Science.gov

Sample records for cyclone combustors

  1. Integral cylindrical cyclone and loopseal assembly for CFB combustors

    SciTech Connect

    Alliston, M.G.; Wu, S.; Sinn, B.T.; Lato, K.

    1995-12-31

    The cyclone solids separator has been one of the main features characteristically associated with many Circulating Fluidized Bed combustor designs. Most designs incorporating the cyclone coflector also include a pressure sealing device through which the solids collected by the cyclone are returned to the combustor. The cyclone and the loopseal have typically been two separate components, and various designs have arisen for each component comprising refractory, water-cooled, or steam cooled equipment. The two obvious advantages of the use of water-cooled or steam-, cooled equipment are the reduction of refractory requirements and the conversion of these components into boiler-useful devices. The creation of these devices from tube and header assemblies has followed more-or-less artful paths, the directions of which have generally been based upon the goal of maintaining the specific geometric forms that had previously been used for CFB cyclones and loopseals. The assembly described in this paper was instead developed based upon the goals of (a) ease of manufacturing, (b) elimination of problematic components, (c) maximizing the boiler-usefulness of the surfaces created, and (d) adding potential process benefits. The resulting embodiment of these goals was a cylindrical vessel in which the upper portion forms the solids separator and the lower section is divided into chambers to form the loopseal. This report describes the details of the Integral Cylindrical Cyclone and Loopseal (ICCL), and also describes its performance as demonstrated in a CFB cold flow model incorporating the new apparatus. The commercial application of the ICCL in a 1.2 MM lb steam/hr CFB boiler as well as its potential application in reheat CFB units are also discussed.

  2. Thermal treatment of wastes in an advanced cyclonic combustor

    SciTech Connect

    Abbasi, H.A.; Khinkis, M.J.; Kunc, W.

    1991-01-01

    IGT is developing an advanced waste combustion concept, based on cyclonic combustion principles, for application to a wide range of industrial wastes. In IGT's cyclonic combustor, a mixture of fuel and combustion air is fed tangentially at a relatively high velocity into a cylindrical chamber. The waste is injected either tangentially with the fuel or separately in a tangential, radial, or axial configuration. This approach provides high combustion intensity with internal recirculation of combustion products, which results in extremely stable and complete combustion, even at relatively low temperatures. IGT has performed three successful test programs involving cyclonic waste combustion for industrial clients. In one program, industrial wastewaters containing 40% to 50% organics and inorganics with heating values of 1600 to 3270 Btu/lb were combusted to 99.9% completion at only 2000{degrees}F. The low combustion temperature minimized the supplemental fuel required. In another program, simulated low-Btu industrial off-gases (55 to 65 BTu/SCF) were successfully combusted with stable combustion at 1900{degrees}F using air and waste preheat. Supplemental fuel was unnecessary because of the mixing that occurs in the cyclonic combustor. The conversion of fuel-bonded nitrogen to NO{sub x} was as low as 5%, and CO levels were in the range of 25 to 30 ppm. In the third program, CCl{sub 4} (as a test surrogate for PCBs) was efficiently destroyed by firing natural gas or hexane. With 100% CCl{sub 4} and natural gas firing, the DRE at 2200{degrees}F and a 0.25-second residence time ranged from 99.9999% to 99.9999%. These successful tests have led to the design and construction of a modular test facility at IGT's Energy Development Center. 13 figs., 17 tabs.

  3. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    SciTech Connect

    Rehmat, A.; Mensinger, M.C.; Richardson, T.L.

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  4. The Coal Tech Advanced Cyclone Combustor Demonstration Project: A DOE assessment

    SciTech Connect

    Not Available

    1993-05-01

    The objective of this project was to demonstrate a technology for retrofitting oil/gas designed boilers, and conventional pulverized coal-fired boilers, by using the patented air-cooled slagging coal combustor in place of oil/gas/coal burners. The project aimed to utilize coals with a wide range of sulfur contents and to achieve efficient combustion under fuel-rich conditions. The three performance goals of the combustor were to limit emissions of SO{sub 2} and NO{sub x}, while maintaining maximum sulfur retention in the slag removed from the combustor. A slagging cyclone combustor is a high-temperature device in which a high-velocity swirling gas is used to burn crushed or pulverized coal. The key novel feature of this combustor is the use of air cooling. This is accomplished by using a ceramic liner which is cooled by secondary air and maintained at a temperature high enough to keep the slag in a liquid, free-flowing state. The arrangement also promotes slag retention in the combustor, an important feature for retrofitting in boilers designed for oil/gas.

  5. The development of an ultra-low-emission gas-fired cyclonic combustor

    SciTech Connect

    Xiong, Tian-yu; Khinkis, M.J. ); Coppin, W.P. )

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO{sub x} emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO{sub x} emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO{sub 2} were less than 40% of the total NO{sub x} emissions -- lower than the level of NO{sub 2} emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab.

  6. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  7. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    PubMed

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions.

  8. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  9. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices

    SciTech Connect

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains other supporting information, along with quality assurance documentation and safety and test plans. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  10. HSCT Sector Combustor Evaluations for Demonstration Engine

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart; Heberling, Paul; Kastl, John; Matulaitis, John; Huff, Cynthia

    2004-01-01

    In LET Task 10, critical development issues of the HSCT lean-burn low emissions combustor were addressed with a range of engineering tools. Laser diagnostics and CFD analysis were applied to develop a clearer understanding of the fuel-air premixing process and premixed combustion. Subcomponent tests evaluated the emissions and operability performance of the fuel-air premixers. Sector combustor tests evaluated the performance of the integrated combustor system. A 3-cup sector was designed and procured for laser diagnostics studies at NASA Glenn. The results of these efforts supported the earlier selection of the Cyclone Swirler as the pilot stage premixer and the IMFH (Integrated Mixer Flame Holder) tube as the main stage premixer of the LPP combustor. In the combustor system preliminary design subtask, initial efforts to transform the sector combustor design into a practical subscale engine combustor met with significant challenges. Concerns about the durability of a stepped combustor dome and the need for a removable fuel injection system resulted in the invention and refinement of the MRA (Multistage Radial Axial) combustor system in 1994. The MRA combustor was selected for the HSR Phase II LPP subscale combustor testing in the CPC Program.

  11. Low NO(x) Combustor Development

    NASA Technical Reports Server (NTRS)

    Kastl, J. A.; Herberling, P. V.; Matulaitis, J. M.

    2005-01-01

    The goal of these efforts was the development of an ultra-low emissions, lean-burn combustor for the High Speed Civil Transport. The HSCT Mach 2.4 FLADE C1 Cycle was selected as the baseline engine cycle. A preliminary compilation of performance requirements for the HSCT combustor system was developed. The emissions goals of the program, baseline engine cycle, and standard combustor performance requirements were considered in developing the compilation of performance requirements. Seven combustor system designs were developed. The development of these system designs was facilitated by the use of spreadsheet-type models which predicted performance of the combustor systems over the entire flight envelope of the HSCT. A chemical kinetic model was developed for an LPP combustor and employed to study NO(x) formation kinetics, and CO burnout. These predictions helped to define the combustor residence time. Five fuel-air mixer concepts were analyzed for use in the combustor system designs. One of the seven system designs, one using the Swirl-Jet and Cyclone Swirler fuel-air mixers, was selected for a preliminary mechanical design study.

  12. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  13. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  14. Clocked combustor can array

    DOEpatents

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  15. Cyclone Monty

    Atmospheric Science Data Center

    2013-04-16

    article title:  Tropical Cyclone Monty Strikes Western Australia     ... On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the ... for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark ...

  16. Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Norris, Andrew

    2003-01-01

    The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.

  17. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 2: Field data and laboratory analysis

    SciTech Connect

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains the field data and laboratory analysis of each individual run. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  18. HSCT Sector Combustor Hardware Modifications for Improved Combustor Design

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.

    2005-01-01

    An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.

  19. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  20. Combustor and combustor screech mitigation methods

    DOEpatents

    Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto

    2014-05-27

    The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.

  1. External combustor for gas turbine engine

    DOEpatents

    Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  2. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2009-02-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NOx formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  3. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  4. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  5. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  6. Variable volume combustor

    DOEpatents

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  7. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  8. Gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  9. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  10. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  11. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  12. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  13. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  14. Composite Matrix Experimental Combustor

    DTIC Science & Technology

    1994-04-01

    Preliminary (Macro) Combustor Design ............................. 28 4.1 Preliminary Design Study-Early Concept Combustion System ............. 28 4.2...provided in Appendix B. 4.1 PRELIMINARY DESIGN STUDY-EARLY CONCEPT COMBUSTION SYSTEM The preliminary design effort resulted in the selection of the early...overall flowpath. The concept I combustor is a compact, annular, reverse-flow design incorporating a single row of primary combustion air holes and a

  15. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  16. Combustor liner support assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A support assembly for a gas turbine engine combustor includes an annular frame having a plurality of circumferentially spaced apart tenons, and an annular combustor liner disposed coaxially with the frame and including a plurality of circumferentially spaced apart tenons circumferentially adjoining respective ones of the frame tenons for radially and tangentially supporting the liner to the frame while allowing unrestrained differential thermal radial movement therebetween.

  17. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  18. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Second quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Zauderer, B.

    1996-04-08

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This effort will consist of a series of up to 20 parametric tests in a 20 MMBtu/hr slagging, air cooled, cyclone combustor. During the present reporting period, this combustor was tested for a total of 9 days in February and at the end of March. The tests at the end of March were the first ones in which excellent slagging combustor operation was achieved. This is the key requirement for implementing the test effort in the present project. Therefore, the combustor is now ready for testing under the current project, and initial tests are planned during the next quarterly reporting period, as per the project schedule.

  19. Small gas turbine combustor study - Combustor liner evaluation

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1983-01-01

    A reverse flow combustor liner constructed of Lamilloy (a multilaminate transpiration type material) is compared both analytically and experimentally with a conventional splash film-cooled design with the same combustor configuration. Comparison of selected critical combustor panels indicated that it was possible to maintain the liner temperature similar between the two configurations using 50 percent less coolant for the Lamilloy as compared with the reference film-cooled combustor. Additional benefits indicated improvement in outlet temperature distribution and NOx emission level.

  20. Gas turbine topping combustor

    DOEpatents

    Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.

    1997-01-01

    A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

  1. Cyclone reactor

    DOEpatents

    Converse, Alvin O.; Grethlein, Hans E.; Holland, Joseph E.

    1989-04-04

    A system is provided to produce sugars from a liquid-solid mixture containing biomass, and an acid, wherein the mixture is heated to an appropriate temperature to achieve hydrolysis. The liquid-solid mixture is introduced as a stream into the circular-cylindrical chamber of a cyclone reaction vessel and steam is introduced to the vessel to provide the necessary heat for hydrolysis as well as to establish the liquid-solid mixture in a rotary flow field whereby the liquids and solids of the mixture move along spiral paths within the chamber. The liquid-solid mixture may be introduced at the periphery of the chamber to spiral down toward and be discharged at or near the center of the chamber. Because of differing mass, the solid particles in the mixture move radially inward at a different rate than the liquid and that rate is controlled to maximize the hydrolysis of the solids and to minimize the decomposition of sugars, thus formed.

  2. Combustor and method for purging a combustor

    DOEpatents

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  3. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  4. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  6. Combustor burner vanelets

    SciTech Connect

    Lacy, Benjamin; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Zuo, Baifang

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  7. Unconventional cyclone separators

    SciTech Connect

    Schmidt, P. )

    1993-01-01

    Conventional cyclone separators are seldom suitable for dust removal from gases according to present standards. The reason is the presence of secondary currents within the cyclone body, which disturb the process of separation as predicted by elementary cyclone theory. Interference can be avoided by special design of the cyclone, including the geometry of the separation chamber, the position of openings, use of flow guides within the cyclone, the dimension and the geometry of the hopper, bleeding and bypassing of the gas, use of multicyclones, and means for dust agglomeration.

  8. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  9. Radial inflow combustor

    SciTech Connect

    Shekleton, J.R.

    1991-12-03

    This paper describes a gas turbine engine. It comprises: radial compressor means for compressing air entering through a compressor inlet opening; axial turbine means in axially spaced relation to the radial compressor means; the radial compressor means being operatively associated with the axial turbine means; radial combustor means intermediate the radial compressor means and axial turbine means; turbine nozzle means proximate the axial turbine means for directing gases of combustion thereto; the radial combustor means including a pair of axially spaced radially extending walls joined at radially outward extremes by a generally cylindrical wall, the walls defining a radial combustion space in communication with both the radial compressor means and the turbine nozzle means, and including means for introducing compressed air into the radial combustion space in a manner avoiding formation of an air film on the generally cylindrical wall.

  10. Coal desulfurization by cyclonic whirl

    SciTech Connect

    Jianguo, Y.; Wenjun, Z.; Yuling, W.

    1999-07-01

    The crux of coal desulfurization is how to improve separation efficiency for 3--0.1mm materials. Cyclonic whirl produce centrifugal force and shearing force, heavy medium cyclone uses former, and cyclone flotation column uses both of them. A new system with heavy medium cyclone and cyclone flotation column is provided and testified to be very efficient in commercial desulfurization.

  11. Transport in Dump Combustors

    DTIC Science & Technology

    1986-08-20

    Ist June, 1983, initially for twelve months, but was extended for a further year to 31st Xay, 1985. The research, to be carried out at the University ...added seed particles to evaluate turbulent mass transport fluxes in the flame. A parellel theoretical study was to improve models of turbulent...transport and hence to identify a suitable model for combustor flow field calculations. However, the Grant was terminated, at the request of the University

  12. Gas turbine topping combustor

    DOEpatents

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  13. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  14. Combustor technology for future aircraft

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The continuing improvement of aircraft gas turbine engine operating efficiencies involves increases in overall engine pressure ratio increases that will result in combustor inlet pressure and temperature increases, greater combustion temperature rises, and higher combustor exit temperatures. These conditions entail the development of fuel injectors generating uniform circumferential and radial temperature patterns, as well as combustor liner configurations and materials capable of withstanding increased thermal radiation even as the amount of cooling air is reduced. Low NO(x)-emitting combustor concepts are required which will employ staged combustion. The development status of component technologies answering these requirements are presently evaluated.

  15. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  16. Tropical Cyclone Report, 1993

    DTIC Science & Technology

    1993-01-01

    Office of Naval Research (;rant AN00014-914J1721 STAFF JOINT TYPHOON WARNING CENTER LCDR ANTHONY A. MARTINEZ USN TDO. DEPUTY DIRECTOR LCDR TERESA M...OEJFN TDA. GRAPHICS AGAN ANDRESG.GRANT USN TDA, GRAPHICS UNIVERSITY OF GUAM / JTWC RESEARCH LIAISON DR MARK A. LANDER TROPICAL CYCLONE RESEARCH MR...CHARLES P. GUARD TROPICAL CYCLONE RESEARCH * TRANSFERRED DURING 1993 ** ACTIVE DUTY TRAINING S~ii FOREWORD The Annual Tropical Cyclone Report is past four

  17. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-09-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, an empirical model for predicting pressure drop across a cyclone was developed through a statistical analysis of pressure drop data for 98 cyclone designs. The model is shown to perform better than the pressure drop models of First (1950), Alexander (1949), Barth (1956), Stairmand (1949), and Shepherd-Lapple (1940). This model is used with the efficiency model of Iozia and Leith (1990) to develop an optimization curve which predicts the minimum pressure drop and the dimension rations of the optimized cyclone for a given aerodynamic cut diameter, d{sub 50}. The effect of variation in cyclone height, cyclone diameter, and flow on the optimization curve is determined. The optimization results are used to develop a design procedure for optimized cyclones. 37 refs., 10 figs., 4 tabs.

  18. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-03-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, we have been hampered somewhat by flow delivery of the bubble generation system and arc lighting system placed on order last fall. This equipment is necessary to map the flow field within cyclones using the techniques described in last quarter's report. Using the bubble generator, we completed this quarter a study of the natural length'' of cyclones of 18 different configurations, each configuration operated at five different gas flows. Results suggest that the equation by Alexander for natural length is incorrect; natural length as measured with the bubble generation system is always below the bottom of the cyclones regardless of the cyclone configuration or gas flow, within the limits of the experimental cyclones tested. This finding is important because natural length is a term in equations used to predict cyclone efficiency. 1 tab.

  19. Swirl-can combustor segment

    NASA Technical Reports Server (NTRS)

    Jones, R.; Moyer, H.; Niedzwiecki, R.

    1970-01-01

    Combustor produces uniform circumferential and radial combustor exit temperature profiles and high combustion efficiency at high temperature loads. Absence of diluent air entry ports eliminates stress concentration points, low pressure fuel alleviates nozzle fouling, and abundant air at all burning stages reduces smoke.

  20. HYPULSE combustor analysis

    NASA Astrophysics Data System (ADS)

    Rizkalla, O. F.

    1993-12-01

    The analysis of selected data from tests of unit fuel injectors in a generic scramjet combustor model is presented. The tests were conducted in the NASA HYPULSE expansion tube at conditions typical of flight at Mach 13.5 and 17. The analysis used a three-stream tube method, with finite-rate chemistry, in which the fuel, test gas, and mixing/combustive streams were treated independently but with the same static pressure. Performance of three candidate fuel injectors is examined based on deduced mixing and combustion efficiencies.

  1. HYPULSE combustor analysis

    NASA Technical Reports Server (NTRS)

    Rizkalla, O. F.

    1993-01-01

    The analysis of selected data from tests of unit fuel injectors in a generic scramjet combustor model is presented. The tests were conducted in the NASA HYPULSE expansion tube at conditions typical of flight at Mach 13.5 and 17. The analysis used a three-stream tube method, with finite-rate chemistry, in which the fuel, test gas, and mixing/combustive streams were treated independently but with the same static pressure. Performance of three candidate fuel injectors is examined based on deduced mixing and combustion efficiencies.

  2. Cyclone performance by velocity

    USDA-ARS?s Scientific Manuscript database

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  3. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. We have now received all the equipment necessary for the flow visualization studies described over the last two progress reports. We have begun more detailed studies of the gas flow pattern within cyclones as detailed below. Third, we have begun studies of the effect of particle concentration on cyclone performance. This work is critical to application of our results to commercial operations. 1 fig.

  4. Understand cyclone design

    SciTech Connect

    Coker, A.K. )

    1993-12-01

    Cyclones are widely used for the separation and recovery of industrial dusts from air or process gases. Cyclones are the principal type of gas-solids separator using centrifugal force. They are simple to construct, of low cost, and are made from a wide range of materials with an ability to operate at high temperatures and pressure. Cyclones are suitable for separating particles where agglomeration occurs. Pollution and emission regulations have compelled designers to study the efficiency of cyclones. Cyclones offer the least expensive means of dust collection. They give low efficiency for collection of particles smaller than 5 [mu]m. A high efficiency of 98% can be achieved on dusts with particle sizes of 0.1 to 0.2 [mu]m that are highly flocculated. The paper discusses the design procedure and operating parameters.

  5. Tropical cyclone formation

    SciTech Connect

    Montgomery, M.T.; Farrell, B.F. )

    1993-01-15

    The physics of tropical cyclone formation is not well understood, and more is known about the mature hurricane than the formative mechanisms that produce it. It is believed part of the reason for this can be traced to insufficient upper-level atmospheric data. Recent observations suggest that tropical cyclones are initiated by asymmetric interactions associated with migratory upper-level potential vorticity disturbances and low-level disturbances. Favored theories of cyclones formation, however, focus on internal processes associated with cumulus convection and/or air-sea interaction. This work focuses on external mechanisms of cyclone formation and, using both a two- and three-dimensional moist geostrophic momentum model, investigates the role of upper-level potential vorticity disturbances on the formation process. A conceptual model of tropical cyclone formation is proposed, and implications of the theory are discussed. 71 refs., 5 figs., 1 tab.

  6. Electrically Driven Supersonic Combustor

    NASA Astrophysics Data System (ADS)

    Leonov, S.; Sabelnikov, V.

    2009-01-01

    The paper considers a new method of supersonic combustor steering under non-optimal conditions, specifically, at low gas temperature. The method is based on near-surface electrical discharge application for flow management and flameholding. The experimental results on flameholding at gas temperature T0=300-760K are presented. The hydrogen and ethylene were injected directly into the M=2 flow from the wall at overall ER<0.2. The electrical discharge of filamentary type between flush mounted electrodes on the wall is used for a flame promotion. The power deposited is Wpl/Htot<2-5% of flow total enthalpy. The fuel ignition, and flameholding are demonstrated experimentally at combustion completeness η>0.9. The pressure elevation due to combustion is measured in accordance with operation mode. The fact is specially pointed that the discharge switching off leads to immediate extinction of the hydrogen/ethylene flame. The power threshold of fuels ignition over the plane wall was measured by variation of power deposition and the fuel mass flow rate. Based on the experimental data a new scheme of supersonic combustor is proposed. Local zones of combustion in multiple directly wall-fueled sections are supported by electrical discharges. Cross- section's expansions are adjusted with those zones of intensive reactions. This scheme is supposed to be quite prospective for practical apparatuses.

  7. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  8. Cyclone Chris Hits Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.

  9. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  10. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  11. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  12. Experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Gleason, C. C.

    1975-01-01

    Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.

  13. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. During the past quarter, we have nearly completed modeling work that employs the flow field measurements made during the past six months. In addition, we have begun final work using the results of this project to develop improved design methods for cyclones. This work involves optimization using the Iozia-Leith efficiency model and the Dirgo pressure drop model. This work will be completed this summer. 9 figs.

  14. Tropical Cyclone Nargis: 2008

    NASA Image and Video Library

    This new animation, developed with the help of NASA's Pleiades supercomputer, illustrates how tropical cyclone Nargis formed in the Indian Ocean's Bay of Bengal over several days in late April 2008...

  15. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  16. Development of a retrofit coal combustor for industrial applications, (Phase 1-A)

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  17. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    Combustor pollution reduction technology for commercial CTOL engines was generated and this technology was demonstrated in a full-scale JT9D engine in 1976. Component rig refinement of the two best combustor concepts were tested. These concepts are the vorbix combustor, and a hybrid combustor which combines the pilot zone of the staged premix combustor and the main zone of the swirl-can combustor. Both concepts significantly reduced all pollutant emissions relative to the JT9D-7 engine combustor. However, neither concept met all program goals. The hybrid combustor met pollution goals for unburned hydrocarbons and carbon monoxide but did not achieve the oxides of nitrogen goal. This combustor had significant performance deficiencies. The Vorbix combustor met goals for unburned hydrocarbons and oxides of nitrogen but did not achieve the carbon monoxide goal. Performance of the vorbix combustor approached the engine requirements. On the basis of these results, the vorbix combustor was selected for the engine demonstration program. A control study was conducted to establish fuel control requirements imposed by the low-emission combustor concepts and to identify conceptual control system designs. Concurrent efforts were also completed on two addendums: an alternate fuels addendum and a combustion noise addendum.

  18. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. First quarterly technical progress report, September 14--December 31, 1995

    SciTech Connect

    Zauderer, B.

    1996-02-10

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This effort will consist of a series of up to 20 parametric tests in a 20 MMBtu/hr slagging, air cooled, cyclone combustor. During the present reporting period, this combustor was in the final stages of re-installation in a new facility in Philadelphia, PA following its relocation from a test facility in Williamsport, PA. Initial shakedown test on this new combustor facility began in December 1995, at the end of the present quarterly reporting period. The shakedown tests will continue through the next quarterly reporting period in the first three months of calendar year 1996. SO{sub 2} is controlled by injecting calcium oxide based sorbents into the combustor to react with sulfur emitted during combustion. The spent sorbent is dissolved in the slag and removed with it, thereby encapsulating the sulfur in slag. Part of the sorbent exits the combustor with the combustion products into the boiler where it can react with the sulfur. The primary objective of the present tests is to maximize the degree of sulfur retention in the slag. All spent sorbent not reporting to the slag is either deposited in the boiler or it is removed in the stack particle scrubber.

  19. Combustor dome assembly

    SciTech Connect

    Howell, S.J.; Toborg, S.M.

    1992-06-02

    This patent describes a dome assembly for a gas turbine engine combustor. It comprises: an annular dome having at least one dome eyelet; a mounting ring fixedly joined to the dome and having a radially inner surface defining a central aperture coaxially aligned with the dome eyelet; a baffle having a tubular mounting portion extending upstream through the mounting ring central aperture and fixedly joined to the mounting ring radially inner surface, and a flare portion extending downstream from the mounting ring; and a carburetor including an air swirler having an annular exit cone, the exit cone having a radially outer surface disposed against the baffle mounting portion, and annular radially outwardly extending radial flange, and a radially inwardly facing annular flow surface for channeling air thereover and downstream over the baffle flare portion; the swirler exit cone radial flange being fixedly joined to, and removable from, the mounting ring for providing a fuel/air mixture through the central aperture with a predetermined relationship to the baffle flare portion, the baffle mounting portion extending upstream through the mounting ring central aperture for being accessible from an upstream side of the dome upon removal of the carburetor from the mounting ring.

  20. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  1. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  2. Combustor and method for distributing fuel in the combustor

    SciTech Connect

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  3. Tropical Cyclone Gonu

    NASA Technical Reports Server (NTRS)

    2007-01-01

    You might expect to see a storm with near-perfect symmetry and a well-defined eye hovering over the warm waters of the Caribbean or in the South Pacific, but Tropical Cyclone Gonu showed up in an unusual place. On June 4, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this image, Tropical Cyclone Gonu was approaching the northeastern shore of Oman, a region better known for hot desert conditions. Though rare, cyclones like Gonu are not unheard of in the northern Indian Ocean basin. Most cyclones that form in the region form over the Bay of Bengal, east of India. Those that take shape over the Arabian Sea, west of the Indian peninsula, tend to be small and fizzle out before coming ashore. Cyclone Gonu is a rare exception. As of June 4, 2007, the powerful storm had reached a dangerous Category Four status, and it was forecast to graze Oman's northeastern shore, following the Gulf of Oman. According to storm statistics maintained on Unisys Weather, the last storm of this size to form over the Arabian Sea was Cyclone 01A, which tracked northwest along the coast of India between May 21 and May 28, 2001. Unlike Gonu's forecasted track, Cyclone 01A never came ashore. MODIS acquired this photo-like image at 12:00 p.m. local time (9:00 UTC), a few hours after the Joint Typhoon Warning Center estimated Gonu's sustained winds to be over 240 kilometers per hour (145 miles per hour). The satellite image confirms that Gonu was a super-powerful cyclone. The storm has the hallmark tightly wound arms that spiral around a well-defined, circular eye. The eye is surrounded by a clear wall of towering clouds that cast shadows on the surrounding clouds. Called hot towers, these clouds are a sign of the powerful uplift that feeds the storm. The symmetrical spirals, clear eye, and towering clouds are all features regularly seen in satellite images of other particularly powerful cyclones, which are also known as typhoons or hurricanes

  4. Tropical Cyclone Gonu

    NASA Technical Reports Server (NTRS)

    2007-01-01

    You might expect to see a storm with near-perfect symmetry and a well-defined eye hovering over the warm waters of the Caribbean or in the South Pacific, but Tropical Cyclone Gonu showed up in an unusual place. On June 4, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this image, Tropical Cyclone Gonu was approaching the northeastern shore of Oman, a region better known for hot desert conditions. Though rare, cyclones like Gonu are not unheard of in the northern Indian Ocean basin. Most cyclones that form in the region form over the Bay of Bengal, east of India. Those that take shape over the Arabian Sea, west of the Indian peninsula, tend to be small and fizzle out before coming ashore. Cyclone Gonu is a rare exception. As of June 4, 2007, the powerful storm had reached a dangerous Category Four status, and it was forecast to graze Oman's northeastern shore, following the Gulf of Oman. According to storm statistics maintained on Unisys Weather, the last storm of this size to form over the Arabian Sea was Cyclone 01A, which tracked northwest along the coast of India between May 21 and May 28, 2001. Unlike Gonu's forecasted track, Cyclone 01A never came ashore. MODIS acquired this photo-like image at 12:00 p.m. local time (9:00 UTC), a few hours after the Joint Typhoon Warning Center estimated Gonu's sustained winds to be over 240 kilometers per hour (145 miles per hour). The satellite image confirms that Gonu was a super-powerful cyclone. The storm has the hallmark tightly wound arms that spiral around a well-defined, circular eye. The eye is surrounded by a clear wall of towering clouds that cast shadows on the surrounding clouds. Called hot towers, these clouds are a sign of the powerful uplift that feeds the storm. The symmetrical spirals, clear eye, and towering clouds are all features regularly seen in satellite images of other particularly powerful cyclones, which are also known as typhoons or hurricanes

  5. Grey swan tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lin, Ning; Emanuel, Kerry

    2016-01-01

    We define `grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be foreseeable using physical knowledge together with historical data. Here we apply a climatological-hydrodynamic method to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate storm surges of about 6 m, 5.7 m and 4 m, respectively, with estimated annual exceedance probabilities of about 1/10,000. With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100-1/1,100 in the middle and 1/2,500-1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges exceeding 11 m in Tampa and 7 m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of the century.

  6. Fuel and Combustor Concerns for Future Commercial Combustors

    NASA Technical Reports Server (NTRS)

    Chang, Clarence T.

    2017-01-01

    Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics.

  7. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    SciTech Connect

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  8. 1983 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1983-01-01

    influence tropical cyclone intensity. All charts are hand-plotted over areas of tropical cyclone activity to provide all available data as soon as... influenced by the maturity and vertical extent of the tropical cyclone. For mature tropical cyclones located south of the subtropical ridge, forecast changes...pattern. An essential element affecting each intensity forecast is the accompanying forecast track and the influence of environmental parameters along

  9. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  10. Pulse combustor with controllable oscillations

    DOEpatents

    Richards, George A.; Welter, Michael J.; Morris, Gary J.

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  11. Methanol tailgas combustor control method

    DOEpatents

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  12. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  13. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Third quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Zauderer, B.

    1996-09-01

    The primary project objective is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This non-equilibrium process is a key step in the capture and retention of sulfur released during coal combustion by the interaction with calcium based sorbent particles. By encapsulating the sulfur bearing calcium particles in slag, the need for landfilling of this waste is eliminated. This objective will be implemented through a series of up to 20 one day tests carried out in a 20 MMBtu/hr air cooled, slagging combustor-boiler installation located in Philadelphia, PA. The project will consist of two tasks. Task 1 consists of the experiments conducted in the 20 MMBtu/hr combustor, and task 2 will consist of analysis of this data. All the operating procedures for this effort have been developed in the 7 years of operation of this combustor.

  14. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  15. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  16. Multi-port dump combustor

    SciTech Connect

    Dale, L. A.; Grenleski Jr., S. E.; Keirsey, J. L.; Stevens, C. E.

    1985-09-10

    A four-ported dump combustor is designed for use with a ramjet engine and provides high combustion efficiency and pressure recovery for length-to-diameter (L/D) ratios of between 1.3 and 4.4, over a range of operating conditions.

  17. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 7, October, November, and December 1991

    SciTech Connect

    Haggard, R.W. Jr.

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  18. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    SciTech Connect

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  19. Assessing Tropical Cyclone Damage

    NASA Astrophysics Data System (ADS)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  20. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  1. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2001-09-10

    The fieldwork associated with Task 1 (Baseline Assessment) was completed this quarter. Detailed cyclone inspections completed at all but one plant during maintenance shifts. Analysis of the test samples is also currently underway in Task 4 (Sample Analysis). A Draft Recommendation was prepared for the management at each test site in Task 2 (Circuit Modification). All required procurements were completed. Density tracers were manufactured and tested for quality control purposes. Special sampling tools were also purchased and/or fabricated for each plant site. The preliminary experimental data show that the partitioning performance for all seven HMC circuits was generally good. This was attributed to well-maintained cyclones and good operating practices. However, the density tracers detected that most circuits suffered from poor control of media cutpoint. These problems were attributed to poor x-ray calibration and improper manual density measurements. These conclusions will be validated after the analyses of the composite samples have been completed.

  2. Integrated CFD modeling of gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Fuller, E. J.; Smith, C. E.

    1993-01-01

    3D, curvilinear, multi-domain CFD analysis is becoming a valuable tool in gas turbine combustor design. Used as a supplement to experimental testing. CFD analysis can provide improved understanding of combustor aerodynamics and used to qualitatively assess new combustor designs. This paper discusses recent advancements in CFD combustor methodology, including the timely integration of the design (i.e. CAD) and analysis (i.e. CFD) processes. Allied Signal's F124 combustor was analyzed at maximum power conditions. The assumption of turbulence levels at the nozzle/swirler inlet was shown to be very important in the prediction of combustor exit temperatures. Predicted exit temperatures were compared to experimental rake data, and good overall agreement was seen. Exit radial temperature profiles were well predicted, while the predicted pattern factor was 25 percent higher than the harmonic-averaged experimental pattern factor.

  3. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  4. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  5. 1989 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    z TYPHOON GAY (32W) The fust tropical cyclone of November turned out to be the worst tropical cyclone to affect the Malay Peninsula in 35 years... Gay developed in the Gulf of Thailand, crossed the Malay Peninsula into the Bay of Bengal and slammed into India with peak sustained winds of 140 kt...70 rn/see). Unique because of its small size, intensity, and point of origin, Gay challenged forecasters by crossing two different tropical cyclone

  6. Mesoscale Processes in Tropical Cyclones

    DTIC Science & Technology

    2016-06-07

    develop improved understanding and prediction of the atmosphere, with particular emphasis on tropical cyclones. Our work encompasses research into basic...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE...and development; an analysis of the predictability of tropical cyclone tracks; the Global Guide to Tropical Cyclone Forecasting; and several

  7. Gas turbine combustor design methodology

    SciTech Connect

    Rizk, N.K.; Mongia, H.C.

    1986-01-01

    The detailed representation of flow and combustion processes offered by multidimensional models and the predictive tool of the proven empirical correlations are combined to form a basis for a gas turbine combustor design method. Provisions are made to fully utilize the output of the analytical computations by evaluating the values of relevant parameters within subdivisions of liner sector. By this means, the impact of a systematic modification to the detail of dome swirlers and liner configuration is easily determined. A heat transfer calculation method that utilizes the variation in combustor parameters in the three dimensions and evaluates radiation flux components through a view factor is considered. In comparison with experimental data obtained for a typical production liner, the predictions of the developed method in regard to emission formation, combustion performance, and wall temperature are quite satisfactory.

  8. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  9. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  10. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  11. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  12. Development of a retrofit coal combustor for industrial applications, (Phase 1-A). Technical progress report, July--September 1988

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  13. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  14. Paradigms for Tropical Cyclone Intensification

    DTIC Science & Technology

    2014-03-01

    structure of the initial vortex is completely dwarfed by the local vorticity of the VHTs. Comparing Fig. 8 with Fig. 9 shows that the VHTs move...Tropical cyclones. Annu. Rev. Earth Planet . Sci., 31, 75–104. Emanuel K.A. 2004. Tropical cyclone energetics and structure, Atmo- spheric

  15. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  16. Advances in dust cyclone research

    USDA-ARS?s Scientific Manuscript database

    Dust cyclones reduce particulate emissions but their operation consumes electrical energy. Response surface methodology was used to compare two strategies to reduce energy costs without increasing emissions. Cyclones of a standard design (1D3D) were operated singly and in series, as was an ‘Experi...

  17. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  18. Atlantic tropical cyclones revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.; Emanuel, Kerry A.; Holland, Greg J.; Webster, Peter J.

    Vigorous discussions have taken place recently in Eos [e.g., Mann and Emanuel, 2006; Landsea, 2007] and elsewhere [Emanuel, 2005; Webster et al., 2005; Hoyos et al., 2006; Trenberth and Shea, 2006; Kossin et al., 2007] regarding trends in North Atlantic tropical cyclone (TC) activity and their potential connection with anthropogenic climate change. In one study, for example [Landsea, 2007], it is argued that a substantial underestimate of Atlantic tropical cyclone counts in earlier decades arising from insufficient observing systems invalidates the conclusion that trends in TC behavior may be connected to climate change. Here we argue that such connections are in fact robust with respect to uncertainties in earlier observations.Several recent studies have investigated trends in various measures of TC activity. Emanuel [2005] showed that a measure of total power dissipation by TCs (the power dissipation index, or PDI) is highly correlated with August-October sea surface temperatures (SST) over the main development region (MDR) for Atlantic TCs over at least the past half century. Some support for this conclusion was provided by Sriver and Ruber [2006]. Webster et al. [2005] demonstrated a statistically significant increase in recent decades in both the total number of the strongest category cyclones (categories 4 and 5) and the proportion of storms reaching hurricane intensity. Hoyos et al. [2006] showed that these increases were closely tied to warming trends in tropical Atlantic SST, while, for example, the modest decrease in vertical wind shear played a more secondary role. Kossin et al. [2007] called into question some trends in other basins, based on a reanalysis of past TC data, but they found the North Atlantic trends to be robust.

  19. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2002-09-14

    All project activities are now winding down. Follow-up tracer tests were conducted at several of the industrial test sites and analysis of the experimental data is currently underway. All required field work was completed during this quarter. In addition, the heavy medium cyclone simulation and expert system programs are nearly completed and user manuals are being prepared. Administrative activities (e.g., project documents, cost-sharing accounts, etc.) are being reviewed and prepared for final submission to DOE. All project reporting requirements are up to date. All financial expenditures are within approved limits.

  20. Combustor with non-circular head end

    SciTech Connect

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  1. Analytical fuel property effects--small combustors

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.

    1984-01-01

    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

  2. Slagging retrofit pulsed coal combustor: Final report

    SciTech Connect

    Not Available

    1987-01-01

    A concept for a novel form of slagging retrofit pulsed coal combustor was tested in the laboratory. The combustor is based on controlled use of a form of high pressure amplitude combustion instability. The approach adopted was to resolve, in single pulse experiments, the basic technical issues arising in the development of the combustor. In a cold flow device, the issues of coal spatial distribution were addressed and a combustor and solids disperser configuration was developed to give uniform coal distribution in the combustor. Single pulse ignition experiments were conducted to determine the pressure rise in combustor, pressure rise-decay times, and coal conversion a function of various operating variables. Coal injection, flame propagation, and blowdown times leading to potential combustor size reduction of three times over steady flow combustors were demonstrated. The results give high pressure exhaust leading to potentially improved downstream heat transfer and reduced boiler size. Finally, zero-, one-, and two-dimensional mathematical models were developed in support of the experiments and also to provide design capability. 11 refs., 43 figs.

  3. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Sutton, R. D.

    1983-01-01

    The combustion research program, small gas turbine combustor primary zone study is summarized. The basic elements of a design methodology program to obtain the maximum performance potential of small reverse-flow annular combustors is described. Three preferred combustion design approaches for internal flame stabilization patterns were selected. Design features are incorporated in the combustors to address the performance limiting problem areas associated with smaller annular combustors. Performance is predicted by using a 3-D aerodynamic/chemical kinetic elliptic flow analysis, initially developed by Garrett Corporation for the USARTL. It is shown that the analytical flow field predictive models provide a useful design tool for understanding the combustion performance of a small reverse flow annular combustor.

  4. Experimental clean combustor program, phase 3

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A.; Greene, W.

    1977-01-01

    A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine.

  5. Computation of losses in a scramjet combustor

    NASA Technical Reports Server (NTRS)

    Kamath, Pradeep S.; Mcclinton, Charles R.

    1992-01-01

    The losses in a conceptual scramjet combustor at flight Mach numbers of 8, 10, 12, 16 and 20 are computed. These losses are extracted from three-dimensional parabolized Navier-Stokes solutions of the turbulent, reacting combustor flow field. A combustor performance index was defined based on the rationale that an efficient scramjet combustor should add heat to the fluid in such a manner as to maximize the stream thrust at the combustor exit while minimizing the losses. This index showed a decrease of more than 40 percent as the flight Mach number increased from 8 to 20, indicative of a drop in the thrust-producing potential of the scramjet at the upper end of the speed regime studied. A breakdown of the losses showed that dissipation, nonequilibrium chemistry and heat diffusion contributed roughly 15 percent, 35 percent, and 50 percent to the irreversible increase in entropy at Mach 8 and 22 percent, 13 and 65 percent at Mach 20.

  6. NASA advanced low emissions combustor program

    SciTech Connect

    Goyal, A.; Ekstedt, E.E.; Szaniszlo, A.J.

    1983-01-01

    The purpose of this program is to conduct combustion tests on lean, premixed, and prevaporized (LPP) combustor concepts designed for use in commercial aircraft engines to attain improved performance, durability, and lower pollutant emissions levels relative to current technology combustor designs. Four full annular combustors were designed for the CF6-50 engine. These concepts utilize premixing of the fuel and air, variable geometry, and fuel staging to control the equivalence ratios of the burning zone. The testing is being conducted on these four full annular combustors over a wide range of operating conditions at pressures up to actual subsonic cruise (1.16 MPa). The test results for the most promising of these combustor concepts are reported in this paper.

  7. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  8. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  9. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  10. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  11. Tropical Cyclone Information System

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  12. Rich burn combustor technology at Pratt and Whitney

    NASA Technical Reports Server (NTRS)

    Lohmann, Robert P.; Rosfjord, T. J.

    1992-01-01

    The topics covered include the following: near term objectives; rich burn quick quench combustor (RBQC); RBQC critical technology areas; cylindrical RBQQ combustor rig; modular RBQQ combustor; cylindrical rig objectives; quench zone mixing; noneffusive cooled liner; variable geometry requirements; and sector combustor rig.

  13. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, Ryan G; Williams, Joseph T; Steele, Robert C; Straub, Douglas L; Casleton, Kent H; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  14. Solid Fuel Ramjet Combustor Design

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; George, Philmon

    1998-03-01

    Combustion aspects of solid fuel ramjet (SFRJ) are reviewed. On the point of view of the ability of an SFRJ to operate satisfactorily at all off-design conditions the areas of concern to propulsion system designer are (1) selection of a fuel type, (2) flame holding requirements that limit maximum fuel loading, (3) understanding the fuel regression rate behaviour as a function of flight speed and altitude, (4) diffusion-controlled combustion process and its efficiency enhancement, and (5) inlet/combustor matching. Considering these areas, the following aspects are reviewed from the information available in open literature: (1) different experimental set-up conditions adopted in combustor research, (2) various suitable fuel types, (3) flammability limits, (4) fuel regression rate behaviour, (5) methods of achieving high efficiency in metallized fuel, and (6) various modelling efforts. Detailed discussion is presented on two different types of regression rate mechanism in SFRJ: one that is controlled by the heat transfer processes downstream of the reattachment region and the other by that in the region itself. With a view to demonstrate the use of the information collected through this review, a preliminary design procedure is presented for an SFRJ-assisted gun launched projectile of pseudo-vacuum trajectory.

  15. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  16. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  17. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Williams, J.T.; Steele, R.C.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  18. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Fifth quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Zauderer, B.

    1997-02-04

    Calcium oxide sorbents injected in a stagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. In the present quarterly reporting period, 10 days of combustor tests were performed, bringing the total number of tests performed to 15. A wide range of operating conditions were tested including injection of metal oxide powders to achieve total mineral injection rates in excess of 400 lb/hr at coal mass flow rates of around 1000 lb/hr. It was determined that efficient sulfur capture requires calcium oxide particle sizes that are too small to be effectively retained in the combustor. On the other hand, injection of coarse calcium sulfate particles into the combustor sharply increased the slag viscosity, thereby reducing the slag flow rate and causing substantial revolution of the sulfur in the slag. It is tentatively concluded that conditions necessary for sulfur capture with sorbents and its retention in the slag cannot be efficiently achieved in one step in a cyclone combustor. It is further concluded that due to the increases in slag viscosity by calcium sulfate extremely high slag mass flow rates are required for sulfur retention in slag. Further tests in that direction are planned for the next quarterly reporting period.

  19. An Observational Analysis of Tropical Cyclone Recurvature.

    DTIC Science & Technology

    1991-05-01

    SR = Slowly recurving cyclones TC = Tropical Cyclone TUTT = Tropical Upper Tropospheric Trough W = West WNW = West-Northwest v Chapter 1 INTRODUCTION...latitude at which the cyclone was located. Observations also showed that not all troughs approaching a cyclone caused recurvature. Mid- latitude troughs ...general synoptic conditions which were favorable for tropical cyclone recurvature. These included: 1. High amplitude troughs extending from the westerlies

  20. Post-Tropical Cyclone Matthew

    NASA Image and Video Library

    2017-09-28

    NASA Gets a Last Look at Post-Tropical Cyclone Matthew Before It was Swallowed Up Post-Tropical Cyclone Matthew was swallowed up or absorbed by a cold front on Oct. 10, but NASA's Terra satellite captured a last look at the storm before that happened. On Sunday, Oct. 9, 2016 at 11:45 a.m. EDT (1545 UTC) NASA's Terra satellite captured a last look at Post-Tropical Cyclone Matthew as it was being absorbed by a cold front along the U.S. Eastern Seaboard. Read more: go.nasa.gov/2dfhQg9 Credits: NASA Goddard MODIS Rapid Response Team

  1. 1992 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1992-01-01

    Esau Farida Ian Gerda Fran Gene Hett ie Neville Jane/Irna Innis Totsls: Percentage of Total: 17 32 95 25 110 85 0 0 35 21 120 36 3 0 12 45 70 19 6 137...those for Tropical Cyclone 18P were preced- ed by Tropical Cyclone Formation Alerts. Tropical cyclones 06P (Val), 21P ( Esau ), and 25P (Fran) all made it...Cliff 15S Celesta 16s ____ 17P Daman 18P ---- 19S Davilia 20S Harriet 21P Esau 22S Farida 23s Ian 24S Gerda 25P Fran* 26P Gene 27P Hettie 28s Neville

  2. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  3. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  4. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  5. Monitoring by Control Technique - Cyclone

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about cyclone control techniques used to reduce pollutant emissions.

  6. Tropical Cyclone Bejisa Near Madagascar

    NASA Image and Video Library

    NASA's TRMM satellite flew over Cyclone Bejisa on December 29, 2013 at 1507 UTC. This 3-D animation of TRMM data revealed strong thunderstorms around Bejisa's center were reaching heights above 16....

  7. Combustor design and analysis using the Rocket Combustor Interactive Design (ROCCID) methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  8. Combustor design and analysis using the ROCket Combustor Interactive Design (ROCCID) Methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  9. Effect of combustor-inlet conditions on performance of an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Childs, J Howard; Mccafferty, Richard J; Surine, Oakley W

    1947-01-01

    The combustion performance, and particularly the phenomenon of altitude operational limits, was studied by operating the annular combustor of a turbojet engine over a range of conditions of air flow, inlet pressure, inlet temperature, and fuel flow. Information was obtained on the combustion efficiencies, the effect on combustion of inlet variables, the altitude operational limits with two different fuels, the pressure losses in the combustor, the temperature and velocity profiles at the combustor outlet, the extent of afterburning, the fuel-injection characteristics, and the condition of the combustor basket.

  10. Annual Tropical Cyclone Report 2011

    DTIC Science & Technology

    2012-05-24

    ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...operationally or meteorologically significant cyclones noted within the JTWC Area of Responsibility. Details are provided to describe operational impacts...trend that started in 2005, with only 27 TCs observed compared to the long term average of 31. Unlike the previous year, there were four cyclones that

  11. Annual Tropical Cyclone Report 2010

    DTIC Science & Technology

    2010-01-01

    period of rapid intensification. Tropical Cyclone 04B matured as a relatively small cyclone, its upper-level cirrus cloud shield spanning... defined cirrus outflow streak poleward of the low-level circulation center around 22/00Z. These structural changes are evident in the satellite imagery...erratically based on the upper level cloud patterns and convective maxima. It was not until visible imagery became available, that the two low level

  12. The Dynamics of Tropical Cyclones

    DTIC Science & Technology

    2016-06-07

    The Dynamics of Tropical Cyclones Roger K. Smith Meteorological Institute University of Munich Theresienstr. 37, 80333 Munich, Germany phone +49 (89...University of Munich, Meteorological Institute,Theresienstr. 37,80333 Munich, Germany, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...tropical cyclones’ which was held in Kaufbeuren, Germany from 10-14 May 1999 and was sponsored by ONR and the WMO Tropical Meteorology Research

  13. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  14. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  15. Small gas turbine combustor primary zone development

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Novick, A. S.; Miles, G. A.; Briehl, D.

    1982-01-01

    Designers of small gas turbine engines prefer a close-coupled compressor to turbine shafting arrangement, which in some designs necessitates the use of a small reverse-flow annular combustor. A design methodology for obtaining the maximum performance potential of these combustors is necessary. This paper describes an approach to optimize the design process and gain insight into primary zone performance through interactive theoretical analyses and experimental tests. Three candidate combustor designs are described which address the performance limiting problem areas associated with small annular combustors. Design methodology centers around understanding and controlling primary zone aerodynamics and the interaction of the distributed fuel with internal airflow patterns. Complete three-dimensional flow field analytical performance prediction procedures are presented and results compared with performance and emission measurements described by probes located at the exit of the primary zone. The effective use of analytical performance prediction methods in the design process is demonstrated.

  16. Experimental clean combustor program: Noise study

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1976-01-01

    Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.

  17. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  18. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  19. Introducing the VRT gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-01-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  20. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    The alternate fuels investigation objective was to experimentally determine the impacts, if any, on exhaust emissions, performance, and durability characteristics of the hybrid and vorbix low pollution combustor concepts when operated on test fuels which simulate composition and property changes which might result from future broadened aviation turbine fuel specifications or use of synthetically derived crude feedstocks. Results of the program indicate a significant increase in CO and small NOX increase in emissions at idle for both combustor concepts, and an increase in THC for the vorbix concept. Minimal impact was observed on gaseous emissions at high power. The vorbix concept exhibited significant increase in exhaust smoke with increasing fuel aromatic content. Altitude stability was not affected for the vorbix combustor, but was substantially reduced for the hybrid concept. Severe carbon deposition was observed in both combustors following limited endurance testing with No. 2 home heat fuel. Liner temperature levels were insensitive to variations in aromatic content over the range of conditions investigated.

  1. Application of Gas Analysis to Combustor Research

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Evans, Albert

    1959-01-01

    The performance of turbine-engine combustors usually is given in terms of operating limits and combustion efficiency. The latter property is determined most often by measuring the increase in enthalpy across the combustor through the use of thermocouples. This investigation was conducted to determine the ability of gas-analytical techniques to provide additional information about combustor performance. Gas samples were taken at the outlet and two upstream stations and their compositions determined. In addition to over-all combustion efficiency, estimates of local fuel-air ratios, local combustion efficiencies, and heat-release rates can be made. Conclusions can be drawn concerning the causes of combustion inefficiency and may permit corrective design changes to be made more intelligently. The purpose of this investigation was not to present data for a given combustor but rather to show the types and value of additional information that can be gained from gas-analytical data.

  2. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  3. Black Swan Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  4. Multiducted Inlet Combustor Research and Development.

    DTIC Science & Technology

    1982-10-01

    qualitative data from the multi-ducted inlet combustor configuration for flow analysis and matematical modeling purposes. The major portion of the support...data on multi-ducted inlet combustor configurations. These efforts will provide the information necessary to perform flow field analysis and aid in the...instrumentation, test program, data reduction, data presentation, flow field analysis and math modelling efforts, and conclusions and recommendations. SECTION 2

  5. Cloudsat tropical cyclone database

    NASA Astrophysics Data System (ADS)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms

  6. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  7. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

  8. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, G.L.; Shaffer, J.E.

    1995-10-17

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

  9. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  10. Cyclones in the thermosphere?

    NASA Astrophysics Data System (ADS)

    Burns, A.; Wang, W.; Killeen, T.

    2003-04-01

    The recovery of the thermosphere and ionosphere from geomagnetic storms is a subject that has not received the attention that it deserves. But, even with the small number of papers that have been published about these conditions, there are apparently conflicting results. Burns et al. (1989) suggested that most recovery was rapid, whereas Fuller-Rowell et al. (1994) found recovery was sufficiently slow that storm effects could be seen a full day after the end of the main phase of a geomagnetic storm. At first sight these two ideas do not seem to be easily reconciled. But, in fact, it is shown here that, while much recovery is fast at solar maximum, large, organized disturbances exist in the thermosphere and ionosphere for a long time. These disturbances, which were first proposed by Banks and Nagy (1974), are mesoscale- to large-scale in size and nature and have some characteristics of tropospheric cyclones. In this work, we discuss the nature of these disturbances, their origin and development and consider the processes that permit their long life. The major conclusions of this work are: 1) After a major geomagnetic storm neutral compositional recovery is rapid over much of the globe; 2) In certain areas, large-to-mesoscale disturbances occur that are both well organized and long lived; 3) The disturbance discussed here was "spun-off" from the dawn convection cell and then briefly formed a secondary horizontal vortex; 4) At times these disturbances are associated with pronounced vertical convection cells.

  11. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  12. Experimental Clean Combustor Program (ECCP), phase 3. [commercial aircraft turbofan engine tests with double annular combustor

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.

  13. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current-generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.

  14. Development of multi-size classifying cyclone

    SciTech Connect

    Zhan Hanhui; Wang Zuna

    1994-12-31

    The authors have developed a multi-size classifying cyclone, which is characterized by its distinctive structure and quasi forced vortex in a rotary flow region. The cyclone differs from a conventional cyclone in three-dimensional velocity distribution in a rotary flow region, but the former has the same pressure distribution law as the latter. Tests show that satisfactory multi-size classification can be achieved using the cyclone.

  15. Instability of cyclonic convective vortex

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, A.; Evgrafova, A.; Popova, E.

    2017-06-01

    Localized heating in the rotating layer of fluid leads to the formation of intensive cyclonic vortex. Cyclonic vortex becomes unstable at low values of viscosity and fast rotation of the experimental model. The instability of the vortex is tightly connected with a structure of the radial inflow. For moderate values of rotational Reynolds number Re the radial flows consist of several branches which transport angular momentum to the center of the model. When Re exceeds critical value (about 23) radial inflow changes its structure and appears as one wide branch which does not reach the center. As a result of strong anisotropy of radial inflow the cyclonic vortex is formed at some distance from the center. Further increase of Re leads to chaotic state with several vortices which appears at different locations near the periphery of the heating area. The map of regimes with stable and unstable vortices is presented.

  16. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  17. Experimental clean combustor program, alternate fuels addendum, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  18. Subpilot-scale testing of acoustically enhanced cyclone collectors. Final report, September 1988--September 1994

    SciTech Connect

    Galica, M.A.; Campbell, A.H.; Rawlins, D.C.

    1994-08-01

    Gas turbines are used to recover energy from high temperature exhaust gases in coal-fired pressurized-fluidized bed, combined-cycle power generation systems. However, prior to entering the turbine hot-section, the majority of the fly ash must be removed in order to protect the turbine components from erosion, corrosion, and deposition of the ash. The U.S. Department of Energy under the direction of the Morgantown Energy Technology Center (METC) sponsored the development of an acoustically enhanced cyclone collector which offers the potential of achieving environmental control standards under Pressurized Fluid Bed Combustors (PFBC) conditions without the need for post-turbine particulate control. Pulse combustors developed by Manufacturing and Technology Conversation International, Inc. (MTCI) produced the acoustic power necessary to agglomerate ash particles into sizes large enough to be collected in a conventional cyclone system. A hot gas cleanup system that meets both turbine protection and emissions requirements without post-turbine particulate controls would also have improved overall system economics.

  19. Computational Study of Combustor-Turbine Interactions

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Liou, Meng-Sing

    2017-01-01

    The Open National Combustion Code (OpenNCC) is applied to the simulation of a realisticcombustor configuration [Energy Efficient Engine (E(exp. 3))] in order to investigate the unsteady flow fields inside the combustor and around the first stage stator of a high pressure turbine (HPT). We consider one-twelfth (24 degrees) of the full annular E(exp. 3) combustor with three different geometries of the combustor exit: one without the vane, and two others with the vane set at different relative positions in relation to the fuel nozzle (clocking). Although it is common to take the exit flow profiles obtained by separately simulating the combustor and then feed it as the inflow profile when modeling the HPT, our studies show that the unsteady flow fields are influenced by the presence of the vane as well as clocking. More importantly, the characteristics (e.g., distribution and strength) of the high temperature spots (i.e., hot-streaks) appearing on the vane significantly alters. This indicates the importance of simultaneously modeling both the combustor and the HPT to understand the mechanics of the unsteady formulation of hot-streaks.

  20. Combustor development for automotive gas turbines

    SciTech Connect

    Ross, P.T.; Anderson, D.N.; Williams, J.R.

    1983-09-01

    This paper describes the development of a combustion system for the AGT 100 automotive gas turbine engine. The AGT 100 is a 100 hp engine being developed by Detroit Diesel Allison Division of General Motors Corporation. To achieve optimum fuel economy, the AGT 100 engine operates on a regenerative cycle. A maximum turbine inlet temperature of 1288/sup 0/C (2350/sup 0/F) is reached, and air is supplied to the inlet of the combustor at temperatures as high as 1024/sup 0/C (1875/sup 0/F). To meet the low-emission and high-durability requirements at these conditions, a premix/prevaporization ceramic combustor employing variable geometry to control the temperature in the burning zone has been developed. A test section capable of handling 1024/sup 0/C (1875/sup 0/F) inlet air was designed and fabricated to evaluate this combustor. Testing of both metal (transpiration cooled) and ceramic combustors was conducted. Emissions were measured and found to be a function of burner inlet temperature. At 999/sup 0/C (1830/sup 0/F) burner inlet temperature, NO /SUB x/ emissions were two orders of magnitude below the program goals. At the same temperature but at a different variable-geometry position, the CO was 30 times below the program goal. Considerable testing was conducted to evaluate the behavior of the ceramic materials used in the combustor. No failures occurred during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  1. Axial flow gas turbine engine combustor

    SciTech Connect

    Shekleton, J.R.; Sawyer, K.W.

    1991-02-19

    This patent describes a gas turbine engine. It comprises: radial compressor means for compressing air entering through a compressor inlet opening; axial turbine means in axially spaced relation to the radial compressor means; the radial compressor means being operatively associated with the axial turbine means; radial combustor means intermediate the radial compressor means and axial turbine means; turbine nozzle means proximate the axial turbine means for directing gases of combustion thereto; the radial combustor means defining a radial combustion space in communication with both the radial compressor means and the turbine nozzle means. The radial combustor means including means for introducing compressed air generally tangentially into the radial combustion space upstream of the turbine nozzle means and at a point radially outwardly of the turbine nozzle means and the turbine nozzle means being disposed radially inwardly of the radial combustion space to define a generally radial flow path therebetween. The radial combustor means generating the gases of combustion by combusting fuel from a source and air from the radial compressor means; and fuel injection means operatively associated with the radial combustor means radially outwardly of the turbine nozzle means for injecting a fuel/air mixture generally tangentially into the radial combustion space; whereby a tangential swirl flow is established within the radial combustion space.

  2. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  3. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  4. Dish stirling solar receiver combustor test program

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  5. Performance of low-Btu fuel gas turbine combustors

    SciTech Connect

    Bevan, S.; Bowen, J.H.; Feitelberg, A.S.; Hung, S.L.; Lacey, M.A.; Manning, K.S.

    1995-11-01

    This reports on a project to develop low BTU gas fuel nozzle for use in large gas turbine combustors using multiple fuel nozzles. A rich-quench-lean combustor is described here which reduces the amount of NO{sub x} produced by the combustion of the low BTU gas. The combustor incorporates a converging rich stage combustor liner, which separates the rich stage recirculation zones from the quench stage and lean stage air.

  6. Multi-Ducted Inlet Combustor Research and Development.

    DTIC Science & Technology

    1983-11-01

    of a reactor or combustor as defined in equation (1) is the combustor volume divided by the fluid flow rate through the combustor. Therefore, for a...Development Laboratories, Inc., Costa Mesa, California, March, 1983. 3. 0. Levenspiel , Chemical Reaction Engineering, John Wiley and Sons, 1962. 59 •rac v £98 kg3-ඃ-,162-;8b

  7. Experimental clean combustor program noise measurement addendum, phase 1

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.

    1975-01-01

    The test results of combustor noise measurements taken with waveguide probes are presented. Waveguide probes were shown to be a viable measurement technique for determining high sound pressure level broadband noise. A total of six full-scale annular combustors were tested and included the three advanced combustor designs: swirl-can, radial/axial, and double annular.

  8. Climate models show increasing Arctic cyclone activity

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    Winter in the Arctic is not only cold and dark—it is also storm season, when hurricane-like Arctic cyclones traverse northern waters. Arctic cyclones predominantly occur in subpolar regions, around Iceland or the Aleutian Islands. Like all cyclones, Arctic cyclones are characterized by strong localized drops in sea level pressure. One expected consequence of global climate change is an Arctic-wide decrease in sea level pressure, which would serve to increase extreme Arctic cyclone activity, including powerful storms that can sometimes hit in the spring and fall.

  9. Combustor assembly in a gas turbine engine

    SciTech Connect

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  10. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  11. Combustor development for automotive gas turbines

    NASA Technical Reports Server (NTRS)

    Ross, P. T.; Williams, J. R.; Anderson, D. N.

    1982-01-01

    The development of a combustion system for the AGT 100 automotive gas turbine engine is described. A maximum turbine inlet temperature of 1288 C is reached during the regenerative cycle, and air up to 1024 C is supplied to the combustor inlet. A premix/prevaporization ceramic combustor employing variable geometry to control burning zone temperature was developed and tested. Tests on both metal and ceramic combustors showed that emissions were a function of burner inlet temperature (BIT). At 999 C BIT, NO(x) emissions were two orders of magnitude below program goals, and at the same temperature but at a different variable geometry position, the CO was 30 times below program goal. Tests to evaluate the durability of the ceramic materials showed no failures during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  12. Preliminary calibration of a generic scramjet combustor

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Morgan, R. G.; Rogers, R. C.; Wendt, M.; Brescianini, C.; Paull, A.; Kelly, G.

    1991-01-01

    The results of a preliminary investigation of the combustion of hydrogen fuel at hypersonic flow conditions are provided. The tests were performed in a generic, constant-area combustor model with test gas supplied by a free-piston-driven reflected-shock tunnel. Static pressure measurements along the combustor wall indicated that burning did occur for combustor inlet conditions of P(static) approximately equal to 19kPa, T(static) approximately equal to 1080 K, and U approximately equal to 3630 m/s with a fuel equivalence ratio approximately equal to 0.9. These inlet conditions were obtained by operating the tunnel with stagnation enthalpy approximately equal to 8.1 MJ/kg, stagnation pressure approximately equal to 52 MPa, and a contoured nozzle with a nominal exit Mach number of 5.5.

  13. Flow establishment in a generic scramjet combustor

    NASA Astrophysics Data System (ADS)

    Jacobs, P. A.; Rogers, R. C.; Weidner, E. H.; Bittner, R. D.

    1990-10-01

    The establishment of a quasi-steady flow in a generic scramjet combustor was studied for the case of a time varying inflow to the combustor. Such transient flow is characteristic of the reflected shock tunnel and expansion tube test facilities. Several numerical simulations of hypervelocity flow through a straight duct combustor with either a side wall step fuel injector or a centrally located strut injector are presented. Comparisons were made between impulsively started but otherwise constant flow conditions (typical of the expansion tube or tailored operations of the reflected shock tunnel) and the relaxing flow produced by the 'undertailored' operations of the reflected shock tunnel. Generally the inviscid flow features, such as the shock pattern and pressure distribution, were unaffected by the time varying inlet conditions and approached steady state in approx. the times indicated by experimental correlations. However, viscous features, such as heat transfer and skin friction, were altered by the relaxing inlet flow conditions.

  14. Dual-Mode Free-Jet Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Dippold, Vance F., III; Yungster, Shaye

    2017-01-01

    The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.

  15. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  16. New trends in the improvement of cyclones

    SciTech Connect

    Rivkinzon, I.B.; Zyuba, B.I.

    1984-05-01

    This article examines the possibilities of reducing catalyst attrition and cyclone wall erosion through optimization of the aerodynamic conditions in the cyclone. It is assumed that the disintegration of catalyst particles and erosion of the cyclone walls take place at exactly the same points (e.g. the seats of erosion in the cyclones can serve as natural indicators in determining the zones of catalyst pulverization). In catalytic cracking units, internal cyclones are used as the primary means of cleanup of the gas for process purposes. Cyclones trap out 99.8-99.95% of the catalyst entrained from the fluidized bed by the contact gas. The retrofitting of standard cyclones with chambers for preliminary aerodynamic stabilization of the flow yielded favorable results. The results of erosion tests on type TsN cyclones with and without a stabilization chamber indicate that the proposed stabilization method can give an approximately fivefold reduction of erosion of the cylindrical part of the cyclone. An important advantage of cyclones with added stabilization is the increased efficiency of dust collection. It is concluded that supplementary aerodynamic stabilization of the dust-laded gas flow and reduction of the angle of attack can give substantial improvements in the operating characteristics of cyclones, both cylindrical and spiral-conical.

  17. Tropical Cyclone Ensemble Data Assimilation

    DTIC Science & Technology

    2012-09-30

    described above, but using a vertical window of influence of 2.0 times the scale hight . Notice that meaningful vertical correlation is found by LETKF...between the scatterometer observation and many points throughout the troposphere. This suggests that for assimilation near tropical cyclones that have

  18. Laser diagnostics on a hypersonic combustor

    NASA Technical Reports Server (NTRS)

    Taylor, David J.; Oldenborg, R. C.; Tiee, J. J.; Northam, G. Burton; Antcliff, Richard R.; Cutler, Andrew D.; Jarrett, O.; Smith, M. W.

    1991-01-01

    NASA-Langley has implemented a laser-based multipoint/multiparameter diagnostics system at its hypersonic direct-connect combustor, in order to measure both temperature and majority species densities in two dimensions, using spatially-scanned CARS; in addition, line-imaged measurements of radical densities are simultaneously generated by LIF at any of several planes downstream of the fuel injector. Initial experimental trials have demonstrated successful detection of one-dimensional images of OH density, as well as CARS N2-temperature measurements, in the turbulent reaction zone of the hypersonic combustor.

  19. Low NO.sub.x combustor

    DOEpatents

    Taylor, Jack R.

    1987-01-01

    A combustor having an annular first stage, a generally cylindrically-shaped second stage, and an annular conduit communicably connecting the first and second stages. The conduit has a relatively small annular height and a large number of quench holes in the walls thereof such that quench air injected into the conduit through the quench holes will mix rapidly with, or quench, the combustion gases flowing through the conduit. The rapid quenching reduces the amount of NO.sub.x produced in the combustor.

  20. Micro-combustor for gas turbine engine

    DOEpatents

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  1. Variable volume combustor with aerodynamic support struts

    DOEpatents

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  2. Laser diagnostics on a hypersonic combustor

    NASA Technical Reports Server (NTRS)

    Taylor, David J.; Oldenborg, R. C.; Tiee, J. J.; Northam, G. Burton; Antcliff, Richard R.; Cutler, Andrew D.; Jarrett, O.; Smith, M. W.

    1991-01-01

    NASA-Langley has implemented a laser-based multipoint/multiparameter diagnostics system at its hypersonic direct-connect combustor, in order to measure both temperature and majority species densities in two dimensions, using spatially-scanned CARS; in addition, line-imaged measurements of radical densities are simultaneously generated by LIF at any of several planes downstream of the fuel injector. Initial experimental trials have demonstrated successful detection of one-dimensional images of OH density, as well as CARS N2-temperature measurements, in the turbulent reaction zone of the hypersonic combustor.

  3. APR-2 Tropical Cyclone Observations

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  4. APR-2 Tropical Cyclone Observations

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  5. System and method for controlling a combustor assembly

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  6. Simulated Altitude Performance of Combustors for the 24C Jet Engine. 2; 24C-4 Combustor

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Schroeter, Thomas T.; Miller, Robert C.

    1947-01-01

    The performance of a 24C-4 combustor was investigated with three different combustor baskets and five modifications of these baskets at conditions simulating static (zero-ram) operation of the 24C jet engine over ranges of altitude and engine speed to determine and improve the altitude operational limits of the 24C combustor. Information was also obtained regarding combustion characteristics, the fuel-flow characteristics of the fuel manifolds, and the combustor total-pressure drop. NACA modifications, which consisted of blocking rows of holes on the baskets, increased the minimum point on the altitude-operational-limit curve, which occurs at low engine speeds, for a narrow-upstream-end basket by 8000 feet (from 23, 000 to 31,000 ft_ and for a wide-upstream-end basket by 21,000 feet (from 12, 000 to 34,000 ft). These improvements were approximately maintained over the entire range of engine speeds investigated.

  7. Combustion of various types of residues in a circulating fluidized bed combustor

    SciTech Connect

    Gulyurtlu, I.; Frade, E.; Lopes, H.; Figueiredo, F.; Cabrita, I.

    1997-12-31

    Combustion studies of different wastes alone or mixed were undertaken in an atmospheric circulating fluidized bed. The combustor was operated over a temperature range of 700 to 1,000 C. The residues studied included biomass, tyres, and oil sludges. The main parameters that were investigated are (1) where and how to feed residues, (2) the ratios of amounts of residues when they are burned mixed, (3) air staging, and (4) excess air levels along the riser. The main conclusions are: (1) a large variation in the combustion efficiency was observed depending on the fuel, its particle size and where the fuel was fed in the combustor, (2) in the case of the use of mixture of wastes the utilization of biomass residues as the base fuel increased their combustion efficiency and resulted in very stable combustion conditions, (3) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, and (4) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and produced lower emissions of both NO{sub x}. Particles collected in the cyclone and those removed from the bed were also analyzed to determine the levels of heavy metals. When oil sludge was added, high amounts of very fine particles of heavy metals were observed in the combustion gases.

  8. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  9. Combustor for a low-emissions gas turbine engine

    DOEpatents

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  10. The VRT gas turbine combustor - Phase II

    NASA Technical Reports Server (NTRS)

    Melconian, Jerry O.; Mongia, Hukam C.; Nguyen, Hung L.

    1992-01-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual-function use of the incoming air. In Phase I, the feasibility of the concept was demonstrated by water analogue tests and 3D computer modeling. The flow pattern within the combustor was as predicted. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. In Phase II, hardware was designed, procured, and tested under conditions simulating typical supersonic civil aircraft cruise conditions to the limits of the rig. The test results confirmed many of the superior performance predictions of the VRT concept. The Hastelloy X liner showed no signs of distress after nearly six hours of tests using JP5 fuel.

  11. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  12. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  13. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  14. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  15. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Lecren, R. T.; Batakis, A. P.

    1981-01-01

    A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations.

  16. Flashback Arrestor for LPP, Low NOx Combustors

    NASA Technical Reports Server (NTRS)

    Kraemer, Gil; Lee, Chi-Ming

    1998-01-01

    Lean premixed, prevaporized (LPP) high temperature combustor designs as explored for the Advanced Subsonic Transport (AST) and High Speed Civil Transport (HSCT) combustors can achieve low NO(x), emission levels. An enabling device is needed to arrest flashback and inhibit preignition at high power conditions and during transients (surge and rapid spool down). A novel flashback arrestor design has demonstrated the ability to arrest flashback and inhibit preignition in a 4.6 cm diameter tubular reactor at full power inlet temperatures (725 C) using Jet-A fuel at 0.4 less than or equal To phi less than or equal to 3.5. Several low pressure loss (0.2 to 0.4% at 30 m/s) flashback arrestor designs were developed which arrested flashback at all of the test conditions. Flame holding was also inhibited off the flash arrestor face or within the downstream tube even velocities (less than or equal to 3 to 6 m/s), thus protecting the flashback arrestor and combustor components. Upstream flow conditions influence the specific configuration based on using either a 45% or 76% upstream geometric blockage. Stationary, lean premixed dry low NO(x) gas turbine combustors would also benefit from this low pressure drop flashback arrestor design which can be easily integrated into new and existing designs.

  17. Core/Combustor Noise - Research Overview

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  18. Cyclone performance; The key to feed utilization in circulating fluidized bed boilers

    SciTech Connect

    Tsao, T.R.; Herb, B.E.; Lewnard, J.J.; Wang, S.I. )

    1992-01-01

    High utilization of coal and limestone feedstock in circulating fluidized bed (CFB) combustors is critical to minimize operating costs and solid waste generation. Pilot-scale test results typically indicate 50% calcium utilization (Ca/S = 1:1) and greater than 99% carbon burnout. Recent performance data taken for Stockton CFB indicates that a large fraction of the unburned carbon and unreacted limestone escapes the boiler with the fly ash particles smaller than 100 {mu}m in size. This observation was explained by the short residence times of fine particles in the CFB boiler. An analysis of the CFB system suggests that this problem is caused by the inability of the cyclone to capture smaller particles and return them to the boiler to be more completely utilized. This paper reports that a sensitivity study revealed that feedstock utilization is sensitive to cyclone grade efficiency for small particle sizes. in addition, the results show how bed particle size, fly-bottom ash split, solids recirculation rate, and heat transfer in CFB's are affected by cyclone performance.

  19. The dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Flaounas, Emmanouil

    2017-04-01

    Breaking of atmospheric Rossby waves has been previously shown to lead to intense Mediterranean cyclones, one of the most prominent environmental risks in the region. Wave breaking may be enhanced by warm conveyor belts (WCBs) associated with extratropical cyclones developing over the Atlantic Ocean. More precisely, WCBs supply the upper troposphere with air masses of low potential vorticity that, in turn, amplify ridges and thus favor Rossby wave breaking. This study identifies and validates the relevance of the mechanism that connects Atlantic cyclones and intense mature Mediterranean cyclones through ridge amplification by WCBs. Using ECMWF ERA-Interim reanalyses and a feature-based approach, we analyze the 200 most intense Mediterranean cyclones for the years 1989-2008 and show that their majority (181 cases) is indeed associated with this mechanism upstream. Results show that multiple Atlantic cyclones are associated with each case of intense Mediterranean cyclone downstream. Moreover, the associated Atlantic cyclones are particularly deep compared to climatology.

  20. Fluid Mechanics of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Lighthill, James, Sir

    Typhoons in the northwest Pacific and hurricanes in the northeast Atlantic are particular instances of a global phenomenon with frequently disastrous consequences known as the Tropical Cyclone (TC). This is an intense cyclone, generated over a tropical ocean with kinetic energy 1018 J or more, which extends over several hundred kilometres and yet is above all characterized by its calm central region: ``the eye of the storm''. In a TC (not, of course, to be confused with such completely different phenomena as tornadoes) both the energy input and its dissipation mainly occur within that boundary layer between air and ocean which, at high TC wind speeds of 50-60 m/s, comprises essentially ``a third fluid'': ocean spray. Afterwards, as a TC reaches land, disastrous effects of several different kinds may occur, and this paper outlines how fluid mechanics contributes towards worldwide struggles to reduce the human impact of TC disasters.

  1. NOx reduction in a lignite cyclone furnace

    SciTech Connect

    Melland, C.; O`Connor, D.

    1998-12-31

    Reburning, selective catalytic reduction, and selective noncatalytic reduction techniques have demonstrated some potential for NOx reduction in cyclone boilers. These techniques are costly in terms of both capital and operating costs. Lignite cyclone combustion modeling studies indicated that modifying combustion inside the cyclone barrel could reduce cyclone NOx emissions. The modeling showed that air staging, secondary air basing, flue gas injection and variations in coal moisture content could affect NOx emissions. Short term lignite boiler tests and now longer term boiler operation have confirmed that significant NOx reductions can be accomplished merely by modifying cyclone combustion. The low NOx operation does not appear to significantly impact maintenance, reliability or capacity of the cyclone burner or furnace.

  2. Structure of Developing Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Molinari, J. E.

    2006-12-01

    Considerable progress has been made in the numerical modeling of tropical cyclones. The very high resolution now routinely used in research models allows realistic simulation of eyewall structure and breakdown, vortex Rossby waves, and numerous other processes that were beyond the capability of previous generations of models. At least one aspect of tropical cyclones, however, has not been reproduced in the current generation of models: early development (or lack of development) during tropical depression and early tropical storm stages. During such times, vertical wind shear often plays a critical role. In this presentation, details of the structure of four tropical cyclones at early stages will be given: Claudette (2003), Danny (1997), Gabrielle (2001), and Edouard (2002). The first three contained intense vortices that formed within downshear convection. Deep-layer vertical wind shear ranged from 8-15 m/s in the storms. In Claudette, a hurricane formed that lasted only 6 hours. In Danny and Gabrielle, the downshear vortices became the new storm center. One became a hurricane and one did not. In Edouard, vertical shear was even larger. Convection fluctuated between downshear of the center and over the center, with analogous intensity changes. This behavior is known to forecasters, but the causes of such fluctuations remain uncertain. The evolving structure of these four storms will be shown, with emphasis on the variation of convection, equivalent potential temperature in the lower troposphere, and azimuthal asymmetries of wind and circulation. Contrast will be made between the structure of forming tropical cyclones in nature and those seen in mesoscale numerical models. Some remarks will be given on the key physical processes that must be simulated.

  3. 1998 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1998-01-01

    1998 ANNUAL TROPICAL CYCLONE REPORT Microwave imagery of Typhoon Rex (06W) as it passed through the Bonin Islands, taken at 0800Z on 28 August...System intensity was estimated at 115 KTS. JOINT TYPHOON WARNING CENTER PEARL HARBOR, HAWAII REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188...Stapler, Wendell ; 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME AND ADDRESS Joint Typhoon Warning Center 425

  4. Annual Tropical Cyclone Report, 1983.

    DTIC Science & Technology

    1983-01-01

    used. patterns, mid-latitude steering currents, and The warning position is then obtained by features that may influence tropical cyclone determining the...description of these techniques (2) Determination of the best steering is presented in Chapter IV): level is partly influenced by the maturity and vertical...valid. accompanying forecast track and the influence This plain language message is intended of environmental parameters along that track, to provide

  5. 1990 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    western Pacific Ocean. Its built-in sectorizer allows scale expansion and downloading of electronic files to evaluate the 4 data effectively, and...direction, speed of movement and the influence of the different scales of motions. If the fix data are not available due to reconnaissance platform...into a tropical cyclone as the low-level circulation center moved beneath an area of upper-level divergence. The synoptic scale upper-level anticyclone

  6. Tropical Cyclone Structure and Motion

    DTIC Science & Technology

    2016-06-07

    and P. A. Harr N0001499WR30003 LONG-TERM GOALS To improve tropical cyclone track and intensity prediction through a research program combining high...period. In cases where forecast models did poorly in predicting the motion and re-intensification of the storm during these transitional periods...to the complexity of the modeling system, isolating each physical process in turn. The U.S. Navy’s coupled ocean-atmosphere mesoscale prediction

  7. 1994 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    08 E), was unusual in that it traversed the areas of responsibility of all three US tropical cyclone warning centers — the National Hurricane Center...NHC), the Central Pacific Hurricane Center (CPHC), and the Joint Typhoon Warning Center (JTWC). During its 18-day life, it traveled over 3600 nm (6670...CPHC to Hurricane Li. Peak intensity was 65 kt (33 m/s). The CPHC issued its final warning on Hurricane Li at 12 1800Z as it crossed the

  8. 1997 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1997-01-01

    WARNING CENTER LCOL MARK ANDREWS USAF DIRECTOR * LCDR ERIC J. TREHUBENKO USN TDO, DEPUTY DIRECTOR LCDR KENNETH A. MALMQUIST USN TDO...signature characteristics of the distribution, character and behavior of the tropical cyclones (TCs) of the WNP during 1997 (some known to be related to...possessing an extreme intensity of 160 kt (82 m/sec). Some of these unusual characteristics of the distribution and behavior of the TCs in the western North

  9. Mesoscale Processes In Tropical Cyclones

    DTIC Science & Technology

    2000-09-30

    have shown that invoking the spray parameterizations of Fairall et al (1995) and Andreas and DeCosmo (1999) produce radically different results. In...cyclone intensity. Aust. Meteor. Mag. , 48, 147-152. Leslie, L.M. and Speer , M.S., 1998: Comments on short range ensemble forecasting of explosive...Australian east coast cyclogenesis, Wea. Forec, 12, 1209-1211. Leslie, L.M. and Speer , M.S., 1998: Short range ensemble forecasting of explosive Australian

  10. Promoting the confluence of tropical cyclone research.

    PubMed

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  11. Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2009-09-30

    conclusion cannot be reached for Cyclone Nargis in the Northern Indian Ocean in 2008. Nargis has a two-day period when the NOGAPS and JTWC forecasts...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Tropical Cyclone Wave and Intensity Forecasts Charles...improve guidance for the prediction of waves and intensity associated with tropical cyclones . OBJECTIVES The objectives of this project are to

  12. Lagrangian Vortices in Developing Tropical Cyclones

    DTIC Science & Technology

    2015-06-25

    cyclones B. Rutherford,a* T. J. Dunkertona and M. T. Montgomeryb aNorthwest Research Associates, Redmond, WA, USA bNaval Postgraduate School, Monterey...article has been contributed to by a US Government employee and his work is in the public domain in the USA. Tracking pre-genesis tropical cyclones is...season. All of the Lagrangian coherent structures that can be identified by this field are shown for developing disturbances and mature cyclones . The

  13. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  14. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  15. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    USDA-ARS?s Scientific Manuscript database

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the cut point of cyclones as cyclone diameter varies. The objective of this research was to determine...

  16. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    USDA-ARS?s Scientific Manuscript database

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the performance of cyclones, as cyclone diameter varies. The objective of this research was to determ...

  17. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  18. Idealised simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, Laura; Gray, Suzanne; Clark, Peter

    2010-05-01

    Extratropical cyclones often produce strong surface winds, mostly associated with low-level jets along the warm and cold fronts. Some severe extratropical cyclones have been found to produce an additional area of localised strong, and potentially very damaging, surface winds during a certain part of their development. These strong winds are associated with air that originates within the cloud head, exiting at the tip of the cloud head and descending rapidly from there to the surface. This rapidly descending air associated with the strong surface winds is known as a sting jet. Previous published work on sting jets has been limited to analyses of only a small number of case studies of observed sting jet cyclones, so a study of idealised sting jet cyclones, rather than specific cases, will be useful in determining the important features and mechanisms that lead to sting jets. This work focuses on an idealised simulation of a cyclone with a sting jet using a periodic channel configuration of the idealised nonhydrostatic Met Office Unified Model. The idealised cyclone simulation is based on baroclinic lifecycle simulations run at sufficiently high resolution for a sting jet to be generated. An analysis of the idealised cyclone and a comparison of the idealised cyclone with case studies of observed sting jet cyclones will be presented.

  19. Systems Characterization of Combustor Instabilities With Controls Design Emphasis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    This effort performed test data analysis in order to characterize the general behavior of combustor instabilities with emphasis on controls design. The analysis is performed on data obtained from two configurations of a laboratory combustor rig and from a developmental aero-engine combustor. The study has characterized several dynamic behaviors associated with combustor instabilities. These are: frequency and phase randomness, amplitude modulations, net random phase walks, random noise, exponential growth and intra-harmonic couplings. Finally, the very cause of combustor instabilities was explored and it could be attributed to a more general source-load type impedance interaction that includes the thermo-acoustic coupling. Performing these characterizations on different combustors allows for more accurate identification of the cause of these phenomena and their effect on instability.

  20. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  1. Pollution measurements of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1972-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for an experimental, annular, swirl can combustor. The combustor was 42 inches in diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 600, 900 and 1050 F, inlet pressures of 5 to 6 atmospheres, reference velocities of 69 to 120 feet per second and fuel-air ratios of 0.014 to 0.0695. Tests were also conducted at a simulated engine idle condition. Results demonstrated that swirl can combustors produce oxides of nitrogen levels substantially lower than conventional combustor designs. These reductions are attributed to reduced dwell times resulting from short combustor length, quick mixing of combustion gases with diluent air, and to uniform fuel distributions resulting from the swirl can approach. Radial staging of fuel at idle conditions resulted in increases in combustion efficiencies and corresponding reductions in pollutant levels.

  2. Computational modelling of dump combustors flowfield

    NASA Technical Reports Server (NTRS)

    Lentini, D.; Jones, W. P.

    1991-01-01

    A computational model aimed at predicting the flowfield of dump combustors is presented. The turbulent combustion model is based on the conserved scalar approach and on a convenient specification of its probability density function, which reduces the computation of the mean density to a closed form. Turbulence is modeled by means of the k-epsilon model. The averaged conservation equations are solved by a technique based on a staggered grid and on the SIMPLE solver. The computational model is applied to a simple dump combustor to assess the computer time requirements and accuracy. The turbulent combustion model is shown to reduce the computer time by an order of magnitude when compared to evaluating the mean density by numerical quadrature.

  3. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  4. Low NOx Fuel Flexible Combustor Integration Project Overview

    NASA Technical Reports Server (NTRS)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  5. Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor

    DTIC Science & Technology

    1994-06-01

    contained 12 piloted-air blast fuel nozzles each surrounded by an axial swirler. Design point operating conditions are given in Table I. Figure 2 ...shows the CME combustor predicted airflow distribution at the design point 2 Table I Combustor design conditions. CMC combustor Wa (liner flow...and exits through the slots between the tiles. A 2 -D heat transfer model was used to predict wall temperature as a function of tile side length for

  6. Porous Media Combustors for Clean Gas Turbine Engines

    DTIC Science & Technology

    2007-11-02

    emissions , no cooling requirement for the! combustor itself and the potential to operate free from combustion- induced noise. The reduced combustion...that the combustor operates in a "super-adiabatic" mode, with low emissions . Intrinsic pressure loss is within values, commonly accepted for propulsion...principles for low emissions turbulent flame gas turbine combustors are well established. The preferred strategy remains lean burn, often with staging to

  7. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  8. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  9. Operational Characteristics of an Ultra Compact Combustor

    DTIC Science & Technology

    2014-03-27

    Combustion simulator generated temperature profiles and b) commercial engine combustor temperature profiles [30]. Samuelson [31] describes why...better suited to handle the elevated heat flux. Thus, the desired temperature profile is skewed towards the OD. Samuelson [31] further defines both...backward facing step (Figure 2.30b) delivered the most desirable exit profile per Samuelson [31] and was utilized by 53 Zelina [10]. The downward angled

  10. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart, S.

    2012-01-01

    The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

  11. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  12. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  13. Fuel property effects in stirred combustors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  14. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  15. Micro-grooved heat transfer combustor wall

    NASA Technical Reports Server (NTRS)

    Ward, Steven D. (Inventor)

    1994-01-01

    A gas turbine engine hot section combustor liner is provided a non-film cooled portion of a heat transfer wall having a hot surface and a plurality of longitudinally extending micro-grooves disposed in the portion of the wall along the hot surface in a direction parallel to the direction of the hot gas flow. The depth of the micro-grooves is very small and on the order of magnitude of a predetermined laminar sublayer of a turbulent boundary layer. The micro-grooves are sized so as to inhibit heat transfer from the hot gas flow to the hot surface of the wall while reducing NOx emissions of the combustor relative to an otherwise similar combustor having a liner wall portion including film cooling apertures. In one embodiment the micro-grooves are about 0.001 inches deep and have a preferred depth range of from about 0.001 inches to 0.005 inches and which are square, rectangular, or triangular in cross-section and the micro-grooves are spaced about one width apart.

  16. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  17. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  18. Rapid-quench axially staged combustor

    DOEpatents

    Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George

    1999-01-01

    A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

  19. Controlled pilot oxidizer for a gas turbine combustor

    SciTech Connect

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  20. Predicting Noise From Aircraft Turbine-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  1. Apparatus and method for cooling a combustor cap

    SciTech Connect

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  2. NASA/GE advanced low emissions combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Fear, J. S.

    1987-01-01

    The Advanced Low Emissions Combustor Program consisted of the design and testing of advanced combustor concepts utilizing lean, premixed, prevaporized fuel and variable geometry. The objective was to evaluate the potential of these combustor systems to provide very low pollutant emissions levels, superior performance and high durability relative to contemporary combustor designs. Four full annular combustor concepts were designed and fabricated for a 30:1 pressure ratio high bypass turbofan engine. The four full annular combustors with active variable geometry were tested at pressures up to approximately 0.7 MPa with Jet A fuel. The two most promising concepts were also tested in a high pressure sector combustor test rig capable of operation at the maximum engine pressures. The high pressure sector combustor tests were conducted with Jet A and a fuel with reduced hydrogen content. Results of the sector combustor tests are presented in this paper. The potential for very low emissions with premixed fuel was demonstrated. However, autoignition or flashback within the premixing systems was encountered at high pressures. Further development effort is required to address this problem area.

  3. GPM Rain Rates in Tropical Cyclone Pam

    NASA Image and Video Library

    NASA-JAXA's GPM Satellite Close-up of Cyclone Pam's Rainfall NASA-JAXA's GPM core satellite captured rain rates in Tropical Cyclone Pam at 03:51 UTC (2:51 p.m. local time) on March 14, 2015. Heavie...

  4. Good field practice helps cyclones do job

    SciTech Connect

    White, D.L.

    1982-11-08

    This article examines use of hydrocyclones in mud equipment operations involving desilters, desanders, shale shakers and degassers for unweighted mud. Presents a diagram of ideal equipment placement, a table sizing cyclones considering mud guns, and a graph sizing cyclones to a drilling rig. Suggests checklists for troubleshooting and operation based on hydrocyclone capacity, plugging, head and flow rates, mud weight and viscosity.

  5. Objective identification of cyclones in GCM simulations

    SciTech Connect

    Koenig, W.; Sielmann, F. ); Sausen, R. )

    1993-12-01

    An objective routine for identifying the individual cyclones has been developed. The procedure was designed with the aim to keep the input expenditure low. The method ensures a complete collection of cyclones and an exclusion of short time fluctuations attributed to numerical effects. The cyclones are identified as relative minima of the geopotential height field in 1000 hPa. The initial stages of the cyclones are found by locating relative maxima in the 850-hPa vorticity field. Further on the temporal development of the extrema is taken into consideration. An individual cyclone is regarded only if it exists for at least 24 h and if it attains a mature stage at least once, where a certain margin of the geopotential gradient to the surroundings is exceeded. The identification routine is applied to simulations with the Hamburg general circulation model ECHAM in T21 resolution. Also, cyclone tracks based on ECMWF analyses are evaluated, to which the model results are compared. The effect of different climate conditions, for example, global warming, on cyclone frequency and track location is investigated. It is found that a warmer SST distribution leads to a slight reduction of cyclone frequency in the Southern Hemisphere in fall (March, April, May) and winter (June, July, August); elsewhere the differences are not significant. 25 refs., 9 figs., 1 tab.

  6. Predictability of Sheared Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Tao, D.

    2015-12-01

    Predictability of the formation, rapid intensification and eyewall replacement of sheared tropical cyclones (TCs) are explored through a series of convection-permitting ensemble simulations using the Weather Research and Forecasting (WRF) model with different environmental vertical wind shear, sea-surface temperature (SST), and ambient moisture conditions. It is found that the intrinsic predictability of the RI onset time is more limited with increasing shear magnitude until the shear magnitude is large enough to prevent the TC formation. Based on ensemble sensitivity and correlation analysis, the RI onset timing within one set is largely related to the vortex tilt magnitude, the diabatic heating distribution and the strength of the primary vortex circulation. Systematic differences amongst the ensemble members begin to arise right after the initial burst of moist convection associated with the incipient vortex. This difference from the randomness inherent in moist convection in terms of both location and intensity first changes the TC vortex structure subtly and then leads to the deviations in system scales and eventually in the development (and precession) of the TC. On average, a higher SST has a positive effect on the TC formation and reduces the uncertainty of development under all shear conditions, while a drier environment has a negative impact on the TCs development and either broadens the ensemble spread of RI onset time or prevents the storm from forming when the shear-induced tilt is large. Nevertheless, the uncertainty in environmental shear magnitudes may dominate over the effect of randomness in moist convection in terms of TC formation and predictability. A byproduct of tropical cyclones under vertical wind shear is the secondary eyewall formation (SEF). It is found that the eyewall formation is more often observed in TCs with moderate to high shear, which was inherently more unpredictable. The inward contraction/axisymmeterization of shear

  7. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  8. Reconstruction and use of battery cyclones

    SciTech Connect

    Nazarov, V.D.; Zabrodnii, I.V.; Kolomoiskii, V.G.; Dodik, G.A.; Afanas'ev, O.K.; Gusarov, N.I.; Strakhov, A.B.

    1988-03-01

    The authors discuss a sinter plant where reliable and stable operation of its modernized cyclones has made it possible to improve the performance of the gas-cleaning system as a whole, while increasing the life of the exhauster rotors to one year and improving the performance indices of the sintering machines. The battery cyclones were modernized by replacing the existing elements with consolidated cyclone elements and the elements were provided with four-pipe semihelical swirlers. The elements were made of ordinary steel pipes 530 and 273 mm in diameter. During manufacture and installation of the cyclone elements, special attention was given to the coaxiality of the housings and the outlet pipes of the elements, the hermeticity and density of the welds, the dimensional accuracy of the elements, the perpendicularity of the bearing flange and outlet-pipe axis, and the finish of the inside surfaces of the cyclone elements.

  9. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  10. LCSs in tropical cyclone genesis

    NASA Astrophysics Data System (ADS)

    Rutherford, B.; Montgomery, M. T.

    2011-12-01

    The formation of tropical cyclones in the Atlantic most often occurs at the intersection of the wave trough axis of a westward propagating African easterly wave and the wave critical latitude. Viewed in a moving reference frame with the wave, a cat's eye region of cyclonic recirculation can be seen in streamlines prior to genesis. The cat's eye recirculation region has little strain deformation and its center serves as the focal point for aggregation of convectively generated vertical vorticity. Air inside the cat's eye is repeatedly moistened by convection and is protected from the lateral intrusion of dry air. Since the flow is inherently time-dependent, we contrast the time-dependent structures with Eulerian structures of the wave-relative frame. Time-dependence complicates the kinematic structure of the recirculation region as air masses from the outer environment are allowed to interact with the interior of the cat's eye. LCSs show different boundaries of the cat's eye than the streamlines in the wave-relative frame. These LCSs are particularly important for showing the pathways of air masses that interact with the developing vortex, as moist air promotes development by supporting deep convection, while interaction with dry air impedes development. We primarily use FTLEs to locate the LCSs, and show the role of LCSs in both developing and non-developing storms. In addition, we discuss how the vertical coherence of LCSs is important for resisting the effects of vertical wind shear.

  11. Axisymmetric structure of the long lasting summer Arctic cyclones

    NASA Astrophysics Data System (ADS)

    Aizawa, Takuro; Tanaka, H. L.

    2016-09-01

    Arctic cyclones are unique low pressure systems in the Arctic, which are different from the tropical cyclones and the mid-latitude cyclones. The axisymmetric structures of two major Arctic cyclones which appeared in June 2008 and August 2012 are examined based on the cylindrical coordinate system around the Arctic cyclone. The result demonstrates that the Arctic cyclone has a deep barotropic cyclonic circulation, a secondary circulation in the troposphere, a downdraft at the lower stratosphere, a coupling of a warm core at the lower stratosphere and a cold core in the troposphere, and a deep tropopause folding over the cyclone center. The horizontal scale of the Arctic cyclone reaches 5000 km in diameter which is one of the largest cyclones found on the Earth. Note that the cyclone of June 2008 appears showing axisymmetric cyclonic circulations at the surface level. The cyclone of 2012 is characterized by the structure change from the cold core to the warm core at the lower stratosphere, indicating a shift from the ordinary baroclinic cyclone to the typical Arctic cyclone. Although additional studies are needed, a schematic diagram of the Arctic cyclone is proposed in this study.

  12. Cyclone Center: Using Crowdsourcing to Determine Tropical Cyclone Intensity (Invited)

    NASA Astrophysics Data System (ADS)

    Hennon, C. C.; Knapp, K. R.; Schreck, C. J.; Stevens, S. E.; Kossin, J. P.

    2013-12-01

    The strength of tropical cyclones (TCs) is traditionally determined using the sustained maximum wind speed. Because TCs develop and spend most of their lifetime over tropical oceans, it is rare to directly observe a storm well enough to determine its strength accurately. The Dvorak technique was developed in the 1970s and 1980s to address this problem. By determining a number of cloud and structural characteristics from satellite images, a forecaster could now arrive at a reasonable maximum sustained wind without direct observations. However, the Dvorak technique by nature is subjective and it has been shown that trained experts frequently disagree on storm intensities. Furthermore, the application of the rules and constraints of the process has diverged with time across different forecast centers. This has led in several cases to severe disagreements in storm intensities when two or more forecast centers track the same TC. The accumulation of these differences has caused heterogeneous trends in TC intensity to arise at decadal time scales. A global reanalysis of TC intensity is required to resolve these discrepancies, but such an undertaking is unrealistic. Cyclone Center, an Internet crowd sourcing site for TCs, was created to resolve differences in TC intensities and produce a consistent 32-year (1978-2009) record of it. By using a homogeneous satellite dataset (HURSAT) and adapting the Dvorak technique into a set of three or four simple questions, laypersons perform the actions of the expert. User responses are converted into 3-hourly storm intensities. To capitalize on the crowd sourcing approach, at least 10 different users are shown the same image; this allows critical data such as cloud pattern uncertainties and storm metadata (e.g. eye size, center location, cloud pattern) to be collected. Preliminary analyses show that our citizen scientists many times outperform computer classifications in pattern matching and exhibit low bias and mean error when

  13. Arctic Cyclone Climatology: Present and Future

    NASA Astrophysics Data System (ADS)

    Spengler, T.; Ballinger, A. P.

    2012-04-01

    The Arctic waters and coastal areas have always been prone to severe weather due to high impact cyclone events, such as polar lows or major cold air outbreaks. Here we present a climatology of cyclones obtained with the University of Melbourne cyclone tracking routine. The data used is from a high-resolution model currently under development at GFDL, namely the cubed sphere global model. The model is run with a resolution of 50 km and with a full suite of physical processes in the atmosphere. In a first step the model data and its cyclone climatology for the current climate is compared to the interim reanalysis from the European Centre for Medium Range Weather Forecast (ERA Interim). Cyclone strength, position and tracks are investigated for systematic differences and the capabilities of the model to represent the current cyclone statistics are discussed. In a second step model data for two 10 years slices, 2026-2035 and 2086-2095, are analyzed. Changes in strength, location and tracks of the cyclones compared to the current climatological values are investigated. A comparison of dynamical processes sheds light on the nature of the changes and highlights potential reasons for the identified shifts.

  14. Variable volume combustor with nested fuel manifold system

    SciTech Connect

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  15. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  16. Premixing and flash vaporization in a two-stage combustor

    SciTech Connect

    Sjoblom, B.G.A.

    1982-01-01

    A double recirculation zone two-stage combustor fitted with airblast atomizers has been investigated in a previous work. This paper describes further tests with premixing tubes in the secondary combustion zone. Flash vaporization was employed to ensure complete vaporization of the secondary fuel, which was heated to 600K by the combustor inlet air. 9 refs.

  17. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  18. Numerical Analysis and Optimization of the Ultra Compact Combustor

    DTIC Science & Technology

    2005-03-01

    Armstrong, Jason M, “Effect of Equivalence Ratio on G-Loading on In-situ Mea- surements of Chemiluminescence in an Ultra Compact Combustor,” M.S. thesis...S., “Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-Pass Diffuser,” NASA/TM–2004-212507, Jan 2004. 10. Heywood

  19. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1994-01-01

    To enhance fuel efficiency, future advanced small gas turbine engines will utilize engine cycles calling for overall engine pressure ratios, leading to higher combustor inlet pressures and temperatures. Further, the temperature rise through the combustor and the corresponding exit temperature are also expected to increase. This report describes future combustor technology needs for small gas turbine engines. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is anticipated in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors. Due to combustor size considerations, staged combustion is more easily accommodated in large engines. The inclusion of staged combustion in small engines will pose greater combustor design challenges.

  20. Noise addendum experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Ross, D. A.

    1975-01-01

    The development of advanced CTOL aircraft engines with reduced exhaust emissions is discussed. Combustor noise information provided during the basic emissions program and used to advantage in securing reduced levels of combustion noise is included. Results are presented of internal pressure transducer measurements made during the scheduled emissions test program on ten configurations involving variations of three basic combustor designs.

  1. Preliminary Investigation of Combustion of Diborane in a Turbojet Combustor

    NASA Technical Reports Server (NTRS)

    Kaufman, Warner B; Gibbs, James B; Branstetter, J Robert

    1957-01-01

    Boron and its hydrides offer increased flight range relative to conventional fuels for turbojet engines. Preliminary evaluation has been made of the combustion characteristics and deposition problems resulting from burning diborone in a single, modified J33 combustor. A combustor relatively free of deposits for the limited test conditions has been developed. Three possible methods of alleviating deposits on the turbine blades are reported.

  2. Variable volume combustor with a conical liner support

    DOEpatents

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  3. Variable volume combustor with pre-nozzle fuel injection system

    DOEpatents

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  4. Gas turbine combustor insensitive to compressor outlet distortion

    NASA Technical Reports Server (NTRS)

    Humenik, F.; Norgren, C. T.

    1970-01-01

    Short-length annular combustor for turbojet engines eliminates change of exit temperature profile. Individual scoops of full annular height control air distribution so that shifts in the radial velocity profile of air entering the combustor will not affect combustion process or alter exit temperature profile.

  5. Numerical Simulations of Saturn's Polar Cyclones

    NASA Astrophysics Data System (ADS)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2014-11-01

    Shawn R. Brueshaber, Department of Mechanical Engineering, Western Michigan UniversityKunio M. Sayanagi, Atmospheric and Planetary Sciences, Hampton UniversityCassini mission to Saturn has revealed evidences of a warm core cyclone centered on each of the poles of the planet. The morphology of the clouds in these cyclones resembles that of a terrestrial hurricane. The formation and maintenance mechanisms of these large polar cyclones are yet to be explained. Scott (2011, Astrophys. Geophys. Fluid Dyn) proposed that cyclonic vortices beta-drifting poleward can result in a polar cyclone, and demonstrated that beta-drifting cyclonic vortices can indeed cause accumulation of cyclonic vorticity at the pole using a 1-layer quasi-geostrophic model.The objectives of our project is to test Scott's hypothesis using a 1.5-layer shallow-water model and many-layer primitive equations model. We use the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al. 1998, 2004, Icarus) to perform direct numerical simulations of Saturn's polar atmosphere. To date, our project has focused on modifying the model to construct a polar rectangular model grid in order to avoid the problem of polar singularity associated with the conventional latitude-longitude grids employed in many general circulation models. We present our preliminary simulations, which show beta-drifting cyclones cause a poleward flux of cyclonic vorticity, which is consistent with Scott's results.Our study is partially supported by NASA Outer Planets Research Grant NNX12AR38G and NSF Astronomy and Astrophysics Grant 1212216 to KMS.

  6. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  7. Sensitivities and applications of a cyclone tracking algorithm

    NASA Astrophysics Data System (ADS)

    Pinto, J. G.; Ulbrich, U.; Leckebusch, G. C.; Donat, M.; Nissen, K. M.; Spangehl, T.; Ulbrich, S.; Zacharias, S.

    2009-09-01

    Various sensitivity studies and applications of an algorithm for the detection and tracking of synoptic scale cyclones from mean sea level pressure (MSLP) data are presented. Both Reanalysis and GCM data are used as input. The scheme considers the cyclone intensity (laplacian of pressure) on the first steps of cyclone intensification. The method, originally developed by Murray and Simmonds (1991) for the SH was adapted to NH cyclone characteristics. With an appropriate setting of the relevant parameters, the algorithm is capable of automatically tracking different types of cyclones at the same time: Comparisons with hand analyses based on manual weather charts shows that both fast moving/intensifying systems as well as smaller scale cyclones can be assessed. The resulting climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds, areas of cyclogenesis and decay, gives detailed information on typical cyclone life cycles. Sensitivity studies based on NCEP, ERA40 and GCM data at different resolutions reveal a significant sensitivity of cyclone statistics to the resolution of the input data. Lower spatial and temporal resolutions lead to a reduced number of cyclones. Reducing the temporal resolution alone contributes to a decline in the number of fast moving systems. Lowering spatial resolution alone mainly reduces the number of weak cyclones. Extreme cyclones are selected based on the maximum cyclone intensity (typically the 5% strongest), enabling e.g. a comparison of cyclone characteristics of different intensities. Transient cyclones and explosive developments are selected considering the cyclone displacement and changes of intensity over time. The analysis of the factors contributing to the intensification of cyclones (e.g. baroclinity) as well as the link between the cyclone tracks and the associated wind fields is explored.

  8. Parameters controlling nitric oxide emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Mikus, T.

    1973-01-01

    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It has been found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple model of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formulation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type.

  9. Experimental evaluation of combustor concepts for burning broad property fuels

    NASA Technical Reports Server (NTRS)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  10. Thermal and emission characteristics of a CAN combustor

    NASA Astrophysics Data System (ADS)

    Shah, Rupesh D.; Banerjee, Jyotirmay

    2016-03-01

    Experimental investigations are carried out to establish the thermal and emission characteristics of a CAN combustor. Temperature and emission levels at the combustor exit are measured for different swirler vane angles and air fuel ratios (AFR). Swirler vane angle is varied from 15° to 60° in steps of 15°. AFR is varied in the range of 41-51. Experimental analysis is carried out using methane as fuel. Measured temperature variation at combustor outlet indicates that the hot product of combustor flows near the liner wall. Gradient of temperature near the wall decreases as the swirler vane angle (and corresponding swirl number) is increased. The peak temperature reduces at higher value of AFR. Emission level of carbon monoxide decreases with increase in AFR and swirler vane orientation. A higher level of NOX emission is observed for AFR of 45. This is due to change in shape and strength of the recirculation region in the primary zone of the combustor.

  11. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  12. System and method for reducing combustion dynamics in a combustor

    SciTech Connect

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  13. L-star pulsed coal combustor for residential space heating

    SciTech Connect

    Not Available

    1989-03-01

    This quarter, substantial improvement in the coal carbon conversion was achieved. Specifically, for a scaled-down version of the residential combustor, coal carbon conversions exceeding 97 percent were realized, when utilizing methane as carrier gas for the coal. Design changes include insulation of the combustor, introduction of a flame holder, combustion air preheat and presence of an obstructing plate at the combustor exhaust port. Only the first two changes contributed towards substantial improvement in coal conversion. In addition, monitoring of CH{sub 4} concentration in the exhaust gases gave a real time indication of the combustor performance. Finally, the results of experiments performed in this quarter contributed to design changes that have led to a combustor that has achieved the program goal of > 99 percent conversion of coal carbon. 5 figs., 2 tabs.

  14. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  15. Coal reburning application on a Cyclone boiler

    SciTech Connect

    Maringo, G.J.; Yagiela, A.S.; Newell, R.J.; Farzan, H.

    1994-12-31

    Cyclone reburn involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace of a Cyclone-fired boiler to produce locally reducing conditions which convert NO{sub x}, generated in the main combustion zone, to molecular nitrogen, thereby reducing overall NO{sub x} emissions. The world`s only application of the Cyclone reburn technology using pulverized coal as the reburn fuel was installed at Wisconsin Power & Light`s Nelson Dewey Generating Station, Unit 2. The project was selected for demonstration under the US Department of Energy`s Clean Coal Technology Demonstration Program, Round II.

  16. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  17. Critical Propulsion Components. Volume 2; Combustor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Team. Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  18. COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS

    SciTech Connect

    Mathur, M.P.; Freeman, Mark; Gera, Dinesh

    2001-11-06

    In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

  19. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  20. Pulse Combustor Design, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  1. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally

  2. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  3. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  4. High pressure combustor for generating steam downhole

    SciTech Connect

    Retallick, W.B.

    1983-08-09

    A catalytic combustor for generating a mixture of steam and combustion gas is located downhole in oil well, so that the gas mixture can be injected directly into the oil reservoir to displace heavy oils from the reservoir. There can be a single stage of catalytic combustion, or there can be a stage of thermal combustion followed by a catalytic stage. In either case the purpose of the catalyst is drive the combustion to completion so that the gas mixture contains no soot that would plug the reservoir.

  5. Combustor nozzles in gas turbine engines

    DOEpatents

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  6. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  7. Advanced Catalytic Combustors for Low Pollutant Emissions

    DTIC Science & Technology

    1979-11-01

    414 -. m 0. Nd 9 co1t 1; F .u13u1 iw : H L OC. co 4) 1 w 4.1 0 O P4 w CV) bo m E- rW 44 en cn p ~ c A 4 5-41 H-4 E- E- t 4 56 The above criterio were...Concepts for a Gas Turbine Catalytic Combustor," NASA TM 73755, 1977. 32. Reneau, L.R., Johnston, J.P., and Kline, .J., "Diffuser Design Manual ," 1

  8. Gas turbine annular combustor with radial dilution air injection

    SciTech Connect

    Shekelton, J.R.; Johnson, D.C.

    1991-10-22

    This patent describes a radial flow gas turbine. It comprises: a rotor including turbine blades and a nozzle adjacent the turbine blades, the nozzle being adapted to direct hot gases at the turbine blades to cause rotation of the rotor; an annular combustor about the rotor and having a combustor outlet leading to the nozzle, the annular combustor having spaced inner and outer walls connected by a generally radially extending wall, the annular combustor including a combustion annulus defined by the inner, outer and radially extending walls upstream of the outlet; a dilution air annulus disposed downstream of the combustion annulus and immediately radially outwardly of the nozzle axially adjacent to and immediately downstream of the combustor outlet of the annular combustion; and a housing substantially surrounding the annular combustor in spaced relation to the inner, outer and radially extending walls thereof, the housing and walls together defining at least a portion of a dilution air flow path having a compressed air inlet in communication with a compressor for supplying dilution air at one end thereof, a turbine nozzle shroud and the inner wall defining the remainder of the dilution air flow path, the compressed air outlet injecting dilution air directly across the combustor outlet toward the compressed air inlet, the illusion air being injected into the hot gases at generally a right angle thereto assist hot gases approach the combustor outlet, the compressed air outlet being in communication with the dilution air annulus directly through the combustor outlet of the annular combustor downstream of the combustion annulus.

  9. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    DTIC Science & Technology

    2009-12-01

    flame temperatures, emissions and other characteristics. 6 II. Theory and Previous Research II.1 Standard Gas Turbine Engine Combustor A...losses occur in standard combustors resulting in decreased efficiencies and increased emissions . Combustors create heat and entropy (S) in the...and lowering of the amount of harmful emissions produced. Conventional combustor designs are limited by the fact that combustion reactions require

  10. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  11. Extratropical Cyclone in the Southern Ocean

    NASA Image and Video Library

    2001-11-07

    These images acquired on October 11, 2001 by NASA Terra satellite portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

  12. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  13. Tropical Cyclone Jack in Satellite 3-D

    NASA Image and Video Library

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  14. Human influence on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  15. Tropical Cyclone Yasi Spins Through Australia Interior

    NASA Image and Video Library

    2011-02-04

    The Atmospheric Infrared Sounder AIRS instrument onboard NASA Aqua spacecraft captured this infrared image of Tropical Cyclone Yasi on Feb. 2, 2011 as the storm passed over Australia Great Dividing Range.

  16. GPM Flyby of Tropical Cyclone Uriah

    NASA Image and Video Library

    On Feb. 15, GPM saw rain was falling at a rate of over 127 mm (5 inches) per hour in a band of intense storms south of Tropical Cyclone Uriah's center. Thunderstorms moving around the southwestern ...

  17. TRMM Flyby of Tropical Cyclone Narelle

    NASA Image and Video Library

    This animated, 3-D flyby of Major Cyclone Narelle was created using data on Jan. 11, from NASA's TRMM satellite. Narelle's wind speeds were near 132 mph. A few thunderstorm towers in Narelle's eye ...

  18. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  19. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  20. Interactions between climate and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2007-05-01

    For the last 50 years, there have been two major thrusts in tropical cyclone research: determining the state of the atmosphere and ocean that is suitable for the formation of tropical storms (the genesis criteria) and short-term forecasting of the track and intensity of storms. Efforts to forecast seasonal storm activity, especially in the North Atlantic Ocean, have been undertaken through empirical means and, more recently, using low-resolution climate models. Climate model results have been exceptionally encouraging suggesting that the tropical cyclogenesis factors are predictable and are part of the large scale tropical circulation. During the last few years, a spate of papers has noted the relationship between changes in sea-surface temperature (SST) and tropical cyclone intensity and frequency. A critical issue is determining to what degree the frequency of hurricanes, as well as their intensity distribution, will change in a warming world. We discuss recent research regarding the interactions of the climate system with tropical cyclones, including the role of climate in determining the genesis of tropical cyclones and the role of tropical cyclones in the heat balance of the planet. Specifically: (i) We re-examine the genesis criteria of tropical cyclones and add two new criteria based on the behavior of waves in a flow varying in longitude and the inertial instability of equatorial flow in a cross-equatorial pressure gradient environment. Tropical cyclones are seen to form where the stretching deformation is negative and where large-scale waves transform into tight smaller and highly energetic scale vortices. We also discuss the tendency for storms to develop and intensify where the near-equatorial flow is inertially unstable. (ii) Tropical cyclones act to cool the tropical oceans by > 1K/year by evaporation of ocean surface water and by entrainment mixing with cooler water from below the mixed layer. We suggest that tropical cyclones are important part of

  1. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  2. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  3. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  4. Emission characteristics of a liquid spray sudden expansion combustor using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, Daniel

    A sudden expansion combustor (SUE) is analyzed using computation fluid dynamics (CFD). CO emissions and NOx emissions are computed for various operating conditions of the SUE combustor using a can type and an annular type geometrical configurations. The goal of this thesis is to see if the SUE combustor is a viable alternative to conventional combustors which utilize swirlers. It is found that for the can type combustor the NO x emissions were quite low compared to other combustor types but the CO emissions were fairly high. The annular combustor shows better CO emissions compared to the can type, but the CO emissions are still high compared to other combustors. Emissions can be improved by providing better mixing in the primary combustion zone. The SUE combustor design needs to be further refined in order for it to be a viable alternative to conventional combustors with swirlers.

  5. Low NO.sub.x multistage combustor

    DOEpatents

    Becker, Frederick E.; Breault, Ronald W.; Litka, Anthony F.; McClaine, Andrew W.; Shukla, Kailash

    2000-01-01

    A high efficiency, Vortex Inertial Staged Air (VIStA) combustor provides ultra-low NO.sub.X production of about 20 ppmvd or less with CO emissions of less than 50 ppmvd, both at 3% O.sub.2. Prompt NO.sub.X production is reduced by partially reforming the fuel in a first combustion stage to CO and H.sub.2. This is achieved in the first stage by operating with a fuel rich mixture, and by recirculating partially oxidized combustion products, with control over stoichiometry, recirculation rate and residence time. Thermal NO.sub.X production is reduced in the first stage by reducing the occurrence of high temperature combustion gas regions. This is achieved by providing the first stage burner with a thoroughly pre-mixed fuel/oxidant composition, and by recirculating part of the combustion products to further mix the gases and provide a more uniform temperature in the first stage. In a second stage combustor thermal NO.sub.X production is controlled by inducing a large flow of flue gas recirculation in the second stage combustion zone to minimize the ultimate temperature of the flame. One or both of the first and second stage burners can be cooled to further reduce the combustion temperature and to improve the recirculation efficiency. Both of these factors tend to reduce production of NO.sub.X.

  6. ULTRA-LOW NOX ADVANCED VORTEX COMBUSTOR

    SciTech Connect

    Ryan G. Edmonds; Robert C. Steele; Joseph T. Williams; Douglas L. Straub; Kent H. Casleton; Avtar Bining

    2006-05-01

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  7. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Steele, R.C.; Williams, J.T.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2006-05-01

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  8. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Bowles, Jeffrey V.; Adelman, Henry G.; Cambier, Jean-Luc

    1989-01-01

    A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.

  9. Advanced Combustor in the Four Burner Area

    NASA Image and Video Library

    1966-03-21

    Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.

  10. Computational model of a whole tree combustor

    SciTech Connect

    Bryden, K.M.; Ragland, K.W.

    1993-12-31

    A preliminary computational model has been developed for the whole tree combustor and compared to test results. In the simulation model presented hardwood logs, 15 cm in diameter are burned in a 4 m deep fuel bed. Solid and gas temperature, solid and gas velocity, CO, CO{sub 2}, H{sub 2}O, HC and O{sub 2} profiles are calculated. This deep, fixed bed combustor obtains high energy release rates per unit area due to the high inlet air velocity and extended reaction zone. The lowest portion of the overall bed is an oxidizing region and the remainder of the bed acts as a gasification and drying region. The overfire air region completes the combustion. Approximately 40% of the energy is released in the lower oxidizing region. The wood consumption rate obtained from the computational model is 4,110 kg/m{sup 2}-hr which matches well the consumption rate of 3,770 kg/m{sup 2}-hr observed during the peak test period of the Aurora, MN test. The predicted heat release rate is 16 MW/m{sup 2} (5.0*10{sup 6} Btu/hr-ft{sup 2}).

  11. Investigation of combustion instability in ramjet combustors

    SciTech Connect

    Reuter, D.M.

    1988-01-01

    This research is concerned with investigation of the mechanisms responsible for the driving of longitudinal instabilities in dump-type ramjet combustors. In particular, the coupling between the core flame which is stabilized at the entrance of the combustor and the longitudinal acoustic field was studied. The time-dependent structure of premixed V-shaped flames was experimentally examined using pressure measurements, space- and time-resolved C-H radical radiation measurements, high-speed shadow cine photography, and laser-Doppler velocimetry. The investigation revealed that the acoustic energy to sustain the instability is mainly supplied by the oscillatory heat release from the flame. Based on this finding, a model was developed that is capable of predicting the acoustic pressure spectrum from measured heat-release rates. Furthermore, it was shown that the periodic heat-release rates largely result from periodic changes in the flame surface area caused by acoustically triggered symmetric vortex shedding in the wake of the flame holders. Lastly, experiments were conducted that used this mechanism to show the suppression of instabilities at the fundamental acoustic mode by staggering multiple flames so that the unsteady heat release fields destructively interfere with one another.

  12. Error Reduction Program. [combustor performance evaluation codes

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; Chiappetta, L. M.; Gosman, A. D.

    1985-01-01

    The details of a study to select, incorporate and evaluate the best available finite difference scheme to reduce numerical error in combustor performance evaluation codes are described. The combustor performance computer programs chosen were the two dimensional and three dimensional versions of Pratt & Whitney's TEACH code. The criteria used to select schemes required that the difference equations mirror the properties of the governing differential equation, be more accurate than the current hybrid difference scheme, be stable and economical, be compatible with TEACH codes, use only modest amounts of additional storage, and be relatively simple. The methods of assessment used in the selection process consisted of examination of the difference equation, evaluation of the properties of the coefficient matrix, Taylor series analysis, and performance on model problems. Five schemes from the literature and three schemes developed during the course of the study were evaluated. This effort resulted in the incorporation of a scheme in 3D-TEACH which is usuallly more accurate than the hybrid differencing method and never less accurate.

  13. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  14. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  15. Idealized simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Gray, S. L.; Clark, P. A.

    2012-04-01

    An idealized modeling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localized regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. Two jets exist in the control idealized cyclone that descend into the frontal fracture region and result in strong winds near to the top of the boundary layer; one of these satisfies the criteria for a sting jet, the other is associated with the warm front. Sensitivity experiments show that both these jets are robust features. The sting jet strength (measured by maximum low-level wind speed or descent rate) increases with the cyclone growth rate; growth rate increases with increasing basic-state zonal jet maximum or decreasing basic-state tropospheric static stability. The two cyclones with the weakest basic-state static stability have by far the strongest sting jets, with descent rates comparable to those observed. Evaporative cooling contributes up to 20% of the descent rate in these sting jets compared with up to 4% in the other sting jets. Conditional symmetric instability (CSI) release in the cloud head also contributes to the sting jet, although there is less extensive CSI than in observed cases. The robustness of the sting jets suggests that they could occur frequently in cyclones with frontal fracture; however, they are unlikely to be identified unless momentum transport through the boundary layer leads to strong surface wind gusts.

  16. Next-Generation Tropical Cyclone Model

    DTIC Science & Technology

    2016-06-07

    goal of this project is to develop a robust and hardened high-resolution air -ocean coupled tropical cyclone (TC) data assimilation and prediction...cyclone (TC) model that can analyze, initialize, and predict TC position, structure and intensity, using a high-resolution (< 3 km) air -ocean coupled ...layers in the recent ONR-sponsored Coupled Boundary Layers/ Air Sea Transfer (CBLAST) project. In addition, we will leverage work performed over the past

  17. Tropical Cyclone Formation/Structure/Motion Studies

    DTIC Science & Technology

    2006-09-30

    forecasts of certain physical parameters (e.g., vertical wind shear, mid-level warm core, low-level vorticity). Conditional probabilities defined the...vorticity fields and temperature data derived from polar-orbiting satellites (Vancas 2006). The presence of warm , moist air advected to the east of the...tropical cyclone (Figure 6a) caused the low- level warm anomaly to be shifted east of the tropical cyclone (Figure 6b). The combination of the

  18. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  19. Preliminary investigation of a two-zone swirl flow combustor

    NASA Technical Reports Server (NTRS)

    Biaglow, J. A.; Johnson, S. M.; Smith, J. M.

    1984-01-01

    The effect of full-annular swirling-flow on a flow-zone combustor design is investigated. Swirl flow angles of 25, 35, and 45 degrees were investigated in a combustor design envelope typical of those used in modern engines. The two-zone combustor had 24 pilot-zone fuel injectors and 24 main-fuel injectors located in the centerbody between the pilot and swirl passage. Combustor performance was determined at idle, and two parametric 589 K inlet temperature conditions. Combustor performance was highest with the 45 degree swirl vane design; at the idle condition, combustion efficiency was 99.5 percent. The 45 degree swirl vane also produced the lowest pattern factor of the three angles and showed a combustor lean blowout limit below a 0.001 fuel-air ratio. Combustor total pressure drop varied from a low of 4.6 percent for the 25 degree swirl to a high of 4.9 percent for the 45 degree swirl.

  20. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1993-01-01

    Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.

  1. Applications of a cyclone detection and tracking algorithm

    NASA Astrophysics Data System (ADS)

    Pinto, J. G.; Ulbrich, U.; Leckebusch, G. C.; Spangehl, T.; Ulbrich, S.; Zacharias, S.

    2009-04-01

    Various sensitivity studies and applications of an algorithm for the detection and tracking of synoptic scale cyclones from mean sea level pressure data are presented. Both Reanalysis and GCM data are used as input. The scheme considers the cyclone intensity (laplacian of pressure) on the first steps of cyclone intensification. The method, originally developed by Murray and Simmonds (1991) for the SH, was also adapted to NH conditions. With an appropriate setting of the relevant parameters, the algorithm is capable of automatically tracking different types of cyclones at the same time: Comparisons with hand analyses based on manual weather charts shows that both fast moving/intensifying systems as well as smaller scale cyclones (e.g. Mediterranean) can be assessed. A significant sensitivity is found to the spatial and temporal resolution of the input data. The resulting climatology of cyclone variables, e.g., cyclone track density, cyclone counts, intensification rates, propagation speeds, areas of cyclogenesis and cyclolysis, gives detailed information on typical cyclone life cycles. Extreme cyclones are selected based on the maximum cyclone intensity (typically the 5% strongest based on the value of the laplacian of pressure), enabling e.g. a comparison of cyclone characteristics of different intensities. Transient cyclones and explosive developments are selected considering the cyclone displacement and changes of intensity over time. The analysis of the factors contributing to the intensification of cyclones (e.g. jet stream, baroclinity, latent heat) as well as the link between the cyclone tracks and the associated wind and precipitation fields, are explored. Examples of assessment studies on the impact of climate change on the different aspects of cyclone activity (e.g. number, core depth, intensity, typical paths, life-time statistics) based on transient historical and future scenario simulations with coupled AO-GCMs are presented. Special focus is given to

  2. Ramjet-Mode Operation in a Combined Cycle Engine Combustor

    NASA Astrophysics Data System (ADS)

    Kato, Kanenori; Kudo, Kenji; Murakami, Atsuo; Tani, Kouichiro; Kanda, Takeshi

    A rocket-ramjet combined-cycle engine was tested in ramjet-mode. The combustor model had two rockets in the combustor section. They were used as an igniter in this operation mode. In the preliminary tests, the downstream combustion ramjet-mode was demonstrated with a 1.4-degree of divergent duct condition. In this study, the upstream and downstream combustion ramjet-mode operations were applied to the combined cycle engine model with large angle of divergent duct condition. In the case of upstream combustion ramjet-mode, the combustion condition at the exit of the combustor showed high combustion efficiency.

  3. YF 102 in-duct combustor noise measurement, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, C. A.

    1977-01-01

    The combustion chamber from a YF 102 gas turbine engine was instrumented with semi-infinite acoustic wave guide probes and installed in a test rig to complement the combustor noise test. These combustor rig tests are described and the recorded data are listed. Internal dynamic pressure level measurements were made at the same locations and at the same operating conditions of the NASA YF 102 test. In addition, the combustor was operated at various off-designed points where one parameter at a time was varied. Background noise recordings were made to determine the magnitude of facility or test rig noise present.

  4. Systems and methods for detection of blowout precursors in combustors

    DOEpatents

    Lieuwen, Tim C.; Nair, Suraj

    2006-08-15

    The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.

  5. Achieving improved cycle efficiency via pressure gain combustors

    SciTech Connect

    Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S.; Rogers, W.A.

    1995-04-01

    As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

  6. Process for Operating a Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  7. Small gas-turbine combustor study: Fuel injector evaluation

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation of fuel injection technique and effect of fuel type on small gas turbine combustors was undertaken. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine the effect of fuel type.

  8. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  9. Cyclone Simulation via Action Minimization

    NASA Astrophysics Data System (ADS)

    Plotkin, D. A.; Weare, J.; Abbot, D. S.

    2016-12-01

    A postulated impact of climate change is an increase in intensity of tropical cyclones (TCs). This hypothesized effect results from the fact that TCs are powered subsaturated boundary layer air picking up water vapor from the surface ocean as it flows inwards towards the eye. This water vapor serves as the energy input for TCs, which can be idealized as heat engines. The inflowing air has a nearly identical temperature as the surface ocean; therefore, warming of the surface leads to a warmer atmospheric boundary layer. By the Clausius-Clapeyron relationship, warmer boundary layer air can hold more water vapor and thus results in more energetic storms. Changes in TC intensity are difficult to predict due to the presence of fine structures (e.g. convective structures and rainbands) with length scales of less than 1 km, while general circulation models (GCMs) generally have horizontal resolutions of tens of kilometers. The models are therefore unable to capture these features, which are critical to accurately simulating cyclone structure and intensity. Further, strong TCs are rare events, meaning that long multi-decadal simulations are necessary to generate meaningful statistics about intense TC activity. This adds to the computational expense, making it yet more difficult to generate accurate statistics about long-term changes in TC intensity due to global warming via direct simulation. We take an alternative approach, applying action minimization techniques developed in molecular dynamics to the WRF weather/climate model. We construct artificial model trajectories that lead from quiescent (TC-free) states to TC states, then minimize the deviation of these trajectories from true model dynamics. We can thus create Monte Carlo model ensembles that are biased towards cyclogenesis, which reduces computational expense by limiting time spent in non-TC states. This allows for: 1) selective interrogation of model states with TCs; 2) finding the likeliest paths for

  10. The Morphology of Cyclonic Windstorms

    NASA Astrophysics Data System (ADS)

    Hewson, Tim

    2015-04-01

    The aim of this study is to help facilitate the correct interpretation and use of model analyses and predictions of windstorms in the extra-tropics, and to show that 'storm detection' does not just depend on the efficacy of the identification/tracking algorithm. Under the auspices of the IMILAST (Intercomparison of MId-LAtitude STorm diagnostics) project, 29 damaging European cyclonic windstorms have been studied in detail, using observational evidence as the main tool. Accordingly a conceptual model of windstorm evolution has been constructed. This usefully has its roots in the evolution one sees on standard synoptic charts, and highlights that three types of damage footprint can be associated. Building on previous work these are referred to as the warm jet, the sting jet and the cold jet footprints. The jet phenomena themselves each relate to the proximity of fronts on the synoptic charts, and accordingly occur in airmasses with different stability characteristics. These characteristics seem to play a large role in determining the magnitude of surface gusts, and how those gusts vary between coastal and inland sites. These aspects will be discussed with examples, showing that one cannot simply characterise or rank cyclones using wind strength on a lower tropospheric level such as 850hPa. A key finding that sets the sting jet apart, and that makes it a particularly dangerous phenomena, is that gust magnitude is relatively unaffected by passage inland, and this seems to relate to the atmosphere in its environment being destabilised from above. For sting jets wind strength may be greatest below 850hPa. Unfortunately neither current generation global re-analyses, nor global climate models seem to be able to simulate sting jets. This is for various reasons, though their low resolution is key. This limitation has been recognised previously, and the standard way to address this has been to use a re-calibration technique. The potential pitfalls of this approach will be

  11. Cyclonic Vortices in Polar Airmasses

    NASA Astrophysics Data System (ADS)

    Businger, Steven

    Cyclonic vortices in polar airmasses are investigated to determine their storm-scale and mesoscale structures and the nature of the environments conducive to their formation. Case studies of polar low outbreaks show that the environments conducive to the development of strong polar lows include deep outflow of arctic air over open water and a broad closed-low aloft. Once favorable environmental conditions for the formation of polar lows have developed, several storms may form in close proximity to each other during a relatively short time interval. Furthermore, these conditions may persist for several days. To develope a climatology of the synoptic environments conducive to the formation of polar lows, NMC gridded data were composited. The results reveal the presence of significant negative anomalies in the temperature and height fields at the 500 mb level on the days when mature polar lows were present, indicating the presence of strong positive vorticity and low static stability over the area. Aircraft observations made during the 1984 FOX field study indicate that convection in an incipient comma cloud was organized into distinct rainbands ((TURN)50 km wavelength), with tops extending to the tropopause. Equivalent -potential vorticity, computed from cross sections of the dropwindsonde data, showed that the region in which the convective activity was embedded was unstable to moist -symmetric overturnings. As the comma cloud approached a pre-existing polar front, a wave cyclone rapidly developed on the front. Surface data showed unexpectedly strong winds and heavy rain squalls when the comma cloud passed Juneau. Comprehensive data sets were collected in two comma cloud systems during CYCLES. Rainbands, with a wavelength of (TURN)50 km, were present in both comma-cloud systems. Precipitation cores, produced by embedded convection within the rainbands contained updraft speeds of (TURN)1-2 m s('-1) and relatively high liquid water counts; they retained their

  12. NASA CYGNSS Tropical Cyclone Mission

    NASA Astrophysics Data System (ADS)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  13. Advanced Low Emissions Subsonic Combustor Study

    NASA Technical Reports Server (NTRS)

    Smith, Reid

    1998-01-01

    Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to

  14. Induction time effects in pulse combustors

    SciTech Connect

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  15. Experience with different cyclones in CFBs

    SciTech Connect

    Alliston, M.G.; Brink, K.E.; Kokko, A.

    1998-07-01

    Kvaerner Pulping has been designing, manufacturing and delivering different kinds of CFB boilers since the beginning of the 1980s. This paper gives a historical overview of these first generation CFBs and especially operational experience with them. Due to some specific problems in these first generation CFBs, described in this paper, Kvaerner Pulping was among the pioneers in CFB construction development and was probably the first company to deliver a totally water-cooled CFB construction that also included the cyclone. The goal in construction development has been to improve the reliability of the CFB boiler and at the same time minimizing the required service time. Kvaerner's continuous CFB development has created several constructions with different appearances for different applications. The basic development work has been done on the conventional cyclone type and this it is still the most common cyclone type used in all sizes of applications. CYMIC boiler, and especially its cyclone, is one of the new designs. It is also a totally water-cooled construction and it has some additional benefits which are mainly correlated with the space requirements of boiler placement and simple cyclone construction. CYMIC is very suitable for industrial applications and for cases where utilizes existing boiler houses or parts of them are being utilized. For the increased CFB boiler sizes Kvaerner has developed the ICCL (Integral Cylindrical Cyclone and Loop-seal). Again the installation is totally water-cooled and additional benefits are related to the straight cyclone construction, water-cooled vortex finder the ability to locate a significant proportion of heat surfaces in the loopseal. All the constructional features mentioned above are described in detail in this paper. This present paper gives some idea of how these installations have coped in practice and what aspects need to be developed further.

  16. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    SciTech Connect

    Huff, R.G.

    1984-10-01

    The paper examines the measurement of noise from turbofan engines. Conclusions: (1) at idle engine speed no reflections from the turbine or combustor inlet occur; the infinite tube theory applies and yields excellent agreement with the data. (2) Above engine idle conditions, reflections from the turbine and combustor inlets occur and reasonable agreement between theory and narrowband combustor pressure spectra was found using a reflection factor of about 0.35 and a phase angle of 1.57 radians. (3) Spectrum shape is independent of measurement location at low frequencies but not at high ones.

  17. Tracking Southern Hemisphere extratropical cyclones using different algorithms

    NASA Astrophysics Data System (ADS)

    Tilinina, Natalia; Rudeva, Irina; Gulev, Sergey; Simmonds, Ian; Keay, Kevin

    2010-05-01

    We attempt to estimate strengths and weaknesses of the two cyclone tracking algorithms - of the University of Melbourne (UM) and of IORAS (SAIL). The UM scheme is using geostrophic vorticity for tracking cyclones and SAIL tracking is based on sea level pressure. Furthermore, there are many other conceptual differences in the algorithm performance. The SAIL scheme was applied to the NCEP-NCAR reanalysis output for the Southern Hemisphere (1948-2009), the period of intercomparison with the results based on UM scheme was 1990-1999. During time period 1990-1999 the UM scheme identifies 45% more cyclones than the SAIL scheme. The UM tracking output consists of all cyclones which are found by the SAIL scheme and also many short-living vortices, which do not have their imprints in the pressure fields. Many of these vortices are not characterized by the minimum central pressure and the closed isobar - the two major characteristics of cyclone - and require the extension of cyclone definition to be considered as cyclones. Spatial distribution of cyclone counts over Southern Hemisphere clearly shows the two main storm tracks: the Southern (close to the Antarctic) represented by deep and moderate cyclones with minimum central pressure typically lower than 965 hPa and the Northern track primarily associated with the shallow cyclones (central pressure is typically higher than 980hPa). Using the time series of the number of cyclones derived from the SAIL tracking we estimated linear trends in the cyclones counts. The number of deep cyclones (<960 hPa) growths during 1948-2009 by 0,8 cyclones per year, while the number of shallow cyclones (>980 hPa) decreases by 1,3 cyclones per year. Changes in a number of deep cyclones are significantly correlated with the Southern Oscillation Index (e.g. 0,57 in the autumn).

  18. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of

  19. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  20. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  1. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  2. CFD Code Development for Combustor Flows

    NASA Technical Reports Server (NTRS)

    Norris, Andrew

    2003-01-01

    During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.

  3. Numerical Analysis of the SCHOLAR Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Rodriguez, Carlos G.; Cutler, Andrew D.

    2003-01-01

    The SCHOLAR scramjet experiment is the subject of an ongoing numerical investigation. The facility nozzle and combustor were solved separate and sequentially, with the exit conditions of the former used as inlet conditions for the latter. A baseline configuration for the numerical model was compared with the available experimental data. It was found that ignition-delay was underpredicted and fuel-plume penetration overpredicted, while the pressure rise was close to experimental values. In addition, grid-convergence by means of grid-sequencing could not be established. The effects of the different turbulence parameters were quantified. It was found that it was not possible to simultaneously predict the three main parameters of this flow: pressure-rise, ignition-delay, and fuel-plume penetration.

  4. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  5. Mercury emissions from municipal solid waste combustors

    SciTech Connect

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  6. Small gas-turbine combustor study - Fuel injector evaluation

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation was undertaken to determine the effect of fuel injection technique and fuel type on similar improvements for small gas-turbine combustors. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse-flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine and compare effects of burning different types of fuels in a small experimental gas turbine combustor.

  7. Method for operating a combustor in a fuel cell system

    DOEpatents

    Chalfant, Robert W.; Clingerman, Bruce J.

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  8. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  9. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  10. A clean coal combustion technology-slagging combustors

    SciTech Connect

    Chang, S. L.; Berry, G. F.

    1989-03-01

    Slagging combustion is an advanced clean coal technology technique characterized by low NOx and SOx emission, high combustion efficiency, high ash removal, simple design and compact size. The design of slagging combustors has operational flexibility for a wide range of applications, including retrofitting boilers, magnetohydrodynamic combustors, coal-fired gas turbines, gasifiers and hazardous waste incinerators. In recent years, developers of slagging combustors have achieved encouraging progress toward the commercialization of this technology. Although there is a diversity of technical approaches among the developers, they all aim for a compact design of pulverized coal combustion with high heat release and sub-stoichiometric combustion regimes of operation to suppress NOx formation, and most aim to capture sulfur by using sorbent injection in the combustor. If the present pace toward commercialization continues, retrofitting boilers of sizes ranging from 20 to 250 MMBtu/hr (5.9 to 73 MWt) may be available for commercial use in the 1990's. 18 refs., 2 figs.

  11. Combustor materials requirements and status of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Hecht, Ralph J.; Johnson, Andrew M.

    1992-01-01

    The HSCT combustor will be required to operate with either extremely rich or lean fuel/air ratios to reduce NO(x) emission. NASA High Speed Research (HSR) sponsored programs at Pratt & Whitney (P&W) and GE Aircraft Engines (GEAE) have been studying rich and lean burn combustor design approaches which are capable of achieving the aggressive HSCT NO(x) emission goals. In both of the combustor design approaches under study, high temperature (2400-3000 F) materials are necessary to meet the HSCT emission goals of 3-8 gm/kg. Currently available materials will not meet the projected requirements for the HSCT combustor. The development of new materials is an enabling technology for the successful introduction to service of the HSCT.

  12. Variable volume combustor with an air bypass system

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  13. Flame Driving of Longitudinal Instabilities in Liquid Fueled Dump Combustors

    DTIC Science & Technology

    1988-10-01

    instabilities These instabilities are characterized by either low frequency (i.e., rumble) or high frequency (i.e., screech ) pressure and velocity...in Lhe combusTor . In contrast, the high frequency screech occurs when one of the tangential acoustic modes of the combustor is excited (e.g., see...result in excessive vibrational loads on the system. On the other hand screech type instabilities result in an increase in heat transfer rates to

  14. Combustion Control in Industrial Multi-Swirl Stabilized Spray Combustor

    DTIC Science & Technology

    2005-08-21

    driven mechanism for thermo-acoustic combustion dynamics can be categorized into two groups according to Mongia et al. (2003). First category, which...CONTRACT NUMBER Combustion Control in Industrial Multi-Swirl Stabilized Spray Combustor 02PR12898-01 5b. GRANT NUMBER N00014-02-1-0756 5c. PROGRAM ELEMENT...ABSTRACT The focus of this study is to investigate the emission characteristics and combustion dynamics of multiple swirl spray combustors either in

  15. Analysis of Flow Migration in an Ultra-Compact Combustor

    DTIC Science & Technology

    2011-03-01

    into the high- pressure tur- bine rotor while presenting a uniform temperature across the turbine blades. Several numerical parameter studies have been... pressure losses through the combustor section. As a result of these investigations a 0.75m diameter UCC combustor design has been developed along with a...hybrid turning vane which replaces the last compressor vane and high- pressure turbine vane. Furthermore, the issue of cooling the hybrid vane in the

  16. Cyclone reduction of taconite. Final report

    SciTech Connect

    Taylor, P.R.; Bartlett, R.W.; Abdel-latif, M.A.; Hou, X.; Kumar, P.

    1995-05-01

    A cyclone reactor system for the partial reduction and melting of taconite concentrate fines has been engineered, designed and operated. A non-transferred arc plasma torch was employed as a heat source. Taconite fines, carbon monoxide, and carbon dioxide were fed axially into the reactor, while the plasma gas was introduced tangentially into the cyclone. The average reactor temperature was maintained at above 1400{degrees}C, and reduction experiments were performed under various conditions. The influence of the following parameters on the reduction of taconite was investigated experimentally; carbon monoxide to carbon dioxide inlet feed ratio, carbon monoxide inlet partial pressure, and average reactor temperature. The interactions of the graphite lining with carbon dioxide and taconite were also studied. An attempt was made to characterize the flow behavior of the molten product within the cyclone. The results suggest that the system may approach a plug flow reactor, with little back mixing. Finally, a fundamental mathematical model was developed. The model describes the flow dynamics of gases and solid particles in a cyclone reactor, energy exchange, mass transfer, and the chemical kinetics associated with cyclone smelting of taconite concentrate fines. The influence of the various parameters on the reduction and melting of taconite particles was evaluated theoretically.

  17. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  18. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Tokay, A.; Bashor, P. G.; Habib, E.; Kasparis, T. C.

    2006-12-01

    Measurements of the raindrop size distribution (RSD) have been collected in tropical cyclones and hurricanes with an impact type disdrometer during the past three Atlantic hurricane seasons. The measurements were taken at Wallops Island, Virginia, Lafayette, Louisiana, and Orlando, Florida. The RSDs from the remnants of tropical cyclones or hurricanes at 40 dBZ agreed well with each other where the mean mass diameter was 1.65-1.7 mm, and the total concentration had a range of 600 to 800 drops/m3. Assuming the normalized gamma size distribution, the shape parameter will be 5-8 to satisfy the observed rain rate of 18-20 mm/hr. If the observations were taken during the extratropical phase of the storm where the tropical cyclone merges with a frontal system, the composite spectra at 40 dBZ include more large drops and less small to mid-size drops, typical for continental thunderstorms. Thus, the mean mass diameter was larger, while total concentration, and rain rate was less in extratropical cyclones than in tropical cyclones.

  19. Dust cyclone technology for gins – A literature review

    USDA-ARS?s Scientific Manuscript database

    Dust cyclone research leading to more efficient designs has helped the cotton ginning industry to comply with increasingly stringent air quality regulations governing fine particulate emissions. Future changes in regulations may require additional improvements in dust cyclone efficacy. This inter-...

  20. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  1. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  2. Pollution technology program, can-annular combustor engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  3. Characterization of supersonic mixing in a nonreacting Mach 2 combustor

    SciTech Connect

    Hollo, S.D.; Mcdaniel, J.C.; Hartfield, R.J., JR. )

    1992-01-01

    Planar measurements of the injection mole fraction distribution and the velocity field within a nonreacting model SCRAMJET combustor have been made using laser-induced iodine fluorescence. The combustor geometry investigated in this work is staged transverse injection of air into a Mach 2 freestream. A complete three-dimensional survey of the injectant mole fraction distribution has been generated and a single planar velocity measurement has been completed. The measurements reveal the dramatic effect of streamwise vortices on the mixing of the injectant in the near field of the injectors, as well as the rapid mixing generated by staging two field injectors. Analysis of the downstream decay of the maximum injectant mole fraction in this and other nonreacting combustor geometries indicates that the relative rate of injectant mixing well downstream of the injectors is independent of combustor geometry, combustor Mach number, and injectant molecular weight. Mixing within this region of the combustor is dominated by turbulent diffusion within the injectant plume. The transition of the dominant mixing mechanism, from vortex-driven mixing in the near field to turbulent diffusion in the far field, was found to occur in the region between 10 and 20 jet diameters downstream of the injectors. 22 refs.

  4. Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2003-01-01

    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.

  5. Simulated Altitude Performance of Combustors for the Westinghouse 24C Jet Engine I-24C-2 Combustor

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J.; Bernardo, Everett; Schroeter, Thomas T.

    1948-01-01

    A Westinghouse 24C-2 combustor was investigated at conditions simulating operation of the 24C Jet engine at zero ram over ranges of altitude and engine speed. The investigation was conducted to determine the altitude operational limits, that is, the maximum altitude for various engine speeds at which an average combustor-outlet gas temperature sufficient for operation of the jet engine could be obtained. Information was also obtained regarding the character of the flames, the combustion efficiency, the combustor-outlet gas temperature and velocity distributions, the extent of afterburning, the flow characteristics of the fuel manifolds, the combustor inlet-to-outlet total-pressure drop, and the durability of the combustor basket. The results of the investigation indicated that the altitude operational limits for zero ram decreased from 12,000 feet at an engine speed of 4000 rpm to a minimum of 9000 feet at 6000 rpm, and thence increased to 49,000 feet at 12,000 rpm.. At altitudes below the operational limits, flames were essentially steady, but, at altitudes above the operational limits, flames were often cycling and either blew out or caused violent explosions and vibrations. At conditions on the altitude operational limits the type of combustion varied from steady to cycling with increasing fuel-air ratio and the reverse occurred with decreasing fuel-air ratio. In the region of operation investigated, the combustion efficiency ranged from 75 to 95 percent at altitudes below the operational limits and dropped to 55 percent or less at some altitudes above the operational limits. The deviations in the local combustor-outlet gas temperatures were within +20 to -30 percent of the mean combustor temperature rise for inlet-air temperatures at the low end of the range investigated, but became more uneven (up to +/-100 percent) with increasing inlet-air temperatures. The distribution of the combustor-outlet gas velocity followed a similar trend. Practically no

  6. The tropical cyclone diurnal cycle

    NASA Astrophysics Data System (ADS)

    Dunion, Jason P.

    The research presented in this thesis explores a phenomenon referred to as the tropical cyclone (TC) diurnal cycle (TCDC) and presents satellite, numerical modeling, and observational perspectives pertaining to how it can be monitored, its evolution in time and space, its relevance to TC structure and intensity, and how it manifests in numerical simulations of TCs. Infrared satellite imagery was developed and used to investigate diurnal oscillations in TCs and finds a diurnal pulsing pattern that occurs with notable regularity through a relatively deep layer from the inner core to the surrounding environment. A combination of satellite, numerical model simulations, and aircraft observations found diurnal signals in operationally analyzed radii of 50 kt winds in TCs and in satellite intensity estimates from the Advanced Dvorak Technique and spawned the development of a 24-hr conceptual clock that approximates the temporal and spatial evolution of the TCDC each day. TC diurnal pulses are revealed to significantly impact the thermodynamics and winds in the TC environment and appear as narrow, convectively active rings of high radar reflectivity in NOAA aircraft radar data and are hundreds of kilometers in length. Enhanced nighttime radiational cooling that is particularly favored in the TC outflow layer acts to pre-condition the TC environment in a way that favors triggering of the TCDC and TC diurnal pulses, while in the daytime, the stabilizing effects of shortwave warming begins to suppress TCDC processes in the storm, leading to the culmination of the TCDC each day. Schematics are presented that summarize many of the main findings in this work, including descriptions of the basic state of the TC environment as the TCDC evolves during its early and later stages each day and a TCDC-centric daytime evolution of a TC diurnal pulse, associated squall lines and gust fronts, and radial and vertical winds in the lower and upper levels of the storm. The TCDC represents a

  7. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  8. Cyclone contribution to the Mediterranean Sea water budget

    NASA Astrophysics Data System (ADS)

    Flaounas, E.; Di Luca, A.; Drobinski, P.; Mailler, S.; Arsouze, T.; Bastin, S.; Beranger, K.; Lebeaupin Brossier, C.

    2016-02-01

    This paper analyzes the impact of cyclones to the atmospheric components on the Mediterranean Sea Water Budget, namely the cyclones contribution to precipitation and evaporation over the Mediterranean Sea. Three regional simulations were performed with the WRF model for the period 1989-2008. The model was run (1) as a standalone model, (2) coupled with the oceanic model NEMO-MED12 and (3) forced by the smoothed Sea Surface Temperature (SST) fields from the second simulation. Cyclones were tracked in all simulations, and their contribution to the total rainfall and evaporation was quantified. Results show that cyclones are mainly associated with extreme precipitation, representing more than 50 % of the annual rainfall over the Mediterranean Sea. On the other hand, we found that cyclone-induced evaporation represents only a small fraction of the annual total, except in winter, when the most intense Mediterranean cyclones take place. Despite the significant contribution of cyclones to rainfall, our results show that there is a balance between cyclone-induced rainfall and evaporation, suggesting a weak net impact of cyclones on the Mediterranean Sea water budget. The sensitivity of our results with respect to rapid SST changes during the development of cyclones was also investigated. Both rainfall and evaporation are affected in correlation with the SST response to the atmosphere. In fact, air feedbacks to the Mediterranean Sea during the cyclones occurrence were shown to cool down the SST and consequently to reduce rainfall and evaporation at the proximity of cyclone centers.

  9. Design of Stairmand-type sampling cyclones

    SciTech Connect

    Moore, M.E.; McFarland, A.R. )

    1990-03-01

    An empirical, nondimensional correlation of cut-point Stokes number (Stk0.5) and flow Reynolds number (Re) has been established for small Stairmand-type sampling cyclones. Four cyclones with body diameters of 38, 57, 89, and 140 mm were constructed and tested with monodisperse aerosols over a range of flow rates. The flow rates were chosen to provide preselected increments of particle Froude numbers. These flow rates for the four cyclones spanned the range of 9.4 to 1080 L/min and provided Froude numbers of 1.5, 2.0, 2.5, and 6.0. The resulting Reynolds numbers (based upon cyclone body diameter and inlet flow rate) covered the range of 2.1 x 10(3) to 6.4 x 10(4). Sizes of monodisperse aerosols used in this study were from 3.0- to 17.4-microns aerodynamic diameter. The graphical correlation between cut-point Stokes number and Reynolds number showed there to be no effect of Froude number (for the range of Froude numbers tested). The data have been fit by a least squares procedure to a quadratic logarithmic function. In addition to development of the empirical correlation, the results of this study also provide data pertinent to the regional deposition of liquid particles within the cyclone and to the transmission of solid particles through the cyclone. The carryover of solid, 19-microns diameter particles is only 0.5% greater than that of liquid particles of the same size.

  10. Tropical Cyclones Affecting Guam (1671-1980).

    DTIC Science & Technology

    1983-09-01

    with at least 34 knot maximum winds and one developing tropical cyclone - Irma , Judy, Kit, Ora and Tropical Depression 31 (later known as Nina) - all...cyclones passed within 120 nm of Agana. 23 A o . ° . ’ . . . - . . . . . . . In all cases except Karen (November 1962), Irma (February 1953) and Vernon...AMY MAY 1971 9.92 Taguac SSW 90 T.S. IDA OCT 1969 9.38 Taguac NNE 90 T.S. IRMA FEB 1953 7.88 Andersen AFB S 90 T.D. POLLY AUG 1971 7.81 Taguac NNE 85

  11. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOEpatents

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  12. Effect of Combustor-Inlet Conditions on Performance of an Annular Turbojet Combustor

    DTIC Science & Technology

    1947-03-21

    phenomena that apply to a largt class of turbojet combustors. In-formation was ob~ained on tfLe combustion efficiencies, ~he f-fed on combustion of inlet...feet or more below the operational limits. .4.s the simulded altitude was pvgressirely increased, the combustion eficieriq and the obtainable...w-able C]LiZnges in co)izbustor pe~formance were a~ JO11OUW:(1)Resonant combust - ion appeared and became increa~ingly serere; (2) the corabus- tiori

  13. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  14. A modified algorithm for identifying and tracking extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Lu, Chuhan

    2017-07-01

    In this study, a modified identification and tracking algorithm for extratropical cyclones is developed. This identification scheme is based on triangular-mesh contouring techniques combined with a connected-component labeling method in order to detect the outer boundaries and spatial domain characteristics of individual cyclones. A new tracking method allowing for the identification of cyclone merging and splitting events, as well as short-lived windstorms, is developed to reduce the uncertainty in the tracking of extratropical cyclones. I also show that this method excludes the tracks of open systems that would have been unnecessarily detected using conventional NCP methods. The climatological features of the distribution of cyclone frequencies are substantially larger over the traditional storm track regions compared to those seen in previous studies. Interestingly, a significant increase in the cyclone density in the Arctic occurs during all four seasons (up to 19% in summer) compared to that seen with a latitude-longitude gridded mesh analysis. I develop two new regional intensity indices (depth and vorticity) based on the cyclonic domain to better quantify the cyclonic activity in the Arctic region, and find that the interannual variabilities in these two indices are highly consistent. The results of this analysis may shed light on high-latitude cyclonic behavior studies via the newly detected 2D cyclone atlas derived from this cyclonic-domain-based algorithm.

  15. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  16. Low NO.sub.x combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor includes a dome assembly having radially outer and inner liners joined thereto and defining therebetween a combustion zone. The dome assembly includes at least one annular dome having a pair of axially extending first flanges between which are disposed a plurality of circumferentially spaced apart carburetors for discharging a fuel/air mixture into the combustion zone for generating combustion gases. An annular heat shield includes a pair of axially extending legs integrally joined to a radially extending face in a generally U-shaped configuration, with the face including a plurality of circumferentially spaced apart ports disposed concentrically with perspective ones of the carburetors for allowing the fuel/air mixture to be discharged therefrom through the heat shield. At least one of the heat shield legs includes a plurality of circumferentially spaced apart mounting holes disposed adjacent to a respective one of the dome flanges, and a plurality of mounting pins are fixedly joined to the dome flange and extend radially through respective ones of the mounting holes without interference therewith for allowing unrestrained thermal movement between the heat shield and the dome while supporting the heat shield against axial pressure loads thereon. In a preferred embodiment, the dome assembly includes three domes having respective ones of the heat shield, and respective baffles are spaced from the heat shields for providing impingement cooling thereof.

  17. Flow dynamics in a swirl combustor*

    NASA Astrophysics Data System (ADS)

    Grinstein, Fernando F.; Young, Ted R.; Gutmark, Ephraim J.; Li, Guoqiang; Hsiao, George; Mongia, Hukam C.

    2002-07-01

    A hybrid simulation approach is used to investigate the flow patterns in an axisymmetric swirl combustor configuration. Effective inlet boundary conditions are based on velocity data from Reynolds-averaged Navier-Stokes or actual laboratory measurements at the outlet of a fuel-injector nozzle, and large eddy simulations are used to study the unsteady non-reactive swirl flow dynamics downstream. Case studies ranging from single-swirler to more complex triple-swirler nozzles are presented to emphasize the importance of initial inlet conditions on the behaviour of the swirling flow entering a sudden expansion area, including swirl and radial numbers, inlet length and characteristic velocity profiles. Swirl of sufficient strength produces an adverse pressure gradient which can promote flow reversal or vortex breakdown, and the coupling between swirl and sudden expansion instabilities depends on the relative length of the inlet. The flow is found to be very sensitive to the detailed nature of the velocity radial profiles. The critical challenge of specification of suitable inlet boundary conditions to emulate the turbulent conditions in the laboratory experiments is raised in this context.

  18. Analysis of Regen Cooling in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  19. Atomization data requirements for rocket combustor modeling

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A. J.; Varma, M. S.

    1984-01-01

    The complex computer codes, which model liquid rocket combustors, require information about the distribution and atomization of these liquid reactants. The available information is, in general, of questionable validity and applicability. Authors and users of combustion codes are often unaware of, or underestimate the importance of, these deficiencies in atomization data. These deficiencies and their importance are examined. Results of analyses performed with a state-of-the-art rocket combustion code are presented which demonstrate the important effects of such atomization information as initial droplet sizes and size distribution on vaporization rate and losses. Also, the questionable aspects and inapplicability of the available atomization data are discussed. One important and often neglected or misunderstood aspect of atomization data is the differences between spatial (concentration) and flux (often called temporal) droplet size distributions. These are described, and a computer model constructed to assess the difference between concentration and flux droplet size distributions is described and results presented. Experimental data are also given to demonstrate this difference. Finally, experimental results are presented that demonstrate the very great, and often neglected effect, of the local gas velocity field on atomization.

  20. Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Jangir, B.; Swain, D.; Udaya Bhaskar, T. V. S.

    2016-05-01

    Ocean Heat Content (OHC) plays a significant role in modulating the intensity of Tropical Cyclones (TC) in terms of the oceanic energy available to TCs. TC Heat Potential (TCHP), an estimate of OHC, is thus known to be a useful indicator of TC genesis and intensification. In the present study, we analyze the role of TCHP in intensification of TCs in the North Indian Ocean (NIO) through statistical comparisons between TCHP and Cyclone Intensities (CI). A total of 27 TCs (20 in the Bay of Bengal, and 7 in the Arabian Sea) during the period 2005-2012 have been analyzed using TCHP data from Global Ocean Data Assimilation System (GODAS) model of Indian National Center for Ocean Information Services and cyclone best track data from India Meteorological Department. Out of the 27 cyclones analyzed, 58% (86%) in the Bay (Arabian Sea) have negative correlation and 42% (14%) cyclones have positive correlation between CI and TCHP. On the whole, more than 60% cyclones in the NIO show negative correlations between CI and TCHP. The negative percentage further increases for TCHP leading CI by 24 and 48 hours. Similar trend is also seen with satellite derived TCHP data obtained from National Remote Sensing Center and TC best track data from Joint Typhoon Warming Centre. Hence, it is postulated that TCHP alone need not be the only significant oceanographic parameter, apart from sea surface temperature, responsible for intensification and propagation of TCs in the NIO.

  1. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed fuel-fired... conversion 250 c 24 Spreader stoker fixed floor refuse-derived fuel-fired combustor/100 percent coal...

  2. A Simplified Model of Tropical Cyclone Intensification

    NASA Astrophysics Data System (ADS)

    Schubert, W. H.

    2015-12-01

    An axisymmetric model of tropical cyclone intensification is presented. The model is based on Salmon's wave-vortex approximation, which can describe flows with high Rossby number and low Froude number. After introducing an additional approximation designed to filter propagating inertia-gravity waves, the problem is reduced to the prediction of potential vorticity (PV) and the inversion of this PV to obtain the balanced wind and mass fields. This PV prediction/inversion problem is solved analytically for two types of forcing: a two-region model in which there is nonzero forcing in the cyclone core and zero forcing in the far-field; a three-region model in which there is non-zero forcing in both the cyclone core and the eyewall, with zero forcing in the far-field. The solutions of the two-region model provide insight into why tropical cyclones can have long incubation times before rapid intensification and how the size of the mature vortex can be influenced by the size of the initial vortex. The solutions of the three-region model provide insight into the formation of hollow PV structures and the inward movement of angular momentum surfaces across the radius of maximum wind.

  3. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  4. Emergency Department Presentations following Tropical Cyclone Yasi.

    PubMed

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  5. Reanalyzing Tropical Cyclone Intensities with Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Schreck, C. J.; Hennon, C. C.; Knapp, K.; Stevens, S. E.

    2012-12-01

    Tropical cyclones are among the most destructive weather phenomena. Whenever possible, the intensities of these storms have been determined from in situ data or aircraft reconnaissance. More often, however, they are estimated subjectively from satellite data using the Dvorak technique. Heterogeneities are introduced into the historical record with the evolution of operational procedures, personnel, and observing platforms. In some cases, multiple agencies even arrive at different estimates for the same storm. These uncertainties impede our ability to identify the relationship between tropical cyclone intensities and climate change. NOAA's NCDC has produced a 30-year (1979-2008) homogeneous dataset (HURSAT) of tropical cyclone imagery from geostationary satellites. This dataset has the potential to address some of the uncertainties in the recent tropical cyclone record. However, it would take nearly 40 years for a trained expert, working nonstop, to apply the Dvorak technique to all 200,000 images. Harnessing the power of thousands of Citizen Scientists, the same task can be completed in a matter of months. This presentation will explain how the Dvorak technique was adapted for Citizen Scientists, and how their skill will be evaluated relative to the operational analyses by trained experts.

  6. Assessment of Tropical Cyclone Structure Variability

    DTIC Science & Technology

    2013-09-01

    creates an unfavorable environment to sustain deep convection, and thus supported the formation of a moat (a weak- echo region outside the primary...of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor., 45, 1573—1581. Depperman, C. E., 1947

  7. Investigation on the flame dynamics of meso-combustors

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahbub

    Miniature heat engines burning hydrogen and hydrocarbon fuels have significantly higher energy densities compared to conventional lithium batteries and thus will play an essential role in the portable production of power for future electronics, remote sensors, and micro aerial vehicles. Additionally, miniature heat engines will tremendously benefit next generation of environmental technologies such as steam reforming, ammonia decomposition and fuel cells. Successful miniaturization of heat engine components demand a more complete and broader understanding of micro-fluid dynamics and micro-combustion phenomena associated with the combustor design. This dissertation is aimed at investigating the details of the micro-mixing dynamics and the combustion behavior of the meso-combustor and to create fundamental understanding of physics based design methodology. The primary goals of the project are (i) to develop an understanding of fuel-air mixing inside a meso-combustor, (ii) to develop an understanding of the flame stability (flame quenching and velocity blowout) criteria of a meso-combustor, (iii) to understand the thermal behavior of the meso-combustor, and (iv) to correlate these with combustor operating conditions such as the Reynolds number, equivalent ratio, and thermal power etc. The present study shows that adequate mixing of fuel and air is achievable in millimeter scale combustors. Both computed results and experimental measurements of iso-thermal (non-burning) flows at different mixing configurations indicate that the laminar burning velocity remains higher than the local flow velocities in most of the combustor locations to support stable flame propagations. Stable flames of hydrogen are achieved for all mixing and flow configurations. The combustion of methane with air as oxidizer in the combustors is unreliable. However, highly stable combustion of methane at various mixing and flow conditions is achieved when pure oxygen is used as an oxidizer. The

  8. Effect of model selection on combustor performance and stability using ROCCID. [Rocket Combustor Interactive Design

    NASA Technical Reports Server (NTRS)

    Giuliani, James E.; Klem, Mark D.

    1992-01-01

    The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from a 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with a O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models have been incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined in this study. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating conditions matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed.

  9. Effect of model selection on combustor performance and stability using ROCCID. [Rocket Combustor Interactive Design

    NASA Technical Reports Server (NTRS)

    Giuliani, James E.; Klem, Mark D.

    1992-01-01

    The ROCket Combustor Interactive Design (ROCCID) methodology is an interactive computer program that combines previously developed combustion analysis models to calculate the combustion performance and stability of liquid rocket engines. Test data from a 213 kN (48,000 lbf) Liquid Oxygen (LOX)/RP-1 combustor with a O-F-O (oxidizer-fuel-oxidizer) triplet injector were used to characterize the predictive capabilities of the ROCCID analysis models for this injector/propellant configuration. Thirteen combustion performance and stability models have been incorporated into ROCCID, and ten of them, which have options for triplet injectors, were examined in this study. Calculations using different combinations of analysis models, with little or no anchoring, were carried out on a test matrix of operating conditions matching those of the test program. Results of the computer analyses were compared to test data, and the ability of the model combinations to correctly predict combustion stability or instability was determined. For the best model combination(s), sensitivity of the calculations to fuel drop size and mixing efficiency was examined. Error in the stability calculations due to uncertainty in the pressure interaction index (N) was examined. The recommended model combinations for this O-F-O triplet LOX/RP-1 configuration are proposed.

  10. Soot loading in a generic gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Eckerle, W. A.; Rosfjord, T. J.

    1987-01-01

    Variation in soot loading along the centerline of a generic gas turbine combustor was experimentally investigated. The 12.7-cm dia burner consisted of six sheet-metal louvers. Soot loading along the burner length was quantified by acquiring measurements first at the exit of the full-length combustor and then at upstream stations by sequential removal of liner louvers to shorten the burner length. Alteration of the flow field approaching removed louvers, maintaining a constant liner pressure drop. Burner exhaust flow was sampled at the burner centerline to determine soot mass concentration and smoke number. Characteristic particle size and number density, transmissivity of the exhaust flow, and local radiation from luminous soot particles in the exhaust flow were determined by optical techniques. Four test fuels were burned at three fuel-air ratios to determine fuel chemical property and flow temperature influences. Data were acquired at two combustor pressures. Particulate concentration data indicated a strong oxidation mechanism in the combustor secondary zone, though the oxidation was significantly affected by flow temperature. Soot production was directly related to fuel smoke point. Less soot production and lower secondary-zone oxidation rates were observed at reduced combustor pressure.

  11. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  12. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  13. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  14. Operating Characteristics of a Fluidic Premixed Dump Combustor

    NASA Astrophysics Data System (ADS)

    Ahmed, Kareem; Carr, Zakery; Forliti, David

    2007-11-01

    A transverse slot jet issuing into a channel flow has been shown to develop a large-scale recirculation zone. The current work involves both reacting and nonreacting flow studies of a fluidic dump combustor that utilizes a transverse slot jet in a planar channel flow. The motivation is to develop low thrust penalty flame holding methodologies that increase thrust and improve fuel economy. The reacting flow studies addressed the stabilization limits and combustion phenomena observed for the fluidic dump combustor. The fluidic stream consists of a mixture of methane fuel and air at an equivalence ratio matching that of the main combustor flow. A wall-mounted V-gutter was also studied to provide a comparison to a more traditional flame holder. The fluidic dump combustor has slightly degraded stabilization performance in terms of lean and rich blowout limits compared to the V-gutter. It also observed both stable and oscillatory combustion at different operating conditions. The combustion efficiency is higher for the fluidic dump combustor. The effect of the size of the slot jet was also explored.

  15. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  16. Performance and Operability of a Dual Cavity Flame Holder in a Supersonic Combustor

    DTIC Science & Technology

    2009-06-01

    identified for each run by analyzing the pressure tap readings near the center of the combustor in the top side cavity. This tap was assumed the one with...last pressure tap in the combustor and dividing it by the lowest pressure found at the beginning of the isolator. The combustor exit pressure ratios...fitted with a quartz window in the combustor sidewall for one run night. This allowed flame emission images to be captured through digital and high speed

  17. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  18. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  19. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  20. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at...

  1. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at...

  2. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at...

  3. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at...

  4. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions at...

  5. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial...

  6. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial...

  7. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Municipal Waste Combustor Operating... and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994 Pt. 60, Subpt. Cb, Table 3 Table 3 to Subpart Cb of Part 60—Municipal Waste Combustor...

  8. Static strain measurements on gas turbine combustor liners

    NASA Astrophysics Data System (ADS)

    Raymondo, P.

    1981-05-01

    It is noted that the combustor, a critical hot section component, can suffer failure through crack formation, buckling, and liner burn-through. Thus, there is a need to develop instrumentation which can function reliably in the combustor liner environment during testing and provide data to verify the accuracy of the analytical predictive tools used in designing the combustors. The results of an investigation into the suitability of a number of resistive, capacitive, optical, and electronic sensors are presented. The three sensors judged to possess the potential for measuring static strains up to + or - 2,000 micro-strain at temperatures to 1150 K with an accuracy of + or - 10% are the Kanthal A-1 Wire Strain Gage, Speckle Photography with Heterodyne Halo Evaluation, and the Thin Film Capacitive Sensor.

  9. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  10. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  11. Analytical fuel property effects: Small combustors, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  12. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  13. Municipal solid waste combustor ash demonstration program `the boathouse`

    SciTech Connect

    Roethel, F.J.; Breslin, V.T.

    1995-08-01

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 350 tons of MSW combustor ash was combined with Portland and Cement to form standard hollow masonary blocks. These stabilized combustor ash (SCA) blocks were used to construct a boathouse on the campus of the University at Stony Brook. Air samples collected within the boathouse were examined and compared to ambient air samples for the presence and concentrations of suspended particulate, and vapor phase PCDD/PCDF, volatile and semi-volatile organic compounds and volatile mercury. Rainwater samples following contact with the boathouse walls were collected and analyzed for the presence of trace elements. Soil samples were collected prior to and following the construction of the boathouse.

  14. CFD Evaluation of a 3rd Generation LDI Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  15. Numerical Simulation of Dual-Mode Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.

    2000-01-01

    Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.

  16. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  17. Gas turbine engine combustor can with trapped vortex cavity

    DOEpatents

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  18. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  19. Combustor with two stage primary fuel assembly

    DOEpatents

    Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane

    2000-01-01

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  20. Case studies of EUV cyclones and their associated magnetic fields

    NASA Astrophysics Data System (ADS)

    Yu, Xin-Ting; Zhang, Jun; Li, Ting; Yang, Shu-Hong

    2015-09-01

    EUV cyclones are rotating structures in the solar corona, and they are usually rooted in the underlying rotating network magnetic fields in the photosphere. However, their connection with the surrounding magnetic fields remains unknown. Here we report an observational study of four typical cyclones which are rooted in different kinds of magnetic fields. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly data to investigate the rotation of EUV features in cyclones and Helioseismic and Magnetic Imager data to study the associated magnetic fields. The results show that, (1) an EUV cyclone rooted in a sunspot rotates with the photospheric magnetic field; (2) two EUV cyclones in two faculae of an active region are connected to the same sunspot of the active region but rotate oppositely; (3) an EUV cyclone is rooted in a coronal hole with weak open magnetic fields; (4) a pair of conjugated cyclones is rooted in magnetic fields that have opposite polarity with opposite directions of rotation. The differences in the spatial extent of a cyclone, characteristics of its rotation and underlying fields indicate that cyclones are ubiquitous over the solar atmosphere and that the magnetic structures relevant to the cyclones are more complicated than expected.

  1. Can climate models represent the precipitation associated with extratropical cyclones?

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matthew K.; Shaffrey, Len C.; Hodges, Kevin I.; Dacre, Helen F.

    2016-08-01

    Extratropical cyclones produce the majority of precipitation in many regions of the extratropics. This study evaluates the ability of a climate model, HiGEM, to reproduce the precipitation associated with extratropical cyclones. The model is evaluated using the ERA-Interim reanalysis and GPCP dataset. The analysis employs a cyclone centred compositing technique, evaluates composites across a range of geographical areas and cyclone intensities and also investigates the ability of the model to reproduce the climatological distribution of cyclone associated precipitation across the Northern Hemisphere. Using this phenomena centred approach provides an ability to identify the processes which are responsible for climatological biases in the model. Composite precipitation intensities are found to be comparable when all cyclones across the Northern Hemisphere are included. When the cyclones are filtered by region or intensity, differences are found, in particular, HiGEM produces too much precipitation in its most intense cyclones relative to ERA-Interim and GPCP. Biases in the climatological distribution of cyclone associated precipitation are also found, with biases around the storm track regions associated with both the number of cyclones in HiGEM and also their average precipitation intensity. These results have implications for the reliability of future projections of extratropical precipitation from the model.

  2. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Methven, John; Martinez-Alvarado, Oscar; Gray, Suzanne

    2017-04-01

    Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the DIAMET (DIAbatic influences on Mesoscale structure in ExTratropical storms) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter even though the flow was weaker. Did the greater water transport and latent heat release associated with condensation result in the greater circulation in the PV tower case? A cyclone-centred integral framework is introduced relating the tracers with cross-isentropic mass transport and circulation around the cyclone. It is shown that the circulation increases much more slowly than the amplitude of the diabatically-generated PV tower at its centre. This effect is explained using the PV impermeability theorem and the influence of diabatic heating on circulation around a cyclone is shown to scale with Rossby number. The implication is that the stronger a cyclone becomes (larger Rossby number), the stronger the influence of latent heating on circulation.

  3. Remote, real-time monitoring of cyclones with microseisms

    NASA Astrophysics Data System (ADS)

    Jo, B. G.; Lee, W. D.; Schwab, F. A.

    2014-12-01

    Giving proper care to selecting microseisms from well isolated cyclones, these great oceanic storms can be monitored in real time by seismic recordings at stations 1200-4100 km distant from the cyclone's center. We treat ocean depths of 3.4-5.5 km. For the theoretically-computed microseism, which our procedure compares with the experimental data, we use a Green's-function approach in the frequency domain. Relating recorded displacement F and theoretical Green's function G, We have F(ω,r)=S(ω)G(ω,r) in which our only unknown is the generalized source function S(ω) and r is the distance to the center at any specific time. The basic result of this report is that the form of this function is A SN(ω), where A is a real constant increasing with the strength of the cyclone and SN(ω), is a positive real function of frequency, independent of cyclone-receiver separation and of cyclone strength. That is, for a given ocean basin, and a given receiver-region geology, at our current level of accuracy SN(ω) is the same for all cyclone strengths and cyclone-receiver separations. Using the multimode approach, we've developed the numerical method for computing the Green's function for multilayered oceanic structures. For each of the 4 selected cyclones, the source functions for all locations along the path show a consistency which demonstrates that the recorded microseisms are radiated from the cyclone. The extracted source function exhibits spectra that are characteristic of ocean waves generated by cyclonic winds. With knowledge of distance between the source and receiver, cyclone A is therefore trivial to monitor in real time from remote recordings. At the current time, the cyclone's strength—generalized source function—must be related empirically to the cyclone's maximum wind speed, areal extent, and lateral velocity.

  4. Tropical Cyclone Interactions Within Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, P. P.; Bosart, L. F.; Torn, R. D.

    2014-12-01

    Central American gyres (CAGs) are broad (~1000 km diameter) low-level cyclonic circulations that organize over Central America during the tropical cyclone (TC) season. While CAGs have rarely been studied, prior work on similar circulations has been conducted on monsoon depressions (MDs) and monsoon gyres (MGs), which possess spatial scales of 1000 - 2500 km in the west Pacific basin. A key difference between MDs and MGs is related to the organization of vorticity around the low-level circulation. MDs possess a symmetrical vorticity pattern where vorticity accumulates near the circulation center over time, occasionally developing into a large TC. In contrast, MGs possess asymmetrical vorticity, organized in mesovorticies, which rotate cyclonically along the periphery of the MG circulation. Small tropical cyclones (TCs) occasionally develop from these mesovorticies. Interaction and development of TCs within CAGs are also common, as noted by a CAG identified during the 2010 PREDICT field project, which involved the interaction of TC Matthew and the development of TC Nicole within the larger CAG. This project is motivated by the lack of prior research on CAGs, as well as the complex scale interactions that occasionally occur between TCs and CAGs. This presentation focuses on the mutual interaction of vortices embedded in the larger-scale cyclonic flow comprising the CAG circulation. Case studies will be presented using a circulation framework to illustrate the relationship between different scale vorticity elements within the CAG. Some of these case studies resemble a MD-like evolution, where a large TC develops through the accumulation of symmetrical vorticity around the CAG (e.g. TC Opal 1995, TC Frances 1998). Other instances resemble a MG-like evolution, where smaller mesovorticies rotate around a common circulation center (e.g. TC Florence 1988). The circulation analysis framework aids in the diagnosis of interaction between different scale cyclonic vortices, and

  5. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    DOEpatents

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  6. Nonlinear structural and life analyses of a combustor liner

    NASA Technical Reports Server (NTRS)

    Moreno, V.; Meyers, G. J.; Kaufman, A.; Halford, G. R.

    1982-01-01

    Three dimensional, nonlinear finite element structural analyses were performed for a simulated combustor liner specimen to assess the capability of nonlinear analyses using classical inelastic material models to represent the thermoplastic creep response of the one half scale component. Results indicate continued cyclic hardening and ratcheting while experimental data suggested a stable stress strain response after only a few loading cycles. The computed stress strain history at the critical location was put into two life prediction methods, strainrange partitioning and a Pratt and Whitney combustor life prediction method to evaluate their ability to predict cyclic crack initiation. It is found that the life prediction analyses over predicted the observed cyclic crack initiation life.

  7. Nondestructive evaluation of ceramic matrix composite combustor components.

    SciTech Connect

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2002-11-08

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  8. Numerical Simulations of Static Tested Ramjet Dump Combustor

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  9. Preliminary studies of combustor sensitivity to alternative fuels

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.

    1980-01-01

    Combustion problems associated with using alternative fuels ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include: flame radiation characteristics in the various combustor zones; the correponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions.

  10. Stagnation point reverse flow combustor for a combustion system

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)

    2007-01-01

    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  11. Variable volume combustor with center hub fuel staging

    DOEpatents

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  12. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  13. Method for operating a combustor in a fuel cell system

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  14. Low NO/x/ and fuel flexible gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Decorso, S. M.; Vermes, G.; Carl, D.; Havener, W. J.; Schwab, J.; Notardonato, J.

    1981-01-01

    The feasibility of various low NO(x) emission gas turbine combustor configurations was evaluated. The configurations selected for fabrication and testing at full pressure and temperature involved rich-lean staged combustion utilizing diffusion flames, rich-lean prevaporized/premix flames, and staged catalytic combustion. The test rig consisted of a rich burner module, a quench module, and a lean combustion module. Test results are obtained for the combustor while burning petroleum distillate fuel, a coal derived liquid, and a petroleum residual fuel. The results indicate that rich-lean diffusion flames with low fuel-bound nitrogen conversion are achievable with very high combustion efficiencies.

  15. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  16. Small gas turbine combustor experimental study - Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1)splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  17. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  18. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  19. NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1977-01-01

    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine.

  20. Computations of soot and and NO sub x emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Srivatsa, S. K.

    1982-01-01

    An analytical program was conducted to compute the soot and NOx emissions from a combustor and the radiation heat transfer to the combustor walls. The program involved the formulation of an emission and radiation model and the incorporation of this model into the Garrett 3-D Combustor Perfomance Computer Program. Computations were performed for the idle, cruise, and take-off conditions of a JT8D can combustor. The predicted soot and NOx emissions and the radiation heat transfer to the combustor walls agree reasonably well with the limited experimental data available.

  1. Submesoscale cyclones in the Agulhas current

    NASA Astrophysics Data System (ADS)

    Krug, M.; Swart, S.; Gula, J.

    2017-01-01

    Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100-1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.

  2. Space options for tropical cyclone hazard mitigation

    NASA Astrophysics Data System (ADS)

    Dicaire, Isabelle; Nakamura, Ryoko; Arikawa, Yoshihisa; Okada, Kazuyuki; Itahashi, Takamasa; Summerer, Leopold

    2015-02-01

    This paper investigates potential space options for mitigating the impact of tropical cyclones on cities and civilians. Ground-based techniques combined with space-based remote sensing instrumentation are presented together with space-borne concepts employing space solar power technology. Two space-borne mitigation options are considered: atmospheric warming based on microwave irradiation and laser-induced cloud seeding based on laser power transfer. Finally technology roadmaps dedicated to the space-borne options are presented, including a detailed discussion on the technological viability and technology readiness level of our proposed systems. Based on these assessments, the space-borne cyclone mitigation options presented in this paper may be established in a quarter of a century.

  3. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  4. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  5. A Conceptual Model for Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2014-12-01

    The role of cumulus congestus (shallow and congestus convection) in tropical cyclone (TC) formation is examined in a high-resolution simulation of Tropical Cyclone Fay (2008). It is found that cumulus congestus plays a dominant role in moistening the lower to middle troposphere and spinning up the near-surface circulation before genesis, while deep convection plays a key role in moistening the upper troposphere and intensifying the cyclonic circulation over a deep layer. The transition from the tropical wave stage to the TC stage is marked by a substantial increase in net condensation and potential vorticity generation by deep convection in the inner wave pouch region. This study suggests that TC formation can be regarded as a two-stage process. The first stage is a gradual process of moisture preconditioning and the low-level spinup, in which cumulus congestus plays a dominant role. The second stage commences with the rapid development of deep convection in the inner pouch region after the air column is moistened sufficiently, whereupon the concentrated convective heating near the pouch center strengthens the transverse circulation and leads to the amplification of the cyclonic circulation over a deep layer. The rapid development of deep convection can be explained by the power-law increase of precipitation rate with column water vapor (CWV) above a critical value. The high CWV near the pouch center thus plays an important role in convective organization. It is also shown that cumulus congestus can effectively drive the low-level convergence and provides a direct and simple pathway for the development of the TC proto-vortex near the surface.

  6. Internal Influences on Tropical Cyclone Formation

    DTIC Science & Technology

    2006-01-01

    scales. This is evident in Fig. 2. Another hypothesis in the top-down category is what we call the “ shower - head” theory by Bister and Emanuel...extra-tropical precursors. Quart. J. Roy. Meteor . Soc. (coming soon). Dickinson, M.J., and J. Molinari, 2002: Mixed Rossby-gravity waves and...1998: The formation of Tropical Cyclones. Meteor . Atmos. Phys. 67, 37—69. Harr, P. A., M. S. Kalafsky and R. L. Elsberry, 1996a: Environmental

  7. Toward Clarity on Understanding Tropical Cyclone Intensification

    DTIC Science & Technology

    2015-08-01

    historically as the prototype configuration for understanding basic aspects of tropical cyclone intensification not involving strong interactions with the...storm environment. The four paradigms re- viewed are 1) the CISK1 paradigm, 2) the cooperative intensification paradigm, 3) a thermodynamic air–sea...boundary layer model to predict the radial profiles of vertical velocity and thermodynamic quantities at the top of the boundary layer. However, this

  8. Emergency Department Presentations following Tropical Cyclone Yasi

    PubMed Central

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Introduction Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Methods Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. Results There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories - 4 and 5; and ICD categories - diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). Discussion There was an increase in presentations to the ED of TTH, which peaked in the first 24 – 48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience. PMID:26111010

  9. Ensemble Prediction of Tropical Cyclone Genesis

    DTIC Science & Technology

    2017-02-23

    operational TC genesis forecast model. Recent studies show that numerical models with grid size near 10 km and explicitly resolved cloud schemes are...efficiency: Mid-level versus bottom vortex Cloud resolving WRF model is used to investigate the tropical cyclone genesis efficiency in an...regardless of models used and the assumed global warming scenarios. These results highlight possible future increase in storm-related socio-economic

  10. Tropical Cyclone Readiness Conditions Setting Aids

    DTIC Science & Technology

    1987-04-01

    values for 90% and/or 95% confidence are given for 50 kt tropical cyclone and typhoon ( hurricane ) readiness conditions. The methodology used a large...number of computer-simulated forecasts for actual typhoons ( hurricanes ) that passed near Yokosuka, Buckner Bay, Apra Harbor, Cubi Point, or Pearl...8217 l^^^l."^.-^^^ ’ MATHEriA-T I CAl... MODELS , PH 1L1PPINES , LARN Ni^ DC (24) (ij; ID (25) ClHARmCyclDne Hurricane

  11. Objective classification of historical tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Chenoweth, Michael

    2007-03-01

    Preinstrumental records of historical tropical cyclone activity require objective methods for accurately categorizing tropical cyclone intensity. Here wind force terms and damage reports from newspaper accounts in the Lesser Antilles and Jamaica for the period 1795-1879 are compared with wind speed estimates calculated from barometric pressure data. A total of 95 separate barometric pressure readings and colocated simultaneous wind force descriptors and wind-induced damage reports are compared. The wind speed estimates from barometric pressure data are taken as the most reliable and serve as a standard to compare against other data. Wind-induced damage reports are used to produce an estimated wind speed range using a modified Fujita scale. Wind force terms are compared with the barometric pressure data to determine if a gale, as used in the contemporary newspapers, is consistent with the modern definition of a gale. Results indicate that the modern definition of a gale (the threshold point separating the classification of a tropical depression from a tropical storm) is equivalent to that in contemporary newspaper accounts. Barometric pressure values are consistent with both reported wind force terms and wind damage on land when the location, speed and direction of movement of the tropical cyclone are determined. Damage reports and derived wind force estimates are consistent with other published results. Biases in ships' logbooks are confirmed and wind force terms of gale strength or greater are identified. These results offer a bridge between the earlier noninstrumental records of tropical cyclones and modern records thereby offering a method of consistently classifying storms in the Caribbean region into tropical depressions, tropical storms, nonmajor and major hurricanes.

  12. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    PubMed

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  13. Hypersonic research engine project. Phase 2: Some combustor test results of NASA aerothermodynamic integration model

    NASA Technical Reports Server (NTRS)

    Sun, Y. H.; Gaede, A. E.; Sainio, W. C.

    1975-01-01

    Combustor test results of the NASA Aerothermodynamic Integration Model are presented of a ramjet engine developed for operation between Mach 3 and 8. Ground-based and flight experiments which provide the data required to advance the technology of hypersonic air-breathing propulsion systems as well as to evaluate facility and testing techniques are described. The engine was tested with synthetic air at Mach 5, 6, and 7. The hydrogen fuel was heated to 1500 R prior to injection to simulate a regeneratively cooled system. Combustor efficiencies up to 95 percent at Mach 6 were achieved. Combustor process in terms of effectiveness, pressure integral factor, total pressure recovery and Crocco's pressure-area relationship are presented and discussed. Interactions between inlet-combustor, combustor stages, combustor-nozzle, and the effects of altitude, combustor step, and struts are observed and analyzed.

  14. Combining Tropical Cyclone Data Sets Worldwide

    NASA Astrophysics Data System (ADS)

    Levinson, David H.; Diamond, Howard J.

    2009-09-01

    International Best Track Archive for Climate Stewardship (IBTrACS) Workshop; Asheville, North Carolina, 5-7 May 2009; At the International Best Track Archive for Climate Stewardship (IBTrACS) workshop in North Carolina, experts from the World Meteorological Organization's (WMO) officially recognized tropical cyclone tracking and forecasting agencies met to discuss ways to accurately combine the disparate tropical cyclone (TC) best track data to better understand their global climatology. Representatives from each participating agency provided an overview of their agency's operating procedures and how those procedures have changed over time. Breakout sessions addressed many issues, including wind-pressure relationships and their use, converting between wind speed averaging periods, and other differences between best track data sets. The need for a global reanalysis of tropical cyclones during the satellite era arose as a recurring theme in each session. Current best track data are heterogeneous by construction, and efforts to decrease data set differences can only go so far in ensuring spatiotemporal homogeneity. It was clear to the participants that such a global reanalysis would require a champion to coordinate efforts among agencies in each basin and to help secure the resources needed.

  15. Spiral gravity waves radiating from tropical cyclones

    NASA Astrophysics Data System (ADS)

    Nolan, David S.; Zhang, Jun A.

    2017-04-01

    Internal gravity waves are continuously generated by deep moist convection around the globe. Satellite images suggest that tropical cyclones produce short-wavelength, high-frequency waves that radiate outward, with the wave fronts wrapped into tight spirals by the large differential advection of the sheared tangential flow. This letter presents new in situ observations of such waves from two sources: flight level data from research aircraft that show radial wavelengths of 2-10 km and vertical velocity magnitudes from 0.1 to 1.0 ms-1 and surface observations from a research buoy in the Pacific that indicate the passage of gravity waves overhead as tropical cyclones pass by at distances of 100 to 300 km. Numerical simulations are used to interpret these observations and to understand the broader horizontal and vertical structures of the radiating waves. The simulations suggest a correlation between wave amplitude and cyclone intensity, which could be used to make remote estimates of peak wind speeds.

  16. Data Analysis of Tropical Cyclone Size

    NASA Astrophysics Data System (ADS)

    Tang, N. W.; Su, H.

    2012-12-01

    The geometric size of a tropical cyclone (TC) is directly related to its destructive potential. However, widely used measures for TC activity and destructive potential, such as the accumulated cyclone energy (ACE) and power dissipation index (PDI), are based on maximum wind speed, without considering storm size. Our analysis of the Automated Tropical Cyclone Forecast (ATCF), Joint Typhoon Warning Center (JWTC), and National Hurricane Center (NHC) best track data shows that storm size is positively correlated with TC intensity and translation speed globally. The revised ACE and PDI (RACE and RPDI) take into account storm size but do not have a significant effect on annual trends for TC activity and destructive potential. In the Atlantic basin (AL), TC activity and destructiveness measures bear positive correlations with HadISST September sea surface temperature in both short and long term analysis. In the Western Pacific basin (WP), the annual trends of RACE and RPDI exhibit much stronger correlations with local August SST than ACE and PDI. Both results imply a potentially strong linkage between global warming and hurricane destructiveness.

  17. Les cyclones tropicaux et le changement climatique

    NASA Astrophysics Data System (ADS)

    André, Jean-Claude; Royer, Jean-François; Chauvin, Fabrice

    2008-09-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades.

  18. DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL BELOW AND BEHIND IT. STRAIGHT HORIZONTAL PIPE IS SLIME FEED FROM ROD MILL. PIPE OUT TOP OF CYCLONE AND CURVING AT LOWER RIGHT CARRIED FINELY GROUND SLIME TO FLOTATION CONDITIONER TANK. PIPE NOT VISIBLE OUT BOTTOM OF CYCLONE CONVEYED COARSER SLIME TO BALL MILL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  19. The Effect of Vertical Wind Shear on Tropical Cyclone Movement

    DTIC Science & Technology

    1988-01-01

    by Sanders and Burpee (1968), is a one-layer model which uses the barotropic vorticity equation to forecast the vertically averaged vorticity field...of factors which could modify cyclone movement. With the advent of numerical predication methods, it became possible to test these concepts. Numerical...conditions to test the cyclone features, are also presented. Chapter 3 investigates the effects of the physical processes on tropical cyclone movement by

  20. Evolution of Tropical Cyclone Characteristics and Forecast Assessment

    DTIC Science & Technology

    2016-06-07

    cyclone formations over the tropical western North Pacific is 6.7 days. However, it is known that tropical cyclone formation occurs in clusters with... clustering of tropical cyclone activity are related to external and internal forcing mechanisms. External mechanisms are defined to act over larger space and...Therefore, the primary scientific objectives are to identify each external and internal mechanism and define how they influence the clustering of

  1. Precipitation of suspended particles in wet-film cyclones

    SciTech Connect

    Val'dberg, A.Y.; Kirsanova, N.S.

    1986-07-01

    The fact that wet and dry mechanical centrifugal dust collectors operate on the same principle allowed the authors to make the calculations for wet cyclones with an equation similar to one used previously. A figure shows that the efficiency of wet cyclones is much higher (20% higher on the average) than that of dry cyclones under the same operating conditions. This improvement is due to a decrease in the secondary discharge of dust particles from the wet wall of the device.

  2. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  3. Evaluation of a Heuristic Model for Tropical Cyclone Resilience

    DTIC Science & Technology

    2015-01-26

    1 Evaluation of a Heuristic Model for Tropical Cyclone Resilience Paul D. Reasor1 and Michael T. Montgomery2 1NOAA/AOML/Hurricane...2015 to 00-00-2015 4. TITLE AND SUBTITLE Evaluation of a Heuristic Model for Tropical Cyclone Resilience 5a. CONTRACT NUMBER 5b. GRANT NUMBER...heuristic model for the 4 temporal evolution of the small-amplitude tilt of a tropical cyclone -like vortex under 5 vertical-shear forcing for both a dry and

  4. Incorporation of Tropical Cyclone Avoidance Into Automated Ship Scheduling

    DTIC Science & Technology

    2014-06-01

    TROPICAL CYCLONE AVOIDANCE INTO AUTOMATED SHIP SCHEDULING by Stephen W. Lantz June 2014 Thesis Advisor: Walter DeGrange Co-Advisor: Eva...COVERED Master’s Thesis 4. TITLE AND SUBTITLE INCORPORATION OF TROPICAL CYCLONE AVOIDANCE INTO AUTOMATED SHIP SCHEDULING 5. FUNDING NUMBERS 6... cyclones (TCs) frequently disrupt these plans, requiring diversions and inefficient steaming speeds. We evaluate the impact of adding anticipated TC

  5. Modeling Interaction of a Tropical Cyclone with Its Cold Wake

    DTIC Science & Technology

    2014-09-01

    circulation crosses the cold wake. The energy input from the ocean to a tropical cyclone (TC) may be modulated by low sea-surface temperatures (SST... TROPICAL CYCLONE WITH ITS COLD WAKE by Sue Chen September 2014 Dissertation Supervisors: Patrick A. Harr Russell L. Elsberry THIS...4. TITLE AND SUBTITLE MODELING INTERACTION OF A TROPICAL CYCLONE WITH ITS COLD WAKE 5. FUNDING NUMBERS N/A 6. AUTHOR(S) Sue Chen 7. PERFORMING

  6. Cyclone Nargis in Myanmar: lessons for public health preparedness for cyclones.

    PubMed

    Guha-Sapir, Debarati; Vogt, Florian

    2009-01-01

    Recent natural disasters such as the 2004 tsunami, 2008 Sichuan earthquake, and the 2008 Myanmar cyclone have killed more than 100,000 people each. Mortality and morbidity associated with natural disasters are a growing concern, especially because extreme climate events are likely to get increasingly frequent. The authors comment on Cyclone Nargis, claiming an extraordinarily high death toll during its devastating track through the Irrawaddy delta in Myanmar on May 2, 2008 and analyze how and why its mortality pattern differs from other typical postdisaster situations. Underlying factors and preconditions are described and the specificity of the Myanmese context is presented. This leads to lessons how excess mortality can be reduced in future high-ranked cyclones, whose recurrence in this region will only be a matter of time.

  7. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  8. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  9. CFD analysis of jet mixing in low NOx flametube combustors

    NASA Technical Reports Server (NTRS)

    Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

  10. EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS

    EPA Science Inventory

    An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...

  11. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  12. A study of supersonic aerodynamic mixing in the scramjet combustor

    NASA Astrophysics Data System (ADS)

    Ando, Yasunori; Kawai, Masafumi; Fujimori, Toshiro; Ikeda, Hideto; Ohmori, Yasunori

    1991-01-01

    Two-dimensional and three-dimensional CFD codes are described for predicting the mixing and combustion of hydrogen fuel in the turbulent flowfield of supersonic combustion ramjets, which use a TVD to efficiently capture the discontinuous surfaces. The experimental validation of the codes is performed and the applicability of the codes to simulations of realistic scramjet combustor flowfields is evaluated.

  13. COMBUSTION CONTROL OF ORGANIC EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    More than two decades ago, researchers identified benzo(a)pyrene and other organic species in the emissions from incineration of solid waste. Chlorinated dibenzo-p-dioxins and-furans (CDD/CDF) were first detected in municipal waste combustor (MWC) emissions in 1977. Since then, C...

  14. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  15. MHD coal combustor technology. Final report, phase II

    SciTech Connect

    Not Available

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  16. Assessment, development and application of combustor aerothermal models

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Mongia, H. C.; Mularz, E. J.

    1988-01-01

    The gas turbine combustion system design and development effort is an engineering exercise to obtain an acceptable solution to the conflicting design trade-offs between combustion efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature quality, structural durability, and life cycle cost. For many years, these combustor design trade-offs have been carried out with the help of fundamental reasoning and extensive component and bench testing, backed by empirical and experience correlations. Recent advances in the capability of computational fluid dynamics codes have led to their application to complex 3-D flows such as those in the gas turbine combustor. A number of U.S. Government and industry sponsored programs have made significant contributions to the formulation, development, and verification of an analytical combustor design methodology which will better define the aerothermal loads in a combustor, and be a valuable tool for design of future combustion systems. The contributions made by NASA Hot Section Technology (HOST) sponsored Aerothermal Modeling and supporting programs are described.

  17. Assessment, development, and application of combustor aerothermal models

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Mongia, H. C.; Mularz, E. J.

    1989-01-01

    The gas turbine combustion system design and development effort is an engineering exercise to obtain an acceptable solution to the conflicting design trade-offs between combustion efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature quality, structural durability, and life cycle cost. For many years, these combustor design trade-offs have been carried out with the help of fundamental reasoning and extensive component and bench testing, backed by empirical and experience correlations. Recent advances in the capability of computational fluid dynamics codes have led to their application to complex 3-D flows such as those in the gas turbine combustor. A number of U.S. Government and industry sponsored programs have made significant contributions to the formulation, development, and verification of an analytical combustor design methodology which will better define the aerothermal loads in a combustor, and be a valuable tool for design of future combustion systems. The contributions made by NASA Hot Section Technology (HOST) sponsored Aerothermal Modeling and supporting programs are described.

  18. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  19. Laser Diagnostic System Validation and Ultra-Compact Combustor Characterization

    DTIC Science & Technology

    2008-03-01

    pump (Ref. 3) ................................................................ 67 Fig. 34. Fuel pump operation – pressure versus constant flow rate...Compact Combustor UV Ultra Violet VAATE Versatile Affordable Advanced Turbine Engines VI Virtual Instrument WPAFB Wright-Patterson Air Force Base... Versatile Affordable Advanced Turbine Engines (VAATE) Initiative Air superiority of the United States military is a direct result of gas turbine engine

  20. Pylon Fuel Injector Design for a Scramjet Combustor (Postprint)

    DTIC Science & Technology

    2007-07-01

    Combustor by Application of Laser Diagnostics,” AIAA Paper 2002-5203, Oct. 2002. 22Sunami, T., Magre, P., Bresson , A., Grisch, F., Orain, M., and Kodera, M...Asymmetric Nozzles,” AIAA Paper 96-0200, Jan. 1996. 25Haimovitch, Y., Gartenberg, E., Roberts , A., and Northam, G., “Effects of Internal Nozzle