(+/-)-5]. The sequence of enamine formation with pyrrolidine, catalytic reduction, N-deprotection, and optical resolution afforded (1R,2S)-(-)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(-)-10] and (1S,2R)-(+)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(+)-10]. The optical purity (greater than 99.5%) of (-)-10 and (+)-10 was determined by HPLC analysis of the diastereomeric ureas formed by reaction with optically pure (R)-alpha-methylbenzyl isocyanate. The absolute configuration of (-)-10 and (+)-10 was determined by single-crystal X-ray diffractometry of the bis-(R)-mandelate salt. Condensation of optically pure (-)-10 and (+)-10 with 3,4-dichlorophenylacetic acid furnished (+)-1 and (-)-1, respectively. Compounds (+)-1, (-)-1, (-)-2, and (+)-2 were compared for their binding affinities at kappa opioid, sigma, D2-dopamine, and phencyclidine (PCP) receptors in competitive binding assays using [3H]bremazocine ([3H]BREM) or [3H]U69,593, [3H]-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [[3H]-(+)-3-PPP], or [3H]-1,3-di(o-tolyl)guanidine ([3H]DTG), [3H]-(-)-sulpiride [[3H]-(-)SULP], and [3H]-1- [1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), respectively. In the systems examined, (-)-2 exhibited the highest affinity for kappa receptors, with a Ki of 44 +/- 8 nM. However, (-)-2 also showed moderate affinity for sigma receptors, with a Ki of 594 +/- 3 nM [[3H]-(+)-3-PPP]. The (1R,2R)-(+)-enantiomer, (+)-2, had low affinity for both kappa and sigma receptors, exhibiting Ki values of 1298 +/- 49 nM at kappa ([3H]BREM) and 1270 +/- 168 nM at sigma [[3H]-(+)-3-PPP]. In contrast, the chiral cis compounds (+)-1 and (-)-1 showed high affinity for sigma receptors and negligible affinity for kappa opioid receptors in the [3H]BREM assay. Compound (-)-1 exhibited a Ki of 81 +/- 13 nM at sigma receptors [[3H]-(+)-3-PPP] and 250 +/- 8 nM ([3H]DTG).(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling.

    PubMed

    Artico, M; Di Santo, R; Costi, R; Novellino, E; Greco, G; Massa, S; Tramontano, E; Marongiu, M E; De Montis, A; La Colla, P

    1998-10-08

    Various cinnammoyl-based structures were synthesized and tested in enzyme assays as inhibitors of the HIV-1 integrase (IN). The majority of compounds were designed as geometrically or conformationally constrained analogues of caffeic acid phenethyl ester (CAPE) and were characterized by a syn disposition of the carbonyl group with respect to the vinylic double bond. Since the cinnamoyl moiety present in flavones such as quercetin (inactive on HIV-1-infected cells) is frozen in an anti arrangement, it was hoped that fixing our compounds in a syn disposition could favor anti-HIV-1 activity in cell-based assays. Geometrical and conformational properties of the designed compounds were taken into account through analysis of X-ray structures available from the Cambridge Structural Database. The polyhydroxylated analogues were prepared by reacting 3,4-bis(tetrahydropyran-2-yloxy)benzaldehyde with various compounds having active methylene groups such as 2-propanone, cyclopentanone, cyclohexanone, 1,3-diacetylbenzene, 2, 4-dihydroxyacetophenone, 2,3-dihydro-1-indanone, 2,3-dihydro-1, 3-indandione, and others. While active against both 3'-processing and strand-transfer reactions, the new compounds, curcumin included, failed to inhibit the HIV-1 multiplication in acutely infected MT-4 cells. Nevertheless, they specifically inhibited the enzymatic reactions associated with IN, being totally inactive against other viral (HIV-1 reverse transcriptase) and cellular (RNA polymerase II) nucleic acid-processing enzymes. On the other hand, title compounds were endowed with remarkable antiproliferative activity, whose potency correlated neither with the presence of catechols (possible source of reactive quinones) nor with inhibition of topoisomerases. The SARs developed for our compounds led to novel findings concerning the molecular determinants of IN inhibitory activity within the class of cinnamoyl-based structures. We hypothesize that these compounds bind to IN featuring the cinnamoyl residue C=C-C=O in a syn disposition, differently from flavone derivatives characterized by an anti arrangement about the same fragment. Certain inhibitors, lacking one of the two pharmacophoric catechol hydroxyls, retain moderate potency thanks to nonpharmacophoric fragments (i.e., a m-methoxy group in curcumin) which favorably interact with an "accessory" region of IN. This region is supposed to be located adjacent to the binding site accommodating the pharmacophoric dihydroxycinnamoyl moiety. Disruption of coplanarity in the inhibitor structure abolishes activity owing to poor shape complementarity with the target or an exceedingly high strain energy of the coplanar conformation.

  18. The gas-phase ozonolysis of α-humulene.

    PubMed

    Beck, M; Winterhalter, R; Herrmann, F; Moortgat, G K

    2011-06-21

    α-Humulene contains three double bonds (DB), and after ozonolysis of the first DB the first-generation products are still reactive towards O(3) and produce second- and third-generation products. The primary aim of this study consisted of identifying the products of the three generations, focusing on the carboxylic acids, which are known to have a high aerosol formation potential. The experiments were performed in a 570 litre spherical glass reactor at 295 K and 730 Torr. Initial mixing ratios were 260-2090 ppb for O(3) and 250-600 ppb for α-humulene in synthetic air. Reactants and gas-phase products were measured by in situ FTIR spectroscopy. Particulate products were sampled on Teflon filters, extracted with methanol and analyzed by LC-MS/MS-TOF. Using cyclohexane (10-100 ppm) as an OH-radical scavenger and by monitoring the yield of cyclohexanone by PTR-MS, an OH-yield of (10.5 ± 0.7)% was determined for the ozonolysis of the first DB, and (12.9 ± 0.7)% of the first-generation products. The rate constant of the reaction of O(3) with α-humulene is known as k(0) = 1.17 × 10(-14) cm(3) molecule(-1) s(-1) [Y. Shu and R. Atkinson, Int. J. Chem. Kinet., 1994, 26, 1193-1205]. The reaction rate constants of O(3) with the first-generation products and the second-generation products were, respectively, determined as k(1) = (3.6 ± 0.9) × 10(-16) and k(2) = (3.0 ± 0.7) × 10(-17) cm(3) molecule(-1) s(-1) by Facsimile-simulation of the observed ozone decay by FTIR. A total of 37 compounds in the aerosol phase and 5 products in the gas phase were tentatively identified: 25 compounds of the first-generation products contained C13-C15 species, 9 compounds of the second-generation products contained C8-C11 species, whereas 8 compounds of the third-generation products contained C4-C6 species. The products of all three generations consisted of a variety of dicarboxylic-, hydroxy-oxocarboxylic- and oxo-carboxylic acids. The formation mechanisms of some of the products are discussed. The residual FTIR spectra indicate the formation of secondary ozonides (SOZ) in the gas phase, which are formed by the intramolecular reaction of the Criegee moiety with the carbonyl endgroup. These SOZ revealed to be stable over several hours and its formation was shown not to be affected by the addition of Criegee-radical scavengers such as HCOOH or H(2)O. This suggests that in the ozonolysis of α-humulene at atmospheric pressures the POZ will decompose rapidly, and that a large fraction of the formed exited Criegee Intermediate will be stabilized to form stable SOZ, while the formation of OH-radicals via the hydroperoxide channel will be a minor process.

  19. The Emergence of Manganese-Based Carbonyl Hydrosilylation Catalysts.

    PubMed

    Trovitch, Ryan J

    2017-11-21

    In recent years, interest in homogeneous manganese catalyst development has intensified because of the earth-abundant and nontoxic nature of this metal. Although compounds of Mn have largely been utilized for epoxidation reactions, recent efforts have revealed that Mn catalysts can mediate a broad range of reductive transformations. Low-valent Mn compounds have proven to be particularly effective for the hydrosilylation of carbonyl- and carboxylate-containing substrates, and this Account aims to highlight my research group's contributions to this field. In our initial 2014 communication, we reported that the bis(imino)pyridine-supported compound ( Ph2PPr PDI)Mn mediates ketone hydrosilylation with exceptional activity under solvent-free conditions. Silanes including Ph 2 SiH 2 , (EtO) 3 SiH, (EtO) 2 MeSiH, and (EtO)Me 2 SiH were found to partially reduce cyclohexanone in the presence of ( Ph2PPr PDI)Mn, while turnover frequencies of up to 1280 min -1 were observed using PhSiH 3 . This led us to evaluate the hydrosilylation of 11 additional ketones and allowed for the atom-efficient preparation of tertiary and quaternary silanes. At that time, it was also discovered that ( Ph2PPr PDI)Mn catalyzes the dihydrosilylation of esters (by way of acyl C-O bond hydrosilylation) to yield a mixture of silyl ethers with modest activity. Earlier this year, the scope of these transformations was extended to aldehydes and formates, and the observed hydrosilylation activities are among the highest obtained for any transition-metal catalyst. The effectiveness of three related catalysts has also been evaluated: ( Ph2PPr PDI)MnH, ( PyEt PDEA)Mn, and [( Ph2PEt PDI)Mn] 2 . To our surprise, ( Ph2PPr PDI)MnH was found to exhibit higher carboxylate dihydrosilylation activity than ( Ph2PPr PDI)Mn, while ( PyEt PDEA)Mn demonstrated remarkable carbonyl hydrosilylation activity considering that it lacks a redox-active supporting ligand. The evaluation of [( Ph2PEt PDI)Mn] 2 revealed competitive aldehyde hydrosilylation and formate dihydrosilylation turnover frequencies; however, this catalyst is significantly inhibited by pyridine and alkene donor groups. In our efforts to fully understand how ( Ph2PPr PDI)Mn operates, a thorough electronic structure evaluation was conducted, and the ground-state doublet calculated for this compound was found to exhibit nonclassical features consistent with a low-spin Mn(II) center supported by a singlet PDI dianion and an intermediate-spin Mn(II) configuration featuring antiferromagnetic coupling to PDI diradical dianion. A comprehensive mechanistic investigation of ( Ph2PPr PDI)Mn- and ( Ph2PPr PDI)MnH-mediated hydrosilylation has revealed two operable pathways, a modified Ojima pathway that is more active for carbonyl hydrosilylation and an insertion pathway that is more effective for carboxylate reduction. Although these efforts represent a small fraction of the recent advances made in Mn catalysis, this work has proven to be influential for the development of Mn-based reduction catalysts and is likely to inform future efforts to develop Mn catalysts that can be used to prepare silicones.

  20. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve photocatalytic activity. Another disadvantageous property of semiconductors is that photocorrosion of metal chalcogenides such as CdS occurs. In an attempt to prevent this, these materials were coated with more stable oxides such as Cu2O and TiO2. The photocatalytic activity of these CdS multipods protected by the stable oxides was enhanced in comparison to CdS particles. The third section describes the synthesis and the use of mixed metal oxides for alcohol oxidation. Presently, Pt is the most active and efficient metal catalyst for alcohol oxidation in fuel cells. It is necessary to develop cheaper, earth abundant metals that can replace Pt. Mixed metal oxides based on Mo-V-(Te,Nb)-O were synthesized under hydrothermal conditions. These materials were incorporated into an electrochemical cell and used to oxidize cyclohexanol. At low temperatures of 60°C, cyclohexanol was converted to cyclohexanone, cyclohexene, and adipic acid on Mo-V-O, Mo-V-Te-O, and Mo-V-Te-Nb-O respectively. The present work showed that these interesting materials might potentially be utilized as a catalyst in complex alcohol fuel cell technologies. In the final section, the electrochemical actuation in conducting polymers is studied. Conducting polymers, such as polypyrrole (PPy), and polythiophene (PTh), are often incorporated into actuators, sensors, and energy storage devices such as supercapacitors. The mechanism of the actuation in these polymers due to the insertion/removal of ions was studied. Electrochemical quartz crystal microbalance (EQCM) studies and in situ electrochemical stress measurements were the techniques used to study and to understand the observed actuation mechanism. The bilayer polypyrrole/polythiophene (PPy PTh) polymer film showed potential for enhancing the actuation and capacitance in energy storage devices.

Top