Sample records for cyclone fired work

  1. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W.

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Stationmore » for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.« less

  2. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator,more » the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.« less

  3. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  4. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less

  5. NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER

    EPA Science Inventory

    The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...

  6. DEMONSTRATION OF NATURAL GAS REBURN FOR NOX EMISSIONS REDUCTION AT OHIO EDISON COMPANY'S CYCLONE-FIRED NILES PLANT UNIT NO. 1

    EPA Science Inventory

    The report describes a demonstration of reburning on a cyclone-fired boiler. The project included a review of reburn technology, aerodynamic flow model testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of O...

  7. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  8. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less

  9. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  10. Slag processing system for direct coal-fired gas turbines

    DOEpatents

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  11. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    PubMed

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  12. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  13. Coal reburning for cyclone boiler NO sub x control demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  14. Climate change and wildfire around southern Africa

    NASA Astrophysics Data System (ADS)

    Kimura, K.

    2013-12-01

    When the climate change in southern Africa is analyzed, the effects of rainfall by Inter Tropical Convergence Zone(ITCZ) and cyclone are important. In this study, the rainfall patterns are analyzed with synoptic analysis. The southern limit of ITCZ is around the arid zone around Namibia, Botswana, Zimbabwe and Mozambique. This zone has some effects of both ITCZ and extratropical cyclones by season. As well as this, the eastern part of this area has heavy rainfall by the cyclone from the Indian Ocean once in several years. In the other hand, a lot of wildfire occurs in this area. The main cause of the wildfire is anthropogenic misbehavior of the fire by the slash-and-burn agriculture. Recently we can find the wildfire detected with the satellite imagery like Terra/Aqua MODIS. We can compare the weather environment and the wildfire occurrence with Geographical Information System. We have tried making the fire weather index suitable for the southern African semi-arid area.

  15. Firestorms

    DTIC Science & Technology

    1982-04-15

    Morton 1957)#]. Tropical rainforests in Vietnam are characterized by prevailing relative humidity of 80%; also, dead vegetation decays so rapidly that...wind for the onset of a firestorm raises several points. Tropical cyclones form in environments in which there is little vertical wind shear to cause...of 18-19 April 1965 as a case of a fire occurring in the warm sector of an extra- tropical cyclone (winds of 8-10 m/s, with gusts of 15; airmass

  16. On the association between synoptic circulation and wildfires in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Papadopoulos, A.; Paschalidou, A. K.; Kassomenos, P. A.; McGregor, G.

    2014-02-01

    In the present paper cluster analysis of 2-month air mass back-trajectories for three contrasting fire and non-fire events is conducted (high, low, and zero burnt area). The large fire event displays an air mass history dissimilar to other events whereby a 39-day period of warm and dry chiefly northerly anticyclonic conditions is evident, before a week of warmer predominantly southwesterly cyclonic activity, immediately prior to ignition. The pressure level of these anticyclonic air masses is above 800 hPa for more than 75 % of the trajectory length; this region is above the principal moisture transport regime of 800 hPa altitude. Analysis of variance on the mean rate of change of potential temperature identified weak statistically significant differences between two air mass pairs regarding the large fire: anticyclonic and cyclonic air masses in both cases ( p = 0.038 and p = 0.020). Such regularity of type and occurrence, approach pressure levels and statistically significant differences are not evident for the small and non-fire event air masses. Such understanding is expected to permit appropriate steps to be undertaken including superior prediction and improved suppression strategy.

  17. The Relationship Between Extratropical Cyclone Steering and Blocking Along the North American East Coast

    NASA Astrophysics Data System (ADS)

    Booth, James F.; Dunn-Sigouin, Etienne; Pfahl, Stephan

    2017-12-01

    The path and speed of extratropical cyclones along the east coast of North America influence their societal impact. This work characterizes the climatological relationship between cyclone track path and speed, and blocking and the North Atlantic Oscillation (NAO). An analysis of Lagrangian cyclone track propagation speed and angle shows that the percentage of cyclones with blocks is larger for cyclones that propagate northward or southeastward, as is the size of the blocked region near the cyclone. Cyclone-centered composites show that propagation of cyclones relative to blocks is consistent with steering by the block: northward tracks more often have a block east/northeast of the cyclone; slow tracks tend to have blocks due north of the cyclone. Comparison with the NAO shows that to first-order blocking and the NAO steer cyclones in a similar manner. However, blocked cyclones are more likely to propagate northward, increasing the likelihood of cyclone related impacts.

  18. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of pre-existing 'parent' cyclones. Furthermore, it was found that a higher proportion of east Atlantic cyclones are type C cyclones with strong upper-level forcing but weak low-level forcing suggesting that latent energy plays a more important role in their intensification than for west Atlantic cyclones.

  19. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of pre-existing 'parent' cyclones. Furthermore, it was found that a higher proportion of east Atlantic cyclones are type C cyclones with strong upper-level forcing but weak low-level forcing suggesting that latent energy plays a more important role in their intensification than for west Atlantic cyclones.

  20. A High Volume Stack Sampler

    NASA Technical Reports Server (NTRS)

    Boubel, Richard W.

    1971-01-01

    The stack sampler described in this paper has been developed to overcome the difficulties of particulate sampling with presently available equipment. Its use on emissions from hog fuel fired boilers, back-fired incinerators, wigwam burners, asphalt plants, and seed cleaning cyclones is reported. The results indicate that the sampler is rapid and reliable in its use. It is relatively simple and inexpensive to operate. For most sources it should be considered over the more complicated and expensive sampling trains being used and specified.

  1. Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less

  2. Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes

    DOE PAGES

    Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.; ...

    2015-06-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less

  3. Hurricanes and Climate: the U.S. CLIVAR Working Group on Hurricanes

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin; Camargo, Suzana J.; Vecchi, Gabriel A.; Daloz, Anne Sophie; Elsner, James; Emanuel, Kerry; Horn, Michael; Lim, Young-Kwon; Roberts, Malcolm; Patricola, Christina; hide

    2015-01-01

    While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. The idealized experiments of the Hurricane Working Group of U.S. CLIVAR, combined with results from other model simulations, have suggested relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity. Systematic differences are shown between experiments in which only sea surface temperature is increases versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate a decrease in numbers. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.

  4. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    NASA Astrophysics Data System (ADS)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  5. The contribution of tropical cyclones to rainfall in Mexico

    NASA Astrophysics Data System (ADS)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  6. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    PubMed

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  7. Coastal topography–Northeast Atlantic coast, post-hurricane Sandy, 2012

    USGS Publications Warehouse

    Stockdon, Hilary F.; Doran, Kara S.; Sopkin, Kristin L.; Smith, Kathryn E.L.; Fredericks, Xan

    2013-01-01

    This Data Series contains lidar-derived bare-earth (BE) topography, dune elevations, and mean-high-water shoreline position datasets for most sandy beaches for Fire Island, New York, and from Cape Henlopen, Delaware to Cape Lookout, North Carolina. The data were acquired post-Hurricane Sandy, which made landfall as an extratropical cyclone on October 29, 2012.

  8. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    NASA Astrophysics Data System (ADS)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, T.; Melick, T.; Morrison, D.

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to themore » boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.« less

  10. Coal reburning for cost-effective NO{sub x} compliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  11. Synoptic and climatological aspects of extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  12. A Classification of Mediterranean Cyclones Based on Global Analyses

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Atlas, Robert

    2003-01-01

    The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.

  13. Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ho, S.; Talukder, A.; Liu, T.; Tang, W.; Bingham, A.

    2008-12-01

    Existing cyclone detection and tracking solutions involve extensive manual analysis of modeled-data and field campaign data by teams of experts. We have developed a novel automated global cyclone detection and tracking system by assimilating and sharing information from multiple remote satellites. This unprecedented solution of combining multiple remote satellite measurements in an autonomous manner allows leveraging off the strengths of each individual satellite. Use of multiple satellite data sources also results in significantly improved temporal tracking accuracy for cyclones. Our solution involves an automated feature extraction and machine learning technique based on an ensemble classifier and Kalman filter for cyclone detection and tracking from multiple heterogeneous satellite data sources. Our feature-based methodology that focuses on automated cyclone discovery is fundamentally different from, and actually complements, the well-known Dvorak technique for cyclone intensity estimation (that often relies on manual detection of cyclonic regions) from field and remote data. Our solution currently employs the QuikSCAT wind measurement and the merged level 3 TRMM precipitation data for automated cyclone discovery. Assimilation of other types of remote measurements is ongoing and planned in the near future. Experimental results of our automated solution on historical cyclone datasets demonstrate the superior performance of our automated approach compared to previous work. Performance of our detection solution compares favorably against the list of cyclones occurring in North Atlantic Ocean for the 2005 calendar year reported by the National Hurricane Center (NHC) in our initial analysis. We have also demonstrated the robustness of our cyclone tracking methodology in other regions over the world by using multiple heterogeneous satellite data for detection and tracking of three arbitrary historical cyclones in other regions. Our cyclone detection and tracking methodology can be applied to (i) historical data to support Earth scientists in climate modeling, cyclonic-climate interactions, and obtain a better understanding of the cause and effects of cyclone (e.g. cyclo-genesis), and (ii) automatic cyclone discovery in near real-time using streaming satellite to support and improve the planning of global cyclone field campaigns. Additional satellite data from GOES and other orbiting satellites can be easily assimilated and integrated into our automated cyclone detection and tracking module to improve the temporal tracking accuracy of cyclones down to ½ hr and reduce the incidence of false alarms.

  14. The influence of local sea surface temperatures on Australian east coast cyclones

    NASA Astrophysics Data System (ADS)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2016-11-01

    Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.

  15. Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific

    DTIC Science & Technology

    2008-09-30

    North Atlantic . (Published in 2008) Our work on the effect of internally generated inner-core asymmetries on tropical cyclone potential intensity has...of the atmospheric circulation in TC basins to the global warming is more critical than increasing SST to understanding the impacts of global warming...Japan and its adjacent seas is studied with WRF model. The results suggest that the northward moisture transport through the outer cyclonic circulation

  16. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  17. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE PAGES

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    2016-11-03

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  18. Study of the impact of cyclogenesis at the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ribo, M.; Llasat, C.

    2009-09-01

    The Mediterranean Basin is usually affected by high impact weather events, generating high impacts in all Mediterranean countries and causing important damages. This basin is surrounded by mountains and arid regions, and the interaction of the air flow with the orography barriers produces many effects, the most important is the formation of low pressure centers. This is one of the reasons why the Mediterranean Sea is considered to be the most cyclogenetic area in the world (Jansà, 1997). Floods are also one of the most important natural hazards in the Mediterranean Basin. Flood events occur when soil absorption, runoff or drainage cannot adequately disperse intense rainfall from quasi-stationary or stationary weather systems in short time periods. In some occasions these floods produce high social impact in the affected areas. Our work presents the study of the relationship between the flood episodes and the presence of cyclones in the Mediterranean Basin during those episodes, between 1990 and 2004. Information about social impact of each event has also been considered. To do these analyses the MEDEX database (MEDiterranean EXperiment on cyclones that produce high impact weather in the Mediterranean) has been improved in the frame work of the European FLASH project, and information about cyclones and rainfall has been extracted from the MEDEX cyclones database. A total of 217 flood events had been identified. Once the presence of one or more cyclones during each flood episode has been identified, temporal and regional analyses were made to determine the distribution of the cyclonic centers and to study the evolution of the events. Mediterranean cyclogenesis is leaded by influence of external systems (along the African coast, from the Atlantic Ocean, and from the west of Europe), although the majority of the cyclones (87% of the studied cases) are generated in the Mediterranean Basin, under influence of preexistent systems. There are different Mediterranean cyclones, from weak mesoscale depressions to strong, intense and more extensive depressions, and are classified using different criteria. In our study each cyclone identified was characterized using two dynamic criteria: vertical structure and geostrophic circulation. The first characterization is based on the vertical profiles of the laplacian of temperature, depending on which atmospheric level is reached by the cyclone. The second characterization is based on the geostrophic circulation, defined with the geostrophic vorticity in the cyclone domain. From these two characterizations, we have classified the cyclonic centers into six different types: deep, medium and shallow; strong, moderate and weak cyclones. Results show that between 1990 and 2004, 25% of the days in this time period have recorded a flood event in the Mediterranean Basin, and 90.7% of these flood events were related to a cyclonic center. 57% of these events had been located at the western Mediterranean part, although some flood prone areas can be identified in all the Mediterranean Basin; Eastern Spain and Balearic Islands, northern of Italy (gulf of Genève), north of Africa (Sahara) and Cyprus and Turkey. Cyclones related with floods in the western part are mainly superficial cyclones. An important nucleus of deep cyclones related with floods can be found near Cyprus. The spatial distribution of cyclones related with floods, for the period from 1990 to 2004, is coherent with the general distribution of cyclones showed by Gil et al. 2002. There is a general tendency of increase of detected flood events with cyclonic center in the vicinity in the time period analyzed. A total of 4724 victims where counted during flood episodes. Results of the relationship between flood episodes and cyclonic centers show that 40% of the flood episodes with higher damages were related to weak cyclones.

  19. A CFD Study on the Prediction of Cyclone Collection Efficiency

    NASA Astrophysics Data System (ADS)

    Gimbun, Jolius; Chuah, T. G.; Choong, Thomas S. Y.; Fakhru'L-Razi, A.

    2005-09-01

    This work presents a Computational Fluid Dynamics calculation to predict and to evaluate the effects of temperature, operating pressure and inlet velocity on the collection efficiency of gas cyclones. The numerical solutions were carried out using spreadsheet and commercial CFD code FLUENT 6.0. This paper also reviews four empirical models for the prediction of cyclone collection efficiency, namely Lapple [1], Koch and Licht [2], Li and Wang [3], and Iozia and Leith [4]. All the predictions proved to be satisfactory when compared with the presented experimental data. The CFD simulations predict the cyclone cut-off size for all operating conditions with a deviation of 3.7% from the experimental data. Specifically, results obtained from the computer modelling exercise have demonstrated that CFD model is the best method of modelling the cyclones collection efficiency.

  20. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  1. Contribution of Tropical Cyclones to the Interannual Variability of Baiu Precipitation

    NASA Astrophysics Data System (ADS)

    Yamaura, T.; Tomita, T.

    2011-12-01

    This work examines the contribution of tropical cyclones to the interannual variability of Baiu precipitation with the large-scale interannual variations in the tropics, that is, the El Niño/Southern Oscillation (ENSO) and the Tropospheric Biennial Oscillation (TBO) in the Asian monsoon. The data used are the Global Precipitation Climatology Project, the Japanese 25-year Reanalysis Project/Japan Meteorological Agency Climate Data Assimilation System, and the Joint Typhoon Warning Center. The diagnosed months and the time period are June and July, and 30 years from 1979 to 2008. When the negative precipitation anomalies appear in the entire Baiu front with the cold ENSO phase, the number of tropical cyclones increases around the northern part of the Philippines, and a larger-scale anomalous cyclone is formed there. Tropical cyclones contribute to strengthening the anomalous cyclone. Anomalous convective activity in the anomalous cyclone excites Rossby waves that propagate northward within the low-level jet and form an anomalous anticyclone around Japan. The anomalous anticyclone decreases the Baiu precipitation. On the other hand, the number of tropical cyclones decreases, and an anomalous anticyclone is set around the northern part of the Philippines, when the positive precipitation anomalies are observed in the Baiu front with the warm ENSO phase. The contribution of tropical cyclones is insignificant in this phase. The warm and cold TBO phases are judged from sea surface temperature (SST) anomalies in the equatorial central Pacific that is different from the region for ENSO. In the cold TBO phase with the negative SST anomalies, there appear the negative precipitation anomalies around Kyushu and the positive ones to the southeast of Japan. Concurrently, an anomalous cyclone appears, and the accumulated cyclone energy estimated from the tropical cyclones increases to the southeast of Japan. Tropical cyclones contribute to forming the anomalous cyclone, which shifts the axis of monsoon southwesterlies southward. Thus, the negative precipitation anomalies and the positive ones appear in Kyushu and to the southeast of Japan. In the opposite TBO phase, an anomalous anticyclone is set to the southeast of Japan and suppresses tropical cyclones there. The contribution of tropical cyclones is small in this case. As such, local tropical cyclones contribute to the interannual variation of the Baiu precipitation with larger atmospheric circulations in the western North Pacific.

  2. NASA A-Train and Terra Observations of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Douglass, A. R.; DaSilva, A.; Torres, O.; Levy, R.; Duncan, B. N.

    2011-01-01

    Wildfires raged throughout western Russia and parts of Eastern Europe during a persistent heat wave in the summer of 2010. Anomalously high surface temperatures (35 - 41 C) and low relative humidity (9 - 25 %) from mid- June to mid-August 2010 shown by analysis of radiosonde data from multiple sites in western Russia were ideal conditions for the wildfires to thrive. Measurements of outgoing longwave radiation (OLR) from the Atmospheric Infrared Sounder (AIRS) over western Russian indicate persistent subsidence during the heat wave. Daily three-day back-trajectories initiated over Moscow reveal a persistent anticyclonic circulation for 18 days in August, coincident with the most intense period of fire activity observed by Moderate Resolution Imaging Spectroradiometer (MODIS). This unfortunate meteorological coincidence allowed transport of polluted air from the region of intense fires to Moscow and the surrounding area. We demonstrate that the 2010 Russian wildfires are unique in the record of observations obtained by remote-sensing instruments on-board NASA satellites: Aura and Aqua (part of the A-Train Constellation) and Terra. Analysis of the distribution of MODIS fire products and aerosol optical thickness (AOT), UV aerosol index (AI) and single-scattering albedo (SSA) from Aura's Ozone Monitoring Instrument (OMI), and total column carbon monoxide (CO) from Aqua s Atmospheric Infrared Sounder (AIRS) show that the region in the center of western Russia surrounding Moscow (52-58 deg N, 33 -43 deg E) is most severely impacted by wildfire emissions. Over this area, AIRS CO, OMI AI, and MODIS AOT are significantly enhanced relative to the historical satellite record during the first 18 days in August when the anti-cyclonic circulation persisted. By mid-August, the anti-cyclonic circulation was replaced with westerly transport over Moscow and vicinity. The heat wave

  3. Helical solutions of the bidirectional vortex in a cylindrical cyclone: Beltramian and Trkalian motions

    NASA Astrophysics Data System (ADS)

    Majdalani, Joseph

    2012-10-01

    In this work, two families of helical motions are investigated as prospective candidates for describing the bidirectional vortex field in a right-cylindrical chamber. These basic solutions are relevant to cyclone separators and to idealized representations of vortex-fired liquid and hybrid rocket engines in which bidirectional vortex motion is established. To begin, the bulk fluid motion is taken to be isentropic along streamlines, with no concern for reactions, heat transfer, viscosity, compressibility or unsteadiness. Then using the Bragg-Hawthorne equation for steady, inviscid, axisymmetric motion, two families of Euler solutions are derived. Among the characteristics of the newly developed solutions one may note the axial dependence of the swirl velocity, the Trkalian and Beltramian types of the helical motions, the sensitivity of the solutions to the outlet radius, the alternate locations of the mantle, and the increased axial and radial velocity magnitudes, including the rate of mass transfer across the mantle, for which explicit approximations are obtained. Our results are compared to an existing, complex lamellar model of the bidirectional vortex in which the swirl velocity reduces to a free vortex. In this vein, we find the strictly Beltramian flows to share virtually identical pressure variations and radial pressure gradients with those associated with the complex lamellar motion. Furthermore, both families warrant an asymptotic treatment to overcome their endpoint limitations caused by their omission of viscous stresses. From a broader perspective, the work delineates a logical framework through which self-similar, axisymmetric solutions to bidirectional and multidirectional vortex motions may be pursued. It also illustrates the manner through which different formulations may be arrived at depending on the types of wall boundary conditions. For example, both the slip condition at the sidewall and the inlet flow pattern at the headwall may be enforced or relaxed.

  4. A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India

    NASA Astrophysics Data System (ADS)

    Janapati, Jayalakshmi; seela, Balaji Kumar; Reddy M., Venkatrami; Reddy K., Krishna; Lin, Pay-Liam; Rao T., Narayana; Liu, Chian-Yi

    2017-06-01

    Raindrop size distribution (RSD) characteristics in before landfall (BLF) and after landfall (ALF) of three tropical cyclones (JAL, THANE, and NILAM) induced precipitations are investigated by using a laser-based (PARticleSIze and VELocity - PARSIVEL) disdrometer at two different locations [Kadapa (14.47°N, 78.82°E) and Gadanki (13.5°N, 79.2°E)] in semi-arid region of southern India. In both BLF and ALF precipitations of these three cyclones, convective precipitations have higher mass weighted mean diameter (Dm) and lower normalized intercept parameter (log10Nw) values than stratiform precipitations. The radar reflectivity (Z) and rain rate (R) relations (Z=A*Rb) showed distinct variations in BLF and ALF precipitations of three cyclones. BLF precipitation of JAL cyclone has a higher Dm than ALF precipitation. Whereas, for THANE and NILAM cyclones ALF precipitations have higher Dm than BLF. The Dm values of three cyclones (both in BLF and ALF) are smaller than the Dm values of the other (Atlantic and Pacific) oceanic cyclones. Interaction of different regions (eyewall, inner rainbands, and outer rainbands) of cyclones with the environment and underlying surface led to RSD variations between BLF and ALF precipitations through different microphysical (collision-coalescence, breakup, evaporation, and riming) processes. The immediate significance of the present work is that (i) it contributes to our understanding of cyclone RSD in BLF and ALF precipitations, and (ii) it provides the useful information for quantitative estimation of rainfall from Doppler weather radar observations.

  5. Study of the Western Black Sea Storms with a Focus on the Storms Caused by Cyclones of North African Origin

    NASA Astrophysics Data System (ADS)

    Galabov, Vasko; Chervenkov, Hristo

    2018-04-01

    We present a study of the Black Sea storms, using a long hindcast of the western Black Sea wind waves. The goal of the work is to study the trends in the storminess indicators. We identify 238 storms with significant wave height above 4 m for the period 1900-2015. We study the cyclogenetic regions of the cyclones causing these storms and focus specifically on the Black Sea storms associated with cyclones originating over the Gulf of Sidra and the adjacent areas. We also identify which of these storms are associated with the so-called explosive cyclogenesis (with deepening rate above 1 Bergeron) and find that 3 out of 5 cases of severe Black Sea storms associated with explosive cyclones are caused by cyclones originating in the Gulf of Sidra. We find no evidence of steady trends in the western Black Sea storminess.

  6. Santa Ana Forecasting and Classification

    NASA Astrophysics Data System (ADS)

    Rolinski, T.; Eichhorn, D.; D'Agostino, B. J.; Vanderburg, S.; Means, J. D.

    2011-12-01

    Southern California experiences wildfires every year, but under certain circumstances these fires grow into extremely large and destructive fires, such as the Cedar Fire of 2003 and the Witch Fire of 2007. The Cedar Fire burned over 1100 km2 , destroyed more than 2200 homes and killed 15 people; the Witch fire burned more than 800 km2, destroyed more than 1000 homes and killed 2 people. Fires can quickly become too large and dangerous to fight if they are accompanied by a very strong "Santa Ana" condition, which is a foehn-like wind that may bring strong winds and very low humidities. However there is an entire range of specific weather conditions that fall into the broad category of Santa Anas, from cold and blustery to hot with very little wind. All types are characterized by clear skies and low humidity. Since the potential for destructive fire is dependent on the characteristics of Santa Anas, as well as the level of fuel moisture, there exists a need for further classification, such as is done with tropical cyclones and after-the-fact with tornadoes. We use surface data and fuel moisture combined with reanalysis to diagnose those conditions that result in Santa Anas with the greatest potential for destructive fires. We use this data to produce a new classification system for Santa Anas. This classification system should be useful for informing the relevant agencies for mitigation and response planning. In the future this same classification may be made available to the general public.

  7. Australian Disaster Research Directory (Including Some Contributions from New Zealand). Provisional--1983.

    DTIC Science & Technology

    1983-06-01

    storm surge, cyclone,fire) * social and physical effects of nuclear attack * volcanic hazards statistics of abnormal sea levels * management of high...strengths and weaknesses of these responses * Impact of environmental change on present and future disaster strategies SOME QUESTIONNAIRE STATISTICS Some of...James Cook Univ Black , Mr R G 99 Sen Lec, Civil Eng, QIT Blackman. Dr D R 86 Sen Lec, Dept Mech Eng, V---ash Blong, Dr Russell 80 Sen Lec, Earth

  8. Health impact assessment of cyclone Bejisa in Reunion Island (France) using syndromic surveillance.

    PubMed

    Vilain, Pascal; Pagès, Frédéric; Combes, Xavier; Marianne Dit Cassou, Pierre-Jean; Mougin-Damour, Katia; Jacques-Antoine, Yves; Filleul, Laurent

    2015-04-01

    On January 2, 2014, Cyclone Bejisa struck Reunion Island (France). This storm led to major material damages, such as power outages, disturbance of drinking water systems, road closures, and the evacuation of residents. In this context, the Regional Office of French Institute for Public Health Surveillance in Indian Ocean (Cire OI) set up an epidemiological surveillance in order to describe short-term health effects of the cyclone. The assessment of the health impact was based mainly on a syndromic surveillance system, including the activity of all emergency departments (EDs) and the Emergency Medical Service (EMS) of the island. From these data, several health indicators were collected and analyzed daily and weekly. To complete this assessment, all medical charts recorded in the EDs of Reunion Island from January 2, 2014 through January 5, 2014 were reviewed in order to identify visits directly and indirectly related to the cyclone, and to determine mechanisms of injuries. The number of calls to the EMS peaked the day of the cyclone, and the number of ED visits increased markedly over the next two days. At the same time, a significant increase in visits for trauma, burns, and carbon monoxide poisoning was detected in all EDs. Among 1,748 medical records reviewed, eight visits were directly related to the cyclone and 208 were indirectly related. For trauma, the main mechanisms of injury were falls and injuries by machinery or tools during the clean-up and repair works. Due to prolonged power outages, several patients were hospitalized: some to assure continuity of care, others to take care of an exacerbation of a chronic disease. An increase in leptospirosis cases linked to post-cyclone clean-up was observed two weeks after the cyclone. Information based on the syndromic surveillance system allowed the authors to assess rapidly the health impact of Cyclone Bejisa in Reunion Island; however, an underestimation of this impact was still possible. In the near future, several lines of work will be planned by the authors in order to improve the assessment.

  9. Analysis of moisture advection during explosive cyclogenesis over North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ordóñez, Paulina; Liberato, Margarida L. R.; Pinto, Joaquim G.; Trigo, Ricardo M.

    2013-04-01

    The development of a mid-latitude cyclone may strongly be amplified by the presence of a very warm and moist air mass within its warm sector through enhanced latent heat release. In this work, a lagrangian approach is applied to examine the contribution of moisture advection to the deepening of cyclones over the North Atlantic Ocean. The warm sector is represented by a 5°x5° longitude/latitude moving box comprising the centre of the cyclone and its south-eastern area is defined for the tracks of different cyclones computed at 6-hourly intervals. Using the lagrangian particle model FLEXPART we evaluated the fresh water flux (E - P) along 2-days back-trajectories of the particles residing on the total column over the defined boxes for case studies occurring during winter months from 1980 to 2000. FLEXPART simulations were performed using one degree resolution and 60 model vertical levels available in ERA40 Reanalyses at 00, 06, 12, 18 UTC for each case. Sensitivity studies on the dimensions of the target area - chosen boxes representing the warm sector -, and on its relative position to the center, were performed. We have applied this methodology to several case studies of independent North Atlantic cyclones with notorious characteristics (e.g. deepening rate, wind speed, surface damages). Results indicate that the moisture transport is particularly relevant in what concerns the fast/explosive development stage of these extratropical cyclones. In particular, the advection of moist air from the subtropics towards the cyclone core is clearly associated with the warm conveyor belt of the cyclone. This methodology can be generalized to a much larger number of mid-latitude cyclones, providing a unique opportunity to analyze the moisture behavior associated with the explosive development. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  10. Dynamical Mechanisms and Variability of Dry and Wet Spells in Iberia

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Montero, Irene; Gouveia, Célia

    2014-05-01

    Dry and wet spells in Iberia have widespread ecological and environmental negative impacts resulting in major socioeconomic damages such as crop yield losses or increasing forest fire risk [Gouveia et al. 2009; Amraoui et al. 2013] and flash flooding, urban inundations, landslides and associated human and infrastructure damages [Liberato et al. 2013]. The 20th century was characterized by a negative trend on precipitation and a positive trend on temperature in southern Europe. On the other hand recent results suggest that there are opposite tendencies in the duration of wet and dry spells over the Iberia. At the monthly and seasonal scales, the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian (SCAN) patterns are important large-scale variability modes that control the Iberian precipitation regime. The NAO modulates the westerly atmospheric flow by shifting the polar jet and the associated storm-tracks. At the sub-monthly scale, extratropical cyclones have a significant impact on Iberian climate and are one of the primary causes of extreme events occurrence over the region [Liberato et al. 2011; 2013]. In this work we investigate the connection between midlatitude cyclones and the onset and recurrent character of droughts, heavy precipitation and spell duration in Iberia. Our results confirm the links between unusual circulation patterns with these extreme events. Moreover we show how the frequency on the occurrence of extratropical cyclones on the Euro-Atlantic region is critical in explaining the tails of the precipitation distribution in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012). References: Amraoui M., M. L. R. Liberato, T. J. Calado, C. C. DaCamara, L. P. Coelho, R. M. Trigo, C. M. Gouveia (2013) Fire activity over Mediterranean Europe based on information from Meteosat-8. Forest Ecology and Management, 294: 62-75, doi: 10.1016/j.foreco.2012.08.032 Gouveia, C., , R. M. Trigo, , C. C. DaCamara (2009) Drought and Vegetation Stress Monitoring in Portugal using Satellite Data, Natural Hazards and Earth System Sciences, 9: 185-195 doi:10.5194/nhess-9-185-2009 Liberato M. L. R., J. G. Pinto, I. F. Trigo, R. M. Trigo (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66: 330-334 doi:10.1002/wea.755 Liberato, M. L. R., A. M. Ramos, R. M. Trigo, I. F. Trigo, A. M. Durán-Quesada, R. Nieto, L. Gimeno (2013) Moisture Sources and Large-Scale Dynamics Associated With a Flash Flood Event, in Lagrangian Modeling of the Atmosphere (eds J. Lin, D. Brunner, C. Gerbig, A. Stohl, A. Luhar and P. Webley), Geophys. Monogr. Ser., 200: 111-126, American Geophysical Union, Washington, D. C. doi: 10.1029/2012GM001244

  11. Southern Hemisphere Extratropical Cyclones and their Relationship with ENSO in springtime

    NASA Astrophysics Data System (ADS)

    Reboita, M. S.; Ambrizzi, T.; Da Rocha, R.

    2013-05-01

    Extratropical cyclones occurrence is associated with the teleconnection mechanisms that produce climate variability. Among these mechanisms we have El Niño-Southern Oscillation (ENSO). Some works have indicated that during the ENSO positive phase there are more cyclogenetic conditions in some parts of the globe as the southwest of South Atlantic Ocean. Therefore, the purpose of this study is to verify if the extratropical cyclones number and location are altered in the different ENSO phases in the austral spring over the Southern Hemisphere (SH). The Melbourne University automatic tracking scheme was used to determine the cyclone climatology from 1980 to 2012. All cyclones that appear with lifetime higher or equal to 24 hours in the sea level pressure data from National Centers for Environment Prediction reanalysis I were included in the climatology. El Niño (EN), La Niña (LN) and Neutral (N) years were identified through the Oceanic Niño Index (ONI) from Climate Prediction Center/NOAA. The average number of cyclones in the spring over the SH is similar in the EN (200), N (184) and LN (197) episodes. By latitude bands, during EN episodes the cyclones occurrence reduces in 16% between 70-60 degrees and increases in ~15% between 80-70 and 50-40 degrees. On the other hand, during the LN episodes, the cyclones are 17% more frequent in 50-60 degrees and 22% less frequent in 30-20 degrees. One more detailed analysis of the cyclones trajectory density (that is a statistic product of the tracking algorithm) shows that in the South Atlantic Ocean, near the southeast of South America, the number of cyclones in EN years is higher than in the neutral period and lower than in the LN years. In the Indian Ocean, the EN year is characterized by a cyclones reduction in the west and east sector, near the continents. In the Pacific Ocean, the region southward the New Zealand presents more cyclones occurrence in EN years.

  12. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  13. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  14. Engineering evaluation of the use of the Timberline condensing economizer for particulate collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.; Serry, H.

    1980-12-01

    The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less

  15. Postcombustion and its influences in 135 MWe CFB boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaohua Li; Hairui Yang; Hai Zhang

    2009-09-15

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile,more » and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.« less

  16. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean.

  17. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, Stephen

    1987-01-01

    The evolution of individual cyclone waves is studied in order to see how well quasi-geostrophic (QG) dynamics can simulate the behavior of primitive equations (PE) dynamics. This work is an extension of a similar study (Mudrick, 1982); emphasis is placed here on adding a frontal zone and other more diverse features to the basic states used. In addition, sets of PE integrations, with and without friction, are used to study the formation of surface occluded fronts within the evolving cyclones. Results of the study are summarized at the beginning of the report.

  18. Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.

    Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.

  19. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1994-01-01

    The work over the past six months has focused on the October/November 1985 blocking case study noted in the last progress report. A summary of the results of this effort is contained in the attached preprint papers for the Symposium on the Life Cycles of Extratropical Cyclones. Using this case study as a model, Ph.D. student Anthony Lupo is now initiating the multiple-case diagnosis by first examining two more fall 1985 blocking episodes. In addition, two secondary efforts have been completed, as summarized in the attached M.S. thesis abstracts. Both studies, which were primarily funded by a fellowship and a teaching assistantship, complement the objectives of this study by providing diagnoses of additional cyclone cases to serve as a comparative base for the pre-blocking cyclones to be studied in the multiple-case blocking diagnosis.

  20. Development of software-hardware complex for investigation of the vector field of speeds in the cyclone-separator

    NASA Astrophysics Data System (ADS)

    Borisov, A.

    2018-05-01

    The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.

  1. Can we trust climate models to realistically represent severe European windstorms?

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz M.; Knippertz, Peter; Pirret, Jennifer S. R.; Williams, Keith D.

    2016-06-01

    Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective "seamless" approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent heating, as the main source for the under-prediction in the coarse-resolution runs. Finally, an interesting implication of these results is that the too low number of deep cyclones in many free-running climate simulations may therefore be related to an insufficient number of storm-prone initial conditions. This question will be addressed in future work.

  2. Numerical investigation of the effect of number and shape of inlet of cyclone and particle size on particle separation

    NASA Astrophysics Data System (ADS)

    Khazaee, Iman

    2017-06-01

    Cyclones are one of the most common devices for removing particles from the gas stream and act as a filter. The mode of action of separating these particles, from mass gas flow, in this case, is that the inertia force exerted on the solid particles in the cyclone, several times greater than the force of inertia into the gas phase and so the particles are guided from the sides of the cyclone body to the bottom body but less power will be affected by the gas phase and from upper parts, solid particles, goes to the bottom chamber. Most of the attention has been focused on finding new methods to improve performance parameters. Recently, some studies were conducted to improve equipment performance by evaluating geometric effects on projects. In this work, the effect of cyclone geometry was studied through the creation of a symmetrical double and quad inlet and also studied cutting inlet geometry and their influence on separation efficiency. To assess the accuracy of modeling, selected model compared with the model Kim and Lee and the results were close to acceptable. The collection efficiency of the double inlet cyclone was found to be 20-25% greater than that of the single inlet cyclone and the collection efficiency of the quad inlet cyclone was found to be 40-45% greater than with the same inlet size. Also the collection efficiency of the rectangle inlet was found to be 4-6% greater than ellipse inlet and the collection efficiency of the ellipse inlet was found to be 30-35% greater than circle inlet.

  3. Tropical cyclone track Analysis over Indian Coast Using Spatio-Temporal data-mining

    NASA Astrophysics Data System (ADS)

    Mohapatra, Gyanendranath; Manjunath, Swetha; Behera, Sasmita; Mohanty, Pratap Kumar

    2015-04-01

    Tropical cyclones are a natural hazard which largely affects the lives and property with its destructive wind and heavy rainfall. Fluctuations in the frequency and intensity complicate the detection of long-term trends and play an important role in the global climate system; therefore understanding and predicting tropical cyclones track, intensity, and landfall location is of both societal and scientific significance. In this study a data-mining approach is being used to analyze the tropical cyclone track both in the temporal and spatial scale. Basically, the Indian coast line is divided into four zones viz. north east, south east in the eastern side adjoining Bay of Bengal and North west and south west in the western side adjoining Arabian sea as these coastal areas are very much vulnerable for disaster due to maximum number of landfall of Tropical Cyclones. The track and landfall associated with all the cyclones are clustered based on their intensity (Severe, moderate and low) and landfall location. The analyses are carried out for landfall location and the extent of track separately for the events happening in two seasons i.e. pre-monsoon and post-monsoon period. Along with categorization of intensity, trend analysis of track and the targeted zone of maximum damage also been studied. Algorithms are being developed for potential resilient and impact assessment of the parameters associated with cyclone disaster in the coastal region of India. One of the important objectives of this present work is also the identification of most disaster prone coastal area and becoming a part of the information support system during the cyclone period. Based on the statistics like mean, Standard Deviation, regression and correlation analysis, an index is developed which determines the level of damage and vulnerability along the coastal region. This index can be used for the early warning system of particular coastal areas for the preparedness and mitigation of future cyclone events.

  4. Analysis of Non-Tropical Cyclone Induced Flood Events over South East Asia: Investigating Flood Frequency and Extremes in the Philippines

    NASA Astrophysics Data System (ADS)

    Marcella, M. P.; CHEN, C.; Senarath, S. U.

    2013-12-01

    Much work has been completed in analyzing Southeast Asia's tropical cyclone climatology and the associated flooding throughout the region. Although, an active and strong monsoon season also brings major flooding across the Philippines resulting in the loss of lives and significant economic impacts, only a limited amount of research work has been conducted to investigate the frequency and flood loss estimates of these non-tropical cyclone (TC) storms. In this study, using the TRMM 3-hourly rainfall product, tropical cyclone rainfall is removed to construct a non-TC rainfall climatology across the region. Given this data, stochastically generated rainfall that is both spatially and temporally correlated across the country is created to generate a longer historically-based record of non-TC precipitation. After defining the rainfall criteria that constitutes a flood event based on observed floods and TRMM data, this event definition is applied to the stochastic catalog of rainfall to determine flood events. Subsequently, a thorough analysis of non-TC flood extremes, frequency, and distribution is completed for the country of the Philippines. As a result, the above methodology and datasets provide a unique opportunity to further study flood occurrences and their extremes across most of South East Asia.

  5. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  6. Potential of a cyclone prototype spacer to improve in vitro dry powder delivery.

    PubMed

    Parisini, Irene; Cheng, Sean J; Symons, Digby D; Murnane, Darragh

    2014-05-01

    Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrier-based DPIs was investigated. Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30 and 60 Lmin−1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51% at 30 Lmin−1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.

  7. Estimation of size of tropical cyclones in the North Indian Ocean using Oceansat-2 scatterometer high-resolution wind products

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Ha, Doan Thi Thu; Kishtawal, C. M.

    2018-03-01

    Tropical cyclone (TC) is one of the most intense weather hazards, especially for the coastal regions, as it causes huge devastation through gale winds and torrential floods during landfall. Thus, accurate prediction of TC is of great importance to reduce the loss of life and damage to property. Most of the cyclone track prediction model requires size of TC as an important parameter in order to simulate the vortex. TC size is also required in the impact assessment of TC affected regions. In the present work, the size of TCs formed in the North Indian Ocean (NIO) has been estimated using the high resolution surface wind observations from oceansat-2 scatterometer. The estimated sizes of cyclones were compared to the radius of outermost closed isobar (ROCI) values provided by Joint Typhoon warning Center (JTWC) by plotting their histograms and computing the correlation and mean absolute error (MAE). The correlation and MAE between the OSCAT wind based TC size estimation and JTWC-ROCI values was found 0.69 and 33 km, respectively. The results show that the sizes of cyclones estimated by OSCAT winds are in close agreement to the JTWC-ROCI. The ROCI values of JTWC were analyzed to study the variations in the size of tropical cyclones in NIO during different time of the diurnal cycle and intensity stages.

  8. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  9. High sodium coal-firing experiences at Basin Electric Power Cooperative's Leland Olds Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laning, V.R.; Bartle, M.L.

    1982-12-01

    This paper describes some of the efforts made at the Leland Olds Station to cope with the problems created from high sodium content coals. Such coals have historically presented superheater fouling problems for utilities; ash deposits from high sodium coals have a very high sintering strength and are very difficult to remove by conventional methods. It is reported that the addition of limestone in the pulverizer unit at Leland Olds and vermiculite ore in the cyclone unit has helped reduce the fouling characteristics of high sodium lignites in North Dakota at an affordable cost.

  10. Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305

  11. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    PubMed

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  12. Assessing the Importance of Atlantic Basin Tropical Cyclone Steering Currents in Anticipating Landfall Risk

    NASA Astrophysics Data System (ADS)

    Truchelut, R.; Hart, R. E.

    2013-12-01

    While a number of research groups offer quantitative pre-seasonal assessments of aggregate annual Atlantic Basin tropical cyclone activity, the literature is comparatively thin concerning methods to meaningfully quantify seasonal U.S. landfall risks. As the example of Hurricane Andrew impacting Southeast Florida in the otherwise quiet 1992 season demonstrates, an accurate probabilistic assessment of seasonal tropical cyclone threat levels would be of immense public utility and economic value; however, the methods used to predict annual activity demonstrate little skill for predicting annual count of landfalling systems of any intensity bin. Therefore, while current models are optimized to predict cumulative seasonal tropical cyclone activity, they are not ideal tools for assessing the potential for sensible impacts of storms on populated areas. This research aims to bridge the utility gap in seasonal tropical cyclone forecasting by shifting the focus of seasonal modelling to the parameters that are most closely linked to creating conditions favorable for U.S. landfalls, particularly those of destructive and costly intense hurricanes. As it is clear from the initial findings of this study that overall activity has a limited influence on sensible outcomes, this project concentrates on detecting predictability and trends in cyclogenesis location and upper-level wind steering patterns. These metrics are demonstrated to have a relationship with landfall activity in the Atlantic Basin climatological record. By aggregating historic seasonally-averaged steering patterns using newly-available reanalysis model datasets, some atmospheric and oceanic precursors to an elevated risk of North American tropical cyclone landfall have been identified. Work is ongoing to quantify the variance, persistence, and predictability of such patterns over seasonal timescales, with the aim of yielding tools that could be incorporated into tropical cyclone risk mitigation strategies.

  13. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  14. A Long-lived Cyclone In Saturn's Atmosphere: Observations And Models

    NASA Astrophysics Data System (ADS)

    Del Rio Gaztelurrutia, Teresa; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2009-09-01

    The atmospheres of the Giant Planets Jupiter and Saturn possess large numbers of atmospheric vortices. On Jupiter, anticyclones are generally long-lived structures while cyclones survive a much shorter time. A long term survey of images of Saturn atmosphere obtained by the Cassini ISS camera has revealed the presence of a long-lived cyclone in Saturn's southern hemisphere during at least four years, making this vortex the longest lived cyclone on either Jupiter or Saturn. We find that the vortex drifts following the wind profile, with changes in velocity following changes of latitude. During the four years of our survey its size remained essentially constant, and there was no other structure of comparable size at its latitude. Internal circulation is cyclonic, with a maximum velocity of 20±5 m/s and an average vorticity of 4·10-5 s-1, an order of magnitude lower than planetary vorticity, but only slightly higher than the ambient vorticity. Photometric analysis shows that the vortex is located at a slightly lower altitude than its surroundings, at an average of 10-20 mbar below adjacent clouds. Finally, EPIC simulations of the vortex that reproduce its behavior imply a Rossby deformation radius of 2000 km in the weather layer (1 - 10 bar), consistent with the size of the cyclone. The long-lifetime of this cyclonic spot is surprising in view of its low tangential velocity and it suggests that low dissipation conditions prevail at mid-latitudes in Saturn's upper troposphere. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  15. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  16. Analysis of GALE (Genesis of Atlantic Lows Experiment) Data

    DTIC Science & Technology

    1989-12-01

    being developed to accurately simulate and study the development of extratropical cyclones, which rapidly develop off the east coast of the U.S. and the...the model for the simulation of GALE storms . \\SAIC has worked with the NRL staff in the development of initialization schemes, includir.g a vertical...at the 6th Extratropical Cyclone Workshop of the American Meteorological Society in Monterey, CA, June, 1987, entitled "A Model for the Simulation of

  17. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses for the Eastern USA until the year 2100. The projection is based on downscaling five different GCM model runs for the RCP8.5 scenario, as conducted by Emanuel et al. [7], and accounts for population and GDP changes relying on the newly developed Shared Socioenonomic Pathways (SSPs) [8]. We hereby contribute valuable input to the scientific community as well as the societies at risk. The possibility of extending this work to different regions in order to access the future impact of tropical cyclones on a global scale will also be discussed. References [1] Thomas R. Knutson, John L. McBride, Johnny Chan, Kerry Emanuel, Greg Holland, Chris Landsea, Isaac Held, James P. Kossin, A. K. Srivastava, and Masato Sugi. Tropical cyclones and climate change. Nature Geoscience, 3(3):157-163, 2010. [2] Robert Mendelsohn, Kerry Emanuel, Shun Chonabayashi, and Laura Bakkensen. The impact of climate change on global tropical cyclone damage. Nature Climate Change, 2(3):205-209, 2012. [3] Silvio Schmidt, Claudia Kemfert, and Peter Höppe. The impact of socio-economics and climate change on tropical cyclone losses in the USA. Regional Environmental Change, 10(1):13-26, 2009. [4] William D. Nordhaus. The Economics of Hurricanes and Implications of Global Warming. Climate Change Economics, 01(01):1-20, 2010. [5] Kerry Emanuel. Global Warming Effects on U.S. Hurricane Damage. Weather, Climate, and Society, 3(4):261-268, 2011. [6] Richard J. Murnane and James B. Elsner. Maximum wind speeds and US hurricane losses. Geophysical Research Letters, 39(16):707, 2012. [7] Kerry Emanuel. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110(30):12219-24, 2013. [8] Detlef P. van Vuuren, Keywan Riahi, and Richard Moss. A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1):21-35, 2012.

  18. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part II. Changes in Sampling Efficiency

    PubMed Central

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin

    2015-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232–1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form. PMID:24064963

  19. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    PubMed

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the DO cyclone. However, for three models of pumps producing 30%, 56%, and 70% pulsations, substantial changes were confirmed. The GK2.69 cyclone showed a similar pattern to that of the DO cyclone, i.e. no change in sampling efficiency for the Legacy producing 15% pulsation and a substantial change for the Elite12 producing 41% pulsation. Pulse shape did not cause any change in sampling efficiency when compared to the single sine wave. The findings suggest that 25% pulsation at the inlet of the cyclone as measured by this test can be acceptable for the respirable particle collection. If this test is used in place of that currently in European standards (EN 1232-1997 and EN 12919-1999) or is used in any International Organization for Standardization standard, then a 25% pulsation criterion could be adopted. This work suggests that a 10% criterion as currently specified in the European standards for testing may be overly restrictive and not able to be met by many pumps on the market. Further work is recommended to determine which criterion would be applicable to this test if it is to be retained in its current form.

  20. Low turbulence/high efficiency cyclone separators: Facility qualification results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgaitis, R.; Paul, D.D.; Bioarski, A.A.

    1985-01-01

    The objective of this work is to experimentally investigate the near-wall turbulent flow-fields characteristic of cyclone separators in order to determine the influence of wall-originating turbulence on the separation of fine particles. In particular, seven turbulence suppression concepts will be evaluated with reference to a well-established baseline condition. Concepts which appear attractive will be studied and characterized in more detail. The work accomplished to date is principally the design, construction, and qualification of two of the facilities that will be used to study the various concepts of turbulence suppression. The qualification of the primary facility, the Cyclonic Wind Tunnel (CWT),more » has required the development and adaptation of laser Doppler velocimetry (LDV) to perform simultaneous two-dimensional turbulence measurements in a highly swirling flow. A companion facility to the CWT is the Curvilinear Boundary Layer (CBL) apparatus. The purpose of the CBL is to provide a thick, visually-observable near-wall flow region under dynamically similar conditions to the CWT to that a physical understanding of the turbulence suppression process can be obtained. 9 refs., 15 figs.« less

  1. The Role of the Stratosphere in Explosive Deepening of Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Wilbraham, Robert; Trzeciak, Tomek; Owen, Jenny; Odell, Luke; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    Using a combination of an automatic cyclone tracking method and a special version of the classical pressure tendency equation (PTE), changes in surface core pressure of extra-tropical cyclones can be related to contributions from horizontal temperature advection, vertical motion and diabatic processes, i.e. mainly latent heat release in clouds. Here, the PTE is evaluated in 3°x3° boxes located over the cyclone positions at 6-hourly basis, thus following the movement of a given storm at each time step. PTE calculations are performed from the surface to 100 hPa. Previous work has shown that this approach can be used to quantify the contribution of diabatic processes to cyclone deepening in an automated way, and can easily be applied to large gridded datasets, in this case ERA-Interim reanalyses. In order to close the mass budget in the PTE, geopotential height tendencies at the upper integration boundary (usually 100 hPa) need to be taken into account. Older studies have assumed this term to be negligible, and this has been confirmed with modern re-analysis data for many explosively deepening storms. However, some historical storms show a remarkable contribution from this term, indicating a substantial warming of the levels above 100hPa. An outstanding example is the Braer Storm of January 1993, which reached a record minimum core pressure of 914 hPa near Iceland. A stepwise increase of the upper integration boundary reveals that substantial geopotential height tendencies reach above 1 hPa. This unusual behaviour appears to be related to the propagation of a deep planetary wave trough from North America towards the North Atlantic basin. A similar but somewhat less dramatic behaviour was found for cyclone Wiebke. Another interesting example is storm Emma, which managed to sustain substantial deepening rates despite adverse positive geopotential height tendencies at 100 hPa. Future work will include a more robust statistical analysis of this problem and a better understanding of the nature and physical mechanism of the stratospheric influence on explosive cyclogenesis.

  2. Energetics characteristics accounting for the explosive development of a twin extratropical cyclone over the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, Shenming

    2017-04-01

    A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.

  3. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to infer the height and internal stratification of some astrophysical and geophysical vortices because direct measurements of their vertical structures are difficult. In Chapter 3, we show numerically and experimentally that localized suction in rotating continuously stratified flows produces three-dimensional baroclinic cyclones. As expected from Chapter 2, the interiors of these cyclones are super-stratified. Suction, modeled as a small spherical sink in the simulations, creates an anisotropic flow toward the sink with directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Vaisala frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so that the interior of the cyclone becomes super-stratified. The super-stratified region is visualized in the companion experiments that we helped to design and analyze using the synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous dissipation in the simulations and experiments. The numerical results show that the vertical velocity of viscously decaying cyclones flows away from the cyclone's midplane, while the radial velocity flows toward the cyclone's center. This observation is explained based on the cyclo-geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone and reduces the super-stratification. We speculate that the predominance of anticyclones in geophysical and astrophysical flows is due to the fact that anticyclones require sub-stratification, which occurs naturally by mixing, while cyclones require super-stratification. In Chapter 4, we show that a previously unknown instability creates space-filling lattices of 3D turbulent baroclinic vortices in linearly-stable, rotating, stratified shear flows. The instability starts from a newly discovered family of easily-excited critical layers. This new family, named the baroclinic critical layer, has singular vertical velocities; the traditional family of (barotropic) critical layer has singular stream-wise velocities and is hard to excite. In our simulations, the baroclinic critical layers in rotating stably-stratified linear shear are excited by small-volume, small-amplitude vortices or waves. The excited baroclinic critical layers then intensify by drawing energy from the background shear and roll-up into large coherent 3D vortices that excite new critical layers and vortices. The vortices self-similarly replicate to create lattices of turbulent vortices. These vortices persist for all time and are called zombie vortices because they can occur in the dead zones of protoplanetary disks. The self-replication of zombie vortices can de-stabilize the otherwise linearly and finite-amplitude stable Keplerian shear and lead to the formation of stars and planets. (Abstract shortened by UMI.)

  4. Cyclone: java-based querying and computing with Pathway/Genome databases.

    PubMed

    Le Fèvre, François; Smidtas, Serge; Schächter, Vincent

    2007-05-15

    Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.

  5. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  6. Epidemiology of injuries due to tropical cyclones in Hong Kong: a retrospective observational study.

    PubMed

    Rotheray, K R; Aitken, P; Goggins, W B; Rainer, T H; Graham, C A

    2012-12-01

    Tropical cyclones are huge circulating masses of wind which form over tropical and sub-tropical waters. They affect an average of 78 million people each year. Hong Kong is a large urban centre with a population of just over 7 million which is frequently affected by tropical cyclones. We aimed to describe the numbers and types of injuries due to tropical cyclones in Hong Kong, as well as their relation to tropical cyclone characteristics. The records of all patients presenting to Hong Kong's public hospital emergency departments from 1st January 2004 to 31st December 2009 with tropical cyclone related injuries were reviewed and information regarding patient and injury characteristics was collected. Meteorological records for the relevant periods were examined and data on wind speed, rainfall and timing of landfall and warning signals was recorded and compared with the timing of tropical cyclone related injuries. A total of 460 tropical cyclone related injuries and one fatality across 15 emergency departments were identified during the study period. The mean age of those injured was 48 years and 48% were female. 25.4% of injuries were work related. The head (33.5%) and upper limb (32.5%) were the most commonly injured regions, with contusions (48.6%) and lacerations (30.2%) being the most common injury types. Falls (42.6%) were the most common mechanism of injury, followed by being hit by a falling or flying object (22.0%). In univariable analysis the relative risk of injury increased with mean hourly wind speed and hourly maximum gust. Multivariable analysis, however, showed that relative risk of injury increased with maximum gust but not average wind speed, with relative risk of injury rising sharply above maximum gusts of greater than 20 m/s. Moderate wind speed with high gust (rather than high average and high gust) appears to be the most risky situation for injuries. Relative risk of injury was not associated with rainfall. The majority of injuries (56%) occurred in the 3h before and after a tropical cyclone's closest proximity to Hong Kong, with relative risk of injury being highest mid-morning. In tropical cyclone related injuries in Hong Kong the head and upper limb are the most commonly affected sites with falls and being hit by a falling or flying object being the most common mechanisms of injury. Hourly maximum gust appears to be more important that mean hourly wind speed in determining risk of injury. These findings have implications for injury prevention measures and emergency planning in Hong Kong and other regions effected by tropical cyclones. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Evolution of environmental factors affecting tropical cyclones from the LGM through the Holocene

    NASA Astrophysics Data System (ADS)

    Korty, R.

    2010-12-01

    The debate about whether and how tropical cyclones respond to warming climates has raised several interesting questions, but it has also revealed there is much we do not understand about controls on frequency and cumulative metrics of intensity and activity. In this work, I examine how the models used for anthropogenic climate predictions handle large-scale factors influencing tropical cyclone development in a different regime: the paleoclimate simulations of the LGM and Holocene. The models were forced under guidelines set forth by the second paleoclimate model intercomparison project (PMIP2), and produce equilibrium solutions for forcings far removed from small perturbations to the present-day world. (LGM has substantially lower CO2 and CH4 levels, while mid-Holocene cases have similar levels to today but different seasonal amplitudes from orbital variations.) The large-scale environmental factors that support tropical cyclones in today’s climate undergo complex and at times counter-intuitive changes in the colder simulations. The maximum potential intensity of tropical cyclones (MPI) is lower throughout the tropics in the mid-Holocene simulations, despite having SSTs very similar to today. MPI changes at LGM are more complex: lower in some regions but higher in much of the subtropics, while SSTs are uniformly lower than today. The water vapor deficits in the tropical midtroposphere change in such a way as to make tropical cyclone formation easier in the colder states; this is a counterintuitive result, but one consistent with the predictions of fewer storms in model simulations of a warmer climate by the end of the 21st century. I analyze the thermodynamic reasons behind the evolution in the large-scale environmental factors as well as relevant dynamic factors such as low-level vorticity and tropospheric wind shear. This analysis is the first part of a long-term project to analyze model prediction of tropical cyclone activity in the recent geologic past; the analysis provides a new line of evidence to compare with geologic proxies of tropical cyclone activity through the Holocene. Changes in midtropospheric entropy deficit from preindustrial (PI) climate to mid-Holocene (6ka) and LGM. Lower values indicate a smaller saturation deficit, which is conducive for tropical cyclone development.

  8. Environmental Disaster and Economic Change: Do tropical cyclones have permanent effects on economic growth and structure?

    NASA Astrophysics Data System (ADS)

    Jina, A.; von der Goltz, J.; Hsiang, S. M.

    2011-12-01

    Natural disasters have important, often devastating, effects upon economic growth and well-being. Due to this, disasters have become an active area of recent research and policy attention. However, much of this research has been narrowly focused, relying on anecdotal evidence and aggregated data to support conclusions about disaster impacts in the short-term. Employing a new global data set of tropical cyclone exposure from 1960 to 2008, we investigate in greater detail whether permanent changes in economic performance and structure can result from these extreme events in some cases. Our macro-economic analyses use the World Development Indicator dataset and have shown promising results: there are dramatic long-term economic transformations associated with tropical cyclones across a number of countries and industries. This effect is most clearly seen in Small Island Developing States (SIDS) and some countries in Latin America, where negative changes in long-term growth trends are observed in the years following a large tropical cyclone. In many economies with a high exposure to tropical cyclone damage, there are noticeable structural changes within the economy. The impacts of disasters might be expressed through various economic and social channels, through direct loss of lives and infrastructure damage; for instance, the destruction of infrastructure such as ports may damage export opportunities where replacement capital is not readily available. These structural changes may have far-reaching implications for economic growth and welfare. Larger nations subjected to the impacts of tropical cyclones are thought to be able to relocate economically important activities that are damaged by cyclones, and so long-term trend changes are not observed, even for events that cause a large immediate decrease in national productivity. By investigating in a more rigorous fashion the hypothesis that the environment triggers these permanent economic changes, our work has implications for the conceptual foundations of both economic theory and sustainable development.

  9. Developing and Validating a Santa Ana Wildfire Threat Index

    NASA Astrophysics Data System (ADS)

    Capps, S. B.; Rolinski, T.; DAgostino, B.; Vanderburg, S.; Fovell, R. G.; Cao, Y.

    2014-12-01

    Santa Ana winds, common to southern California during the fall through spring, are a type of katabatic wind that originates from a direction generally ranging from 360°/0° to 100° and is usually accompanied by very low humidity. Since fuel conditions tend to be driest from late September through the middle of November, Santa Ana winds occurring during this period have the greatest potential to produce large, devastating fires when an ignition occurs. Such catastrophic fires occurred in 1993, 2003, 2007, and 2008. Because of the destructive nature of these fires, there has been a growing desire to categorize Santa Ana wind events in much the same way that tropical cyclones have been categorized. The Santa Ana Wildfire Threat index (SAWT) is an attempt to categorize such events with respect to fire activity, based on surface wind velocity, dew point depression, and forecasted fuel conditions. The index, a USDA Forest Service product, was developed by the Forest Service in collaboration with San Diego Gas and Electric Utility (SDG&E), the Department of Atmospheric and Oceanic Sciences at UCLA, The Desert Research Institute (DRI), and Vertum Partners. The methodology behind the SAWT index, along with the index itself will be presented in detail. Also, there will be a discussion on the construction of a 30-year climatology of the index, which includes various meteorological and fuel parameters. We will demonstrate the usefulness of the index as another decision support tool for fire agencies and first responders, and how it could assist the general public and private industry in the preparation of critical Santa Ana wind events.

  10. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael; ., Prabhat; Reed, Kevin A.

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  11. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations

    DOE PAGES

    Wehner, Michael; ., Prabhat; Reed, Kevin A.; ...

    2015-05-12

    The four idealized configurations of the U.S. CLIVAR Hurricane Working Group are integrated using the global Community Atmospheric Model version 5.1 at two different horizontal resolutions, approximately 100 and 25 km. The publicly released 0.9° × 1.3° configuration is a poor predictor of the sign of the 0.23° × 0.31° model configuration’s change in the total number of tropical storms in a warmer climate. However, it does predict the sign of the higher-resolution configuration’s change in the number of intense tropical cyclones in a warmer climate. In the 0.23° × 0.31° model configuration, both increased CO 2 concentrations and elevatedmore » sea surface temperature (SST) independently lower the number of weak tropical storms and shorten their average duration. Conversely, increased SST causes more intense tropical cyclones and lengthens their average duration, resulting in a greater number of intense tropical cyclone days globally. Increased SST also increased maximum tropical storm instantaneous precipitation rates across all storm intensities. It was found that while a measure of maximum potential intensity based on climatological mean quantities adequately predicts the 0.23° × 0.31° model’s forced response in its most intense simulated tropical cyclones, a related measure of cyclogenesis potential fails to predict the model’s actual cyclogenesis response to warmer SSTs. These analyses lead to two broader conclusions: 1) Projections of future tropical storm activity obtained by a direct tracking of tropical storms simulated by coarse-resolution climate models must be interpreted with caution. 2) Projections of future tropical cyclogenesis obtained from metrics of model behavior that are based solely on changes in long-term climatological fields and tuned to historical records must also be interpreted with caution.« less

  12. Characteristics of the internal and external sources of the Mediterranean synoptic cyclones for the period 1956-2013

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.; Nazrul Islam, M.

    2017-07-01

    This paper investigates the main sources and features of the Mediterranean synoptic cyclones affecting the basin, using the cyclone tracks. The cyclones' tracks are identified using sea level pressure (SLP) from the NCEP/NCAR reanalysis data for the period 1956-2013. The identified cyclones are classified into two categories: basin affected and basin non-affected. Most of the basin-affected (non-affected) cyclones are internal (external), i.e., generated inside (outside) the Mediterranean basin. This study reveals four (five) main sources of internal (external) cyclones. These four (five) main sources generated about 63.76% (57.25%) of the internal (external) cyclones. Seasonal analysis shows that most of the basin-affected internal (external) cyclones were generated in the winter (spring) season. The lowest number of cyclones were found in the summer. Moreover, the synoptic study of the atmospheric systems accompanied the highest- and lowest-generated years demonstrates that the deepening of the north Europe cyclones and the relative positions of Azores- and Siberian-high systems represent the important factors that influence the number of internal cyclones. Essential factors influencing the external cyclones are the strength of the maximum upper wind, Azores high, Siberian high, and orientations of their ridges.

  13. Assessment of Mediterranean cyclones in the multi-ensemble EC-Earth

    NASA Astrophysics Data System (ADS)

    Gil, Victoria; Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2015-04-01

    The geographical location and characteristics of the Mediterranean basin make this a particularly active region in terms of cyclone forming and re-development (Trigo et al., 2002). The area is affected by moving depressions, most originated over the North Atlantic, which may later be forced by the orography surrounding the Mediterranean Sea and enhanced by the local source of moisture and heat fluxes over the Sea itself. The present work analyses the response of Mediterranean cyclones to climate change by means of 7 ensemble members of EC-EARTH model from CMIP5 (Fifth Coupled Model Intercomparison Project). We restrict the analysis to a relatively small subset (7 members) of the total number of ensemble members available in order to take into account only the members present in the three selected experiments for robust detection of extra-tropical cyclones in the Mediterranean (Trigo, 2006). We have applied the standard procedure by comparing a common 25-year period of the historical (1980-2004), present day simulations, and the future climate simulations (2074-2098) forced by RCP4.5 and RCP8.5 scenarios. The study area corresponds to the window between 10°W-42°E and 27°N-48°N. The analysis is performed with a focus in spatial distribution density and main characteristics of the overall cyclones for winter (DJF) and summer (JJA) seasons. Despite the discrepancies in cyclone numbers when compared with the ERA Interim common period (reducing to only 72% in DJF and 78% in JJA), the ensemble average matches relatively well the main spatial patterns of areas. Results indicate that the ensemble average is characterized by a small decrease in winter (-3%) and a notable increase in summer (+10%) in total number of cyclones and that the individual ensemble members reveal small spread. Such tendency is particularly pronounced under the high RCP8.5 emission scenario being more moderated under the RCP4.5 scenario. Additionally, an assessment of changes in the annual cycle suggests a slight decrease of the spring maximum and a pronounced increase in the summer maximum. The cyclone characteristics obtained from the ensemble members of EC-Earth indicate that summer cyclones will tend to be slower, less intense but will have a faster deepening phase. Part of the summer enhanced activity is in areas dominated by thermal lows. Trigo I.F., G. R. Bigg and T.D. Davies, 2002: Climatology of cyclogenesis mechanisms in the Mediterranean. Mon. Wea. Rev. 130, 549-569. Trigo, I. F., 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dynam., 26, 127-143. Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  14. Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hall, C.; Lutjeharms, J. R. E.

    2011-03-01

    Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.

  15. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  16. Occurrence of Landslides during the Approach of Tropical Cyclone Juliette (2001) to Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Antinao, J.; Farfan, L.

    2012-12-01

    The approach of Tropical Cyclone Juliette to the Baja California Peninsula in September 2001 triggered at least 419 landslides. Most of the landslides were shallow slips and debris slides, of limited areal extent, which were converted rapidly into debris flows to be exported quickly out of the mountain areas towards the lowlands. Main factors affecting landslide occurrence were total storm rainfall and intensity, aspect, geology and vegetation association. Two processes can be distinguished as initiating slope failure. The first process is linked to failures in concave topography, where accumulation of rainfall from exposed bedrock slopes generated excess overland flow that aggregated to generate a 'fire hose' effect on the base of slopes, mobilizing regolith. A second process involved a combination of wind and excess overland flow developed in the more convex or planar upper slopes, where heterogeneous regolith has formed in time following successional changes in vegetation associations along the oak-dry tropical forest ecotone. In this area, wind uprooted trees that dislodged large regolith and bedrock blocks, priming hillslopes for further runoff concentration. From the analysis of historical information, an estimative threshold curve for triggering landslides in this region is sketched. It was also determined that storms like Juliette approach the southern peninsula on average once every 100 years. Denudation estimates are in the higher end of the spectrum for a tectonically passive margin. These estimates should be considered when taking decisions regarding management of water resources in this area through damming of streams. The results emphasize the need for a more detailed representation of the spatial distribution of the rainfall and winds for this mountainous region frequently affected by the passage of tropical cyclones.

  17. Use of Earth Observing Satellites for Operational Hazard Support

    NASA Astrophysics Data System (ADS)

    Wood, H. M.; Lauritson, L.

    The National Oceanic and Atmospheric Administration (NOAA) relies on Earth observing satellite data to carry out its operational mission to monitor, predict, and assess changes in the Earth's atmosphere, land, and oceans. NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) uses satellite data to help lessen the impacts of natural and man-made disasters due to tropical cyclones, flash floods, heavy snowstorms, volcanic ash clouds (for aviation safety), sea ice (for shipping safety), and harmful algal blooms. Communications systems on NOAA satellites are used to support search and rescue and to relay data from data collection platforms to a variety of users. NOAA's Geostationary (GOES) and Polar (POES) Operational Environmental Satellites are used in conjunction with other satellites to support NOAA's operational mission. While NOAA's National Hurricane Center is responsible for predicting tropical cyclones affecting the U.S. mainland, NESDIS continuously monitors the tropics world wide, relaying valuable satellite interpretations of tropical systems strength and position to users throughout the world. Text messages are sent every six hours for tropical cyclones in the Western Pacific, South Pacific, and Indian Oceans. To support the monitoring, prediction, and assessment of flash floods and winter storms, NESDIS sends out text messages alerting U.S. weather forecast offices whenever NOAA satellite imagery indicates the occurrence of heavy rain or snow. NESDIS also produces a 24-hour rainfall composite graphic image covering those areas affected by heavy precipitation. The International Civil Aviation Organization (ICAO) and other aviation concerns recognized the need to keep aviators informed of volcanic hazards. To that end, nine Volcanic Ash Advisory Centers (VAAC's) were created to monitor volcanic ash plumes within their assigned airspace. NESDIS hosts one of the VAAC's. Although the NESDIS VAAC's primary responsibility is the continental U.S., Carribean, and adjacent oceans, it also tracks volcanic eruptions throughout the world. Text messages are produced along with graphic interpretations. This information, along with volcanic ash forecasts produced by NOAA's National Weather Service, is made available to U.S. Government and international agencies concerned with aviation, seismology, and climate analysis. Earth observing satellites help NESDIS to ensure safe navigation of ships through sea ice by measuring the extent, thickness, and age of ice as well as sea surface winds over the polar regions of the globe, coastal areas, and inland waterways. These satellites also help NESDIS to monitor U.S. coastal areas for dangerous algal blooms or other toxic effects to fish and sea mammals as well as monitoring floods and fires. Experimental fire products can help in the monitoring of fires and fire weather, as well as determining fire risk. Experimental soil moisture products support flood and drought monitoring. Flood extent and damage assessment for a variety of hazards can be determined from several satellites at varying spatial resolutions. The Search and Rescue Satellite Aided Tracking (SARSAT) system detects and locates persons in distress on land or water. NOAA satellites relay distress signals from emergency beacons through a network of ground stations to the U.S. Mission Control Center (USMCC). The USMCC processes the data and alerts the appropriate search and rescue authorities. SARSAT is part of the international Cospas-Sarsat Program. NOAA's GOES Data Collection (DCS) and Argos (jointly with the French space agency) POES Data Collection and Locations Systems transmit data collected from remote land and water based platforms and distributes the data to researchers, governmental and environmental organizations worldwide. The GOES DCS system allows near real time and frequent transmissions, e.g. hourly, over the Americas and much of the Atlantic and Eastern Pacific Oceans. ARGOS transmissions are less frequent, but global and provide the location of moving platforms such as animals and drifting buoys.

  18. The Continuation of Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    2001-01-01

    The weather systems, cyclones, and anticyclones, along with air trajectories and cloud forms, are compared to past studies of the Arctic to assess compatibility of the four month study of the Arctic Cloud Experiment flights of the First ISCCP Regional Experiment (FIRE/ACE) with past climatologies. The frequency and movement of cyclones (lows) and anticyclones (highs) followed the general eastward and northeastward directions indicated by past studies. Most cyclones (lows) came from eastern Siberia and the Bering Sea to the south and moved north across the Bering Straight or Alaska into the Arctic Ocean. They generally weakened in central pressure as they moved poleward. Anticyclones (highs) were most common in the eastern Beaufort Sea near Canada in June and July as predicted from previous studies. However, many cyclones and anticyclones moved in westward directions which is rare in other latitudes. Erratic changes in shape and intensity on a daily basis also were observed. The National Center for Environmental Prediction (NCEP) analysis generally reflected the Surface Heat Budget in the Arctic (SHEBA) Ship World Meteorological Organization (WMO) observations which it used. However, NCEP temperatures were biased warm by 1.0 to 1.5 C in April and early May. In July when the surface temperature were at the freezing/thawing point, the NCEP analysis changed to a cold bias of -1.0 C. Dew points had smaller biases except for July where they were biased cold by -1.4 C. Wind speeds had a -2 m/s low bias for the six windiest days. Surface barometric pressures had consistently low biases from -1.2 to -2.8 hPa in all four months. Air parcel historical trajectories were mainly from the south or from local anticyclonic gyres in the Beaufort Sea. Most air came to the SHEBA Ship from the north Pacific Ocean or from Alaska and Canada and occasionally from eastern Siberia. Very few trajectories traced back across the pole to Europe and Central Asia. Cloud cover was high, as expected, from 69-86% of the time. Satellite data also indicate frequent stratus, altostratus, and cirrus clouds (occurring 61% of the time) above the expected boundary layer fog and Arctic stratus clouds.

  19. Statistical characteristics of austral summer cyclones in Southern Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Na; Fu, Gang; Kuo, Ying-Hwa

    2012-06-01

    Characteristics of cyclones and explosively developing cyclones (or `bombs') over the Southern Ocean in austral summer (December, January and February) from 2004 to 2008 are analyzed by using the Final Analysis (FNL) data produced by the National Centers for Environmental Prediction (NCEP) of the United States. Statistical results show that both cyclones and explosively developing cyclones frequently develop in January, and most of them occur within the latitudinal zone between 55°S and 70°S. These cyclones gradually approach the Antarctic Continent from December to February. Generally cyclones and bombs move east-southeastward with some exceptions of northeastward movement. The lifetime of cyclones is around 2-6 d, and the horizontal scale is about 1000 km. Explosive cyclones have the lifetime of about 1 week with the horizontal scale reaching up to 3000 km. Compared with cyclones developed in the Northern Hemisphere, cyclones over the southern ocean have much higher occurrence frequency, lower central pressure and larger horizontal scale, which may be caused by the unique geographical features of the Southern Hemisphere.

  20. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  1. Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    NASA Technical Reports Server (NTRS)

    Orton, P.; Conticello, F.; Cioffi, F.; Hall, T.; Georgas, N.; Lall, U.; Blumberg, A.

    2015-01-01

    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are finalized. Future funded work will quantify the influences of sea level rise and flood adaptation plans (e.g. surge barriers). It would also be valuable to examine how streamflows from tropical cyclones and wet cool-season storms will change, as this factor will dominate at upriver locations.

  2. Cyclone tolerance in new world arecaceae: biogeographic variation and abiotic natural selection.

    PubMed

    Griffith, M Patrick; Noblick, Larry R; Dowe, John L; Husby, Chad E; Calonje, Michael A

    2008-10-01

    Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

  3. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical. Based on NOAA and TOMS daily data, we estimated fire emissions (including CO2, CO, CH4 and other smoke aerosols) of over 70 Tg Carbon for Yakutian fires in 2002 and more than 120 Tg C for all Russian fires in 2010. We note the potential for increasing amounts of methane emissions when fires occur in permafrost zones and peat bogs. Post-fire changes in permafrost and vegetation cover are discussed in the connection changes in solar radiance balance. During the fire season of 2006 in the Eastern-Siberian, Transbaikal, and Far East regions we identified more than 15,000 fires with a total area of 120,000 km2. From 2002-2010 the annual number of fires in this area ranged from 10,000 to 16,500, and annual burned areas ranged from a low of 30 000 km2 in 2004 to a high of 145,000 km2 in 2003.

  4. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  5. The dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Flaounas, Emmanouil

    2017-04-01

    Breaking of atmospheric Rossby waves has been previously shown to lead to intense Mediterranean cyclones, one of the most prominent environmental risks in the region. Wave breaking may be enhanced by warm conveyor belts (WCBs) associated with extratropical cyclones developing over the Atlantic Ocean. More precisely, WCBs supply the upper troposphere with air masses of low potential vorticity that, in turn, amplify ridges and thus favor Rossby wave breaking. This study identifies and validates the relevance of the mechanism that connects Atlantic cyclones and intense mature Mediterranean cyclones through ridge amplification by WCBs. Using ECMWF ERA-Interim reanalyses and a feature-based approach, we analyze the 200 most intense Mediterranean cyclones for the years 1989-2008 and show that their majority (181 cases) is indeed associated with this mechanism upstream. Results show that multiple Atlantic cyclones are associated with each case of intense Mediterranean cyclone downstream. Moreover, the associated Atlantic cyclones are particularly deep compared to climatology.

  6. Renal services disaster planning: lessons learnt from the 2011 Queensland floods and North Queensland cyclone experiences.

    PubMed

    Johnson, David W; Hayes, Bronwyn; Gray, Nicholas A; Hawley, Carmel; Hole, Janet; Mantha, Murty

    2013-01-01

    In 2011, Queensland dialysis services experienced two unprecedented natural disasters within weeks of each other. Floods in south-east Queensland and Tropical Cyclone Yasi in North Queensland caused widespread flooding, property damage and affected the provision of dialysis services, leading to Australia's largest evacuation of dialysis patients. This paper details the responses to the disasters and examines what worked and what lessons were learnt. Recommendations are made for dialysis units in relation to disaster preparedness, response and recovery. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  7. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  8. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Methven, John; Martinez-Alvarado, Oscar; Gray, Suzanne

    2017-04-01

    Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the DIAMET (DIAbatic influences on Mesoscale structure in ExTratropical storms) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter even though the flow was weaker. Did the greater water transport and latent heat release associated with condensation result in the greater circulation in the PV tower case? A cyclone-centred integral framework is introduced relating the tracers with cross-isentropic mass transport and circulation around the cyclone. It is shown that the circulation increases much more slowly than the amplitude of the diabatically-generated PV tower at its centre. This effect is explained using the PV impermeability theorem and the influence of diabatic heating on circulation around a cyclone is shown to scale with Rossby number. The implication is that the stronger a cyclone becomes (larger Rossby number), the stronger the influence of latent heating on circulation.

  9. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  10. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiringmore » in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.« less

  11. Electrostatic precipitator rapping with sonic horns at Atlantic Electric`s B.L. England Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziarz, M.; Gallo, F.

    1995-12-31

    B.L. England Generating Station (BLE) is located in Beesleys Point, NJ. Beesleys Point is on Great Egg Bay, which is 20 minutes south of Atlantic City and one hour east of Philadelphia. BLE has three generating units: No. 1 is a 120 Megawatt (MW) B&W cyclone boiler; No. 2 is a 160 MW B&W cyclone boiler; & No. 3 is a tangential fired Combustion Engineering boiler. Units 1 & 2 burn medium sulfur eastern bituminous coal. Unit 3 burns No. 6 oil. Units 1&2 are equipped with precipitators (ESPs). The two ESPs were manufactured by Environmental Elements Corp. (EEC) andmore » were placed in service in 1980. Units are dual chamber with each having four mechanical fields and eight electrical fields. Each field has two Transformer/Rectifier (T/R) sets for a total of sixteen per ESP. The ESPs are rigid frame design (Rigitrode by EEC) with hammer & anvil rapping. Ash reinjection systems permit direct or cross reinjection of fly ash. Both ESPs have perforated plates for inlet & outlet gas flow distribution. There are three inlet plates and one outlet plate. The first inlet plates and the outlets are cleaned via electric reciprocating vibrators. There was no means of cleaning the remaining plates provided.« less

  12. The Relationship Between Tropical Cyclone Frequency and 'Climate Change'

    NASA Astrophysics Data System (ADS)

    Bolton, M.; Mogil, M.

    2013-12-01

    Please note: there have been minor updates to this work since the main author, Matt Bolton, graduated high school, but the majority of the research was compiled by him while he was a high school junior in 2011. Abstract: In recent years, there has been a growing trend by many, in the meteorological community (media and scientist) to predict expected seasonal tropical cyclone frequency in the Atlantic and Pacific Basins. Typically, the numbers are related to seasonal averages. However, these predictions often show a large positive bias (i.e., there are more years in which the expected number of storms exceeds or far exceeds average). Further, observed numbers often come close to bearing out the forecasts (actually a good thing). From a public perspective (and based on extrapolations performed by media and some scientific groups), this peaking of Atlantic tropical cyclone activity is observed globally. In an attempt to determine if such a global trend exists, we set out to collect data from weather agencies around the world and present it in a way that was as unbiased as possible. While there were inconsistencies across the various datasets, especially in regard to wind data, we were still able to construct a realistic global cyclone database. We have concluded that high activity levels in one basin are often balanced by areas of low activity in others. The Atlantic - Eastern Pacific couplet is one such example. This paper will serve as an update to our previous 2011 paper, which introduced our efforts. At that time, we found, on average, 70 named tropical cyclones worldwide. In both this and our original study, we did not address the issue of naming short-lived tropical systems, which was found to be inconsistent across worldwide ocean basins. Our results suggest, that from a global climate change perspective, a growing NUMBER of tropical cyclones is NOT being observed. In the current iteration of our study, we are examining, at least preliminarily, global Accumulated Cyclone Energy (ACE) values. As these values are computed more widely in the coming months, we also hope to include a breakdown of worldwide tropical systems by category and duration.

  13. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    1997-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an eleven year period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444 km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are converted to monthly rainfall amounts and then compared to those for non-tropical cyclone systems. The main results of this study indicate that: 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maxima in tropical cyclone rainfall are poleward (5 deg to 10 deg latitude depending on longitude) of the maxima in non-tropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% of the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the ITCZ; and 5) in general, tropical cyclone rainfall is enhanced during the El Nino years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  14. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  15. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  16. The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.

  17. Clusters of cyclones encircling Jupiter's poles.

    PubMed

    Adriani, A; Mura, A; Orton, G; Hansen, C; Altieri, F; Moriconi, M L; Rogers, J; Eichstädt, G; Momary, T; Ingersoll, A P; Filacchione, G; Sindoni, G; Tabataba-Vakili, F; Dinelli, B M; Fabiano, F; Bolton, S J; Connerney, J E P; Atreya, S K; Lunine, J I; Tosi, F; Migliorini, A; Grassi, D; Piccioni, G; Noschese, R; Cicchetti, A; Plainaki, C; Olivieri, A; O'Neill, M E; Turrini, D; Stefani, S; Sordini, R; Amoroso, M

    2018-03-07

    The familiar axisymmetric zones and belts that characterize Jupiter's weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter's low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter's equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn's polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

  18. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  19. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  20. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage on Samoa totalled to US130 million. Cyclone Val caused damage and destruction to 95% of houses in Samoa and severe crop damage; total damage was estimated as US200 million. Recently, severe tropical cyclone Evan affected Samoa and Fiji (December 2012). Significant progress in operational tropical cyclone forecasting has been achieved over the past few decades which resulted in improving early warning system but death toll attributed to cyclones is still high - at least 14 deaths in Samoa are related to cyclone Evan (luckily, no death reports in Fiji). Cyclone-related economic losses also remain very high making significant negative impact on economies of the countries. Preliminary assessment of damage caused by cyclone Evan in Fiji indicates loses of about 75.29 million. By the end of this century projections suggest decreasing numbers of tropical cyclones but a possible shift towards more intense categories. In addition, geographic shifts in distribution of tropical cyclone occurrences caused by warming of the atmospheric and oceanic environment are possible. This should be taken in consideration by authorities of the Pacific Island Countries when developing adaptation strategies to increasing tropical cyclone risk due to climate change.

  1. Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzer, R. C.; George, P. E.; Thomas, J. F.

    1976-07-01

    This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equippedmore » with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.« less

  2. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1993-01-01

    Full attention was now directed to the blocking case studies mentioned in previous reports. Coding and initial computational tests were completed for a North Atlantic blocking case that occurred in late October/early November 1985 and an upstream cyclone that developed rapidly 24 hours before block onset. This work is the subject of two papers accepted for presentation at the International Symposium on the Lifecycles of Extratropical Cyclones in Bergen, Norway, 27 June - 1 July 1994. This effort is currently highlighted by two features. The first is the extension of the Zwack-Okossi equation, originally formulated for the diagnosis of surface wave development, for application at any pressure level. The second is the separation of the basic large-scale analysis fields into synoptic-scale and planetary-scale components, using a two-dimensional Shapiro filter, and the corresponding partitioning of the Zwack-Okossi equation into synoptic-scale, planetary-scale, and synoptic/planetary-scale interaction terms. Preliminary tests suggest substantial contribution from the synoptic-scale and interaction terms.

  3. A cyclogenesis index for tropical Atlantic off the African coasts

    NASA Astrophysics Data System (ADS)

    Sall, Saïdou Moustapha; Sauvageot, Henri; Gaye, Amadou Thierno; Viltard, Alain; de Felice, Pierre

    2006-02-01

    The westward moving Soudano-Sahelian mesoscale convective systems (MCS) frequently reach and cross the Atlantic Coast. At the end of their continental route, most MCS weaken and vanish over the ocean, near the coast, while others strengthen. The latter play an important part in the genesis of some Atlantic tropical cyclones. In the present paper, following the work of Gray (1977, 1979) [Gray, W.M., 1977. Tropical cyclone genesis in the western North Pacific. J. Meteorol. Soc. Jpn. 55, 465-482; Gray, W.M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D.B. Shaw, (Ed.), Roy. Meteorol. Soc., 155-218] and Gray et al. (1994, 1999) [Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1994. Predicting Atlantic seasonal tropical cyclone activity by 1 June. Weather Forecast. 9, 103-115; Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1999. Forecast of Atlantic seasonal hurricane activity for 1999. Dept. of Atmos. Sci. Report, Colo. State Univ., Ft. Collins, CO, released on 4 June, 1999], an index liable to be associated with the coast-crossing MCS cyclonic evolution is built. The data used in this work are observations by the Dakar-Yoff radar, reanalyses of NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research), outgoing long wave radiation at the top of the atmosphere, and the resources of the National Hurricane Center data base. Several terms describing the variation of individual meteorological parameters are first analysed and then combined into an index of cyclogenesis or ICY. Combination of vertical vorticity at 925 hPa and potential vorticity at 700 hPa is notably found to be a good factor to discriminate between strengthening and weakening MCS over the near Atlantic. A good correlation between the ICY maximum and the beginning of the MCS cyclogenesis is observed. This index enables discrimination of the simultaneous presence of two separate cyclonic perturbations over the Atlantic. These results show that the sole variable ICY is useful to detect a cyclogenesis process in progress in a Sahelian MCS.

  4. Communicating the Threat of a Tropical Cyclone to the Eastern Range

    NASA Technical Reports Server (NTRS)

    Winters, Katherine A.; Roeder, William P.; McAleenan, Mike; Belson, Brian L.; Shafer, Jaclyn A.

    2012-01-01

    The 45th Weather Squadron (45 WS) has developed a tool to help visualize the Wind Speed Probability product from the National Hurricane Center (NHC) and to help communicate that information to space launch customers and decision makers at the 45th Space Wing (45 SW) and Kennedy Space Center (KSC) located in east central Florida. This paper reviews previous work and presents the new visualization tool, including initial feedback as well as the pros and cons. The NHC began issuing their Wind Speed Probability product for tropical cyclones publicly in 2006. The 45 WS uses this product to provide a threat assessment to 45 SW and KSC leadership for risk evaluations with an approaching tropical cyclone. Although the wind speed probabilities convey the uncertainty of a tropical cyclone well, communicating this information to customers is a challenge. The 45 WS continually strives to provide the wind speed probability information to customers in a context which clearly communicates the threat of a tropical cyclone. First, an intern from the Florida Institute of Technology (FIT) Atmospheric Sciences department, sponsored by Scitor Corporation, independently evaluated the NHC wind speed probability product. This work was later extended into a M.S. thesis at FIT, partially funded by Scitor Corporation and KSC. A second thesis at FIT further extended the evaluation partially funded by KSC. Using this analysis, the 45 WS categorized the probabilities into five probability interpretation categories: Very Low, Low, Moderate, High, and Very High. These probability interpretation categories convert the forecast probability and forecast interval into easily understood categories that are consistent across all ranges of probabilities and forecast intervals. As a follow-on project, KSC funded a summer intern to evaluate the human factors of the probability interpretation categories, which ultimately refined some of the thresholds. The 45 WS created a visualization tool to express the timing and risk for multiple locations in a single graphic. Preliminary results on an on-going project by FIT will be included in this paper. This project is developing a new method of assigning the probability interpretation categories and updating the evaluation of the performance of the NHC wind speed probability analysis.

  5. An updated climatology of explosive cyclones using alternative measures of cyclone intensity

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Caballero, R.

    2009-04-01

    Using a novel cyclone tracking and identification method, we compute a climatology of explosively intensifying cyclones or ‘bombs' using the ERA-40 and ERA-Interim datasets. Traditionally, ‘bombs' have been identified using a central pressure deepening rate criterion (Sanders and Gyakum, 1980). We investigate alternative methods of capturing such extreme cyclones. These methods include using the maximum wind contained within the cyclone, and using a potential vorticity column measure within such systems, as a measure of intensity. Using the different measures of cyclone intensity, we construct and intercompare maps of peak cyclone intensity. We also compute peak intensity probability distributions, and assess the evidence for the bi-modal distribution found by Roebber (1984). Finally, we address the question of the relationship between storm intensification rate and storm destructiveness: are ‘bombs' the most destructive storms?

  6. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  7. Clusters of cyclones encircling Jupiter’s poles

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; Moriconi, M. L.; Rogers, J.; Eichstädt, G.; Momary, T.; Ingersoll, A. P.; Filacchione, G.; Sindoni, G.; Tabataba-Vakili, F.; Dinelli, B. M.; Fabiano, F.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Lunine, J. I.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Plainaki, C.; Olivieri, A.; O’Neill, M. E.; Turrini, D.; Stefani, S.; Sordini, R.; Amoroso, M.

    2018-03-01

    The familiar axisymmetric zones and belts that characterize Jupiter’s weather system at lower latitudes give way to pervasive cyclonic activity at higher latitudes. Two-dimensional turbulence in combination with the Coriolis β-effect (that is, the large meridionally varying Coriolis force on the giant planets of the Solar System) produces alternating zonal flows. The zonal flows weaken with rising latitude so that a transition between equatorial jets and polar turbulence on Jupiter can occur. Simulations with shallow-water models of giant planets support this transition by producing both alternating flows near the equator and circumpolar cyclones near the poles. Jovian polar regions are not visible from Earth owing to Jupiter’s low axial tilt, and were poorly characterized by previous missions because the trajectories of these missions did not venture far from Jupiter’s equatorial plane. Here we report that visible and infrared images obtained from above each pole by the Juno spacecraft during its first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones are observed about a single polar cyclone; in the south, one polar cyclone is encircled by five circumpolar cyclones. Cyclonic circulation is established via time-lapse imagery obtained over intervals ranging from 20 minutes to 4 hours. Although migration of cyclones towards the pole might be expected as a consequence of the Coriolis β-effect, by which cyclonic vortices naturally drift towards the rotational pole, the configuration of the cyclones is without precedent on other planets (including Saturn’s polar hexagonal features). The manner in which the cyclones persist without merging and the process by which they evolve to their current configuration are unknown.

  8. Contrasting effects of tropical cyclones on the annual survival of a pelagic seabird in the Indian Ocean.

    PubMed

    Nicoll, Malcolm A C; Nevoux, Marie; Jones, Carl G; Ratcliffe, Norman; Ruhomaun, Kevin; Tatayah, Vikash; Norris, Ken

    2017-02-01

    Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life-history stages across the annual life cycle. We used a 20-year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long-term capture-mark-recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity. © 2016 John Wiley & Sons Ltd.

  9. A Subtropical Cyclone in the Canary Islands: the October 2014 event

    NASA Astrophysics Data System (ADS)

    Quitian, Lara; Martin, Maria Luisa; Jesús González-Alemán, Juan; Santos-Muñoz, Daniel; Valero Rodríguez, Francisco

    2016-04-01

    Depending on the thermal structure and dynamics, there are different types of cyclones in the troposphere. Subtropical cyclones (STC) are low pressure systems that share tropical and extratropical characteristics, having hybrid thermal structures. In October 2014, a cyclonic system landfall the Canary Islands, causing widespread damages. The system began to develop in October 18 and its effects lasted until October 21. Here, the diagnosis and identification of such cyclone as STC is carried out, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. The cyclone evolved from a typical extratropical cyclone, detached from the atmospheric circulation which was highly meridional and became a stationary cut-off low. The meridional intrusion of the trough as well as a low-level baroclinic zone favored the formation of a STC northwestern of the Canary Islands. Several cyclone phase space diagrams are used to classify the cyclone as a STC, highlighting a deep cold core in its early stages that develops into a shallow warm core. High potential vorticity areas associated with the cyclone promoted strong winds and precipitation over the Islands. Throughout the event, an increased conditional instability is observed in the different soundings, leading to strong vertical wind shear. Moreover, relatively warm sea surface temperature is obtained, establishing the conditions to favor the organization of long-lived convective structures.

  10. The study of Merydunal and Zonal Index and its relationships with Cyclone Gonu

    NASA Astrophysics Data System (ADS)

    Ezzatian, Victoria

    2010-05-01

    Distinguish the integrated natural disaster management is basic, also there happens rarely during 100 years. Cyclone Gonu, an unusually strong tropical cyclone, developed in the eastern part of the Arabian Sea on June 1st. The cyclone made landfall in Oman on the 6th with maximum sustained winds near 148 km/hr. A few days prior to landfall, Gonu had intensified to a powerful super cyclonic storm with maximum sustained winds near 260 km/hr on the 5th, becoming the first documented super cyclone in the Arabian Sea and tied for the strongest cyclone in the North Indian Ocean. After making landfall in Oman, Gonu moved through the Gulf of Oman making a second landfall in Iran. Tropical Cyclone Gonu affected more than 20,000 people and was responsible for 49 fatalities and 27 missing people in Oman. Gonu brought heavy rainfall which caused floods and landslides. Meanwhile in Iran 5 fatalities were reported and 9 people remain missing. Tropical cyclones as strong as Gonu are rare in the Arabian Sea. Severe thunderstorms, associated with an outer band of the tropical cyclone Yemyin , produced heavy rains and winds during June 23-25. The storms produced heavy rains which caused floodings and destroyed thousands of homes .Tropical Cyclone Yemyin developed as a depression in the Bay of Bengal on the 21st and made landfall in India's southern state on the 22nd. Yemyin brought heavy rain in the southern parts of India, leaving over 254 mm of rain. After crossing over India, Yemyin moved into the Arabian Sea and began moving towards the northwest. On June 26, the cyclone intensified and maximum sustained winds reached 93 km/hr. The cyclone was responsible for at least 21 fatalities in the Baluchistan province. Meanwhile in Afghanistan, Yemyin produced heavy rainfall which prompted floods that were responsible for 56 deaths and left thousands of people homeless . Because of these happenings we decided surveying the synoptic patterns in this month. Key words: Tropical cyclones, Tropical Cyclone Gonu, merridional index, zonal index .

  11. Coastal Hazard due to Tropical Cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one, which aim to better manage the coastal area and reduce its vulnerability to hurricanes. References Bretschneider, C.L., 1990. Tropical Cyclones. Handbook of Coastal and Ocean Engineering, Gulf Publishing Co., Vol. 1, 249-370. Holland, G.L., 1980. An analytical model of wind and pressure profiles in hurricanes. Monthly Weather Review, 108, 1212-1218. Posada, G., Silva, R. & de Brye, S. 2008. Three dimensional hydrodynamic model with multiquadtree meshes. American Journal of Environmental Sciences. 4(3): 209-222. Silva, R., Govaere, G., Salles, P., Bautista, G. & Díaz, G. 2002. Oceanographic vulnerability to hurricanes on the Mexican coast. International Conference on Coastal Engineering, pp. 39-51.

  12. Moisture transport and Atmospheric circulation in the Arctic

    NASA Astrophysics Data System (ADS)

    Woods, Cian; Caballero, Rodrigo

    2013-04-01

    Cyclones are an important feature of the Mid-Latitudes and Arctic Climates. They are a main transporter of warm moist energy from the sub tropics to the poles. The Arctic Winter is dominated by highly stable conditions for most of the season due to a low level temperature inversion caused by a radiation deficit at the surface. This temperature inversion is a ubiquitous feature of the Arctic Winter Climate and can persist for up to weeks at a time. The inversion can be destroyed during the passage of a cyclone advecting moisture and warming the surface. In the absence of an inversion, and in the presence of this warm moist air mass, clouds can form quite readily and as such influence the radiative processes and energy budget of the Arctic. Wind stress caused by a passing cyclones also has the tendency to cause break-up of the ice sheet by induced rotation, deformation and divergence at the surface. For these reasons, we wish to understand the mechanisms of warm moisture advection into the Arctic from lower latitudes and how these mechanisms are controlled. The body of work in this area has been growing and gaining momentum in recent years (Stramler et al. 2011; Morrison et al. 2012; Screen et al. 2011). However, there has been no in depth analysis of the underlying dynamics to date. Improving our understanding of Arctic dynamics becomes increasingly important in the context of climate change. Many models agree that a northward shift of the storm track is likely in the future, which could have large impacts in the Arctic, particularly the sea ice. A climatology of six-day forward and backward trajectories starting from multiple heights around 70 N is constructed using the 22 year ECMWF reanalysis dataset (ERA-INT). The data is 6 hourly with a horizontal resolution of 1 degree on 16 pressure levels. Our methodology here is inspired by previous studies examining flow patterns through cyclones in the mid-latitudes. We apply these earlier mid-latitude methods in the Arctic. We investigate an Arctic trajectory dataset and provide a phenomenological/descriptive analysis of these trajectories, including key meteorological variables carried along trajectories. The trajectory climatology is linked to a previously established cyclone climatology dataset from Hanley and Caballero (2011). We associate trajectories and the meteorological variables they are carrying to cyclones in this dataset. A climatology of 'Arctic-influencing' cyclones is constructed from the cyclone dataset. The resilience of the polar vortex and its effect on circulation, via blocking and breaking, is examined in relation to our trajectory climatology.

  13. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  14. Synergistic effects of drought and fire on the carbon carrying capacity of tropical forests and woodlands

    NASA Astrophysics Data System (ADS)

    Boer, Matthias; Bradstock, Ross

    2014-05-01

    More than half of the global forest carbon stock is held in tropical forests. A relatively large proportion of the tropical forest carbon is stored in plant biomass rather than in the soil, making these stocks particularly vulnerable to disturbances such as droughts, fires and cyclones. The frequencies, duration and intensities of such disturbances may change under future climates with poorly resolved but potentially significant (synergistic) effects on the carbon carrying capacity of tropical forests and thereby on global geochemical cycles. In this study we analyse high-resolution global data sets for tropical forest biomass (Saatchi et al., 2011. PNAS) and fire affected areas (GFED4, Giglio et al.,2013. JGR 118), together with climate data (WorldClim, Hijmans et al., 2005. Int. J. Clim. 25), to quantify the sensitivity of tropical forest carbon stocks in South America, Africa and Asia/Australia to seasonal water deficits and fire. Here, the climatic water deficit (D), calculated as the difference between mean annual potential evapotranspiration and actual evapotranspiration, is used as a measure of seasonal water stress (i.e., evaporative demand not met by available water), while the mean annual burned area fraction (1995-2013) of grid cells is used as a measure of average fire activity. Tropical forest carbon stocks are maximal, as expected, where water deficits are negligible. In those densely forested environments fire tends to be extremely rare as fuels are too wet to burn for most of the time. In all three continents, potential tropical forest carbon stocks are well predicted by a non-linear decreasing function of the mean annual climatic water deficit, with a steep drop in carbon stocks at D of 700-800 mm per year. At this threshold in the climatic water deficit we observe a strong increase in fire activity that is indicative of a critical change in vegetation structure (i.e., tree/grass ratio) and associated shift in the dominant climatic constraint on fire activity from fuel dryness to fuel productivity. By comparing predictions of potential forest carbon stocks (i.e., as a function of D only) with actual carbon stocks, we quantify the sensitivity of those stocks to increasing fire activity. Finally, we map the risk of losses in carbon carrying capacity of tropical forests under scenarios of future climate.

  15. Velocity and Vorticity Measurements of Jupiter's Great Red Spot Using Automated Cloud Feature Trackers

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Banfield, D.; Gierasch, P. J.; Showman, A. P.

    2006-09-01

    We have produced mosaics of the Great Red Spot (GRS) using images taken by Galileo in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen in our velocity vector map, and highest wind velocities are measured to be 166.4 m/s. The high resolution of the mosaics have also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. (1996) and Vasavada et al. (1998). We have also discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5-um (Terrile et al. 1979). It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo images from 1996, first analyzed by Vasavada et al. (1998). Cyclonic rings around Jovian anti-cyclones have also appeared in numerical modeling studies by Showman (2006). We also calculate how absolute vorticity changes as a function of latitude along particle trajectories around the GRS and compare these measurements to similar ones performed by Dowling & Ingersoll (1988) using Voyager data. From this comparison, we show no dramatic evolution in the structure of the GRS since the Voyager era. This work was supported by NASA Planetary Atmospheres grants to APS and PJG, along with support from Cornell Presidential Research Scholars.

  16. Extremes of Extra-tropical Storms and Drivers of Variability on Different Time Scales

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2015-12-01

    Extreme extra-tropical cyclones are highly complex dynamical systems with relevance not only for the meteorological and climatological conditions themselves, but also for impacts on different sectors of society and economy. In this presentation latest research results to severe cyclones and related wind fields from synoptic to multi-decadal and anthropogenic scales will be presented, including recent work to risk assessment of potential damages out of this natural hazard. Nevertheless, the focus is laid on the seasonal timescale and recent results to predictability and predictive skills out of different forecast suites will be discussed. In this context, three seasonal forecast suites, namely ECMWF System 3, ECMWF System 4 and Met Office HadGEM-GA3, are analysed regarding their ability to represent wintertime extra-tropical cyclone and wind storm events for the period 1992 until 2011. Two objective algorithms have been applied to 6 hourly MSLP data and 12 hourly wind speeds in 925hPa to detect cyclone and wind storm events, respectively. Results show that all model suites are able to simulate the climatological mean distribution of cyclones and wind storms. For wind storms, all model suites show positive skill in simulating the inter-annual variability over the sub-tropical Pacific. Results for the Atlantic region are more model dependent, with all models showing negative correlations over the western Atlantic. Over the eastern Atlantic/Western Europe only HadGEM-GA3 and ECMWF-S4 reveal significant positive correlations. However, it is found that results over this region are not robust in time for ECMWF-S4, as correlations drop if using 1982 until 2011 instead of 1992 until 2011. Factors of potential predictability will be discussed.

  17. Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2017-04-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.

  18. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  19. Serial Clustering of North Atlantic Cyclones and Wind Storms: A New Identification Base and Sensitivity to Intensity and Intra-Seasonal Variability

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Kirchner-Bossi, N. O.; Befort, D. J.; Ulbrich, U.

    2015-12-01

    Time-clustered mid-latitude winter storms are responsible for a large portion of the overall windstorm-related damage in Europe. Thus, its study entails a high meteorological interest, while its outcome can result in a crucial utility for the (re)insurance industry. In addition to existing cyclone-based studies, here we use an event identification approach based on surface near wind speeds only, to investigate windstorm clustering and compare it to cyclone clustering. Specifically, cyclone and windstorm tracks are identified for winter 1979-2013 (Oct-Mar), to perform two sensitivity analyses on event-clustering in the North Atlantic using ERA-Interim Reanalysis. First, the link between clustering and cyclone intensity is analysed and compared to windstorms. Secondly, the sensitivity of clustering on intra-seasonal time scales is investigated, for both cyclones and windstorms. The wind-based approach reveals additional regions of clustering over Western Europe, which could be related to extreme damages, showing the added value of investigating wind field derived tracks in addition to that of cyclone tracks. Previous studies indicate a higher degree of clustering for stronger cyclones. However, our results show that this assumption is not always met. Although a positive relationship is confirmed for the clustering centre located over Iceland, clustering off the coast of the Iberian Peninsula behaves opposite. Even though this region shows the highest clustering, most of its signal is due to cyclones with intensities below the 70th percentile of the Laplacian of MSLP. Results on the sensitivity of clustering to the time of the winter season (Oct-Mar) show a temporal evolution of the clustering patterns, for both windstorms and cyclones. Compared to all cyclones, clustering of windstorms and strongest cyclones culminate around February, while all cyclone clustering peak in December to January.

  20. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison of diabatic processes and their importance for the evolution of extratropical cyclones.

  1. The threat to coral reefs from more intense cyclones under climate change.

    PubMed

    Cheal, Alistair J; MacNeil, M Aaron; Emslie, Michael J; Sweatman, Hugh

    2017-04-01

    Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central-southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid-century poses a global threat to coral reefs and dependent societies. © 2017 John Wiley & Sons Ltd.

  2. Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME

    NASA Astrophysics Data System (ADS)

    Kumkar, Yogesh V.; Sen, P. N.; Chaudhari, Hemankumar S.; Oh, Jai-Ho

    2018-02-01

    In this paper, an attempt has been made to conduct a numerical experiment with the high-resolution global model GME to predict the tropical storms in the North Indian Ocean during the year 2007. Numerical integrations using the icosahedral hexagonal grid point global model GME were performed to study the evolution of tropical cyclones, viz., Akash, Gonu, Yemyin and Sidr over North Indian Ocean during 2007. It has been seen that the GME model forecast underestimates cyclone's intensity, but the model can capture the evolution of cyclone's intensity especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as cyclones approach the coastal region. A series of numerical simulation of tropical cyclones have been performed with GME to examine model capability in prediction of intensity and track of the cyclones. The model performance is evaluated by calculating the root mean square errors as cyclone track errors.

  3. Effects of cyclone-generated disturbance on a tropical reef foraminifera assemblage.

    PubMed

    Strotz, Luke C; Mamo, Briony L; Dominey-Howes, Dale

    2016-04-29

    The sedimentary record, and associated micropalaeontological proxies, is one tool that has been employed to quantify a region's tropical cyclone history. Doing so has largely relied on the identification of allochthonous deposits (sediments and microfossils), sourced from deeper water and entrained by tropical cyclone waves and currents, in a shallow-water or terrestrial setting. In this study, we examine microfossil assemblages before and after a known tropical cyclone event (Cyclone Hamish) with the aim to better resolve the characteristics of this known signal. Our results identify no allochthonous material associated with Cyclone Hamish. Instead, using a swathe of statistical tools typical of ecological studies but rarely employed in the geosciences, we identify new, previously unidentified, signal types. These signals include a homogenising effect, with the level of differentiation between sample sites greatly reduced immediately following Cyclone Hamish, and discernible shifts in assemblage diversity. In the subsequent years following Hamish, the surface assemblage returns to its pre-cyclone form, but results imply that it is unlikely the community ever reaches steady state.

  4. FireWorks educational program and its effectiveness

    Treesearch

    Jane Kapler Smith; Nancy E. McMurray

    2004-01-01

    FireWorks is an educational program that provides interactive, hands-on activities for studying fire behavior, fire ecology, and human influences on three fire-dependent forest types-ponderosa pine (Pinus ponderosa), interior lodgepolepine (P. contorta var.latifolia), and whitebark pine (P. albicaulis)....

  5. A statistical analysis of the association between tropical cyclone intensity change and tornado frequency

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2016-07-01

    Tropical cyclones often produce tornadoes that have the potential to compound the injury and fatality counts and the economic losses associated with tropical cyclones. These tornadoes do not occur uniformly through time or across space. Multiple statistical methods were used in this study to analyze the association between tropical cyclone intensity change and tornado frequency. Results indicate that there is an association between the two and that tropical cyclones tend to produce more tornadoes when they are weakening, but the association is weak. Tropical cyclones can also produce a substantial number of tornadoes when they are relatively stable or strengthening.

  6. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  7. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  8. Influence of behavioral biases on the assessment of multi-hazard risks and the implementation of multi-hazard risks mitigation measures: case study of multi-hazard cyclone shelters in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda; Patt, Anthony

    2013-04-01

    In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the construction of cyclone shelters was being undertaken. The availability heuristics caused a perception of low probability of tsunami following an earthquake, as the last large similar event happened over a hundred years ago. Another led to a situation when decisions were taken on the basis of experience and not statistical evidence, namely, experience showed that the so-called "Ring of Fire" generates underground earthquakes and tsunamis in the Pacific Ocean. This knowledge made decision-makers to neglect the numerical estimations about probability of underground earthquake in the Indian Ocean even though seismologists were warning about probability of a large underground earthquake in the Indian Ocean. The bounded rationality bias led to misperception of signals from the early warning center in the Pacific Ocean. The resulting limited concern resulted in risk mitigation measures that considered cyclone risks, but much less about tsunami. Under loss aversion considerations, the decision-makers perceived the losses connected with the necessary additional investment as being greater than benefits from mitigating a less probable hazard.

  9. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    PubMed Central

    Convertino, Matteo; Elsner, James B.; Muñoz-Carpena, Rafael; Kiker, Gregory A.; Martinez, Christopher J.; Fischer, Richard A.; Linkov, Igor

    2011-01-01

    Background The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. Methodology/Principal Findings Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. Conclusions/Significance Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones. PMID:21264268

  10. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  11. Assessing the impact of cyclones in the coastal zone of Bangladesh

    NASA Astrophysics Data System (ADS)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  12. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  13. PFB Coal Fired Combined Cycle Development Program. Quarterly report, July-September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The System Analysis report was completed and is currently undergoing internal review prior to submission to DOE. Exposures of up to 6000 hours in the small burner rigs during Phase II identified PFB-5PM, aluminided PFB-6PM and GE-2541 as the most corrosion resistant cladding alloys. Three alloy modifications each of GE-2541 and PFB-5PM have been ordered as prealloyed powder to evaluate the effect of the modifications. Test 9 at CURL was terminated after twenty-one hours' operation due to a failure in the bellows between the combustor and Aerodyne cyclone. Initial data reduction of the total ninety-one hours of testing (combined Testsmore » 8 and 9) is in progress. All 24 mini-airfoil specimens exposed in the four cascades of the 91 hours CURL PFB Tests 8/9 were received for evaluation. The Aerodyne two-in-one cyclone was removed from the CURL facility and disassembled in order to determine the cause of the anomalies which occurred during Tests number 8 and number 9. The consensus after review and investigation by representatives from Aerodyne, CURL, and GE indicated a number of causes which are detailed. Test planning for the upcoming 1000 hour test at CURL was initiated. Effort is concentrated at integrating the test objectives of the program participants (DOE, EPRI, CURL, GE, AEP, Stal Laval, and B and W Ltd.).« less

  14. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    PubMed

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.

  15. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.

    2017-10-01

    Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.

  16. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU-A) on Aqua substantially reduced forecast track errors. Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. SA is also bringing several state of the art instruments in recent field campaigns to peer under the clouds and study the inner workings of the tropical storms. With the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that includes the Global Hawk Unmanned Airborne System (UAS) configured with a suite of in situ and remote sensing instruments that are observing and characterizing the lifecycle of hurricanes, we expect significant improvement in our understanding of the track and intensification processes with the assimilation of the satellite and field campaign observations of meteorological parameters in the numerical prediction models.

  17. Kinematic reversal schemes for the geomagnetic dipole.

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1972-01-01

    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  18. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  19. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explainedmore » by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.« less

  1. Global view of the upper level outflow patterns associated with tropical cyclone intensity changes during FGGE

    NASA Technical Reports Server (NTRS)

    Chen, L.; Gray, W. M.

    1985-01-01

    The characteristics of the upper tropospheric outflow patterns which occur with tropical cyclone intensification and weakening over all of the global tropical cyclone basins during the year long period of the First GARP Global Experiment (FGGE) are discussed. By intensification is meant the change in the tropical cyclone's maximum wind or central pressure, not the change of the cyclone's outer 1 to 3 deg radius mean wind which we classify as cyclone strength. All the 80 tropical cyclones which existed during the FGGE year are studied. Two-hundred mb wind fields are derived from the analysis of the European Center for Medium Range Weather Forecasting (ECMWF) which makes extensive use of upper tropospheric satellite and aircraft winds. Corresponding satellite cloud pictures from the polar orbiting U.S. Defense Meteorological Satellite Program (DMSP) and other supplementary polar and geostationary satellite data are also used.

  2. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    NASA Technical Reports Server (NTRS)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  3. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  4. Growing Land-Sea Temperature Contrast and the Intensification of Arctic Cyclones

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Hodges, Kevin I.

    2018-04-01

    Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity.

  5. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  6. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  7. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    USGS Publications Warehouse

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  8. Behavioral and cognitive evaluation of FireWorks education trunk

    Treesearch

    Linda R. Thomas; James A. Walsh; Jane Kapler Smith

    2000-01-01

    This study assessed the effectiveness of FireWorks, an educational trunk about wildland fire, in increasing student understanding, enabling students to apply classroom learning in a field setting, and improving the learning environment. Students who were in classrooms using the FireWorks educational trunk demonstrated more knowledge in both classroom and field-based...

  9. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    NASA Astrophysics Data System (ADS)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  10. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China.

    PubMed

    Ouyang, Xiaoguang; Lee, Shing Yip; Connolly, Rod M; Kainz, Martin J

    2018-02-14

    Coastal wetlands are increasingly recognised for their pivotal role in mitigating the growing threats from cyclones (including hurricanes) in a changing climate. There is, however, insufficient information about the economic value of coastal wetlands for cyclone mitigation, particularly at regional scales. Analysis of data from 1990-2012 shows that the variation of cyclone frequencies is related to EI Niño strength in the Pacific Ocean adjacent to Australia, but not China. Among the cyclones hitting the two countries, there are significant relationships between the ratio of total economic damage to gross domestic production (TD/GDP) and wetland area within cyclone swaths in Australia, and wetland area plus minimum cyclone pressure despite a weak relationship in China. The TD/GDP ratio is significantly higher in China than in Australia. Despite their extensive and growing occurrence, seawalls in China appear not to play a critical role in cyclone mitigation, and cannot replace coastal wetlands, which provide other efficient ecosystem services. The economic values of coastal wetlands in Australia and China are respectively estimated at US$52.88 billion and 198.67 billion yr -1 for cyclone mitigation, albeit with large within-country geographic variation. This study highlights the urgency to integrate this value into existing valuations of coastal wetlands.

  11. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    NASA Astrophysics Data System (ADS)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  12. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.

    2016-09-01

    Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.

  13. Frequency changes of tropical cyclones during the last century recorded in a canyon of the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kudrass, Hermann; Machalett, Björn; Palamenghi, Luisa; Meyer, Inka

    2017-04-01

    Frequent cyclones originating in the Bay of Bengal and landfall to the southern delta of the Ganges and Brahmaputra are well recorded in sediment cores from a canyon which deeply incises into the shelf and ends at the foreset beds of the submarine Ganges Brahmaputra delta. The large sediment supply by the two rivers during the monsoonal floods forms temporary deposits on the inner shelf, which are mobilized by waves and currents during the passage of cyclones. The resulting sand-silt-clay suspension forms high-density water masses, which plunge from the inner shelf into the shelf canyon, where they deposit graded beds evenly draping the broad canyon floor. A simple model was used to rank the historical known cyclones according to their capacity to transfer sediment from the submarine delta into the canyon. In a 362 cm-long sediment core ranging from the year 1985 to 2006, 48 graded beds can be correlated with the observed 41 cyclones. The cyclonic impact on the sediment transport has decreased by a factor of three during the last decade. The highest cyclonic impact occurred during the seventies. Compared to the sediment transfer by cyclones, the input by tidal currents and monsoonal floods is negligible. Thus cyclones are the dominating process for mobilizing and distributing sediment on the Bangladesh shelf and probably also on all shelf areas, which lie in the track of tropical cyclones.

  14. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  15. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves

    PubMed Central

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing summer cyclone activity if the Arctic continues to warm and the ice cover continues to shrink. PMID:26213671

  16. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves.

    PubMed

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing summer cyclone activity if the Arctic continues to warm and the ice cover continues to shrink.

  17. Interannual variability of the frequency and intensity of tropical cyclones striking the California coast

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.

    2016-12-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  18. From baroclinic to barotropic: the evolution of Medicane Cornelia

    NASA Astrophysics Data System (ADS)

    Mazza, Edoardo; Ulbrich, Uwe; Klein, Rupert

    2015-04-01

    The Mediterranean Basin is a very cyclogenetic area with more than 100 cyclones developing on average every year, most of which evolve as baroclinic, mid-latitude disturbances. There is, however, a restricted group of cyclones that acquire barotropic characteristics during their development. Given their similarities with hurricanes they are generally referred to as "medicanes". They can be associated with severe wind gusts and intense rainfall and represent a serious threat to coastal areas. Medicane Cornelia (6-10 October 1996) formed in the western Mediterranean Sea, under the influence of a large, cut-off low in the upper levels located over the Iberian Peninsula. It is the longest-lived among the recorded medicanes. In this work, a domain shifting method is used to initialize full-physics ensemble simulations of Cornelia using COSMO-CLM. Different atmospheric states are obtained by integrating the model over domains that are shifted with respect to each other. This enables us to stress the relevance of dynamical and thermodynamical mechanisms involved in the tropical transition of Cornelia. Cyclones in the ensemble exhibit significant differences both in their structures and in their temporal evolutions. A comparison of the ensemble members shows that medicanes develop from a baroclinic, frontal system, located to the east of the cut-off low, that undergoes warm seclusion. A first intensification stage occurs during the seclusion process, a second one takes place after the cyclones crossed Sardinia. Convection is known to be a crucial mechanism in the tropical transition process, both in terms of shear reduction and contribution to sea-level pressure fall via latent heat release. During warm seclusion, a bent-back occluded front develops and a pocket of warm air is secluded from the warm sector. Remarkable differences in the vertical motions are found along the developing bent-back front in each member. Cyclones that feature stronger bent-back fronts show more intense convection and larger diabatic heating, resulting in a faster sea-level pressure minimum deepening. The interaction of cyclones with the complex topography of Sardinia appears to be responsible for the differences in the second intensification stage.

  19. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.

    PubMed

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-03-12

    In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS's particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind.

  20. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods

    PubMed Central

    Shirdel, Mariam; Andersson, Britt M; Bergdahl, Ingvar A; Sommar, Johan N; Wingfors, Håkan; Liljelind, Ingrid E

    2018-01-01

    Abstract Objectives In an occupational environment, passive sampling could be an alternative to active sampling with pumps for sampling of dust. One passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). It is often analysed by microscopic imaging. Promising results have been shown for particles above 2.5 µm, but indicate large underestimations for PM2.5. The aim of this study was to evaluate, and possibly improve, the UNC sampler for stationary sampling in a working environment. Methods Sampling was carried out at 8-h intervals during 24 h in four locations in an open pit mine with UNC samplers, respirable cyclones, PM10 and PM2.5 impactors, and an aerodynamic particle sizer (APS). The wind was minimal. For quantification, two modifications of the UNC sampler analysis model, UNC sampler with hybrid model and UNC sampler with area factor, were compared with the original one, UNC sampler with mesh factor derived from wind tunnel experiments. The effect of increased resolution for the microscopic imaging was examined. Results Use of the area factor and a higher resolution eliminated the underestimation for PM10 and PM2.5. The model with area factor had the overall lowest deviation versus the impactor and the cyclone. The intraclass correlation (ICC) showed that the UNC sampler had a higher precision and better ability to distinguish between different exposure levels compared to the cyclone (ICC: 0.51 versus 0.24), but lower precision compared to the impactor (PM10: 0.79 versus 0.99; PM2.5: 0.30 versus 0.45). The particle size distributions as calculated from the different UNC sampler analysis models were visually compared with the distributions determined by APS. The distributions were obviously different when the UNC sampler with mesh factor was used but came to a reasonable agreement when the area factor was used. Conclusions High resolution combined with a factor based on area only, results in no underestimation of small particles compared to impactors and cyclones and a better agreement with the APS’s particle size distributions. The UNC sampler had lower precision than the impactors, but higher than the respirable cyclone. The UNC sampler with area factor could be used for PM2.5, PM10 and respirable fraction measurements in this working environment without wind. PMID:29300818

  1. 40 CFR 63.11623 - What are the testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? (a) If you are demonstrating that the cyclone required by § 63.11621(e) is designed to reduce... A to part 60 to determine the particulate matter mass rate at the inlet and outlet of the cyclone. You must conduct at least three runs at the cyclone inlet and three runs at the cyclone outlet. Each...

  2. 40 CFR 63.11623 - What are the testing requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...? (a) If you are demonstrating that the cyclone required by § 63.11621(e) is designed to reduce... A to part 60 to determine the particulate matter mass rate at the inlet and outlet of the cyclone. You must conduct at least three runs at the cyclone inlet and three runs at the cyclone outlet. Each...

  3. Properties and circulation of Jupiter's circumpolar cyclones as measured by JunoCam

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Eichstaedt, G.; Rogers, J. H.; Hansen, C. J.; Caplinger, M.; Momary, T.; Tabataba-Vakili, F.; Intersoll, A. P.

    2017-09-01

    JunoCam has taken the first high-resolution visible images of Jupiter's poles, which show that each pole has a cluster of circumpolar cyclones, each one separated in longitude by roughly equal spacing. There are five at the south pole and eight at the north pole. These configurations, including their asymmetries and the characteristics of individual cyclones, have remained stable over 7 months from perijove 1 to perijove 5 as of this writing. Each cyclone has a circular outline with a prominent system of trailing spiral arms. In the north, the internal morphology of adjacent cyclones alternates from one to the next. Angular motions within each cyclone appear to be similar to each other but quite different from vortices at lower latitudes.

  4. Concentrations of PM(2.5)-associated OC, EC, and PCDD/Fs measured during the 2003 wildfire season in Missoula, Montana.

    PubMed

    Ward, Tony J; Lincoln, Emily

    2006-04-01

    Throughout August and September, 2003, wildfires burned in close proximity to Missoula, Montana, with smoke emanating from the fires impacting the valley for much of the summer. This presented the perfect opportunity to measure the levels of polychlorinated dibenzodioxins and dibenzofurans (PCDD/F) comprising ambient forest fire smoke particles impacting the Missoula Valley. An air sampler at the Montana Department of Environmental Quality's (DEQ) compliance site in Missoula measured hourly averages of PM(10) throughout the fire season. Three collocated PM(2.5) cyclones collected 24-h smoke samples using quartz filters and Polyurethane Foam (PUF) sorbent cartridges. From the quartz filters, concentrations of Organic and Elemental Carbon (OC/EC) were measured, while PCDD/F were measured from one set of a filter (particle phase) and PUF (vapor phase) aggregate of samples in an attempt to also investigate the different phases of PCDD/F in forest fire smoke impaired communities. Hourly PM(10) concentrations peaked at 302.9 microg m(-3) on August 15. The highest OC concentration (115.6 microg m(-3)) was measured between August 21-22, and the highest EC concentration of 10.5 microg m(-3) was measured August 20-21. Measurable concentrations of PM(2.5) associated PCDD/Fs were not detected from a representative aggregate sample, with the exception of small amounts of 1,2,3,4,6,7,8-heptachlorodibenzodioxin and octachlorodibenzodioxin. PM(2.5) samples collected during the smoke events were composed of approximately 65% OC. However, the OC fraction of the particles collected in the smoke impaired Missoula valley was not composed of significant amounts of PCDD/F.

  5. The Human Impact of Tropical Cyclones: a Historical Review of Events 1980-2009 and Systematic Literature Review

    PubMed Central

    Doocy, Shannon; Dick, Anna; Daniels, Amy; Kirsch, Thomas D.

    2013-01-01

    Background. Cyclones have significantly affected populations in Southeast Asia, the Western Pacific, and the Americas over the past quarter of a century. Future vulnerability to cyclones will increase due to factors including population growth, urbanization, increasing coastal settlement, and global warming. The objectives of this review were to describe the impact of cyclones on human populations in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of cyclones were compiled using two methods, a historical review from 1980 to 2009 of cyclone events from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between cyclone characteristics and mortality using Stata 11.0. Findings. There were 412,644 deaths, 290,654 injured, and 466.1 million people affected by cyclones between 1980 and 2009, and the mortality and injury burden was concentrated in less developed nations of Southeast Asia and the Western Pacific. Inconsistent reporting suggests this is an underestimate, particularly in terms of the injured and affected populations. The primary cause of cyclone-related mortality is drowning; in developed countries male gender was associated with increased mortality risk, whereas females experienced higher mortality in less developed countries. Conclusions. Additional attention to preparedness and early warning, particularly in Asia, can lessen the impact of future cyclones. PMID:23857074

  6. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Field, Paul R.; Schmidt, Anja; Grosvenor, Daniel P.; Bender, Frida A.-M.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Elsaesser, Gregory S.

    2018-04-01

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm-2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  7. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  8. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  9. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  10. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  11. A Climatological Study of Hurricane Force Extratropical Cyclones

    DTIC Science & Technology

    2012-03-01

    extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly

  12. A Composite Diagnosis of Synoptic-Scale Extratropical Cyclone Development over the United States

    NASA Technical Reports Server (NTRS)

    Rolfson, Donald M.; Smith, Phillip J.

    1996-01-01

    This paper presents a composite diagnosis of synoptic-scale forcing mechanisms associated with extratropical cyclone evolution. Drawn from 12 cyclone cases that occurred over the continental United States during the cool season months, the diagnosis provides a 'climatology' of development mechanisms for difference categories of cyclone evolution ranging from cyclone weakening through three stages of cyclone intensification. Computational results were obtained using an 'extended' form of the Zwack-Okossi equation applied to routine upper-air and surface data analyzed on a 230 km x 230 km grid. Results show that cyclonic vorticity advection, which maximizes in the upper troposphere, was the primary contributor to cyclone development regardless of the stage of development. A second consistent contributor to development was latent heat release. Horizontal temperature advection, often acknowledged as a development mechanism, was found to contribute to development only during more intense stages. During weakening and weaker development stages, temperature advection opposed development, as the warm-air advection invariably found at upper levels was dominated by cold air advection in the lower half of the troposphere. In the more intense stages, development was moderated by dry-adiabatic cooling associated with the ascending vertical motions.

  13. Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Gallet, B.; Campagne, A.; Cortet, P.-P.; Moisy, F.

    2014-03-01

    We characterize the statistical and geometrical properties of the cyclone-anticyclone asymmetry in a statistically steady forced rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously inject velocity fluctuations towards the center of a tank mounted on a rotating platform. We first characterize the cyclone-anticyclone asymmetry from conventional single-point vorticity statistics. We propose a phenomenological model to explain the emergence of the asymmetry in the experiment, from which we predict scaling laws for the root-mean-square velocity in good agreement with the experimental data. We further quantify the cyclone-anticyclone asymmetry using a set of third-order two-point velocity correlations. We focus on the correlations which are nonzero only if the cyclone-anticyclone symmetry is broken. They offer two advantages over single-point vorticity statistics: first, they are defined from velocity measurements only, so an accurate resolution of the Kolmogorov scale is not required; second, they provide information on the scale-dependence of the cyclone-anticyclone asymmetry. We compute these correlation functions analytically for a random distribution of independent identical vortices. These model correlations describe well the experimental ones, indicating that the cyclone-anticyclone asymmetry is dominated by the large-scale long-lived cyclones.

  14. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  15. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  16. Buoyancy and shear characteristics of hurricane-tornado environments

    NASA Technical Reports Server (NTRS)

    Mccaul, Eugene W., Jr.

    1991-01-01

    This study presents detailed composite profiles of temperature, moisture, and wind constructed for tornado environments in tropical cyclones that affected the U.S. between 1948 and 1986. Winds are composited in components radial and tangential to the tropical cyclone center at observation time. Guided by observed patterns of tornado occurrence, composites are constructed for a variety of different stratifications of the data, including proximity to tornadoes, position relative to the cyclone center, time of day, time after cyclone landfall, cyclone translation speed, and landfall location. The composites are also compared to composite soundings from Great Plains tornado environments. A variety of sounding parameters are examined to see which are most closely related to the tornado distribution patterns. Lower-tropospheric vertical shears are found to be stronger in the tropical cyclone tornado environments than on the Great Plains. Buoyancy for the tropical cyclone tornado cases is much smaller than that seen with Great Plains tornado events and exhibits a weak negative correlation with tornado outbreak severity.

  17. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muni Krishna, K.

    2016-05-01

    Phet super cyclone (31 May-7 June 2010) was the most intense and also the rarest of the rare track in Arabian Sea as per the recorded history during 1877-2009. The present study focuses on the ocean physical responses to Phet cyclone using satellite and Argo observations. The sea surface temperature is decreased to 6 °C with an approximately 350 km long and 100 km width area in the Arabian Sea after the cyclone passage. The translation speed of cyclone is 3.86 m/s, the mixed layer is 79 m, and thermocline displacement is 13 m at the cooling area. With the relationship of wind stress curl and Ekman pumping velocity (EPV), the author found that the speed of EPV was increased after the passage of cyclone. So the extent of the SST drop was probably due to the moving speed of cyclone and the depth of the mixed layer.

  18. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  19. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    NASA Astrophysics Data System (ADS)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; Frappier, Amy Benoit; Asmerom, Yemane; Liu, Kam-Biu; Prufer, Keith M.; Ridley, Harriet E.; Polyak, Victor; Kennett, Douglas J.; MacPherson, Colin G.; Aquino, Valorie V.; Awe, Jaime; Breitenbach, Sebastian F. M.

    2016-11-01

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the North American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. Our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.

  20. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE PAGES

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; ...

    2016-11-23

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  1. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    Tropical cyclones are the most extreme weather phenomena which severely impact coastal communities and island nations. There is an ongoing research (i) on accurate analysis of observed trends in tropical cyclone occurrences, and (ii) how tropical cyclone frequency and intensity may change in the future as a result of climate change. Reliable historical records of cyclone activity are vital for this research. The Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) program is dedicated to help Pacific Island countries and Timor Leste gain a better understanding of how climate change will impact their regions. One of the key PACCSAP projects is focused on developing a tropical cyclone archive, climatology and seasonal prediction for the regions. As part of the project, historical tropical cyclone best track data have been examined and prepared to be subsequently displayed through the enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean. Data from the Regional Specialised Meteorological Centre (RSMC) Nadi, Fiji and Tropical Cyclone Warning Centres (TCWCs) in Brisbane, Darwin and Wellington for 1969-1970 to 2010-2011 tropical cyclone seasons have been carefully examined. Errors and inconsistencies which have been found during the quality control procedure have been corrected. To produce a consolidated data set for the South Pacific Ocean, best track data from these four centres have been used. Specifically, for 1969-1970 to 1994-1995 tropical cyclone seasons, data from TCWCs in Brisbane, Darwin and Wellington have been used. In 1995, RSMC Nadi, Fiji has been established with responsibilities for issuing tropical cyclone warnings and preparing best track data for the area south of the equator to 25°S, 160°E to 120°W. Consequently, data from RSMC Nadi have been used as a primary source for this area, starting from the 1995-1996 tropical cyclone season. These data have been combined with the data from TCWC Wellington for the area 25°S to 40°S, 160°E to 120°W and with the data from TCWCs in Brisbane and Darwin for the area south of the equator to 37°S, 135°E to 160°E. In addition, tropical cyclone best track data for the North-West Pacific for 1977-2011 seasons prepared at RSMC Tokyo and for the South Indian Ocean for 1969-2011 prepared at RSMC la Réunion have been added to the dataset. As a result, new design of the Southern Hemisphere/Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) incorporates best track data for the Western Pacific both south and north of the equator and for the South Indian Ocean. The portal has been developed using the OpenLayers web mapping library. Main features of the portal include dynamic map navigation, presenting detailed cyclone information for a selected region in the Southern Hemisphere and North-West Pacific and displaying changes in tropical cyclone intensity over the lifetime of a cyclone. One of the unique features of the portal is its enhanced functionality for spatial and temporal selection for cyclones in selected areas (e.g. economic exclusion zones of the countries). Acknowledgement The research discussed in this paper was conducted through the PACCSAP supported by the AusAID and the Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO. We acknowledge C. Shamsu, D. Duong, P. Lopatecki, W. Banerjee, P. He, P. Wickramasinghe and A. Bauers from the School of Computer Sciences and IT at the Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia for their contribution to the development of the portal's functionality on spatial selection.

  2. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  3. The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1996-01-01

    This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.

  4. FireWorks curriculum featuring ponderosa, lodgepole, and whitebark pine forests

    Treesearch

    Jane Kapler Smith; Nancy E. McMurray

    2000-01-01

    FireWorks is an educational program for students in grades 1-10. The program consists of the curriculum in this report and a trunk of laboratory materials, specimens, and reference materials. It provides interactive, hands-on activities for studying fire ecology, fire behavior, and the influences of people on three fire-dependent forest types - Pinus ponderosa...

  5. Smoke management guide for prescribed and wildland fire: 2001 edition.

    Treesearch

    Colin C. Hardy; Roger D. Ottmar; Janice L Peterson; John E. Core; Paula Seamon

    2001-01-01

    The National Wildfire Coordinating Group's (NWCG) Fire Use Working Team has assumed overall responsibility for sponsoring the development and production of this revised Smoke Management Guide for Prescribed and Wildland Fire (the "Guide"). The Mission Statement for the Fire Use Working Team includes the need to coordinate and advocate the use of fire to...

  6. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very different from our current assessments, which were mainly based on the thermodynamic theory of tropical cyclone intensity.

  7. Extreme Windstorms and Related Impacts on Iberia

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Ordóñez, Paulina; Pinto, Joaquim G.; Ramos, Alexandre M.; Karremann, Melanie K.; Trigo, Isabel F.

    2014-05-01

    Extreme windstorms are one of the major natural catastrophes in the mid latitudes, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the recent winters, the Iberian Peninsula was hit by severe (wind) storms such as Klaus (January 2009), Xynthia (February 2010) and Gong (January 2013) which exhibited uncommon characteristics. They were all explosive extratropical cyclones formed over the mid-Atlantic, travelling then eastwards at lower latitudes than usual along the edge of the dominant North Atlantic storm track. In this work we present a windstorm catalogue for the Iberian Peninsula, where the characteristics of the potentially more destructive windstorms for the 1979-2012 period are identified. For this purpose, the potential impact of high winds over the Iberian Peninsula is assessed by using a daily damage index based on maximum wind speeds that exceeds the local 98th percentile threshold. Then, the characteristics of extratropical cyclones associated with these events are analyzed. Results indicate that these are fast moving, intense cyclones, typically located near the northwestern tip of the Iberian Peninsula. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010). A. M. Ramos was also supported by a FCT postdoctoral Grant (FCT/DFRH/SFRH/BPD/84328/2012).

  8. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1) oceanic Nino index (); (2) Atlantic multi-decadal oscillation () index; (3) Atlantic meridional mode () index; (4) global land-ocean temperature index (); and (5) quasi-biennial oscillation () index. Lastly, the associational aspects (using both linear and nonparametric statistical tests) between selected tropical cyclone parameters and the climatic factors are examined based on their 10-year moving average trend values.

  9. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    PubMed

    Kang, Ruihua; Xun, Huanmiao; Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  10. Contrasting the projected change in extreme extratropical cyclones in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Chang, E. K. M.

    2017-12-01

    Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the dynamics behind these contrasting projected changes.

  11. Impacts of Different Grades of Tropical Cyclones on Infectious Diarrhea in Guangdong, 2005-2011

    PubMed Central

    Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Objective Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Methods Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). Results There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. Conclusion All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population. PMID:26106882

  12. A global slowdown of tropical-cyclone translation speed.

    PubMed

    Kossin, James P

    2018-06-01

    As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation 1-8 . Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures 10-12 . The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey 13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over land, is therefore highly relevant when considering potential changes in local rainfall totals.

  13. Sea turtle species vary in their susceptibility to tropical cyclones.

    PubMed

    Pike, David A; Stiner, John C

    2007-08-01

    Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life history process.

  14. Large‐scale heavy precipitation over central Europe and the role of atmospheric cyclone track types

    PubMed Central

    Lexer, Annemarie; Homann, Markus; Blöschl, Günter

    2017-01-01

    ABSTRACT Precipitation patterns over Europe are largely controlled by atmospheric cyclones embedded in the general circulation of the mid‐latitudes. This study evaluates the climatologic features of precipitation for selected regions in central Europe with respect to cyclone track types for 1959–2015, focusing on large‐scale heavy precipitation. The analysis suggests that each of the cyclone track types is connected to a specific pattern of the upper level atmospheric flow, usually characterized by a major trough located over Europe. A dominant upper level cut‐off low (COL) is found over Europe for strong continental (CON) and van Bebber's type (Vb) cyclones which move from the east and southeast into central Europe. Strong Vb cyclones revealed the longest residence times, mainly due to circular propagation paths. The central European cyclone precipitation climate can largely be explained by seasonal track‐type frequency and cyclone intensity; however, additional factors are needed to explain a secondary precipitation maximum in early autumn. The occurrence of large precipitation totals for track events is strongly related to the track type and the region, with the highest value of 45% of all Vb cyclones connected to heavy precipitation in summer over the Czech Republic and eastern Austria. In western Germany, Atlantic winter cyclones are most relevant for heavy precipitation. The analysis of the top 50 precipitation events revealed an outstanding heavy precipitation period from 2006 to 2011 in the Czech Republic, but no gradual long‐term change. The findings help better understand spatio‐temporal variability of heavy precipitation in the context of floods and may be used for evaluating climate models.

  15. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  16. RegCM4-HadGEM2-ES simulated cyclone climatology (1979-2005) over the Southwestern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Porfírio da Rocha, Rosmeri; Simões Reboita, Michelle

    2015-04-01

    Cyclones over the Southwestern South Atlantic Ocean (SAO) are a subject of great interest once they modify the weather and control the climate near east coast of South America (SA). In this study we compare the cyclones climatology in the period 1979-2005 simulated by Regional Climate Model version 4 (RegCM4) with that from ERA-Interim reanalysis (ECMWF). RegCM4 was nested in HadGEM2-ES output and the simulation used the SA domain of CORDEX project, with a horizontal grid of 50 km and 18 sigma-pressure levels in the vertical. The RegCM4 simulation used the land surface Biosphere-Atmosphere Transfer Scheme (BATS) and the mixed convection Emanuel-Grell scheme configurations. This simulation is part of the CREMA (CORDEX REgCM4 hyper-MAtrix) experiment. The cyclones were identified using an automated tracking scheme based on minima (cyclonic in Southern Hemisphere) of relative vorticity from the wind at 925 hPa. The threshold of -1.5 x 10-5s-1 was used in the algorithm. All cyclones in RegCM4 and ERA-Interim with relative vorticity lower than this threshold and with lifetime higher or equal 24 hours were included in the climatology. ERA-Interim shows three main cyclogenetic regions near east coast of SA. In general, RegCM4 simulated these same regions but with an underestimation of the number of cyclones. In each of these regions, there is a different season of higher cyclones frequency. Over extreme south of southern Brazil and Uruguay the higher frequency of cyclones occurs in winter, while southeastern Brazil and southeastern Argentina cyclones are most frequent during summer. RegCM4 is able to simulate this observed seasonality.

  17. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar

    NASA Astrophysics Data System (ADS)

    Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim

    2017-04-01

    Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.

  18. Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.

    2016-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.

  19. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  20. Promoting the confluence of tropical cyclone research.

    PubMed

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  1. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  2. Temporal clustering of tropical cyclones and its ecosystem impacts

    PubMed Central

    Mumby, Peter J.; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  3. Coarse, Intermediate and High Resolution Numerical Simulations of the Transition of a Tropical Wave Critical Layer to a Tropical Storm

    NASA Technical Reports Server (NTRS)

    Montgomery, M. T.; Dunkerton, T. J.; Wang, Z.

    2010-01-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together.

  4. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy fluxes, which suggest that wind-induced surface heat exchange may differ in its importance for dry and moist cyclones.

  5. Characterization of flash floods induced by tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.

    2015-12-01

    This study investigates the role of tropical cyclones (hurricanes, tropical storms and depressions) in the generation of flash floods in Mexico. For this, a severity assessment during several cyclonic events for selected catchments was estimated through the evaluation of a flash flood index recently proposed by Kim and Kim (2014). This classification is revised, considering the forcing and areal extent of torrential rainfall generated by the incidence of tropical cyclones on the studied catchments, enabling the further study of the flood regime in catchments located in tropical regions. The analysis incorporates characteristics of the flood hydrographs such as the hydrograph shape (rising curve gradient, magnitude of the peak discharge and flood response time) in order to identify flash-flood prone areas. Results show the Qp-A scaling relationship in catchments that were impacted by tropical cyclones, enabling their comparison against floods generated by other meteorological events (e.g. convective and orographic storms). Results will inform on how peak flows relationships are modified by cyclonic events and highlighting the contribution of cyclonic precipitation to flash-flooding susceptibility.

  6. Cyclonic circulation of Saturn's atmosphere due to tilted convection

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y. D.; Zhang, Y.

    2018-03-01

    Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.

  7. Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Gentry, R. C.

    1981-01-01

    Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere.

  8. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders.

  9. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  10. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer.

    PubMed

    Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N

    2011-02-01

    Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.

  11. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  12. Model assessment using a multi-metric ranking technique

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.

    2017-12-01

    Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.

  13. Atmospheric energetics as related to cyclogenesis over the eastern United States. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    West, P. W.

    1973-01-01

    A method is presented to investigate the atmospheric energy budget as related to cyclogenesis. Energy budget equations are developed that are shown to be advantageous because the individual terms represent basic physical processes which produce changes in atmospheric energy, and the equations provide a means to study the interaction of the cyclone with the larger scales of motion. The work presented represents an extension of previous studies because all of the terms of the energy budget equations were evaluated throughout the development period of the cyclone. Computations are carried out over a limited atmospheric volume which encompasses the cyclone, and boundary fluxes of energy that were ignored in most previous studies are evaluated. Two examples of cyclogenesis over the eastern United States were chosen for study. One of the cases (1-4 November, 1966) represented an example of vigorous development, while the development in the other case (5-8 December, 1969) was more modest. Objectively analyzed data were used in the evaluation of the energy budget terms in order to minimize computational errors, and an objective analysis scheme is described that insures that all of the resolution contained in the rawinsonde observations is incorporated in the analyses.

  14. Improving the Interoperability of Disaster Models: a Case Study of Proposing Fireml for Forest Fire Model

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.

    2018-04-01

    This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.

  15. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  16. Cyclone performance by velocity

    USDA-ARS?s Scientific Manuscript database

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  17. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  18. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  19. Do Tropical Cyclones Shape Shorebird Habitat Patterns? Biogeoclimatology of Snowy Plovers in Florida

    DTIC Science & Technology

    2011-01-12

    THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 coastal birds in north-west Europe . Using historical data...cyclone season begins in June and ends in November. A cyclone is classified as a tropical depression, tropical storm or hurricane depending on its lifetime...fledge before the storms arrive and subsequently are able to seek inland protection with the adults during the storms [26,27]. However, tropical cyclones

  20. Proceedings of the 1998 Scientific Conference on Obscuration and Aerosol Research

    DTIC Science & Technology

    1999-10-01

    water surroundings. Figure 2 exhibits minimal terrain effects upon the flow field as streamlines for this simple set of variable terrain for...Cyclone, where the cyclone is fitted with an upstream water spray for washing the cyclone wall. Sampling flow rate is 990 L/min and is controlled by a...990 L/min (35 cfm) and passes the air through a glass cyclone where aerosol particles with sufficient inertia are deposited. Water mist is introduced

  1. Reduced death rates from cyclones in Bangladesh: what more needs to be done?

    PubMed Central

    Hashizume, Masahiro; Kolivras, Korine N; Overgaard, Hans J; Das, Bivash; Yamamoto, Taro

    2012-01-01

    Abstract Tropical storms, such as cyclones, hurricanes and typhoons, present major threats to coastal communities. Around two million people worldwide have died and millions have been injured over the past two centuries as a result of tropical storms. Bangladesh is especially vulnerable to tropical cyclones, with around 718 000 deaths from them in the past 50 years. However, cyclone-related mortality in Bangladesh has declined by more than 100-fold over the past 40 years, from 500 000 deaths in 1970 to 4234 in 2007. The main factors responsible for these reduced fatalities and injuries are improved defensive measures, including early warning systems, cyclone shelters, evacuation plans, coastal embankments, reforestation schemes and increased awareness and communication. Although warning systems have been improved, evacuation before a cyclone remains a challenge, with major problems caused by illiteracy, lack of awareness and poor communication. Despite the potential risks of climate change and tropical storms, little empirical knowledge exists on how to develop effective strategies to reduce or mitigate the effects of cyclones. This paper summarizes the most recent data and outlines the strategy adopted in Bangladesh. It offers guidance on how similar strategies can be adopted by other countries vulnerable to tropical storms. Further research is needed to enable countries to limit the risks that cyclones present to public health. PMID:22423166

  2. Spherical Harmonic-based Random Fields Based on Real Particle 3D Data: Improved Numerical Algorithm and Quantitative Comparison to Real Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Liu; E Garboczi; m Grigoriu

    Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less

  3. Statistical Detection of Anthropogenic Temporal Changes in the Distribution of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Joannes-boyau, R.; Bodin, T.; Scheffers, A.; Sambridge, M.

    2012-12-01

    Recent studies highlighting the potential impact of climate change on tropical cyclones have added fuel to the already controversial debates. The link between climate change and tropical cyclone intensity and frequency has been disputed, as both appear to remain in the natural variability. The difficulty lies in our ability to distinguish natural changes from anthropogenic-induced anomalies. The increased anthropogenic atmospheric carbon dioxide leads to environmental changes such as warmer Sea Surface Temperatures (SST) and thus could impact tropical cyclones intensities and frequencies. However, recent studies show that, against an increasing SST, no global trend in respect to cyclone frequency has yet emerged. Scientists have warned to consider the heterogeneity of the existing dataset; especially since the historical tropical cyclone record is frequently accused to be incomplete. Given the abundance of cyclone record data and its likely sensitivity to a number of environmental factors, the real limitation comes from our ability to understand the record as a whole. Thus, strong arguments against the impartiality of proposed models are often debated. We will present an impartial and independent statistical tool applicable to a wide variety of physical and biological phenomena such as processes described by power laws, to observe temporal variations in the tropical cyclone track record from 1842 to 2010. This methodology allows us to observe the impact of anthropogenic-induced modifications on climatic events, without being clustered in subjective parameterised models.

  4. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    PubMed Central

    Leppert, Kenneth D.; Cecil, Daniel J.

    2018-01-01

    Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745

  5. Parameter Uncertainty on AGCM-simulated Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    He, F.

    2015-12-01

    This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.

  6. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set perspectives for a deeper analysis of the favourable atmospheric conditions that yield high impact weather.

  7. The Sharav Cyclone: Observations and some theoretical considerations

    NASA Astrophysics Data System (ADS)

    Alpert, P.; Ziv, B.

    1989-12-01

    A special study of the Sharav Cyclones indicates that they are the result of large-scale weak baroclinicity, enhanced by vigorous boundary-layer baroclinicity between the North African coast and the Mediterranean. It is illustrated how the jet stream plays a major role in the vertical circulation in producing a complex cyclonic circulation dominated by at least three mechanisms: large-scale interior baroclinicity, boundary-layer baroclinicity, and jet stream related circulations. The main characteristics of the Sharav Cyclone (also called the Saharan Depression or Khamsin Depression) in the Mediterranean are reviewed. Unlike the cold winter cyclone, the Sharav Cyclone is a spring cyclone. Its tracks lie mainly along the North African coast and turn to the north near the southeastern Mediterranean. Its warm front is active and is sometimes associated with extremely high surface temperatures. Its cold front is shallow. The Sharav Cyclone moves eastward relatively fast, typically faster than 10 m s-1, and with a small speed variability. In general, there is an upper level trough to the west of the surface low and the surface horizontal scale is of the order of 500-1000 km. Finally, it is frequently associated with heavy dust/sand storms and low visibilities. Some of these features are illustrated in a case study of the April 28-30, 1986, cyclone. Vertical cross sections indicate a deep circulation associated with the exit region of an upper level jet. In addition to presenting evidence that the Sharav Cyclone is a deep tropospheric circulation, it is shown that the transverse indirect circulation at the exit region of the jet is a major component of its circulation. The classic two-level baroclinic model (Phillips, 1954) is applied. The effects of the major diabatic heating due to the sensible heat flux above the North African desert and the large north to south temperature gradients are incorporated through the thermal wind of the basic state. The model predicts the fast eastward motion, the relatively smaller horizontal scale and the fast growth rate. Furthermore, the model predicts an annual maximum growth rate in April and a secondary peak in October, which agrees with the frequency of occurrences of the Sharav Cyclones.

  8. An important role of the moisture supply from the Kuroshio Current/Kuroshio Extension in the rapid development of an explosive cyclone

    NASA Astrophysics Data System (ADS)

    Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T.

    2014-12-01

    We investigated how the moisture supply from the Kuroshio Current/Kuroshio Extension affects the rapid intensification of an explosive cyclone using a couple atmosphere-ocean non-hydrostatic model, CReSS-NHOES. The Cloud-Resolving Storm Simulator (CReSS) and the Non-Hydrostatic Ocean model for the Earth Simulator (NHOES) have been developed by the Hydrospheric Atmospheric Research Center of Nagoya University and the Japan Agency for Marine-Earth Science and Technology, respectively. We performed a numerical simulation of an extratropical cyclone migrating along the southern periphery of the Kuroshio Current on January 14, 2013, that developed most rapidly in recent years in the vicinity of Japan. The evolutions of surface fronts related to the cyclone simulated by the CReSS-NHOES closely resemble Shapiro-Keyser model. In the lower troposphere, the cyclone's bent-back front and the associated frontal T-bone structure become evident with the cyclone development. Cold Conveyor Belt (CCB) is also well organized over the northern part of the cyclone. During its developing stage, since the CCB dominates just over the Kuroshio Current/Kuroshio Extension, a large amount of moisture is efficiently supplied from the warm current into the CCB. The vapor evaporated from the underlying warm current is transported into the bent-back front by the CCB and converges horizontally in the vicinity of the front. As a result, strong diabatic heating arises over the corresponding moisture convergence area in that vicinity, indicating that the abundant moisture due to the warm current plays a vital role in rapid development of the cyclone through latent heat release processes. Both processes of the moisture transport from the warm current into the cyclone system via the CCB and of the latent heat release around the bent-back front are also confirmed by trajectory analyses. The rapid SLP decrease of the cyclone center can in turn increase the moisture supply from the warm current through enhancement of the CCB. We anticipate that such a feedback process plays a key role in the rapid intensification of the cyclone highlighted in this study.

  9. The Importance of Coral Larval Recruitment for the Recovery of Reefs Impacted by Cyclone Yasi in the Central Great Barrier Reef

    PubMed Central

    Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L.

    2013-01-01

    Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr−1 and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile−1 in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile−1 in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future. PMID:23755223

  10. Extreme cyclone events in the Arctic: Wintertime variability and trends

    NASA Astrophysics Data System (ADS)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-12-01

    Extreme cyclone events often occur during Arctic winters, and are of concern as they transport heat and moisture into the Arctic, which is associated with mixed-phase clouds and increased longwave downward radiation, and can cause temperatures to rise above freezing resulting in wintertime sea-ice melting or retarded sea-ice growth. With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny-Ålesund station for the same 37 year period. We define an extreme cyclone event by an extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny-Ålesund/N-ICE2015 SLP data). Typically 20-40 extreme cyclone events (sometimes called `weather bombs') occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade, according to the Ny-Ålesund data. This increased frequency of extreme cyclones drive considerable warming in that region, consistent with the observed significant winter warming of 3 K/decade. The positive winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as "blocking-like" circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  11. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    PubMed

    Lukoschek, Vimoksalehi; Cross, Peter; Torda, Gergely; Zimmerman, Rachel; Willis, Bette L

    2013-01-01

    Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR) in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E.) hard coral cover ranged from just 2.1 (0.2) % to 5.3 (0.4) % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter) were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E.) hard coral cover ranged from 18.2 (2.4) % to 30.0 (1.0) % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E.) recruitment of acroporids to settlement tiles declined from 25.3 (4.8) recruits tile⁻¹ in the pre-cyclone spawning event (2010) to 15.4 (2.2) recruits tile⁻¹ in the first post-cyclone spawning event (2011). Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E.) and sheltered sites (15.6±2.2 S.E.), despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  12. Response of primary and secondary rainforest flowers and fruits to a cyclone, and implications for plant-servicing bats.

    PubMed

    Scanlon, Annette T; Petit, Sophie; Tuiwawa, Marika; Naikatini, Alivereti

    2018-02-24

    The response of primary (PF) and secondary (SF) rainforests to cyclones has broad implications for servicing fauna and the resilience of forest functions. We collected fine-scale data on the reproductive phenology of plant communities in Fijian PF and SF in 12 monthly surveys before and after Cyclone Tomas (2010). We generated a resource index from the reproductive loads of 2218 trees and 1150 non-trees (>190 species) and trunk and stem diameter to assess patterns in resource abundance for nectarivores and frugivores (hereafter NF resources). We aimed to determine (i) whether species richness of NF resources differed between forests; (ii) the patterns of resilience of NF resources at community level in both forests after a cyclone; and (iii) the effect of response on NF resources for plant-servicing bats (Pteropodidae). In 12 months preceding the cyclone, NF resources were greater in PF trees; non-tree resources fluctuated and were greater in SF. Lower species richness of NF resources in SF indicated that fewer opportunities exist there for exploitation by a diverse fauna. More resources were available for bats in PF. In 12 months following the cyclone, PF flowers and fruits, and SF fruits specifically used by pteropodid bats decreased for trees. Non-tree resources were especially susceptible to the cyclone. No universal pattern of decline was associated with the cyclone; instead, some NF resources declined and others were resilient or responded rapidly to a post-cyclone environment. Both PF and SF demonstrated resilience at the community level via increased flower survival (PF) and rapid flower production (SF). Reduced species richness of NF resources in SF will compromise future resilience and response to disturbance, including for threatened pteropodid bat species. These findings are critical for long-term management of forests, given predicted increases in cyclone frequency and intensity associated with anthropogenic climate change. © 2018 John Wiley & Sons Ltd.

  13. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  14. Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.

  15. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact posits an interesting start for further theoretical and physical consideration.

  16. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  17. Predicting the trajectories and intensities of hurricanes by applying machine learning techniques

    NASA Astrophysics Data System (ADS)

    Sujithkumar, A.; King, A. W.; Kovilakam, M.; Graves, D.

    2017-12-01

    The world has witnessed an escalation of devastating hurricanes and tropical cyclones over the last three decades. Hurricanes and tropical cyclones of very high magnitude will likely be even more frequent in a warmer world. Thus, precise forecasting of the track and intensity of hurricane/tropical cyclones remains one of the meteorological community's top priorities. However, comprehensive prediction of hurricane/ tropical cyclone is a difficult problem due to the many complexities of underlying physical processes with many variables and complex relations. The availability of global meteorological and hurricane/tropical storm climatological data opens new opportunities for data-driven approaches to hurricane/tropical cyclone modeling. Here we report initial results from two data-driven machine learning techniques, specifically, random forest (RF) and Bayesian learning (BL) to predict the trajectory and intensity of hurricanes and tropical cyclones. We used International Best Track Archive for Climate Stewardship (IBTrACS) data along with weather data from NOAA in a 50 km buffer surrounding each of the reported hurricane and tropical cyclone tracts to train the model. Initial results reveal that both RF and BL are skillful in predicting storm intensity. We will also present results for the more complicated trajectory prediction.

  18. Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf

    NASA Astrophysics Data System (ADS)

    Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter

    2017-12-01

    Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.

  19. Seasonal differences in the response of Arctic cyclones to climate change in CESM1

    NASA Astrophysics Data System (ADS)

    Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.

    2017-06-01

    The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

  20. [The "Mining Rescue System and Mine Fires" Working Group. Tasks, results, future activities].

    PubMed

    Coenders, A

    1983-01-01

    The president of the working party presents details of its principal tasks in the past and in the present time. These can be summed up in a study of the problems mentioned below and the subsequent elaboration of recommendations for the benefit of the governments, guidelines, information reports and research proposals. The principal problems that were or are still under study are: --prevention of fires: shaft equipment, hydraulic fluids, belt conveyors, . . .; --detection of mine fires and spontaneous combustion; --fighting of mine fires: shaft fires, construction of stoppings, openings and recovering of fire zones, . . .; --coordination and rescue equipment: escape and rescue breathing apparatus, flameproof clothing, rescue of trapped miners; --stabilization of ventilation in the event of fire, . . . The speaker stresses the importance of the information exchange and the atmosphere of fellowship and solidarity that prevails in the working party.

  1. How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?

    PubMed

    Grimbacher, Peter S; Stork, Nigel E

    2009-09-01

    There are surprisingly few studies documenting effects of tropical cyclones (including hurricanes and typhoons) on rainforest animals, and especially insects, considering that many tropical forests are frequently affected by cyclonic disturbance. Consequently, we sampled a beetle assemblage inhabiting 18 upland rainforest sites in a fragmented landscape in north-eastern Queensland, Australia, using a standardised sampling protocol in 2002 and again 12 months after the passage of Severe Tropical Cyclone Larry (March 2006). The spatial configuration of sites allowed us to test if the effects of a cyclone and those from fragmentation interact. From all insect samples we extracted 12,568 beetles of 382 species from ten families. Beetle species composition was significantly different pre-and post-cyclone although the magnitude of faunal change was not large with 205 species, representing 96% of all individuals, present in both sampling events. Sites with the greatest changes to structure had the greatest changes in species composition. At the site level, increases in woody debris and wood-feeding beetle (Scolytinae) counts were significantly correlated but changes in the percent of ground vegetation were not mirrored by changes in the abundance of foliage-feeding beetles (Chrysomelidae). The overall direction of beetle assemblage change was consistent with increasing aridity, presumably caused by the loss of canopy cover. Sites with the greatest canopy loss had the strongest changes in the proportion of species previously identified in the pre-cyclone study as preferring arid or moist rainforest environments. The magnitude of fragmentation effects was virtually unaltered by the passage of Cyclone Larry. We postulate that in the short-term the effects of cyclonic disturbance and forest fragmentation both reduce the extent of moist, interior habitat.

  2. Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Xiande; Wu, Lixin; Wang, Qi

    2018-06-01

    With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.

  3. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  4. Interactions Between Vestige Atlantic Tropical Cyclones and Mid-Latitude Storms Over Mediterranean Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Mugnai, Alberto; Tripoli, Gregory J.

    2007-01-01

    One of the more interesting tropical-mid-latitude interactions is one that has important effects on precipitation within the Mediterranean basin. This interaction consists of an Atlantic tropical cyclone vestige whose original disturbance travels eastward and northward across Atlantic basin, eventually intermingling with a mid-latitude cyclone entering southern Europe and/or the \\bestern Mediterranean Sea. The period for these interactions is from mid-September through November. If the tropical cyclone and its vestige is able to make the eastward Atlantic transit within the low to mid-levels, or if an upper level potential vorticity perturbation Cjet streak) emitted by a Hurricane in its latter stages within the central Atlantic is able to propagate into and along the longwave pattern affecting the western Mediterranean Sea (MED), then there is the prospect for the tropical cyclone remnant to produce a major modification of the mid-latitude storm system preparing to affect the MED region. For such an occurrence to take place, it is necessary for an amplifying baroclinic perturbation to be already situated to the rear of a longwave trough, or to be excited by the emitted jet streak to the rear of a longwave trough -- in either case, preparing to affect the western MED. The Algiers City flood of 9-10 November 2001, which killed some 700 people, was produced by a Mediterranean cyclone that had been influenced by two vestige Atlantic tropical cyclones, 1,orenzo and Noel. A published modeling study involving various of this study's authors has already described the dynamical development of the Algiers storm as it amplified from a developing baroclinic disturbance in the Rossby wave train, into a northern Africa hazardous flood system, then lingered in the western MED as a semi-intense warm core cyclone. In our new modeling experiments, we investigate the impact of what might have happened in the eventual precipitation field. had the main features of the tropical cyclones NOT interacted with thc developing baroclinic disturbance as it penetrated the western MED. To do so, we first remove the moisture and dynamical features of the two vestigial tropical cyclones from the large scale meteorological fields used to initialize the Mediterranean cyclone simulation. This is done through depletion of the moisture front associated with the two tropical cyclones, accomplished by relaxation to the suppressed east Atlantic conditions. The dynamical effects are removed through energetic destruction of the latter stages of the eastward traveling tropical cyclones, accomplished by lowering the underlying sea surface temperatures. A precipitation-distribution impact experiment is then run by initializing with the customized large-scale fields. The final precipitation-impact field is described by differencing the "impact" run from the "control" run -- the latter defined as the original simulation which intrinsically includes the effects of the two vestigial tropical cyclones.

  5. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Implications: Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders. PMID:26934496

  6. An evaluation of the real-time tropical cyclone forecast skill of the Navy Operational Global Atmospheric Prediction System in the western North Pacific

    NASA Technical Reports Server (NTRS)

    Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.

    1993-01-01

    The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.

  7. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  8. Numerical model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone

    NASA Technical Reports Server (NTRS)

    Whitaker, Jeffrey S.; Uccellini, Louis W.; Brill, Keith F.

    1988-01-01

    A mesoscale model simulation of the Presidents' Day cyclone at 1200 GMT 18 February 1979 is presented which captures the upper-tropospheric intrusion of stratospheric air upstream of the East Coast and subsequent development of the surface cyclone. The model simulation is then used to examine the descent of the stratospheric air mass and the interaction of this air mass with a lower-tropospheric potential vorticity maximum associated with an inverted trough and coastal front along the East Coast. The model is also used to examine the processes that contribute to the rapid decrease of sea-level pressure and increase in lower-tropospheric cyclonic vorticity during the explosive development phase of the cyclone.

  9. Impact of feed counterion addition and cyclone type on aerodynamic behavior of alginic-atenolol microparticles produced by spray drying.

    PubMed

    Ceschan, Nazareth Eliana; Bucalá, Verónica; Ramírez-Rigo, María Verónica; Smyth, Hugh David Charles

    2016-12-01

    The inhalatory route has emerged as an interesting non-invasive alternative for drug delivery. This allows both pulmonary (local) and systemic treatments (via alveolar absorption). Further advantages in terms of stability, dose and patient preference have often lead researchers to focus on dry powder inhaler delivery systems. Atenolol is an antihypertensive drug with low oral bioavailability and gastrointestinal side effects. Because atenolol possesses adequate permeation across human epithelial membranes, it has been proposed as a good candidate for inhalatory administration. In a previous work, atenolol was combined with alginic acid (AA) and microparticles were developed using spray-drying (SD) technology. Different AA/atenolol ratios, total feed solid content and operative variables were previously explored. In order to improve particle quality for inhalatory administration and the SD yield, in this work the AA acid groups not neutralized by atenolol were kept either free or neutralized to pH∼7 and two different SD cyclones were used. Particle morphology, flow properties, moisture uptake and in vitro aerosolization behavior at different pressure drops were studied. When the AA acid groups were neutralized, particle size decreased as a consequence of the lower feed viscosity. The SD yield and in vitro particle deposition significantly increased when a high performance cyclone was employed, and even when lactose carrier particles were not used. Although the in vitro particle deposition decreased when the storage relative humidity increased, the developed SD powders showed adequate characteristics to be administered by inhalatory route up to storage relative humidities of about 60%. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Advances in dust cyclone research

    USDA-ARS?s Scientific Manuscript database

    Dust cyclones reduce particulate emissions but their operation consumes electrical energy. Response surface methodology was used to compare two strategies to reduce energy costs without increasing emissions. Cyclones of a standard design (1D3D) were operated singly and in series, as was an ‘Experi...

  11. Economics of oversized cyclones in the cotton ginning industry

    USDA-ARS?s Scientific Manuscript database

    Cost of reducing pollution to meet increasingly stringent air quality standards particularly for the U.S. cotton ginning industry is rising overtime. Most industry participants use cyclones to control air pollutants. These cyclones have no moving parts and their initial investment costs are relative...

  12. Risk factors for mortality in the Bangladesh cyclone of 1991.

    PubMed

    Bern, C; Sniezek, J; Mathbor, G M; Siddiqi, M S; Ronsmans, C; Chowdhury, A M; Choudhury, A E; Islam, K; Bennish, M; Noji, E

    1993-01-01

    Cyclones continue to pose a dangerous threat to the coastal populations of Bangladesh, despite improvements in disaster control procedures. After 138,000 persons died in the April 1991 cyclone, we carried out a rapid epidemiological assessment to determine factors associated with cyclone-related mortality and to identify prevention strategies. A nonrandom survey of 45 housing clusters comprising 1123 persons showed that mortality was greatest among under-10-year-olds (26%) and women older than 40 years (31%). Nearly 22% of persons who did not reach a concrete or brick structure died, whereas all persons who sought refuge in such structures survived. Future cyclone-associated mortality in Bangladesh could be prevented by more effective warnings leading to an earlier response, better access to designated cyclone shelters, and improved preparedness in high-risk communities. In particular, deaths among women and under-10-year-olds could be reduced by ensuring that they are given special attention by families, neighbours, local authorities, and especially those in charge of early warnings and emergency evacuation.

  13. The impact of Cyclone Nargis on the Ayeyarwady (Irrawaddy) River delta shoreline and nearshore zone (Myanmar): Towards degraded delta resilience?

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Anthony, Edward J.; Dussouillez, Philippe; Goichot, Marc

    2017-10-01

    The Ayeyarwady River delta (Myanmar) is exposed to tropical cyclones, of which the most devastating has been cyclone Nargis (2-4 May 2008). We analysed waves, flooded area, nearshore suspended sediments, and shoreline change from satellite images. Suspended sediment concentrations up to 40% above average during the cyclone may reflect fluvial mud supply following heavy rainfall and wave reworking of shoreface mud. Massive recession of the high-water line resulted from backshore flooding by cyclone surge. The shoreline showed a mean retreat of 47 m following Nargis. Erosion was stronger afterwards (-148 m between August 2008 and April 2010), largely exceeding rates prior to Nargis (2000-2005: -2.14 m/year) and over 41 years (1974-2015: -0.62 m/year). This implies that resilience was weak following cyclone impact. Consequently, the increasingly more populous Ayeyarwady delta, rendered more and more vulnerable by decreasing fluvial sediment supply, could, potentially, become more severely impacted by future high-energy events.

  14. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  15. Extreme cyclone events in the Arctic: Wintertime variability and trends

    NASA Astrophysics Data System (ADS)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-09-01

    Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  16. Cyclone shelters and their locational suitability: an empirical analysis from coastal Bangladesh.

    PubMed

    Mallick, Bishawjit

    2014-07-01

    Bangladesh is one of the poorest and the most disaster-prone countries in Asia; it is important, therefore, to know how its disaster reduction strategies are organised and planned. Cyclone shelters comprise a widely acceptable form of infrastructural support for disaster management in Bangladesh. This paper attempts to analyse empirically their use during cyclones in a sample study area along the southwest coastal belt of the country. It shows how the location of a cyclone shelter can determine the social power structure in coastal Bangladesh. The results reveal that the establishment of cyclone shelters in the studied communities is determined by neither a right-based nor a demand-based planning approach; rather, their creation is dependent on the socio-political affluence of local-level decision-makers. The paper goes on to demonstrate that socially vulnerable households (defined, for example, by income or housing conditions) are afforded disproportionately less access to cyclone shelters as compared to less socially vulnerable households. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  17. Accumulation in coastal West Antarctic ice core records and the role of cyclone activity

    NASA Astrophysics Data System (ADS)

    Hosking, J. Scott; Fogt, Ryan; Thomas, Elizabeth R.; Moosavi, Vahid; Phillips, Tony; Coggins, Jack; Reusch, David

    2017-09-01

    Cyclones are an important component of Antarctic climate variability, yet quantifying their impact on the polar environment is challenging. We assess how cyclones which pass through the Bellingshausen Sea affect accumulation over Ellsworth Land, West Antarctica, where we have two ice core records. We use self-organizing maps (SOMs), an unsupervised machine learning technique, to group cyclones into nine SOM nodes differing by their trajectories (1980-2015). The annual frequency of cyclones associated with the first SOM node (SOM1, which generally originate from lower latitudes over the South Pacific Ocean) is significantly (p < 0.001) correlated with annual accumulation, with the highest seasonal correlations (p < 0.001) found during autumn. While significant (p < 0.01) increases in vertically integrated water vapor over the South Pacific Ocean coincide with this same group of cyclones, we find no indication that this has led to an increase in moisture advection into, nor accumulation over, Ellsworth Land over this short time period.

  18. Co-combustion of coal and biomass in a pressurized bubbling fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andries, J.; Verloop, M.; Hein, K.

    1997-12-31

    The use of biomass as an energy source in power plants has advantages compared to fossil fuel firing. Co-firing of biomass and coal offers additional advantages compared to exclusive biomass firing. The objective of the research described in this paper is to assess the effect of co-combustion of biomass (straw or Miscanthus Sinensis) and coal on the behavior of a pressurized fluidized bed combustor with regard to fuel feeding, fluidization, sintering, burnout, temperature distribution and the emission of harmful gaseous and solid components. Temperature and gas concentration profiles have been determined in the freeboard of the Delft 1.6 MW{sub th}more » PFBC test rig. The addition of up to 20% of biomass (based on heat input) has no adverse effect on the PFBC process. The feeding of the biomass is more critical than the feeding of coal, due to the more fibrous structure and the larger volumes of the biomass fuel. Dependent on the process conditions the biomass addition results locally in an increase or decrease of the temperatures. Biomass addition causes a small increase of the CO and NO and a small decrease of N{sub 2}O emissions. The influence of the biomass addition on the HCl emissions is not clear. The lower sulfur content and a larger sulfur capture efficiency result in lower SO{sub 2} emissions. The addition of biomass has a negligible influence on the combustion efficiency. A 15--30% higher cyclone catch was found for the coal/Miscanthus mixture when compared to the other fuels.« less

  19. Analysis of Storm Surge in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kao, W. H.

    2017-12-01

    A storm surge is a type of coastal flood that is caused by low-pressure systems such as tropical cyclones. Storm surges caused by tropical cyclones can be very powerful and damaging, as they can flood coastal areas, and even destroy infrastructure in serious cases. Some serious cases of storm surges leading to more than thousands of deaths include Hurricane Katrina (2005) in New Orleans and Typhoon Haiyan (2013) in Philippines. Hong Kong is a coastal city that is prone to tropical cyclones, having an average of 5-6 tropical cyclones entering 500km range of Hong Kong per year. Storm surges have seriously damaged Hong Kong in the past, causing more than 100 deaths by Typhoon Wanda (1962), and leading to serious damage to Tai O and Cheung Chau by Typhoon Hagupit (2008). To prevent economic damage and casualties from storm surges, accurately predicting the height of storm surges and giving timely warnings to citizens is very important. In this project, I will be analyzing how different factors affect the height of storm surge, mainly using data from Hong Kong. These factors include the windspeed in Hong Kong, the atmospheric pressure in Hong Kong, the moon phase, the wind direction, the intensity of the tropical cyclone, distance between the tropical cyclone and Hong Kong, the direction of the tropical cyclone relative to Hong Kong, the speed of movement of the tropical cyclone and more. My findings will also be compared with cases from other places, to see if my findings also apply for other places.

  20. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    PubMed

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  1. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    PubMed

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  2. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  3. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  4. Crew size affects fire fighting efficiency: A progress report on time studies of the fire fighting job.

    Treesearch

    Donald N. Matthews

    1940-01-01

    Fire fighting is still largely a hand-work job in the heavy cover and fuel conditions and rugged topography of the Douglas fir region, in spite of recent advances that have been made in %he use of machinery. Controlling a fire in this region requires immense amounts of work per unit of fire perimeter, so that large numbers of men are required to attack all but the...

  5. Vulnerability Assessment of Housing Damage in the Philippines Due to an Increase Increase in Typhoon Intensity

    NASA Astrophysics Data System (ADS)

    Esteban, Miguel; Stromberg, Per; Gasparatos, Alexandros

    2010-05-01

    It is currently feared that the increase in surface sea temperature resulting from increasing level of greenhouse gases in the atmosphere could result in higher tropical cyclone intensity in the future. Although the vulnerability of infrastructure and economic systems have been studied for a number of developed countries, very little work has been done on developing countries. The present work first attempts to evaluate the vulnerability of different regions in the Philippines to the passage of tropical cyclones. To this effect a total of 22 typhoons and tropical storms that affected the Philippines were analysed for the period 2003-2008. The data used was collected by the National Disaster Coordinating Council of the Philippines, who issue "SitRep" NDCC Reports after each major storm. This agency provides damage data for each region, including number of casualties, affected people, damaged and destroyed houses, and losses in the infrastructure and agriculture. The likely economic effects of increased typhoon intensity by using a Monte Carlo Simulation that magnifies the intensity of historical tropical cyclones between the years 1978 and 2008 to simulate the economic damage by 2085. The methodology used is based on the work of Esteban et al. (2009), which in turn uses the results of Knutson and Tuleya (2004) for the estimation of the increase in tropical cyclone intensity in 2085. The results show that downtime could increase from a national 1% to 1.3% by 2050 if economic and population growth are taken into account (29 to 36bn USD, from a total GDP of 2,757bn USD by 2050). If these are ignored the time lost each year can be estimated to cost around 630m USD (PPP) for the control scenario, which could increase to between 766m or 945mm USD by the year 2085 for the two different scenarios considered. This indirect damage depends on the geographical location and is for example higher in some areas of the northern island of Luzon, while the island of Mindanao in the south is almost unaffected due to its proximity to the equator. The estimation of the damage shows that the number of houses partially or totally destroyed could increase by up to 58% in certain regions by 2085. The historical damage data shows how the adaptive capacity values of each region given by Yusuf and Herminia (2009) are crucial to the amount of damage recorded. These authors defined this parameter as the degree to which adjustments in practices, processes or structures can moderate or offset potential damage or take advantage of opportunities from climate change. This clearly highlights the importance of mitigation measures to increase the resilience of communities in the future. This is a significant conclusion of the present paper, independent of whether tropical cyclones increase in intensity or not.

  6. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.

  7. NOAA releases final report of Sandy service assessment

    Science.gov Websites

    released a report on the National Weather Service's performance during hurricane/post tropical cyclone Sandy. The report, Hurricane/Post Tropical Cyclone Sandy Service Assessment, reaffirms that the National warnings for dangerous storms like Sandy, even when they are expected to become post-tropical cyclones by

  8. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    USDA-ARS?s Scientific Manuscript database

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  9. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... to Subpart A of Part 1209—Cyclone Receiver Weldment EC03OC91.032 ...

  10. 16 CFR Figure 2 to Subpart A of... - Cyclone Receiver Weldment

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Cyclone Receiver Weldment 2 Figure 2 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... to Subpart A of Part 1209—Cyclone Receiver Weldment EC03OC91.032 ...

  11. FORMAT OF TROPICAL CYCLONE RECORDS ("TCVITALS")

    Science.gov Websites

    FORMAT OF TROPICAL CYCLONE VITAL STATISTICS RECORDS ("TCVITALS") 8-16-2007 CHARACTER(S - These appear only in records that have been processed by the NCEP tropical cyclone quality control program SYNDAT_QCTROPCY. BOLDFACE - These appear only in NHC records. 1 - Prior to 1999, report date was

  12. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    ERIC Educational Resources Information Center

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  13. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    DTIC Science & Technology

    2015-04-09

    where u is the zonal momentum per unit mass, v is the meridional momentum per unit mass, h is the fluid depth, and f is the Coriolis parameter. An...from each cyclone advects the other116 creating a net cyclonic motion (the Fujiwhara effect ; Fujiwhara 1921) (case 2 idealization).117 In Fig. 2c, the...the interaction of the two136 vortices cause a net cyclonic motion (the Fujiwhara effect ).137 The initial condition for the binary vortex interaction

  14. Cyclone Chris Hits Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This false-color image shows Cyclone Chris shortly after it hit Australia's northwestern coast on February 6, 2002. This scene was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. (Please note that this scene has not been reprojected.) Cyclone Chris is one of the most powerful storms ever to hit Australia. Initially, the storm contained wind gusts of up to 200 km per hour (125 mph), but shortly after making landfall it weakened to a Category 4 storm. Meteorologists expect the cyclone to weaken quickly as it moves further inland.

  15. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, Thomas R.

    1998-01-01

    A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  16. A preliminary computer pattern analysis of satellite images of mature extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Burfeind, Craig R.; Weinman, James A.; Barkstrom, Bruce R.

    1987-01-01

    This study has applied computerized pattern analysis techniques to the location and classification of features of several mature extratropical cyclones that were depicted in GOES satellite images. These features include the location of the center of the cyclone vortex core and the location of the associated occluded front. The cyclone type was classified in accord with the scheme of Troup and Streten. The present analysis was implemented on a personal computer; results were obtained within approximately one or two minutes without the intervention of an analyst.

  17. The persistent signature of tropical cyclones in ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran

    2018-02-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  18. Public understanding of cyclone warning in India: Can wind be predicted?

    PubMed

    Dash, Biswanath

    2015-11-01

    In spite of meteorological warning, many human lives are lost every year to cyclone mainly because vulnerable populations were not evacuated on time to a safe shelter as per recommendation. It raises several questions, most prominently what explains people's behaviour in the face of such danger from a cyclonic storm? How do people view meteorological advisories issued for cyclone and what role they play in defining the threat? What shapes public response during such situation? This article based on an ethnographic study carried out in coastal state of Odisha, India, argues that local public recognising inherent limitations of meteorological warning, fall back on their own system of observation and forecasting. Not only are the contents of cyclone warning understood, its limitations are accommodated and explained. © The Author(s) 2014.

  19. The kinetic and available potential energy budget of a winter extratropical cyclone system

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Dare, P. M.

    1986-01-01

    The energy budget of an extratropical cyclone system which traversed North America and intensified through the period January 9-11, 1975 is presented. The objectives of the study are: (1) to document the complete energy budget of a significant winter cyclone event, and (2) to comment on the significance of latent heat release (LHR) in the cyclone's evolution. Results reveal an overall increase in both kinetic (K) and available potential energy (A). K increases are accounted for by boundary flux convergence of K, while A increases are due to generation by LHR and K to A conversion. In addition, the general A increase is accompanied by a 24 h oscillation that is explained largely by the flux quantity in the A budget equation and is correlated with a similar fluctuation in the K to A conversion. LHR does not appear to be critical in the development of this cyclone system. Rather, LHR acts to increase the intensity of the event. It is hypothesized that the direct influence that LHR had on the deepening cyclone's reduced mass was augmented by an indirect influence, in which pre-existing dry dynamical forcing was enhanced by diabatic heating, thus leading to accelerated cyclone development at a later time.

  20. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  1. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep convection in the inner core and result in increases of lightning probability even though the cyclones are weakening. We use a Lagrangian approach similar to the used by Rutherford and Montgomery (2012, Atmos. Chem. Phys., 12, 11355-11381, 2012), to study moisture fluxes between intensifying and weakening in recurving tropical cyclones.

  2. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also, cyclones which are generated in the northern North Atlantic and the Labrador Sea are to an extraordinary extent underestimated in the "uncoupled" MPI-ESM - for the latter region the TWC can balance this shortcoming. In the Northern Hemisphere annual mean statistics the TWC does not change the distribution of the strength of cyclones, but it changes the distribution of the lifetime of cyclones.

  3. Comparison of Mid-latitude Cyclones in Sea Level Pressure, Gepotential Height and Vorticity Fields

    NASA Astrophysics Data System (ADS)

    Raible, Christoph C.; Blender, Richard; Fraedrich, Klaus

    2013-04-01

    The mid-latitudes are dominated by diurnal variability, which is related to traveling high- and low-pressure systems. The lows or cyclones are a major source of natural hazards. This has led to growing interest in the scientific community to develop Eulerian and Lagrangian measures and to analyze the atmospheric high-frequency variability. One important issue is that there is no straight forward definition of cyclones resulting in a large variety of so-called cyclone detection and tracking methods. Each of these methods relies on different input fields which are related to specific features of a cyclone, e.g., sea level pressure (SLP), which specifically focuses on the mass aspect of the velocity field. Recently, the available methods have been compared with respect to climatology and life cycles using the ERA interim data set (Neu et al. 2013). Based on this study we investigate different fields as input for one specific method. We focus on the three mostly used input data, sea level pressure (SLP), 1000-hPa gepotential height (Z1000) and 850-hPa vorticity (850VOR). The cyclone detection and tracking method developed by Blender et al. (1997) is used and we apply it to ERA interim data in the 1.5 x 1.5 resolution. The method was mainly applied for Z1000 and the Northern Hemisphere (e.g., Blender et al. 1997; Raible et al. 2008). To compare the tracks and cyclone characteristics obtained from the different input data we need to adapt critical parameters of the method in such a way that comparable numbers of cyclone centers are identified in either field. The target is set to the number of cyclone centers in northern hemispheric winter. This enables us to assess the seasonal and hemispheric dependence. Preliminary results show that the agreement between cyclones based on SLP and Z1000 varies between roughly 70 to 80% depending on the season and the hemisphere. Spatially, most of the differences are found around orographic features like Greenland. An interesting finding is that the number of cyclones based on Z1000 is increased comparing the winter and summer season as the number of heat lows increases in summer. However, the behavior is vice versa for cyclones based on SLP. References: Blender R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727-741. Neu, U., M. G. Akperov, N. Bellenbaum, R. Benestad, R. Blender, R. Caballero, A. Cocozza, H. F. Dacre, Y. Feng, K. Fraedrich, J. Grieger, S. Gulev, J. Hanley, T. Hewson, M. Inatsu, K. Keay, S. F. Kew, I. Kindem, G. C. Leckebusch, M. L. R. Liberato, P. Lionello, I. I. Mokhov, J. G. Pinto, C. C. Raible, M. Reale, I. Rudeva, M. Schuster, I. Simmonds, M. Sinclair, M. Sprenger, N. D. Tilinina, I. F. Trigo, S. Ulbrich, U. Ulbrich, X. L. Wang, H. Wernli, 2012: IMILAST - a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties, Bulletin of the American Meteorological Society, in press. Raible, C. C., P. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses, Mon. Wea. Rev., 136 880-897.

  4. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    A series of surface cyclones formed along an anomalously strong northeast-southwest oriented baroclinic zone over north-central Russia on 1-3 August 2012. These cyclones moved northeastward, intensified slowly, and crossed the coast of Russia by 4 August. The last cyclone in the series strengthened rapidly as it moved poleward over the Arctic Ocean on 5-6 August, achieved a minimum sea level pressure of < 965 hPa by 6 August, and was arguably the most intense storm system to impact the Arctic Ocean in the modern data record going back to the International Geophysical Year in 1957-1958. The purpose of this presentation is to illustrate the structure and life cycle of this Arctic Ocean cyclone from a multiscale perspective. Anticyclonic wave breaking in the upper troposphere across Russia in late July and very early August 2012 created an anomalously strong baroclinic zone across northern Asia between 60-80°N. During 1-5 August, negative 850 hPa temperature anomalies between -2° and -4°C were found poleward of 70-75°N between 90°E and the Dateline over the Arctic Ocean while positive 850 hPa temperature anomalies of 8-9°C were found over eastern Russia near 60°N. The associated anomalously strong 850 hPa meridional temperature gradient of ~10°C (2000 km)-1 helped to sustain an anomalously strong (20-30 m s-1) 250 hPa jet along the coast of northeastern Russia. A local wind speed maximum (~50 m s-1 ) embedded in this 250 hPa jet corridor contributed to the extreme intensity of the trailing (last) surface cyclone in the series. Although the dominant surface cyclone in the series of surface cyclones intensified most rapidly over the relatively ice free Arctic Ocean, the impact of surface heat and moisture fluxes appeared to be secondary to jet-driven dynamical processes in the deepening process. Anomalously high observed 1000-500 hPa thickness values between 564-570 dam, precipitable water values between 30-40 mm, and CAPE values between 500-1000 J kg-1 in the warm sector of the developing cyclone over north-central Russia were indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying cyclone. The relative importance of dynamical versus thermodynamical forcing to the cyclogenesis process as well as the bulk upscale effects of the intense cyclone on the larger scale higher-latitude circulation and the distribution of sea ice will be discussed. A noteworthy aspect of the post-storm polar environment was the upscale growth of a midlevel cyclonic circulation to include most of the Arctic Ocean. The off-pole displacement of this midlevel cyclonic circulation toward northern Canada by mid-August may have contributed to the termination of the 2012 summer-long intensive heat wave over most of the continental United States.

  5. Role of equatorial waves in tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Schreck, Carl J., III

    Tropical cyclones typically form within preexisting wavelike disturbances that couple with convection. Using Tropical Rainfall Measuring Mission (TRMM) multisatellite rainfall estimates, this study determines the relative number of tropical cyclones that can be attributed to various wave types, including the Madden--Julian oscillation (MJO), Kelvin waves, equatorial Rossby (ER) waves, mixed Rossby--gravity (MRG) waves, and tropical depression (TD)-type disturbances. Tropical cyclogenesis is attributed to an equatorial wave's convection when the filtered rainfall anomaly exceeds a threshold value at the genesis location. More storms are attributed to TD-type disturbances than to any other wave type in all of the Northern Hemisphere basins. In the Southern Hemisphere, however, ER waves and TD-type disturbances are equally important as precursors. Fewer storms are attributed to MRG waves, Kelvin waves, and the MJO in every basin. Although relatively few storms are attributed to the MJO, tropical cyclogenesis is 2.6 times more likely in its convective phase compared with its suppressed phase. This modulation arises in part because each equatorial wave type is amplified within MJO's convective phase. The amplification significantly increases the probability that these waves will act as tropical cyclone precursors. A case study from June 2002 illustrates the effects of a series of Kelvin waves on two tropical cyclone formations. These waves were embedded in the convective phase of the MJO. Together, the MJO and the Kelvin waves preconditioned the low-level environment for cyclogenesis. The first Kelvin wave weakened the trade easterlies, while the subsequent waves created monsoon westerlies near the equator. These westerlies provided the background cyclonic vorticity within which both storms developed. The effects of tropical cyclone-related rainfall anomalies are also investigated. In the wavenumber--frequency spectrum for rainfall, tropical cyclones can inflate the power for shorter wavelength westward propagating waves by up to 27%. This spectrum contains signals from all longitudes, but the greatest contamination occurs in regions like the Philippines where tropical cyclones are most frequent. Here, tropical cyclones contribute more than 40% of the rainfall variance in each filter band. To mitigate these effects, tropical cyclone-related anomalies were removed before filtering in this study.

  6. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.

  7. Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014

    PubMed Central

    Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.

    2015-01-01

    The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628

  8. Borneo vortex and mesoscale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  9. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

    NASA Technical Reports Server (NTRS)

    Schreck, Carl J., III; Molinari, John; Mohr, Karen I.

    2009-01-01

    The direct influences of equatorial waves on the genesis of tropical cyclones are evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered rainfall anomaly exceeds a threshold value at the genesis location. For an attribution threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby waves, 26% to mixed Rossby-Gravity waves, 23% to Kelvin waves, 13% to the Madden-Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The fraction of tropical cyclones attributed to TD-type disturbances is consistent with previous findings. Past studies have also demonstrated that the MJO significantly modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any other wave type. This disparity arises from the difference between attribution and modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, but the MJO alone might not determine when and where a storm will develop within these regions. Tropical cyclones contribute less than 17% of the power in any portion of the equatorial wave spectrum because tropical cyclones are relatively uncommon equatorward of 15deg latitude. In regions where they are active, however, tropical cyclones can contribute more than 20% of the warm season rainfall and up to 50% of the total variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-related rainfall anomalies were removed before filtering in this study.

  10. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    NASA Astrophysics Data System (ADS)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  11. Large-scale factors in tropical and extratropical cyclone transition and extreme weather events.

    PubMed

    Pezza, Alexandre Bernardes; Simmonds, Ian

    2008-12-01

    Transition mechanisms characterizing changes from hurricanes to midlatitude cyclones and vice-versa (extratropical and tropical transition) have become a topic of increasing interest, partially because of their association with recent unusual storms that have developed in different ocean basins of both hemispheres. The aim of this work is to discuss some recent cases of transition and highly unusual hurricane developments and to address some of their wider implications for climate science. Frequently those dramatic cyclones are responsible for severe weather, potentially causing significant damage to property and infrastructure. An additional manifestation discussed here is their association with cold surges, a topic that has been very little explored in the literature. In the Southern Hemisphere, the first South Atlantic hurricane, Catarina, developed in March 2004 under very unusual large-scale conditions. That exceptional cyclone is viewed as a case of tropical transition facilitated by a well-developed blocking structure. A new index for monitoring tropical transition in the subtropical South Atlantic is discussed. This "South Atlantic index" is used to show that the unusual flow during and prior to Catarina's genesis can be attributed to tropical/extratropical interaction mechanisms. The "Donald Duck" case in Australia and Vince in the North Atlantic have also been examined and shown to belong to a category of hybrid-transitioning systems that will achieve at least partial tropical transition. While clearly more research is needed on the topic of transition, as we gain further insight, it is becoming increasingly apparent that features of large-scale circulation do play a fundamental role. A complex interaction between an extratropical transition case and an extreme summer cold surge affecting southeastern Australia is discussed as an example of wider climate implications.

  12. Investigation of the Ionsopheric Response to Tropical Cyclones Using Ground and Satellite Based Observations Over Indian Region

    NASA Astrophysics Data System (ADS)

    G J, B.; Lal, M.

    2015-12-01

    The present work investigates the equatorial ionospheric response to tropical cyclones which were observed over the Arabian and Bay of Bengal Ocean during the year 2009-2013. The present study utilizes various datasets in order to strengthen the mechanism of troposphere-ionosphere coupling. The tropical cyclone track and data can be obtained from the Indian Meteorological Department, New Delhi. Ionsopheric variations can be monitored from the ground based digisonde located at equatorial station, Trivandrum (8.48oN, 76.95oE), Tirunelveli (8.7oN, 77.8oE) and off equatorial station Allahabad (25.45oN, 81.85oE) and CDAAC COSMIC satellite data. It is believed that tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. The convective regions are identified with the help of Outgoing Long wave radiation from NOAA. Gravity wave propagation is mainly depends on the background wind condition, can be examined by using NASA MERRA reanalyses. These Upward propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). It is found that the enhancement of this wave activity is increased by orders of 10 at ionospheric level. The Ionospheric variability is measured by examining the variation in the parameters such as, Total Electron Content (TEC), foF2, hmF2, foE, MUF, h'E and h'F. The extensive analysis will be carried out in order to understand the coupling mechanism between troposphere and ionosphere region. The detailed results will be discussed in the meeting.

  13. The Impacts of Aerosols on Hurricane Katrina under the Effect of Air-Sea Coupling

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.

    2017-12-01

    Aerosols can affect the development of tropical cyclones, which often involve intense interactions with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean sea level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of air-sea interactions during the developing stage, which demonstrates intricate nonlinear interactions between aerosols, the hurricane and the ocean.

  14. Vertigo in virtual reality with haptics: case report.

    PubMed

    Viirre, Erik; Ellisman, Mark

    2003-08-01

    A researcher was working with a desktop virtual environment system. The system was displaying vector fields of a cyclonic weather system, and the system incorporated a haptic display of the forces in the cyclonic field. As the subject viewed the rotating cyclone field, they would move a handle "through" the representation of the moving winds and "feel" the forces buffeting the handle as it moved. Stopping after using the system for about 10 min, the user experienced an immediate sensation of postural instability for several minutes. Several hours later, there was the onset of vertigo with head turns. This vertigo lasted several hours and was accompanied with nausea and motion illusions that exacerbated by head movements. Symptoms persisted mildly the next day and were still present the third and fourth day, but by then were only provoked by head movements. There were no accompanying symptoms or history to suggest an inner ear disorder. Physical examination of inner ear and associated neurologic function was normal. No other users of this system have reported similar symptoms. This case suggests that some individuals may be susceptible to the interaction of displays with motion and movement forces and as a result experience motion illusions. Operators of such systems should be aware of this potential and minimize exposure if vertigo occurs.

  15. Products and Services Notice - Naval Oceanography Portal

    Science.gov Websites

    Tropical Cyclone Formation Alert, Northwest Pacific Ocean Issued as required when tropical cyclone PGTW Tropical Cyclone Formation Alert, North Indian Ocean Issued as required when TC formation is , Southwest Pacific Ocean Issued as required when TC formation is expected in 12-24 hours WTPS31-35 PGTW

  16. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine.

  17. Toward Clarity on Understanding Tropical Cyclone Intensification

    DTIC Science & Technology

    2015-08-01

    forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos

  18. Global climatology of explosive cyclones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Explosive cyclones, which have rapidly intensifying winds and heavy rain, can seriously threaten life and property. These "meteorological bombs" are difficult to forecast, in part because scientists need a better understanding of the physical mechanisms by which they form. In particular, the large-scale circulation conditions that may contribute to explosive cyclone formation are not well understood.

  19. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  20. Characteristics and development of European cyclones with tropical origin in reanalysis data

    NASA Astrophysics Data System (ADS)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  1. Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust

    NASA Astrophysics Data System (ADS)

    Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.

    The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.

  2. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions

    PubMed Central

    Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan

    2014-01-01

    Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550

  3. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. Copyright © 2016, American Association for the Advancement of Science.

  4. Tropical Cyclone Genesis: A Dynamician's Point of View

    NASA Astrophysics Data System (ADS)

    Bouali, Safieddine; Leys, Jos

    The paper focuses the route to the maturity of a cyclone as a twist process of the Hadley cell. The approach is qualified by a "dynamician's viewpoint" since the aerologic mechanism of the cyclone genesis is replicated without the classical tools of the meteorological fluid framework. Indeed, we introduce a pure dynamical model of a 2D vertical rotor of an airparcel to emulate the Hadley cell. Twisted by an appropriate feedback to inject geophysical forcing, the simulation displays two stretched solenoid rolls with clockwise and anticlockwise paths representing the Hadley belts wrapping the Earth. When the forcing parameter is higher, computations simulate overlapped whirlwind funnels revealing strong similarities with the structure of cyclones, hurricanes, and typhoons described in the atmospheric science literature. We conjecture that ocean-atmosphere interactions separate and convert a "slice" of the Hadley rotor into a fully tropical cyclone.

  5. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  6. Intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2009-12-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis that typifies the trade wind belt. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the problem of the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a vorticity dominant region with minimal strain/shear deformation within the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).

  7. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of predicted landfall locations compared with observations.

  8. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  9. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    PubMed

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cyclone as a precleaner to ESP--a need for Indian coal based thermal power plants.

    PubMed

    George, K V; Manjunath, S; Rao, C V Chalapati; Bopche, A M

    2003-11-01

    Almost all coal based thermal power plants (CTPP) in India use electrostatic precipitator (ESP) for reduction of particulate matter (PM) in flue gas generated due to the combustion of Indian coal. This coal is characterized by high ash content, low calorific value and low sulfur content resulting in the generation of a very large amount of highly electrically-resistive fly-ash; thereby requiring a very large size ESP to minimize the fly-ash emissions. However, the flue-gas particle size distribution analysis showed that 60% of the particles are above 15 microm size, which can be conveniently removed using a low-cost inertial separator such as a cyclone separator. It is proposed that a cyclone be used, as a pre-cleaner to ESP so that the large size fraction of fly-ash can be removed in the pre-cleaning and the remaining flue-gas entering the ESP will then contain only small size particles with low dust loading, thereby requiring a small ESP, and improving overall efficiency of dust removal. A low efficiency (65%), high throughput cyclone is considered for pre-cleaning flue gas and the ESP is designed for removal of the remaining 35% fly-ash from the flue gas. It is observed that with 100% dust load, the ESP requires six fields per pass, whereas with cyclone as a pre-cleaner, it requires only five fields per pass. Introducing cyclone into the flue gas path results in additional head loss, which needs to be overcome by providing additional power to induced draft (ID) fan. The permissible head loss due to the cyclone is estimated by comparing the power requirement in the bag filter control unit and cyclone-ESP combined unit. It is estimated that a head loss of 10 cm of water can be permitted across the cyclone so as to design the same for 65% efficiency.

  11. Paint by Particle

    NASA Image and Video Library

    2017-12-08

    NASA models and supercomputing have created a colorful new view of aerosol movement. Satellites, balloon-borne instruments and ground-based devices make 30 million observations of the atmosphere each day. Yet these measurements still give an incomplete picture of the complex interactions within the membrane surrounding Earth. Enter climate models. Through mathematical experiments, modelers can move Earth forward or backward in time to create a dynamic portrait of the planet. Researchers from NASA Goddard’s Global Modeling and Assimilation Office recently ran a simulation of the atmosphere that captured how winds whip aerosols around the world. Such simulations allow scientists to better understand how these tiny particulates travel in the atmosphere and influence weather and climate. In the visualization below, covering August 2006 to April 2007, watch as dust and sea salt swirl inside cyclones, carbon bursts from fires, sulfate streams from volcanoes—and see how these aerosols paint the modeled world. Credit: NASA/Goddard Space Flight Center

  12. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  13. Forecasting distribution of numbers of large fires

    Treesearch

    Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan

    2015-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...

  14. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, T.R.

    1998-04-28

    A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

  15. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the inundation at many sites and were mapped as line features. Coral boulders of more than 1 m diameter were measured on Erromango. Along each island that was sampled, Cyclone Pam deposited a 1 - 20 cm thick sedimentary layer consisting of foraminfera-bearing sand and pumice cobbles. Infrastructure damage on traditional and modern structures was assessed. Eyewitnesses were interviewed at most sites to document the chronology of the wind and coastal flooding events, survival strategies, cyclone and tsunami awareness, evacuation procedures, shelter locations and ancestral knowledge. Field observations were compared with surveyed eyewitness accounts of historic events such as severe tropical cyclone Uma in 1987. The measured cyclone Pam high water marks will facilitate the interpretation of the collected sedimentary evidence and serve as benchmarks for modeling studies.

  16. Rate of prescription of antidepressant and anxiolytic drugs after Cyclone Yasi in North Queensland.

    PubMed

    Usher, Kim; Brown, Lawrence H; Buettner, Petra; Glass, Beverley; Boon, Helen; West, Caryn; Grasso, Joseph; Chamberlain-Salaun, Jennifer; Woods, Cindy

    2012-12-01

    The need to manage psychological symptoms after disasters can result in an increase in the prescription of psychotropic drugs, including antidepressants and anxiolytics. Therefore, an increase in the prescription of antidepressants and anxiolytics could be an indicator of general psychological distress in the community. The purpose of this study was to determine if there was a change in the rate of prescription of antidepressant and anxiolytic drugs following Cyclone Yasi. A quantitative evaluation of new prescriptions of antidepressants and anxiolytics was conducted. The total number of new prescriptions for these drugs was calculated for the period six months after the cyclone and compared with the same six month period in the preceding year. Two control drugs were also included to rule out changes in the general rate of drug prescription in the affected communities. After Cyclone Yasi, there was an increase in the prescription of antidepressant drugs across all age and gender groups in the affected communities except for males 14-54 years of age. The prescription of anxiolytic drugs decreased immediately after the cyclone, but increased by the end of the six-month post-cyclone period. Control drug prescription did not change. There was a quantifiable increase in the prescription of antidepressant drugs following Cyclone Yasi that may indicate an increase in psychosocial distress in the community.

  17. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  18. Extratropical Cyclones near Iceland

    NASA Image and Video Library

    2010-04-22

    A cyclone is a low-pressure area of winds that spiral inwards. Although tropical storms most often come to mind, these spiraling storms can also form at mid- and high latitudes. Two such cyclones formed in tandem in November 2006. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA’s Terra satellite took this picture on November 20. This image shows the cyclones south of Iceland. Scotland appears in the lower right. The larger and perhaps stronger cyclone appears in the east, close to Scotland. Cyclones at high and mid-latitudes are actually fairly common, and they drive much of the Earth’s weather. In the Northern Hemisphere, cyclones move in a counter-clockwise direction, and both of the spiraling storms in this image curl upwards toward the northeast then the west. The eastern storm is fed by thick clouds from the north that swoop down toward the storm in a giant “V” shape on either side of Iceland. Skies over Iceland are relatively clear, allowing some of the island to show through. South of the storms, more diffuse cloud cover swirls toward the southeast. Credit: NASA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  19. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Shuqin; Fu, Gang

    2018-06-01

    In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October-April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

  20. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  1. Sandy retired from list of Atlantic Basin tropical cyclone names

    Science.gov Websites

    2012 Atlantic hurricane season Media Contact Dennis Feltgen 305-229-4404 305-433-1933 (cellular) Share tropical cyclone names April 11, 2013 GOES East image of Hurricane Sandy, Oct. 29, 2012. This NOAA GOES-13 cyclone names by the World Meteorological Organization's hurricane committee because of the extreme

  2. Cyclone energy: impact of inlet velocity and outlet évasé designs

    USDA-ARS?s Scientific Manuscript database

    Because electricity generation produces emissions, reducing cyclone pressure drop has the potential to benefit the environment. Enhanced 1D3D cyclones common in the cotton ginning industry were tested with various évasés, over a range of inlet velocities. With évasés it was possible to reduce the ...

  3. 30 CFR 71.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the inner surface of the cyclone on the approved sampling... positioning of the cyclone body, vortex finder and cassette to assure that they are rigid, in alignment, and...

  4. 40 CFR 63.11621 - What are the standards for new and existing prepared feeds manufacturing facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions and route them to a cyclone designed to reduce emissions of particulate matter by 95 percent or...) You must demonstrate that the cyclone is designed to reduce emissions of particulate matter by 95... operation of the cyclone in accordance with the applicable requirement in paragraphs (e)(2)(i), (ii), or...

  5. 30 CFR 70.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the inner surface of the cyclone on the approved sampling device to assure that it is free of scoring; (4... leaks, and; (5) Examination of the clamping and positioning of the cyclone body, vortex finder and...

  6. 30 CFR 90.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the inner surface of the cyclone on the approved sampling... positioning of the cyclone body, vortex finder and cassette to assure that they are rigid, in alignment, and...

  7. 30 CFR 71.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the inner surface of the cyclone on the approved sampling... positioning of the cyclone body, vortex finder and cassette to assure that they are rigid, in alignment, and...

  8. Changes of Mediterranean cyclones in the future climate employing high resolution climate simulations

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.

    2011-12-01

    A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region. The study of the kinematic and dynamic parameters of the cyclonic tracks according to their origin domain show that the vast majority originate within the examined area itself. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  9. The role of mid-level vortex in the intensification and weakening of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Gohil, Kanishk

    2017-10-01

    The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.

  10. Quality of cyclone early warning services: a case study in remote off-shore island in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ashrafi, Z. M.; Mahmud, S.; Mahbub, A. Q. M.

    2015-12-01

    Geographic location, the unique natural setting of the country and its tropical monsoon climate modify and regulate the climatic condition, makes Bangladesh more vulnerable to cyclones and storm surges. Previous studies have showed that 80-90 % of global losses and 53 % of total cyclone-related deaths worldwide, occur in Bangladesh and out of which, 42% of cyclone-caused deaths were recorded in the last two centuries. The Cyclone Preparedness Program (CPP) is a unique joint program under the initiative of Government of Bangladesh and Bangladesh Red Crescent Society that provides a robust cyclone early warning (CEW) system for the 13 coastal districts in Bangladesh. CPP ensures rapid dissemination of official Bangladesh Meteorological Department's CEW signals to these communities. However, inconsistent CEW services are reported in several of these coastal communities. This study offered the quality assessment of CPP CEW services in Nijhum Island, a highly populated remotely located off-shore island in Bangladesh. Primary rural appraisal (household survey, focus group discussion and expert interview) were used for field data collection and Likert scale, for data analysis. Study revealed that cyclone early warning signal dissemination were restricted to small area covering only 35 percent of the total population. Moreover, local inhabitants had very poor understanding about disseminated CEW signals (flag signaling system, signal number & severity) although CPP initiated several training program to build and raise awareness. Consequently, people remained inactive during cyclone and reluctant to seek shelter which resulted in lack of proper post-disaster management. Moreover, local people had concern regarding accuracy of CEW signals disseminated by CPP. To ensure last mile connectivity of CEW services, it is highly recommended that local people should be given more training and awareness on CEW signals and how to respond to the same.

  11. Quantitative and Qualitative Analyzes of the Explosive Cyclones that Reached the Antarctic Coast in the First Half of 2017

    NASA Astrophysics Data System (ADS)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    An explosive cyclone is a kind of extratropical cyclone which shows a drop in pressure of at least 24 hPa in 24 hours. These are usually intense and they have rapid displacement which hinders their predictability. It is likely that climate change is causing an increase in this type of event in the Antarctic coast and, if this increase is confirmed, the regime of winds and temperatures may be changing. If there are more incidences of explosive cyclones, probably the Antarctic winds are becoming more intense and the temperatures in some places are becoming lower and in others are becoming higher. In the northern portion of the Antarctic Peninsula a decrease in temperature already has been recorded over the last 15 years, while a higher incidence of explosive cyclones over the region also has been found during this period. Studies also have suggested that the drop in temperatures in the Antarctic may be associated with the changes in wind direction, but the cause of these wind direction changes is unknown. Explosive cyclones, which change the wind patterns when they reach certain areas therefore may be contributing to this change in the Antarctic climate. This study is part of the "Explosive Cyclones on the Antarctic Coast" (EXCANC) Project conducted by the World Environmental Conservancy organization. This project analyzes data from meteorological stations strategically scattered throughout the coast and operated by various international Antarctic programs, and also utilizes satellite images. Results show that during the first half of 2017 the highest number of events were recorded at the Australian Casey station with 10 cases, followed by the French station of Dumont D'Urville with 7 cases. Halley's English station recorded its first explosive cyclone this year. Intensity analyzes also are shown.

  12. Borneo Vortex and Meso-scale Convective Rainfall

    NASA Astrophysics Data System (ADS)

    Koh, T. Y.; Koseki, S.; Teo, C. K.

    2014-12-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a perpetual cold surge. The Borneo vortex is manifested as a meso-alpha cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-alpha cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-beta scale rainfall cells. The intense rainfall in the comma-head (comma-tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-alpha cyclone system. At both meso-alpha and meso-beta scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics. Reference: Koseki, S., T.-Y. Koh and C.-K. Teo (2014), Atmospheric Chemistry and Physics, 14, 4539-4562, doi:10.5194/acp-14-4539-2014, 2014.

  13. Multiyear Composite View of Ozone Enhancements and Stratosphere-to-Troposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Jaeglé, Lyatt; Wood, Robert; Wargan, Krzysztof

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange with cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES), contrasting them to composites obtained with the Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) reanalyses and the GEOS-Chem chemical transport model. We identify 15,978 extratropical cyclones in the northern hemisphere (NH) for 2005-2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites feature a 1,000 km wide O3 enhancement in the dry intrusion (DI) airstream to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased H2O. MLS composites at 261 hPa show that the DI O3 enhancements reach a 210 ppbv maximum in April. At 424 hPa, TES composites display maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of 2 too low. The MERRA-2 composites show that the O3-rich DI forms a vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring DIs, O3 is enhanced by 100 ppbv or 100-130% at 300 hPa, with significant enhancements below 500 hPa (6-20 ppbv or 15-30%). We estimate that extratropical cyclones result in a STT flux of 119 ± 56 Tg O3 yr-1, accounting for 42 ± 20% of the NH extratropical O3 STT flux. The STT flux in cyclones displays a strong dependence on westerly 300 hPa wind speeds.

  14. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.

    2016-11-01

    The main synoptic patterns associated with the wet season (October-May) eastern Mediterranean cyclones have been analyzed and described using NCEP/NCAR reanalysis datasets for the period 1958-2013. The cyclone tracks detected in the eastern Mediterranean are classified into two types based on their positions: the local tracks and the long tracks. The local tracks are either stationary or short tracks. The long tracks distinguished into eleven very closed and highly correlated clusters, which are presented into three regimes namely the northern, the southern and the eastern border Mediterranean regimes. Among the 940 (44.78% of a total of 2099) long tracks, the northern, southern, and eastern border regime contributes respectively about 53.62%, 41.81% and 5% of the long tracks. In addition, the distribution of the long tracks reveals that a larger proportion of the cyclones are generated at the northern coast during November and spring months, while few cyclones are developed over the eastern Mediterranean border in warm months (April and May). Further, their synoptic features show that the regimes are associated with the extension of Azores high, specifically for each regime, the cyclogenesis areas of its clusters are controlled by the intersection of low level (850 hPa) trough and the position of the upper level (250 hPa) maximum wind. Furthermore, the orientations of clusters are controlled by the extension of Siberian high and the shape of cyclonic trough at 850 hPa. In addition, the synoptic study shows that most of the southern cyclones generated externally by African and Red Sea troughs, while most of the northern and eastern border cyclones are generated internally.

  15. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    NASA Astrophysics Data System (ADS)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  16. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  17. Local inertial oscillations in the surface ocean generated by time-varying winds

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  18. A study of formation and development of one kind of cyclone on the mei-yu (Baiu) front

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Zhao, Sixiong

    2004-10-01

    The paper presents one diagnosis of baroclinity and the coupling of jets during the developing process of a cyclone that occurred on the mei-yu (Baiu) front around the end of the second stage of the mei-yu (Baiu) in 1998. Results have shown that: (1) The advantageous changes of upper-level large-scale circulation caused the appearance and maintenance of the coupling between the upper-level jet (ULJ) and lower-level jet (LLJ) over the cyclone’s area. The coupling of jets in this case possesses some different characteristics from previous cases. Moreover, the coupling between the ULJ and LLJ caused the intensification of both lower-level convergence and upper-level divergence, which was favorable for the development of this cyclone. (2) From the analysis of the voricity budget, the role of lower-level convergence in the development of the cyclone was emphasized. Divergent wind in the lower troposphere was a direct contributor to the development of the cyclone. (3) During the development of the cyclone, cold air and warm air were active over the cyclone’s domain. Although this cyclone occurred at the mei-yu (Baiu) front, its development assumed baroclinity to a certain extent, which was just the main difference between this kind of cyclone and the first kind of low which is usually barotropic (or quasi-barotropic). (4) In recent years, studies on mei-yu front lows have paid more attention to the lower troposphere. In this paper, the analysis of the energy budget further supports this point: the certain effect of baroclinity forcing in the upper troposphere on mei-yu front lows cannot be ignored.

  19. Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Wei-Chyung

    1997-07-01

    Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.

  20. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño.

    PubMed

    Guo, Yi-Peng; Tan, Zhe-Min

    2018-04-17

    The El Niño-Southern Oscillation (ENSO) can significantly affect the rapid intensification of tropical cyclones over the western North Pacific (WNP). However, ENSO events have various durations, which can lead to different atmospheric and oceanic conditions. Here we show that during short duration El Niño events, the WNP tropical cyclone rapid-intensification mean occurrence position migrates westward by ~8.0° longitude, which is caused by reduced vertical wind shear, increased mid-tropospheric humidity, and enhanced tropical cyclone heat potential over the westernmost WNP. The changes in these factors are caused by westward advected upper ocean heat during the decaying phase of a short duration El Niño. As super El Niño events tend to have short durations and their frequency is projected to increase under global warming, our findings have important implications for future projections of WNP tropical cyclone activity.

  1. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  2. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  3. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  4. 30 CFR 70.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clean and in proper working condition by a person certified in accordance with § 70.202 (Certified... components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the...) Examination of the external tubing on the approved sampling device to assure that it is clean and free of...

  5. 30 CFR 70.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clean and in proper working condition by a person certified in accordance with § 70.202 (Certified... components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the...) Examination of the external tubing on the approved sampling device to assure that it is clean and free of...

  6. 30 CFR 90.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... performed to assure that the sampling devices are clean and in proper working condition by a person... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and... sampling device to assure that it is clean and free of leaks; and (5) Examination of the clamping and...

  7. 30 CFR 70.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clean and in proper working condition by a person certified in accordance with § 70.202 (Certified... components of the cyclone to assure that they are clean and free of dust and dirt; (3) Examination of the...) Examination of the external tubing on the approved sampling device to assure that it is clean and free of...

  8. 30 CFR 90.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... performed to assure that the sampling devices are clean and in proper working condition by a person... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and... sampling device to assure that it is clean and free of leaks; and (5) Examination of the clamping and...

  9. 30 CFR 90.204 - Approved sampling devices; maintenance and calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... performed to assure that the sampling devices are clean and in proper working condition by a person... voltage per cell value; (2) Examination of all components of the cyclone to assure that they are clean and... sampling device to assure that it is clean and free of leaks; and (5) Examination of the clamping and...

  10. 40 CFR 63.11624 - What are the notification, reporting, and recordkeeping requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.11621(e) to install and operate a cyclone to control emissions from pelleting operations, the... of the cyclone determined in accordance with § 63.11621(e)(2). (iv) If you own or operate an affected source that is not subject to the requirement in § 63.11621(e) to install and operate a cyclone to...

  11. 40 CFR 63.11624 - What are the notification, reporting, and recordkeeping requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.11621(e) to install and operate a cyclone to control emissions from pelleting operations, the... of the cyclone determined in accordance with § 63.11621(e)(2). (iv) If you own or operate an affected source that is not subject to the requirement in § 63.11621(e) to install and operate a cyclone to...

  12. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  13. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  14. Atmospheric water parameters in mid-latitude cyclones observed by microwave radiometry and compared to model calculations

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Hammarstrand, Ulla; Petty, Grant W.

    1990-01-01

    Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated.

  15. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century

    PubMed Central

    Emanuel, Kerry A.

    2013-01-01

    A recently developed technique for simulating large [O(104)] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950–2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones. PMID:23836646

  16. On the relationship between atmospheric water vapour transport and extra-tropical cyclones development

    NASA Astrophysics Data System (ADS)

    Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.

    2016-08-01

    In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.

  17. Opposed-flow virtual cyclone for particle concentration

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.

    2000-12-05

    An opposed-flow virtual cyclone for aerosol collation which can accurately collect, classify, and concentrate (enrich) particles in a specific size range. The opposed-flow virtual cyclone is a variation on the virtual cyclone and has its inherent advantages (no-impact particle separation in a simple geometry), while providing a more robust design for concentrating particles in a flow-through type system. The opposed-flow virtual cyclone consists of two geometrically similar virtual cyclones arranged such that their inlet jets are inwardly directed and symmetrically opposed relative to a plane of symmetry located between the two inlet slits. A top plate bounds both jets on the "top" side of the inlets, while the other or lower wall curves "down" and away from each inlet jet. Each inlet jet will follow the adjacent lower wall as it turns away, and that particles will be transferred away from the wall and towards the symmetry plane by centrifugal action. After turning, the two jets merge smoothly along the symmetry line and flow parallel to it through the throat. Particles are transferred from the main flows, across a dividing streamline, and into a central recirculating region, where particle concentrations become greatly increased relative to the main stream.

  18. Acceleration of tropical cyclogenesis by self-aggregation feedbacks

    NASA Astrophysics Data System (ADS)

    Muller, Caroline J.; Romps, David M.

    2018-03-01

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  19. Examining South Atlantic Subtropical Cyclone Anita using the Satellite-Enhanced Regional Downscaling for Applied Studies Hourly Outputs

    NASA Astrophysics Data System (ADS)

    Vaicberg, H.; Palmeira, A. C. P. A.; Nunes, A.

    2017-12-01

    Studies on South Atlantic cyclones are mainly compromised by scarcity of observations. Therefore, remote sensing and global (re) analysis products are usually employed in investigations of their evolution. However, the frequent use of global reanalysis might difficult the assessment of the characteristics of the cyclones found in South Atlantic. In that regard, studies on "subtropical" cyclones have been performed using the 25-km resolution, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), a product developed at the Federal University of Rio de Janeiro in Brazil. In SRDAS, the Regional Spectral Model assimilates precipitation estimates from environmental satellites, while dynamically downscaling a global reanalysis using the spectral nudging technique to maintain the large-scale features in agreement with the regional model solution. The use of regional models in the downscaling of general circulation models provides more detailed information on weather and climate. As a way of illustrating the usefulness of SRDAS in the study of the subtropical South Atlantic cyclones, the subtropical cyclone Anita was selected because of its intensity. Anita developed near Brazilian south/southeast coast, with damages to local communities. Comparisons with available observations demonstrated the skill of SRDAS in simulating such an extreme event.

  20. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  1. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915

    PubMed Central

    Rohli, Robert V.; DeLong, Kristine L.; Harley, Grant L.; Trepanier, Jill C.

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851–present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820–1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707–2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations. PMID:27898726

  2. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense over the Arctic Ocean. The historical tendency in Arctic SLP varies considerably among the GCMs, but the intermodel average trend exhibits a lowering of mean-annual pressure over the Arctic during the past 150 years and an increase in extreme cyclones in the vicinity of the Aleutian and Icelandic Lows. However, only weak trends in extreme cyclones are simulated through 2005 over the Arctic Ocean, where simulations of future climate change produce the largest SLP falls.

  3. On the dynamics of synoptic scale cyclones associated with flood events in Crete

    NASA Astrophysics Data System (ADS)

    Flocas, Helena; Katavoutas, George; Tsanis, Ioannis; Iordanidou, Vasiliki

    2015-04-01

    Flood events in the Mediterranean are frequently linked to synoptic scale cyclones, although topographical or anthropogenic factors can play important role. The knowledge of the vertical profile and dynamics of these cyclones can serve as a reliable early flood warning system that can further help in hazard mitigation and risk management planning. Crete is the second largest island in the eastern Mediterranean region, being characterized by high precipitation amounts during winter, frequently causing flood events. The objective of this study is to examine the dynamic and thermodynamic mechanisms at the upper and lower levels responsible for the generation of these events, according to their origin domain. The flooding events were recorded for a period of almost 20 years. The surface cyclones are identified with the aid of MS scheme that was appropriately modified and extensively employed in the Mediterranean region in previous studies. Then, the software VTS, specially developed for the Mediterranean cyclones, was employed to investigate the vertical extension, slope and dynamic/kinematic characteristics of the surface cyclones. Composite maps of dynamic/thermodynamic parameters, such as potential vorticity, temperature advection, divergence, surface fluxes were then constructed before and during the time of the flood. The dataset includes 6-hourly surface and isobaric analyses on a 0.5° x 0.5° regular latitude-longitude grid, as derived from the ERA-INTERIM Reanalysis of the ECMWF. It was found that cyclones associated with flood events in Crete mainly generate over northern Africa or southern eastern Mediterranean region and experience their minimum pressure over Crete or southwestern Greece. About 84% of the cyclones extend up to 500hPa, demonstrating that they are well vertically well-organized systems. The vast majority (almost 84%) of the surface cyclones attains their minimum pressure when their 500 hpa counterparts are located in the NW or SW, confirming that baroclinicity is one of the most important driving mechanisms for the cyclonic deepening over the examined region. The upper level dynamics acting well before the event and the low level diabatic processes over the Aegean or the Levantine sea contribute to the large amounts of precipitation. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.

  4. Impact of tropical cyclones on aerosol properties over urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Badarinath, K. V. S.; Rani Sharma, Anu; Krishna Prasad, V.; Kaskaoutis, Dimitrios G.; Nastos, Panagiotis T.; Kambezidis, Harry D.

    2010-05-01

    Fierce tropical cyclones occur in India during the pre-monsoon (spring), early monsoon (early summer), or post-monsoon (fall) periods. Originating in both the Bay of Bengal and the Arabian Sea, tropical cyclones often attain velocities of more than 100 kmh-1 and are notorious for causing intense rain and tidal waves as they cross the Indian coast. Cyclones are associated with heavy rainfall, gusty winds, and sometimes, storm surges. In the present study, we have analyzed the changes in aerosol properties at Hyderabad, India, associated with very severe cyclonic storm "Mala" occurred during the last week of April, 2006 over the Central-Eastern part of the Bay of Bengal centered near Lat. 16.0 N and Long. 93.0 E, at 18:00 UTC on 28th April 2006, about 500 Km North of Portblair. This tropical cyclone, packing winds of 240 km/h, slammed into Myanmar on 28th April and 29th April destroying hundreds of houses, two beach resorts and at least five factories as per the reports of the Kyemon daily paper and the International Federation of the Red Cross. Cyclone "Mala" is described as the most severe cyclone in the Bay of Bengal after the 1999 Orissa Super Cyclone. The measurements for the case study were carried out in the premises of the National Remote Sensing Centre (NRSC) campus at Balanagar (17o.28' N and 78o.26' E) located within the Hyderabad urban center during cyclone period. Synchronous and continuous observations of columnar Aerosol Optical Depth (AOD) were carried out using a handheld multi-channel sun-photometer (Microtops-II, Solar Light Co., USA) at six wavelength bands centered around 380, 440, 500, 675, 870 and 1020 nm. Continuous measurements of particulate matter (PM) grain-size distribution were performed with the GRIMM aerosol spectrometer, model 1-108. The cyclone "Mala" over the Bay of Bengal occurred during 26-29 April, 2006, struck the coast of Myanmar with winds of 115 mph (185 kmh-1), causing severe damage and loss of human life on 29 April, 2006. Initially the depression was moving northwest and on 25 April it changed its direction and accelerated towards north and after northeast resulting in remarkable wind direction changes. As the cyclone moved towards the Myanmar coast on 29 and 30 April, the low-level convergence turned to northwesterly, pulling air from the northern Indian landscapes. This caused an increase in wind speed over the entire Bay of Bengal. The intensity of the cyclonic activity affected continental India on 28 and 29 April. On that day the wind field was dominated by a northwesterly flow from Indian continent towards the Bay of Bengal, which lifted a lot of mineral dust particles from the Indian arid landscapes. This is further confirmed from the analysis of Terra-MODIS image on 29 April, where the dust plumes over the Bay of Bengal can be clearly detected. The variation of the daily mean particulate-matter load measured by the GRIMM instrument showed nearly a two-fold increase in particulate-mass concentrations during the intense cyclone period (28th and 29th April). This is attributed to the increase in surface winds caused by the cyclonic activity, strongly associated with lifting of coarse-mode aerosols from the landscapes neighboring Hyderabad. Also, from the large standard deviations it is concluded that the diurnal pattern of the PMx concentrations are highly variable during the cyclonic activity, probably caused by the frequent and sharp changes in wind speed and direction accompanying it. The day-to-day variation of AOD500 and Ångström exponent α were also analysed. Contrary to the PMx concentrations, the AOD500 values showed remarkable decrease during the cyclone period. This decrease can be as high as 44% between the pre and during cyclone days (25th and 28th April), respectively and 41% between 28 and 30 April. These large variations in aerosol load are mainly attributed to the changes in wind speed and direction as well as the air mass trajectories, bringing marine air masses over the region on 28th April. Despite the uplifting of soil particles near the surface, the higher winds can act as a ventilation tool for the whole atmospheric column, thus resulting in lower AODs. Results are discussed in the paper.

  5. Airborne asbestos exposures associated with work on asbestos fire sleeve materials.

    PubMed

    Blake, Charles L; Harbison, Stephen C; Johnson, Giffe T; Harbison, Raymond D

    2011-11-01

    Asbestos-containing fire sleeves have been used as a fire protection measure for aircraft fluid hoses. This investigation was conducted to determine the level of airborne asbestos fiber exposure experienced by mechanics who work with fire sleeve protected hoses. Duplicate testing was performed inside a small, enclosed workroom during the fabrication of hose assemblies. Personal air samples taken during this work showed detectable, but low airborne asbestos fiber exposures. Analysis of personal samples (n=9) using phrase contract microscopy (PCM) indicated task duration airborne fiber concentrations ranging from 0.017 to 0.063 fibers per milliliter (f/ml) for sampling durations of 167-198 min, and 0.022-0.14 f/ml for 30 min samples. Airborne chrysotile fibers were detected for four of these nine personal samples, and the resulting asbestos adjusted airborne fiber concentrations ranged from 0.014 to 0.025 f/ml. These results indicate that work with asbestos fire sleeve and fire sleeve protected hose assemblies, does not produce regulatory noncompliant levels of asbestos exposure for persons who handle, cut and fit these asbestos-containing materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Low Clouds and Cosmic Rays: Possible Reasons for Correlation Changes

    NASA Astrophysics Data System (ADS)

    Veretenenko, S. V.; Ogurtsov, M. G.

    2015-03-01

    In this work we investigated the nature of correlations between low cloud cover anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between cloud cover at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.

  7. Computational Investigation of the NASA Cascade Cyclonic Separation Device

    NASA Technical Reports Server (NTRS)

    Hoyt, Nathaniel C.; Kamotani, Yasuhiro; Kadambi, Jaikrishnan; McQuillen, John B.; Sankovic, John M.

    2008-01-01

    Devices designed to replace the absent buoyancy separation mechanism within a microgravity environment are of considerable interest to NASA as the functionality of many spacecraft systems are dependent on the proper sequestration of interpenetrating gas and liquid phases. Inasmuch, a full multifluid Euler-Euler computational fluid dynamics investigation has been undertaken to evaluate the performance characteristics of one such device, the Cascade Cyclonic Separator, across a full range of inlet volumetric quality with combined volumetric injection rates varying from 1 L/min to 20 L/min. These simulations have delimited the general modes of operation of this class of devices and have proven able to describe the complicated vortex structure and induced pressure gradients that arise. The computational work has furthermore been utilized to analyze design modifications that enhance the overall performance of these devices. The promising results indicate that proper CFD modeling may be successfully used as a tool for microgravity separator design.

  8. Coral-gravel storm ridges: examples from the tropical Pacific and Caribbean

    USGS Publications Warehouse

    Richmond, Bruce M.; Morton, Robert A.

    2007-01-01

    Extreme storms in reef environments have long been recognized as a mechanism for depositing ridges of reef-derived coarse clastic sediment. This study revisits the storm ridges formed by Tropical Cyclone Bebe on Funafuti, Tuvalu and Tropical Cyclone Ofa on Upolu, Western Samoa in the South Pacific, and Hurricane Lenny on Bonaire, Netherlands Antilles in the Caribbean. Ridge characteristics produced by these storms include: heights of 1–4 m, widths of 8–50 m, and lengths up to 18 km. The ridges tend to be higher and steeper on their landward margins than on their seaward margins and are composed mostly of re-worked coral rubble derived from reef front settings with smaller amounts of fresh broken coral (5–30%). Characteristics of these modern gravel storm ridges can be used to help identify ancient storm deposits and to differentiate between other coarse-grained deposits such as those created by tsunamis.

  9. Training on Eastern Pacific tropical cyclones for Latin American students

    NASA Astrophysics Data System (ADS)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  10. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  11. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-01-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  12. Environmental Composites for Bomb Cyclones of the Western North Atlantic in Reanalysis, 1948-2016.

    NASA Astrophysics Data System (ADS)

    Adams, R.; Sheridan, S. C.

    2017-12-01

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  13. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-05-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  14. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective

    NASA Astrophysics Data System (ADS)

    Cao, Zuohao; Zhang, Da-Lin

    2005-11-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  15. Bomb Cyclones Of The Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Adams, Ryan E.

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  16. Optimization of aircraft seat cushion fire blocking layers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Ling, A. C.; Hovatter, W. R.

    1983-01-01

    This report describes work completed by the National Aeronautics and Space Administration - for the Federal Aviation Administration Technical Center. The purpose of this work was to examine the potential of fire blocking mechanisms for aircraft seat cushions in order to provide an optimized seat configuration with adequate fire protection and minimum weight. Aluminized thermally stable fabrics were found to provide adequate fire protection when used in conjunction with urethane foams, while maintaining minimum weight and cost penalty.

  17. CO2 lidar observations of Mount Pinatubo debris: FIRE 2 and longer-term measurements

    NASA Technical Reports Server (NTRS)

    Levinson, David H.; Post, Madison J.; Grund, Christian J.

    1993-01-01

    The volcanic debris in the stratosphere from the June 1991 eruption of Mt. Pinatubo first appeared over the NOAA Wave Propagation Laboratory (WPL) field site near Boulder, Colorado (40.15 N, 105.23 W), in July of 1991. The presence of the Pinatubo cloud has allowed us to characterize both the tropospheric and stratospheric aerosol backscatter using the NOAA/WPL CO2 Doppler lidar. The lidar has measured vertical backscatter profiles at lambda = 10.59 mu m for over a decade. Analysis of this dense set of profiles reveals the effects of atmospheric and microphysical processes during the buildup and decay of Mt. Pinatubo's clouds. Further information on the NOAA lidar, specifically calibrations using a hard target, can be found in Post and Cupp (1990). We present results of those measurements for June 15, 1991, through December 31, 1992. During that period of longer-term measurements, WPL took part in FIRE II (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II), from November 12 through December 8, 1991, measuring vertical backscatter profiles almost daily. One of the mechanisms for purging stratospheric aerosols is tropopause folding, which occurs in cold-core extratropical cyclones. Tropospheric mass loading occurs during folding events which can substantially increase the amount of ice nuclei in the upper troposphere, and may affect the formation of cirrus in that region. Spring and fall are prominent times for tropopause folding events because of the migration of the subtropical and polar jet streams during the transition seasons. Sassen has suggested that the volcanic aerosols from Pinatubo played a role in the formation of cirrus during FIRE II, particularly during a period of moist subtropical flow on December 5-6, 1991.

  18. [Emission characteristics of fine particles from grate firing boilers].

    PubMed

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  19. Linking storm surge activity and circulation variability along the Spanish coast through a synoptic pattern classification

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; Garcia Codrón, Juan Carlos

    2010-05-01

    The potentially negative consequences resulting from the estimations of global sea level rising along the current century are a matter of serious concern in many coastal areas worldwide. Most of the negative consequences of the sea level variability, such as flooding or erosion, are linked to episodic events of strong atmospheric forcing represented by deep atmospheric disturbances, especially if they combine with extreme astronomical high tides. Moreover, the interaction between the prevailing flows during such events and the actual orientation of the coast line might accelerate or mitigate such impacts. This contribution analyses sea surge variations measured at five tide-gauge stations located around the Iberian Peninsula and their relationships with regional scale circulation patterns with local-scale winds. Its aim is to improve the knowledge of surge related-coastal-risks by analysing the relationship between surges and their atmospheric forcing factors at different spatial scales. The oceanographic data set consists of hourly data from 5 tide gauge stations (Santander, Vigo, Bonanza, Málaga, Valencia and Barcelona) disseminated along the Spanish coastline, provided by Puertos del Estado. To explore the atmospheric mechanisms responsible for the sign and magnitude of sea surges, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the Atlantic and local information (synop reports) obtained from the closest meteorological stations to the tide gauges. The synoptic catalogue was obtained following a procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The second task was to evaluate the performance of each circulation type on the spatial patterns of a daily fire danger risk index (Canadian Fire Weather Index, FWI). Finally, anomaly maps of several surface and low level climate variables, corresponding to the dates of ignition of the very large forest fires within each synoptic pattern, were calculated to provide insight of the specific conditions associated to those extreme events. A principal component analysis upon 6 hourly residuals highlighted the homogeneous behaviour of the tide gauges and provided a regional quantitative index to identify the largest storm surges. The leading PCA displayed a homogeneous spatial pattern, describing the low frequency variability along the entire coast, in spite of different orientations of the coast, accounting for more than 80% of the total variability. The second PCA displayed opposite phases between the Atlantic and the Mediterranean. Furthermore, the results suggest that surges are a regional rather than local phenomenon, probably related to the same single physical forcing. The comparison between extreme surge events and circulation patterns highlighted that single physical mechanism is represented by extratropical cyclonic disturbances located at the north-western corner of the Iberian Peninsula, responsible for an environment characterized by low pressure readings and westerly-southwesterly winds. That wind pattern acquires an onshore component in the Atlantic coast, but becomes offshore in the Mediterranean. So, the main mechanism responsible for those storm surges is the inverse barometer effect, being the wind dragging secondary. The main physical forcing of the storm surges, the extratropical cyclones, have experience a reduction of this frequency and a marked reduction in their strength since 1950, replaced by stable circulations. Both conditions suggest a long term reduction of the frequency and the magnitude of storm surges.

  20. From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas.

    PubMed

    Ghermandi, Luciana; Beletzky, Natacha A; de Torres Curth, Mónica I; Oddi, Facundo J

    2016-12-01

    The overlapping zone between urbanization and wildland vegetation, known as the wildland urban interface (WUI), is often at high risk of wildfire. Human activities increase the likelihood of wildfires, which can have disastrous consequences for property and land use, and can pose a serious threat to lives. Fire hazard assessments depend strongly on the spatial scale of analysis. We assessed the fire hazard in a WUI area of a Patagonian city by working at three scales: landscape, community and species. Fire is a complex phenomenon, so we used a large number of variables that correlate a priori with the fire hazard. Consequently, we analyzed environmental variables together with fuel load and leaf flammability variables and integrated all the information in a fire hazard map with four fire hazard categories. The Nothofagus dombeyi forest had the highest fire hazard while grasslands had the lowest. Our work highlights the vulnerability of the wildland-urban interface to fire in this region and our suggested methodology could be applied in other wildland-urban interface areas. Particularly in high hazard areas, our work could help in spatial delimitation policies, urban planning and development of plans for the protection of human lives and assets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of Realistic Fire Scenarios in Spacecraft

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  2. Sleep Quantity and Quality of Ontario Wildland Firefighters Across a Low-Hazard Fire Season

    PubMed Central

    McGillis, Zachary; Dorman, Sandra C.; Robertson, Ayden; Larivière, Michel; Leduc, Caleb; Eger, Tammy; Oddson, Bruce E.; Larivière, Céline

    2017-01-01

    Objective: The aim of the study was to assess the sleep quality, quantity, and fatigue levels of Canadian wildland firefighters while on deployment. Methods: Objective and subjective sleep and fatigue measures were collected using actigraphy and questionnaires during non-fire (Base) and fire (Initial Attack and Project) deployments. Results: Suboptimal sleep quality and quantity were more frequently observed during high-intensity, Initial Attack fire deployments. Suboptimal sleep was also exhibited during non-fire (Base) work periods, which increases the risk of prefire deployment sleep debt. Self-reported, morning fatigue scores were low-to-moderate and highest for Initial Attack fire deployments. Conclusions: The study highlights the incidence of suboptimal sleep patterns in wildland firefighters during non-fire and fire suppression work periods. These results have implications for the health and safety practices of firefighters given the link between sleep and fatigue, in a characteristically hazardous occupation. PMID:29216017

  3. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013: Part 1

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    A tropical cyclone is described as a warm-core, nonfrontal, synoptic-scale system that originates over tropical or subtropical waters, having organized deep convection and closed surface wind circulation (counterclockwise in the Northern Hemisphere) about a well defined center. When its sustained wind speed equals 34-63 kt, it is called a tropical (or subtropical) storm and is given a name (i.e., alternating male and female names, beginning in 1979); when its sustained wind speed equals 64-95 kt, it is called a hurricane (at least in the Eastern Pacific and North Atlantic basin); and when its sustained wind speed equals 96 kt or higher, it is called an intense or major hurricane (i.e., categories 3-5 on the Saffir-Simpson Hurricane Wind Scale). Although tropical cyclones have been reported and described since the voyages of Columbus, a detailed record of their occurrences extends only from 1851 to the present, with the most reliable portion extending only from about 1945 to the present, owing to the use of near-continuous routine reconnaissance aircraft monitoring flights and the use of satellite imagery (beginning in 1960; see Davis). Even so, the record may still be incomplete, possibly missing at least one tropical cyclone per yearly hurricane season, especially prior to the use of continuous satellite monitoring. In fact, often an unnamed tropical cyclone is included in the year-end listing of events at the conclusion of the season, following post-season analysis (e.g., as happened in 2011 and 2013, each having one unnamed event). In this two-part Technical Publication (TP), statistical aspects of the North Atlantic basin tropical cyclones are examined for the interval 1960-2013, the weather satellite era. Part 1 examines some 25 parameters of tropical cyclones (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.), while part 2 examines the relationship of these parameters against specific climate-related factors. These studies are a continuation of nearly two decades of previous tropical cyclone-related investigations.

  4. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Jaegle, L.; Wood, R.; Wargan, K.

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange by using cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite and contrasting them to composites obtained with Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) as well as with the GEOS-Chem chemical transport model. MERRA sea level pressure fields are used to identify 15,978 extratropical cyclones in the northern hemisphere (NH) between 2005 and 2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites of these cyclones feature a distinct 1,000 km wide O3 enhancement in the dry intrusion to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased water vapor. In the lowermost stratosphere, MLS composites show that the dry intrusion O3 enhancements reach a 210 ppbv maximum in April. In the middle troposphere, TES composites display dry intrusion maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich dry intrusion forms a coherent and vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring dry intrusions, O3 is enhanced by 100 pbbv or 100-130% relative to background conditions at 300 hPa, with a significant contribution reaching pressure altitudes below 500 hPa (6-20 ppbv or 15-30% enhancement). We calculate that extratropical cyclones result in a STT flux of 119 Tg O3 yr-1, accounting for 42% of the annual NH O3 extratropical STT flux. The STT flux in cyclones is highest in spring and displays a strong dependence on westerly 300 hPa wind speeds.

  5. Extreme cyclone events in the Arctic during wintertime: Variability and Trends

    NASA Astrophysics Data System (ADS)

    Rinke, Annette; Maturilli, Marion; Graham, Robert; Matthes, Heidrun; Handorf, Doerthe; Cohen, Lana; Hudson, Stephen; Moore, John

    2017-04-01

    Extreme cyclone events are of significant interest as they can transport much heat, moisture, and momentum poleward. Associated impacts are warming and sea-ice breakup. Recently, several examples of such extreme weather events occurred in winter (e.g. during the N-ICE2015 campaign north of Svalbard and the Frank North Atlantic storm during the end of December 2015). With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny Alesund station for the same 37 year period. We define an extreme cyclone event by a extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny Alesund/N-ICE2015 SLP data) and a deepening of at least 6 hPa/6 hours. Areas of highest frequency of occurrence of extreme cyclones are south/southeast of Greenland (corresponding to the Islandic low), between Norway and Svalbard and in the Barents/Kara Seas. The time series of the number of occurrence of extreme cyclone events for Ny Alesund/N-ICE show considerable interannual variability. The trend is not consistent through the winter, but we detect an increase in early winter and a slight decrease in late winter. The former is due to the increased occurrence of longer events at the expense of short events. Furthermore, the difference patterns of the frequency of events for months following the September with high and low Arctic sea-ice extent ("Low minus high sea ice") conforms with the change patterns of extreme cyclones numbers (frequency of events "2000-2015 minus 1979-1994") and with the trend patterns. This indicates that the changes in extreme cyclone occurrence in early winter are associated with sea-ice changes (regional feedback). In contrast, different mechanisms via large-scale circulation changes/teleconnections seem to play a role in late winter.

  6. Community-based assessment of human rights in a complex humanitarian emergency: the Emergency Assistance Teams-Burma and Cyclone Nargis

    PubMed Central

    2010-01-01

    Introduction Cyclone Nargis hit Burma on May 2, 2008, killing over 138,000 and affecting at least 2.4 million people. The Burmese military junta, the State Peace and Development Council (SPDC), initially blocked international aid to storm victims, forcing community-based organizations such as the Emergency Assistance Teams-Burma (EAT) to fill the void, helping with cyclone relief and long-term reconstruction. Recognizing the need for independent monitoring of the human rights situation in cyclone-affected areas, particularly given censorship over storm relief coverage, EAT initiated such documentation efforts. Methods A human rights investigation was conducted to document selected human rights abuses that had initially been reported to volunteers providing relief services in cyclone affected areas. Using participatory research methods and qualitative, semi-structured interviews, EAT volunteers collected 103 testimonies from August 2008 to June 2009; 42 from relief workers and 61 from storm survivors. Results One year after the storm, basic necessities such as food, potable water, and shelter remained insufficient for many, a situation exacerbated by lack of support to help rebuild livelihoods and worsening household debt. This precluded many survivors from being able to access healthcare services, which were inadequate even before Cyclone Nargis. Aid efforts continued to be met with government restrictions and harassment, and relief workers continued to face threats and fear of arrest. Abuses, including land confiscation and misappropriation of aid, were reported during reconstruction, and tight government control over communication and information exchange continued. Conclusions Basic needs of many cyclone survivors in the Irrawaddy Delta remained unmet over a year following Cyclone Nargis. Official impediments to delivery of aid to storm survivors continued, including human rights abrogations experienced by civilians during reconstruction efforts. Such issues remain unaddressed in official assessments conducted in partnership with the SPDC. Private, community-based relief organizations like EAT are well positioned and able to independently assess human rights conditions in response to complex humanitarian emergencies such as Cyclone Nargis; efforts of this nature must be encouraged, particularly in settings where human rights abuses have been documented and censorship is widespread. PMID:20403200

  7. Community-based assessment of human rights in a complex humanitarian emergency: the Emergency Assistance Teams-Burma and Cyclone Nargis.

    PubMed

    Suwanvanichkij, Voravit; Murakami, Noriyuki; Lee, Catherine I; Leigh, Jen; Wirtz, Andrea L; Daniels, Brock; Mahn, Mahn; Maung, Cynthia; Beyrer, Chris

    2010-04-19

    Cyclone Nargis hit Burma on May 2, 2008, killing over 138,000 and affecting at least 2.4 million people. The Burmese military junta, the State Peace and Development Council (SPDC), initially blocked international aid to storm victims, forcing community-based organizations such as the Emergency Assistance Teams-Burma (EAT) to fill the void, helping with cyclone relief and long-term reconstruction. Recognizing the need for independent monitoring of the human rights situation in cyclone-affected areas, particularly given censorship over storm relief coverage, EAT initiated such documentation efforts. A human rights investigation was conducted to document selected human rights abuses that had initially been reported to volunteers providing relief services in cyclone affected areas. Using participatory research methods and qualitative, semi-structured interviews, EAT volunteers collected 103 testimonies from August 2008 to June 2009; 42 from relief workers and 61 from storm survivors. One year after the storm, basic necessities such as food, potable water, and shelter remained insufficient for many, a situation exacerbated by lack of support to help rebuild livelihoods and worsening household debt. This precluded many survivors from being able to access healthcare services, which were inadequate even before Cyclone Nargis. Aid efforts continued to be met with government restrictions and harassment, and relief workers continued to face threats and fear of arrest. Abuses, including land confiscation and misappropriation of aid, were reported during reconstruction, and tight government control over communication and information exchange continued. Basic needs of many cyclone survivors in the Irrawaddy Delta remained unmet over a year following Cyclone Nargis. Official impediments to delivery of aid to storm survivors continued, including human rights abrogations experienced by civilians during reconstruction efforts. Such issues remain unaddressed in official assessments conducted in partnership with the SPDC. Private, community-based relief organizations like EAT are well positioned and able to independently assess human rights conditions in response to complex humanitarian emergencies such as Cyclone Nargis; efforts of this nature must be encouraged, particularly in settings where human rights abuses have been documented and censorship is widespread.

  8. Extratropical Cyclones over Southwestern Atlantic Ocean: Present and Future Climates projected by RegCM4

    NASA Astrophysics Data System (ADS)

    Reboita, Michelle; Rodrigues, Marcelo; da Rocha, Rosmeri

    2017-04-01

    This study shows some of the climatological features of the extratropical cyclones in present and future climate over Southwestern Atlantic Ocean (SAO). The projections were carried out with Regional Climate Model (RegCM4) nested in HadGEM2-ES global model outputs and using representative concentration pathway 8.5 (RCP8.5) from the CMIP5. The simulations considered the South America domain suggested by CORDEX, horizontal grid spacing of 50 km, 18 sigma-pressure levels in the vertical. An objective tracking scheme based on cyclonic relative vorticity calculated using the wind at 925 hPa was used to identify the cyclones. All cyclones with relative vorticity lower than the -1.5 x 10-5 s-1 and with lifetime higher or equal 24 hours were included in the climatology. Considering the period from 1979 to 2098, RegCM4 and HadGEM2-ES project a negative trend in the frequency of the extratropical cyclones over SAO, with the biggest negative trend occuring in the latitudinal band between 40°S and 57.5°S. This result can be associated with the southward displacement of the baroclinic zone which contributes to the cyclones move to south leaving the region analyzed. The three subregions with largest cyclogenetic activity discussed in the literature (southeast coast of Brazil - RG1, coast of Uruguay and southern Brazil - RG2; east coast of Argentina - RG3) were better reproduced in RegCM4 than in HadGEM2-ES. Therefore, RegCM4 downscaling ads value in the HadGEM2-ES projections. The frequency of cyclones in present (1979-2005) and future climate (2070-2098) is higher in winter and lower in summer. Regarding the mean characteristics of the cyclones (life time, travel distance, velocity, initial relative vorticity and total average vorticity), both models successfully reproduced those obtained in the reanalysis (NCEP1, NCEP2, CFSR, ERA40 and ERA-Interim) and there are no significant differences in the future climate compared with the present.

  9. Aerosol Meteorology of the Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 1: Regional-scale Phenomena

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Xian, Peng; Holben, Brent N.; Hyer, Edward J.; Reid, Elizabeth A.; Salinas, Santo V.; Zhang, Jianglong; Campbell, James R.; Chew, Boon Ning; Holz, Robert E.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Nino Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10 lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30) to southern Kalimantan (42). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire counts were middling, resultant AERONET 500nm aerosol optical thickness (AOT) from fire activity was high, with maximums of 3.6 and 5.6 in the Sumatra and Kalimantan source regions at the end of the burning season and an average of approximately 1. AOTs could also be high at receptor sites, with a mean and maximum of 0.57 and 1.24 in Singapore and 0.61 and 0.8 in Kuching Sarawak. Ultimately, outside of the extreme 2015 El Nino event, average AERONET AOT values were higher than any other time since sites were established. Thus, while satellite fire data, models, and AERONET all qualitatively agree on the nature of smoke production and transport, the MC's complex environment resulted in clear differences in quantitative interpretation of these datasets.

  10. Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 1: regional-scale phenomena

    NASA Astrophysics Data System (ADS)

    Reid, Jeffrey S.; Xian, Peng; Holben, Brent N.; Hyer, Edward J.; Reid, Elizabeth A.; Salinas, Santo V.; Zhang, Jianglong; Campbell, James R.; Chew, Boon Ning; Holz, Robert E.; Kuciauskas, Arunas P.; Lagrosas, Nofel; Posselt, Derek J.; Sampson, Charles R.; Walker, Annette L.; Welton, E. Judd; Zhang, Chidong

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Niño/Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10 % lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30 %) to southern Kalimantan (-42 %). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire counts were middling, resultant AERONET 500 nm aerosol optical thickness (AOT) from fire activity was high, with maximums of 3.6 and 5.6 in the Sumatra and Kalimantan source regions at the end of the burning season and an average of ˜ 1. AOTs could also be high at receptor sites, with a mean and maximum of 0.57 and 1.24 in Singapore and 0.61 and 0.8 in Kuching Sarawak. Ultimately, outside of the extreme 2015 El Niño event, average AERONET AOT values were higher than any other time since sites were established. Thus, while satellite fire data, models, and AERONET all qualitatively agree on the nature of smoke production and transport, the MC's complex environment resulted in clear differences in quantitative interpretation of these datasets.

  11. Partnership working between the Fire Service and NHS: delivering a cost-saving service to improve the safety of high-risk people.

    PubMed

    Craig, Joyce A; Creegan, Shelagh; Tait, Martin; Dolan, Donna

    2015-04-14

    The Scottish Fire and Rescue Service and NHS Tayside piloted partnership working. A Community Fire Safety Link Worker provided Risk Assessments to adults, identified by community health teams, at high risk of fires, with the aim of reducing fires. An existing evaluation shows the Service developed a culture of 'high trust' between partners and had high client satisfaction. This paper reports on an economic evaluation of the costs and benefits of the Link Worker role. An economic evaluation of the costs and benefits of the Link Worker role was undertaken. Changes in the Risk Assessment score following delivery of the Service were used to estimate the potential fires avoided. These were valued using a national cost of a fire. The estimated cost of delivering the Service was deducted from these savings. The pilot was estimated to save 4.4 fires, equivalent to £286 per client. The estimated cost of delivering the Service was £55 per client, giving net savings of £231 per client. The pilot was cost-saving under all scenarios, with results sensitive to the probability of a fire. We believe this is the first evaluation of Fire Safety Risk Assessments. Partnership working, delivering joint Risk Assessments in the homes of people at high risk of fire, is modelled to be cost saving. Uncertainties in data and small sample are key limitations. Further research is required into the ex ante risk of fire by risk category. Despite these limitations, potential savings identified in this study supports greater adoption of this partnership initiative.

  12. Fire and worker health and safety: an introduction to the special issue.

    PubMed

    Campbell, Richard; Levenstein, Charles

    2015-02-01

    One century ago, the landmark fire at the Triangle Shirtwaist Factory in New York City claimed the lives of 146 garment workers and helped spur the adoption of fire safety measures and laws targeting dangerous working conditions. Since that time, continuing advances have been made to address the threat of fire-in workplace fire safety practices and regulations, in training and safety requirements for firefighters and first responders, and in hazard communication laws that enhance disaster planning and response. Recent high profile events, including the West, Texas fertilizer plant explosion, derailments of fuel cargo trains, and garment factory fires in Bangladesh, have brought renewed attention to fire as a workplace health and safety issue and to the unevenness of safety standards and regulatory enforcement, in the United States as well as internationally. In this article, we provide an overview of fire as a workplace health and safety hazard and an introduction to the essays included in this special issue of New Solutions on fire and work. © 2015 SAGE Publications.

  13. Introduction-2nd Fire Behavior and Fuels Conference: The fire environment-innovations, management, and policy

    Treesearch

    Wayne Cook; Bret W. Butler

    2007-01-01

    The 2nd Fire Behavior and Fuels Conference: Fire Environment -- Innovations, Management and Policy was held in Destin, FL, March 26-30, 2007. Following on the success of the 1st Fire Behavior and Fuels Conference, this conference was initiated in response to the needs of the National Wildfire Coordinating Group -- Fire Environment Working Team.

  14. Wildfire risk to residential structures in the Island Park Sustainable Fire Community: Caribou-Targhee National Forest

    Treesearch

    Don Helmbrecht; Julie Gilbertson-Day; Joe H. Scott; LaWen Hollingsworth

    2016-01-01

    The Island Park Sustainable Fire Community (IPSFC) Project is a collaborative working group of citizens, businesses, non-profit organizations, and local, state, and federal government agencies (www.islandparkfirecommunity.com) working to create fire-resilient ecosystems in and around the human communities of West Yellowstone, Montana and Island Park, Idaho....

  15. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  16. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  17. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  18. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  19. 30 CFR 75.1325 - Firing procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Shots shall be fired by a qualified person or a person working in the presence of and under the direction of a qualified person. (b) Only one face in a working place shall be blasted at a time, except... kerf and no more than a total of 20 shots connected in a single series are fired in the round. A permit...

  20. Enhancing fire science exchange: The Northern Rockies Fire Science Network [poster

    Treesearch

    Vita Wright

    2011-01-01

    The Joint Fire Science Program is developing a national network of knowledge exchange consortia comprised of interested management and science stakeholders working together to tailor and actively demonstrate existing fire science information to benefit management.

  1. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone.

    PubMed

    Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J

    2007-03-23

    As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the air-sea momentum exchange is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the air-sea interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.

  2. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  3. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  4. Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition.

    PubMed

    Parkhurst, M A

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the US Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects on soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterised. A robust sampling system was designed to collect aerosols in this difficult environment and monitor continuously the sampler flow rates. The aerosol samplers selected for these tests included filter cassettes, cascade impactors, a five-stage cyclone and a moving filter. Sampler redundancy was an integral part of the sampling system to offset losses from fragment damage. Wipe surveys and deposition trays collected removable deposited particulate matter. Interior aerosols were analysed for uranium concentration and particle size distribution as a function of time. They were also analysed for uranium oxide phases, particle morphology and dissolution in vitro. These data, currently under independent peer review, will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples.

  5. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  6. Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones

    NASA Technical Reports Server (NTRS)

    Smith, P. J.

    1984-01-01

    A study of the contribution of latent heat release to the synoptic scale vertical motions in the Jan. 9-11, 1975 extratropical cyclone case study was completed. Results indicate that early cyclone development was dominated by dry dynamical forcing. However, as the cyclone matured, the influence of latent heating became more significant. This influence appeared to be of two types, (1) the direct impact of heating causing a lowering of surface pressures, and (2) an indirect role in which the heating altered thermal and vorticity gradients and lead to subsequent increases in dry dynamical forcing. The kinetic energy budget was completed and extended to include an available potential energy budget. Focusing on the eddy component of the budgets, results indicate that kinetic energy increased throughout the cyclone's development, with the increase being most pronounced after the onset of significant latent heat release. Latent heating played a strong role not only in generating available potential energy, but also in forcing baroclinic release of potential energy.

  7. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    PubMed Central

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909

  8. Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Lu, X. F.; Lai, J.; Liu, H. Z.

    Gas solid flow characteristics in cyclone's inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10∶1. Tracer particles were adopted in the experiment and their motion trajectories in the two kinds of cyclone's inlet ducts were photographed by a high-speed camera. By analyzing the motion trajectories of tracer particles, acceleration performance of particle phases in the two inlet ducts was obtained. Results indicate that the acceleration performance of particles in the long inlet duct is better than that in the short inlet duct, but the pressure drop of the long inlet duct is higher. Meanwhile, under the same operating conditions, both the separation efficiency and the pressure drop of the cyclone are higher when the cyclone is connected with the long inlet duct. Figs 11, Tabs 4 and refs 10.

  9. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  10. Efficient Simulation of Tropical Cyclone Pathways with Stochastic Perturbations

    NASA Astrophysics Data System (ADS)

    Webber, R.; Plotkin, D. A.; Abbot, D. S.; Weare, J.

    2017-12-01

    Global Climate Models (GCMs) are known to statistically underpredict intense tropical cyclones (TCs) because they fail to capture the rapid intensification and high wind speeds characteristic of the most destructive TCs. Stochastic parametrization schemes have the potential to improve the accuracy of GCMs. However, current analysis of these schemes through direct sampling is limited by the computational expense of simulating a rare weather event at fine spatial gridding. The present work introduces a stochastically perturbed parametrization tendency (SPPT) scheme to increase simulated intensity of TCs. We adapt the Weighted Ensemble algorithm to simulate the distribution of TCs at a fraction of the computational effort required in direct sampling. We illustrate the efficiency of the SPPT scheme by comparing simulations at different spatial resolutions and stochastic parameter regimes. Stochastic parametrization and rare event sampling strategies have great potential to improve TC prediction and aid understanding of tropical cyclogenesis. Since rising sea surface temperatures are postulated to increase the intensity of TCs, these strategies can also improve predictions about climate change-related weather patterns. The rare event sampling strategies used in the current work are not only a novel tool for studying TCs, but they may also be applied to sampling any range of extreme weather events.

  11. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  12. Fire in Wildland ecosystems—opening comments

    Treesearch

    Tom Nichols

    1995-01-01

    More than 25 years ago, the pioneering work in fire ecology by Harold Biswell and others encouraged the incorporation of prescribed fire into fire management policies. However, the use in California of prescribed fire in fuels treatment, wilderness management, or ecosystem maintenance programs has not been particularly extensive. Only a fraction of wilderness areas,...

  13. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2011-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds... storm begins the process of extratropical transition have revealed the role of vertical wind shear in defining structural variations related to the...horizontal wind radii as the storm starts the process of extratropical transition. Elsberry et al. (2011) have extended the analysis of the

  14. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08

    DTIC Science & Technology

    2013-09-30

    transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime

  15. Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings

    DTIC Science & Technology

    2012-09-30

    maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be

  16. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  17. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  18. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  19. Infectious Diseases and Tropical Cyclones in Southeast China.

    PubMed

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps < 0.05) than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria ( ps < 0.05) than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  20. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000

    PubMed Central

    Zeng, Hongcheng; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Hurtt, George C.; Baker, David B.; Powell, Mark D.

    2009-01-01

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y−1. Over the period 1980–1990, released CO2 potentially offset the carbon sink in forest trees by 9–18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance. PMID:19416842

  1. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    PubMed

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  2. The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins

    NASA Astrophysics Data System (ADS)

    Eiras-Barca, Jorge; Ramos, Alexandre M.; Pinto, Joaquim G.; Trigo, Ricardo M.; Liberato, Margarida L. R.; Miguez-Macho, Gonzalo

    2018-01-01

    The explosive cyclogenesis of extratropical cyclones and the occurrence of atmospheric rivers are characteristic features of a baroclinic atmosphere, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979-2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. These new insights on the relationship between explosive cyclones and atmospheric rivers may be helpful to a better understanding of the associated high-impact weather events.

  3. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  4. Analysis of ionospheric disturbances associated with powerful cyclones in East Asia and North America

    NASA Astrophysics Data System (ADS)

    Li, Wang; Yue, Jianping; Yang, Yang; Li, Zhen; Guo, Jinyun; Pan, Yi; Zhang, Kefei

    2017-08-01

    East Asia and North America are the regions most heavily affected by powerful cyclones. In this paper we investigate the morphological characteristics of ionospheric disturbances induced by cyclones in different continents. The global ionosphere map supplied by the Center for Orbit Determination in Europe (CODE), International Reference Ionosphere Model (IRI) 2012, and Wallops Island ionosonde station data are used to analyse the ionospheric variations during powerful typhoons/hurricanes in East Asia and North America, respectively. After eliminating the ionospheric anomalies due to the solar-terrestrial environment, the total electron content (TEC) time series over the point with maximum wind speed is detected by the sliding interquartile range method. The results indicate that significant ionospheric disturbances are observed during powerful tropical cyclones in East Asia and North America, respectively, and that all the ionospheric anomalies are positive. In addition, the extent and magnitude of travelling ionospheric disturbances are associated with the category of tropical cyclone, and the extent of TEC anomalies in longitude is more pronounced than that in latitude. Furthermore, the maximum ionospheric anomaly does not coincide with the eye of the storm, but appears in the region adjacent to the centre. This implies that ionospheric disturbances at the edges of cyclones are larger than those in the eye of the winds. The phenomenon may be associated with the gravity waves which are generated by strong convective cells that occur in the spiral arms of tropical cyclones. This comprehensive analysis suggests that the presence of powerful typhoons/hurricanes may be a possible source mechanism for ionospheric anomalies.

  5. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    NASA Astrophysics Data System (ADS)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  6. Structure analyses of the explosive extratropical cyclone: A case study over the Northwestern Pacific in March 2007

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Fu, Gang; Pang, Huaji

    2017-12-01

    The synoptic situation and mesoscale structure of an explosive extratropical cyclone over the Northwestern Pacific in March 2007 are investigated through weather station observations and data reanalysis. The cyclone is located beneath the poleward side of the exit of a 200 hPa jet, which is a strong divergent region aloft. At mid-level, the cyclone lies on the downstream side of a well-developed trough, where a strong ascending motion frequently occurs. Cross-section analyses with weather station data show that the cyclone has a warm and moist core. A `nose' of the cold front, which is characterized by a low-level protruding structure in the equivalent potential temperature field, forms when the cyclone moves offshore. This `nose' structure is hypothesized to have been caused by the heating effect of the Kuroshio Current. Two low-level jet streams are also identified on the western and eastern sides of the cold front. The western jet conveys cold and dry air at 800-900 hPa. The wind in the northern part is northeasterly, and the wind in the southern part is northwesterly. By contrast, the eastern jet carries warm and moist air into the cyclone system, ascending northward from 900 hPa to 600-700 hPa. The southern part is dominated by the southerly wind, and the wind in the northern part is southwesterly. The eastern and western jets significantly increase the air temperature and moisture contrast in the vicinity of the cold front. This increase could play an important role in improving the rapid cyclogenesis process.

  7. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, Gian A.; Zhang, Jing; He, Juanxiong; Zhang, Xiangdong

    2018-01-01

    Poleward atmospheric moisture transport (AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60°N since 1959 based on the NCAR-NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60°N into the Arctic Ocean each year, among which about 66 (32% of the total) and 47 (23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index (measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.

  8. Variability in tropical cyclone heat potential over the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Malan, N.; Reason, C. J. C.; Loveday, B. R.

    2013-12-01

    Tropical cyclone heat potential (TCHP) has been proposed as being important for hurricane and typhoon intensity. Here, a climatology of TCHP is developed for the Southwest Indian Ocean, a basin that experiences on average 11-12 tropical cyclones per year, many of which impact on Mauritius, Reunion and Madagascar, and Mozambique. SODA data and a regional ocean model forced with the GFDL-CORE v.2b reanalysis winds and heat fluxes are used to derive TCHP values during the 1948-2007 period. The results indicate that TCHP increases through the austral summer, peaking in March. Values of TCHP above 40 kJ cm-2, suggested as the minimum needed for tropical cyclone intensification, are still present in the northern Mozambique Channel in May. A time series of TCHP spatially averaged over the Seychelles-Chagos thermocline ridge (SCTR), an important area for tropical cyclones, is presented. The model time series, which agrees well with XBT-based observations (r = 0.82, p = 0.01), shows considerable interannual variability overlaying an upward tendency that matches with an observed increase in severe tropical cyclone days in the Southwest Indian Ocean. Although an increase in severe storms is seen during 1997-2007, the increasing TCHP tendency time series after 1997 coincides with a decrease in total cyclone numbers, a mismatch that is ascribed to increased atmospheric anticyclonicity over the basin. Seasons of increased (decreased) TCHP over the SCTR appear to be associated with dry (wet) conditions over certain areas of southern and East Africa and are linked with changes in zonal wind and vertical motion in the midtroposphere.

  9. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  10. Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects

    NASA Astrophysics Data System (ADS)

    Yoshiike, Satoki; Kawamura, Ryuichi

    2009-07-01

    The relationships between large-scale wintertime circulation and extratropical cyclones that develop explosively (the so-called bomb cyclones) over the western North Pacific are investigated using Japanese long-term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic-scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.

  11. Assessing the influence of climate change on flooding hazards following tropical cyclone events in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica Helen

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20% more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. The Soil and Water Assessment Tool (SWAT) was used to model flow along these rivers from 1998-2014 with 20% more precipitation during tropical cyclones. The results of this study show that an increase in tropical cyclone precipitation due to future climate change may increase peak flows at the mouths of these Southeast rivers by ˜7-18%. Most tropical cyclones that impact these river basins occur during the low discharge season, and thus rarely produce flooding conditions at their mouths. An extension of the current hurricane season of June-November, due to global climate warming, could encroach upon the wet season in these basins and lead to increased flooding. On average, this analysis shows that an extension of the hurricane season to May-December increased flooding susceptibility by 63% for the rivers analyzed in this study. That is, 4-6 more days per year likely would have been above bankfull discharge if an average tropical cyclone had occurred any day (based on 1998-2014 data) in the months May-December than in the current hurricane season months of June-November. More research is needed on the mechanisms and processes involved in the water balance of the four rivers analyzed in this study, and others in the Southeast United States, and how this is likely to change in the near future with global climate warming.

  12. South-Eastern Bay of Biscay eddy-induced anomalies and their effect on chlorophyll distribution

    NASA Astrophysics Data System (ADS)

    Caballero, Ainhoa; Rubio, Anna; Ruiz, Simón; Le Cann, Bernard; Testor, Pierre; Mader, Julien; Hernández, Carlos

    2016-10-01

    The analysis of deep-water glider hydrographic and fluorescence data, together with satellite measurements provides a new insight into eddy-induced anomalies within the South-Eastern Bay of Biscay, during summer. Two cyclonic eddies and a SWODDY have been observed in different glider transects and by means of different sources of satellite data. Vertical profiles reveal complex structures (characteristic of the second baroclinic mode): upward/downward displacement of the seasonal/permanent thermocline in the case of X13 and the opposite thermocline displacements in the case of the cyclones. This is a typical behaviour of mode-water and "cyclonic thinny" eddies. A qualitative analysis of the vertical velocities in the anticyclone indicates that though geostrophy dominates the main water column, depressing the isopycnals, near the sea-surface the eddy-wind interaction affects the vertical currents, favouring Ekman pumping and upwelling. The analysis of the Θ-S properties corroborates that inside cyclones and between the 26 and 27 isopycnals, net downwelling occurs. These two types of intra-thermocline lenses appear to deeply impact the Chl-a fluorescence profiles, since the maximum Chl-a fluorescence is located just below the seasonal thermocline. The mean Chl-a fluorescence was higher in the anticyclone than within the cyclones and the mean for the entire study period; the highest values were observed in the centre of the anticyclone. These results are in agreement with previous findings concerning the SWODDY F90 and surrounding cyclones, located in the South-Western Bay of Biscay. Significant differences in the Θ-S properties of the two cyclonic mesoscale structures have been observed: higher temperatures and lower salinity in the easternmost cyclone. Finally, time variation of the salinity content of the shallowest water masses of the anticyclone (salinity decreasing over time), probably indicates advective mixing processes occurred during the mission.

  13. New simple and low-cost methods for periodic checks of Cyclone® Plus Storage Phosphor System.

    PubMed

    Edalucci, Elisabetta; Maffione, Anna Margherita; Fornasier, Maria Rosa; De Denaro, Mario; Scian, Giovanni; Dore, Franca; Rubello, Domenico

    2017-01-01

    The recent large use of the Cyclone® Plus Storage Phosphor System, especially in European countries, as imaging system for quantification of radiochemical purity of radiopharmaceuticals raised the problem of setting the periodic controls as required by European Legislation. We described simple, low-cost methods for Cyclone® Plus quality controls, which can be useful to evaluate the performance measurement of this imaging system.

  14. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    DTIC Science & Technology

    2014-05-15

    atmospheric fields, including sea level pressure ( SLP ), on daily and sub-daily time scales at 2° horizontal resolution. A higher-resolution and more...its 21st-century simulation. Extreme cyclones were defined as occurrences of daily mean SLP at least 40 hPa below the climatological annual-average... SLP at a grid point. As such, no cyclone-tracking algorithm was employed, because the purpose here is to identify instances of extremely strong

  15. On the Evolution of Precipitation Associated with a Wintertime East Coast Cyclone: A GALE Preliminary Study.

    DTIC Science & Technology

    1985-01-01

    CYCLES (CYCLone Extratropical Storms project), a more elaborate study of precipitation structure, has been carried out by Hobbs and his collaborators...toward the heavily populated northeast portion of the country. The disruption of human activity caused by these often poorly forecast storms is...daily synoptic maps over a century ago permitted analysis of the structure and behavior of extratropical cyclones. Since then considerable literature

  16. Ensemble Prediction of Tropical Cyclone Genesis

    DTIC Science & Technology

    2017-02-23

    future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890

  17. 1994 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1995-01-01

    force winds exist near the center. . . . The NOGAPS model does not analyze Tropical Depression 20W as a distinct feature, nor does it develop the...NOGAPS model for very small westward-moving trop- ical cyclones (Figure 3-20-8). According to Carr, NOGAPS effective grid spacing is too large to properly...analyze a very small to small tropical cyclone. The bogus vortex inserted into the analysis starts out too large and usually expands if the model

  18. Analysis of a Non-Developing Tropical Circulation System During the Tropical Cyclone Structure (TCS08) Field Experiment

    DTIC Science & Technology

    2009-12-01

    Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaigns (T- PARC ). Aircraft dropwindsondes, special ELDORA radar observations...systems within TCS025 at 2030 UTC 24 August 2008. D. ELDORA BACKGROUND For the combined TCS08 and T- PARC field experiment, the ELDORA radar was...SUBJECT TERMS Electra Doppler Radar (ELDORA), Tropical Cyclone Structure (TCS08), TCS08, Tropical Cyclone Formation, Tropical Circulation System

  19. The Navy’s Next-Generation Tropical Cyclone Model

    DTIC Science & Technology

    2009-09-30

    when compared with the Doppler radar observations (Fig. 6c). An example of a real-time COAMPS-TC forecast during T- PARC /TCS-08 initialized on 26...prediction support for the THORPEX-Pacific Asian Campaign (T- PARC ) and the Tropical Cyclone Structure 2008 (TCS-08) (T- PARC /TCS-08) experiments...implemented from the CBLAST project. In support of the T- PARC /TCS-08 campaign, adaptive observing guidance for tropical cyclones has been provided

  20. Tropical Cyclone Reconnaissance with the Global Hawk: Operational Thresholds and Characteristics of Convective Systems Over the Tropical Western North Pacific

    DTIC Science & Technology

    2013-12-01

    Tropical cyclone research is an intense ongoing science that has acquired even greater importance in this era of global climate change . Increased study of...RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN NORTH PACIFIC by...TROPICAL CYCLONE RECONNAISSANCE WITH THE GLOBAL HAWK: OPERATIONAL THRESHOLDS AND CHARACTERISTICS OF CONVECTIVE SYSTEMS OVER THE TROPICAL WESTERN

  1. A case study of GWE satellite data impact on GLA assimilation analyses of two ocean cyclones

    NASA Technical Reports Server (NTRS)

    Gallimore, R. G.; Johnson, D. R.

    1986-01-01

    The effects of the Global Weather Experiment (GWE) data obtained on January 18-20, 1979 on Goddard Laboratory for Atmospheres assimilation analyses of simultaneous cyclones in the western Pacific and Atlantic oceans are examined. The ability of satellite data within assimilation models to determine the baroclinic structures of developing extratropical cyclones is evaluated. The impact of the satellite data on the amplitude and phase of the temperature structure within the storm domain, potential energy, and baroclinic growth rate is studied. The GWE data are compared with Data Systems Test results. It is noted that it is necessary to characterize satellite effects on the baroclinic structure of cyclone waves which degrade numerical weather predictions of cyclogenesis.

  2. Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm

    NASA Astrophysics Data System (ADS)

    Montgomery, M. T.; Wang, Z.; Dunkerton, T. J.

    2010-11-01

    Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).

  3. The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Cione, Joseph Jerome

    In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.

  4. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    NASA Astrophysics Data System (ADS)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for Environmental Prediction (NCEP) tropical cyclone tracker by Marchok that was used to identify cyclones based off its physical characteristics. We will discuss the methods and challenges to creating this dataset and the dataset's use for our current supervised machine learning model as well as use for future work on events such as convection initiation.

  5. Storm-centric view of Tropical Cyclone oceanic wakes

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Scott, J. P.; Smith, D.

    2012-12-01

    Tropical cyclones (TCs) have a dramatic impact on the upper ocean. Storm-generated oceanic mixing, high amplitude near-inertial currents, upwelling, and heat fluxes often warm or cool the surface ocean temperatures over large regions near tropical cyclones. These SST anomalies occur to the right (Northern Hemisphere) or left (Southern Hemisphere) of the storm track, varying along and across the storm track. These wide swaths of temperature change have been previously documented by in situ field programs as well as IR and visible satellite data. The amplitude, temporal and spatial variability of these surface temperature anomalies depend primarily upon the storm size, storm intensity, translational velocity, and the underlying ocean conditions. Tropical cyclone 'cold wakes' are usually 2 - 5 °C cooler than pre-storm SSTs, and persist for days to weeks. Since storms that occur in rapid succession typically follow similar paths, the cold wake from one storm can affect development of subsequent storms. Recent studies, on both warm and cold wakes, have mostly focused on small subsets of global storms because of the amount of work it takes to co-locate different data sources to a storm's location. While a number of hurricane/typhoon websites exist that co-locate various datasets to TC locations, none provide 3-dimensional temporal and spatial structure of the ocean-atmosphere necessary to study cold/warm wake development and impact. We are developing a global 3-dimensional storm centric database for TC research. The database we propose will include in situ data, satellite data, and model analyses. Remote Sensing Systems (RSS) has a widely-used storm watch archive which provides the user an interface for visually analyzing collocated NASA Quick Scatterometer (QuikSCAT) winds with GHRSST microwave SSTs and SSM/I, TMI or AMSR-E rain rates for all global tropical cyclones 1999-2009. We will build on this concept of bringing together different data near storm locations when developing the storm-centric database. This database will be made available to researchers via the web display tools previously developed for RSS web pages. The database will provide scientists with a single data format collection of various atmospheric and oceanographic data, and will include all tropical storms since 1998, when the passive MW SSTs from the TMI instrument first became available. Initial results showing an analysis of Typhoon Man-Yi will be presented.

  6. 75 FR 3193 - Information Collection; Annual Wildfire Summary Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... addressed to Tim Melchert, Fire and Aviation Management, National Interagency Fire Center, Forest Service... Forest Service State and Private Forestry Cooperative Fire Program. The program provides supplemental funding for State and local fire fighting agencies. The Forest Service works cooperatively with State and...

  7. Final Report: Fire Prevention, Detection, and Suppression Project, Exploration Technology Development Program

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2011-01-01

    The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.

  8. A Practical Guide to Assessing Adult Firesetters' Fire-Specific Treatment Needs Using the Four Factor Fire Scales.

    PubMed

    Ó Ciardha, Caoilte; Tyler, Nichola; Gannon, Theresa A

    2015-01-01

    Practitioners working with offenders who have set fires have access to very few measures examining fire-specific treatment needs (e.g., fire interest, fire attitudes). In this article we examine the new Four Factor Fire Scales (Ó Ciardha et al., 2015), which may be used by practitioners to examine fire-specific treatment needs for offenders who have set deliberate fires. We present a standardized scoring procedure when using these scales, as well as an associated scoring template for practitioner use. Norm data are based on male and female firesetters (n = 378) and nonfiresetters (n = 187) recruited from 19 prison establishments (including six female establishments, one young offender institution) and 12 secure mixed-gender mental health settings. We present a full overview of all data we have collected to date relating to the Four Factor Fire Scales across prison, mental health, and young offending participants. For each population, we present mean scores as well as associated cutoff scores and reliable change indices to aid practitioners in their interpretation of scores. The Four Factor Fire Scales provide professionals working in the area with a robust template for administering, scoring, and interpreting the fire-specific factors currently identified as playing a role in deliberate firesetting behavior. Strengths and limitations of the measure are discussed.

  9. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is limited in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to study almost all the species that characterize the Mediterranean region. This work shows that the fire regime in Mediterranean area is strongly related with vegetation patterns, is almost totally independent by the cause of ignition, and only partially dependent by fire extinguishing actions.

  10. Maximal physical work performance with European standard based fire-protective clothing system and equipment in relation to individual characteristics.

    PubMed

    Louhevaara, V; Ilmarinen, R; Griefahn, B; Künemund, C; Mäkinen, H

    1995-01-01

    Every fire fighter needs to wear fire-protective clothing and a self-contained breathing apparatus (SCBA) several times a year while carrying out various fire-fighting and rescue operations in hazardous work environments. The aim of the present study was to quantify the effects of a multilayer turnout suit designed to fulfil European standard EN 469 used over standardized (Nordic) clothing and with SCBA (total mass 25.9 kg) on maximal physical work performance, and to evaluate the relationship between individual characteristics and power output with the fire-protective clothing system and SCBA. The subjects were 12 healthy firemen aged 26-46 years. The range of their body mass, body fat and maximal oxygen consumption was 69-101 kg, 10-20% and 2.70-5.86 l.min-1, respectively. The maximal tests without (control) and with the fire-protective clothing system and SCBA were carried out on a treadmill in a thermoneutral environment. When compared to the control test, the decrease in the maximal power output in terms of maximal working time and walking speed averaged 25% (P < 0.001) varying from 18% to 34% with the fire-protective clothing system and SCBA. At maximum, no significant differences were found in pulmonary ventilation, absolute oxygen consumption, the respiratory exchange ratio, heart rate, systolic blood pressure, the rate-pressure product, mechanical efficiency, and the rating of perceived exertion between the tests with and without the fire-protective clothing system and SCBA. The reduction of the power output was related to the extra mass of the fire protective clothing and SCBA.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis penetrated more than 50 km inland along the Ayeyarwady delta while the maximum inundation of the Indian Ocean tsunami was 7 km at Banda Aceh. The extent of affected coast lines differs with 2 m storm surge thresholds of cyclone Nargis spanning 200 km of coastline, whereas East Africa was severely affected by the Indian Ocean tsunami at 5000 km from the epicenter. The available time window for dissemination of warnings and evacuations are significantly shorter for tsunamis than cyclones. Coastal protection in the Indian Ocean must be approached with community-based planning, education and awareness programs suited for a multi-hazard perspective. Ayeyarwady delta in Myanmar after cyclone Nargis: (a) Deforestation of mangroves for use as charcoal and land use as rice paddies; (b) Drinking water wells scoured in surf zone at Aya highlighting more than 100 m land loss due to coastal erosion.

  12. Dust emission and transport associated with a Saharan depression: The February 2007 case

    NASA Astrophysics Data System (ADS)

    Karam, Diana Bou; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-05-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground based measurements and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatio-temporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountain on the afternoon of February 20 in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on February 22 before exiting the African continent toward the Mediterranean Sea on February 23. The horizontal scale of the cyclone at the surface varied between 800 km and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km and a potential vorticity of 2 PVU was reported on its centre at 3 km in altitude. The cyclone was characterised by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided a dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye on its centre and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the event over North Africa. Furthermore, the dust was lofted to altitudes as high as 7 km, becoming subject to long range transport. The model was able to reproduce reasonably the structure, the lifetime and the trajectory of the cyclone. Also comparison with MODIS deep blue AODs and CALIPSO/CloudSat observations suggests that the model can be used reliably to quantify the dust emissions associated with this event. The mean daily dust loads over the area influenced by the cyclone were simulated to range between 2 and 8 Tg during the lifetime of the Sharav cyclone (i.e. 5 days). This study suggests that dust emissions linked with Saharan cyclones may contribute significantly to the total dust load over West and North Africa observed annually.

  13. Dust emission and transport associated with a Saharan depression: February 2007 case

    NASA Astrophysics Data System (ADS)

    Bou Karam, Diana; Flamant, Cyrille; Cuesta, Juan; Pelon, Jacques; Williams, Earle

    2010-01-01

    The dust activity over North Africa associated with the Saharan depression event in February 2007 is investigated by mean of spaceborne observations, ground-based measurements, and mesoscale simulation with Meso-NH. The main characteristics of the cyclone as well as the meteorological conditions during this event are described using the European Centre for Medium-Range Weather Forecasts (ECMWF). The dust storm and cloud cover over North Africa is thoroughly described combining for the first time Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) images for the spatiotemporal evolution and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat observations for the vertical distribution. The Saharan depression formed over Algeria in the lee of the Atlas Mountains on the afternoon of 20 February in response to midlatitude trough intrusion. It migrated eastward with a speed of 11 m s-1 and reached Libya on 22 February before exiting the African continent toward the Mediterranean Sea on 23 February. The horizontal scale of the cyclone at the surface varied between 800 and 1000 km during its lifetime. On the vertical the cyclone extended over 8 km, and a potential vorticity of 2 potential vorticity units (PVU) was reported at its center at 3 km in altitude. The cyclone was characterized by a surface pressure anomaly of about 9 hPa with respect to the environment, a warm front typified at the surface by an increase in surface temperature of 5°C, and a sharp cold front characterized by a drop in surface temperature of 8°C and an increase in 10 m wind speed of 15 m s-1. The cyclone provided dynamical forcing that led to strong near-surface winds and produced a major dust storm over North Africa. The dust was transported all around the cyclone leaving a clear eye at its center and was accompanied by a deep cloud band along the northwestern edge of the cyclone. On the vertical, slanted dust layers were consistently observed during the event over North Africa. Furthermore, the dust was lofted to altitudes as high as 7 km, becoming subject to long-range transport. The model was able to reasonably reproduce the structure, lifetime, and trajectory of the cyclone. Also, comparison with Moderate Resolution Imaging Spectrometer (MODIS) deep blue aerosol optical depths and CALIPSO-CloudSat observations suggests that the model can be reliably used to quantify the dust emissions associated with this event. The mean daily dust loads over the area influenced by the cyclone were simulated to range between 2 and 8 Tg during the lifetime of the Sharav cyclone (i.e., 5 days). This study suggests that dust emissions linked with Saharan cyclones may contribute significantly to the total dust load over West and North Africa observed annually.

  14. Building and maintaining an effective working relationship with local police and fire authorities.

    PubMed

    Parks, J F

    1985-01-01

    The need to work together with local police and fire personnel is essential to the success of any healthcare security or safety operation. Sometimes, however, lack of understanding by each side in the role of the other, creates needlessly strained relations. In this article, the author details the techniques he used to win good rapport with the local police and fire departments.

  15. Structural Variability of Tropospheric Growth Factors Transforming Mid-latitude Cyclones to Severe Storms over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2015-04-01

    The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.

  16. Variability of cyclones over the North Atlantic and Europe since 1871

    NASA Astrophysics Data System (ADS)

    Welker, C.; Martius, O.

    2012-04-01

    The scarce availability of long-term atmospheric data series has so far limited the analysis of low-frequency activity and intensity changes of cyclones over the North Atlantic and Europe. A novel reanalysis product, the Twentieth Century Reanalysis (20CR; Compo et al., 2011), spanning 1871 to present, offers potentially a very valuable resource for the analysis of the decadal-scale variability of cyclones over the North Atlantic sector and Europe. In the 20CR, only observations of synoptic surface pressure were assimilated. Monthly sea surface temperature and sea ice distributions served as boundary conditions. An Ensemble Kalman Filter assimilation technique was applied. "First guess" fields were obtained from an ensemble (with 56 members) of short-range numerical weather prediction forecasts. We apply the cyclone identification algorithm of Wernli and Schwierz (2006) to this data set, i.e. to each individual ensemble member. This enables us to give an uncertainty estimation of our findings. We find that 20CR shows a temporally relatively homogeneous representation of cyclone activity over Europe and great parts of the North Atlantic. Pronounced decadal-scale variability is found both in the frequency and intensity of cyclones over the North Atlantic and Europe. The low-frequency variability is consistently represented in all ensemble members. Our analyses indicate that in the past approximately 140 years the variability of cyclone activity and intensity over the North Atlantic and Europe can principally be associated with the North Atlantic Oscillation and secondary with a pattern similar to the East Atlantic pattern. Regionally however, the correlation between cyclone activity and these dominant modes of variability changes over time. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, and S. J. Worley, 2011: The Twentieth Century Reanalysis project. Quarterly J. Roy. Meteorol. Soc., 137, 1-28. Wernli, H. and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 2486-2507.

  17. Field modeling of heat transfer in atrium

    NASA Astrophysics Data System (ADS)

    Nedryshkin, Oleg; Gravit, Marina; Bushuev, Nikolay

    2017-10-01

    The results of calculating fire risk are an important element in the system of modern fire safety assessment. The article reviews the work on the mathematical modeling of fire in the room. A comparison of different calculation models in the programs of fire risk assessment and fire modeling was performed. The results of full-scale fire tests and fire modeling in the FDS program are presented. The analysis of empirical and theoretical data on fire modeling is made, a conclusion is made about the modeling accuracy in the FDS program.

  18. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Carrasco, Jorge F.; Bromwich, David H.

    1993-07-01

    Previous work has shown that frequent mesoscale cyclogenesis adjacent to Franklin Island is linked to the strong and persistent katabatic winds from East Antarctica which funnel into Terra Nova Bay and then blow out over the southwestern Ross Sea. Four mesoscale cyclones that formed near Terra Nova Bay between February 16 and 20, 1988 are examined to more clearly define the governing mechanisms. These events are investigated using all available observations, including automatic weather station data, high-resolution satellite images, satellite soundings, and hemispheric synoptic analyses. The first two cyclones formed on low-level baroclinic zones established by the synoptic scale advection of warm moist air toward the cold continental air blowing gently from East Antarctica. In the second case, baroclinic instability of this small-scale cold front was apparently triggered by the enhanced upward vertical motion associated with the approach of a midtropospheric trough. The third mesocyclone formed shortly after on a baroclinic zone over the polar plateau; the second vortex completely disrupted the usual katabatic drainage over the plateau and forced warm moist air over the coastal slopes. All three cyclones moved to the north in the prevailing cyclonic flow, but the plateau vortex lasted for only 6 hours. The fourth mesoscale low formed in conjunction with an abrupt and intense surge of katabatic air from Terra Nova Bay which resharpened the coastal baroclinic zone. At the same time a transiting midtropospheric trough probably associated with lower tropospheric upward vertical motion apparently accelerated the katabatic winds and triggered the vortex formation. A similar katabatic wind-forced mesocyclone formed near Byrd Glacier. The two vortices moved to the east-southeast and northeast, respectively, apparently being steered by the generating katabatic airstreams, and merged just to the north of the Ross Ice Shelf. The combined vortex reintensified as another trough passed overhead and moved eastward to West Antarctica where it dissipated two days later.

  19. Distribution of the near-inertial kinetic energy inside mesoscale eddies: Observations in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio

    2017-04-01

    The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.

  20. Three-dimensional tracking for efficient fire fighting in complex situations

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay; Rossi, Lucile

    2009-05-01

    Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.

  1. The coincidence of daily rainfall events in Liberia, Costa Rica and tropical cyclones in the Caribbean basin

    NASA Astrophysics Data System (ADS)

    Waylen, Peter R.; Harrison, Michael

    2005-10-01

    The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.

  2. Estimating the Risk of Tropical Cyclone Characteristics Along the United States Gulf of Mexico Coastline Using Different Statistical Approaches

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Ellis, K.; Jagger, T.; Needham, H.; Yuan, J.

    2017-12-01

    Tropical cyclones, with their high wind speeds, high rainfall totals and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting off shore economic activities. Events, such as Hurricane Katrina in 2005 and Hurricane Isaac in 2012, can be physically different but still provide detrimental effects due to their locations of influence. There are a wide variety of ways to estimate the risk of occurrence of extreme tropical cyclones. Here, the combined risk of tropical cyclone storm surge and nearshore wind speed using a statistical copula is provided for 22 Gulf of Mexico coastal cities. Of the cities considered, Bay St. Louis, Mississippi has the shortest return period for a tropical cyclone with at least a 50 m s-1 nearshore wind speed and a three meter surge (19.5 years, 17.1-23.5). Additionally, a multivariate regression model is provided estimating the compound effects of tropical cyclone tracks, landfall central pressure, the amount of accumulated precipitation, and storm surge for five locations around Lake Pontchartrain in Louisiana. It is shown the most intense tropical cyclones typically approach from the south and a small change in the amount of rainfall or landfall central pressure leads to a large change in the final storm surge depth. Data are used from the National Hurricane Center, U-Surge, SURGEDAT, and Cooperative Observer Program. The differences in the two statistical approaches are discussed, along with the advantages and limitations to each. The goal of combining the results of the two studies is to gain a better understanding of the most appropriate risk estimation technique for a given area.

  3. How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere?

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2015-12-01

    Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments, such as the March 2014 nor'easter which developed along the United States coastline, with hurricane force winds in eastern Maine and the Maritimes. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981-1999) and future (2081-2099). Explosive cyclones are projected to shift northwards by about 2.2° latitude on average in the northern Pacific, with fewer and weaker events south of 45°N, and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (R = 0.56). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17% when averaging across models, with the largest changes occurring along North America's East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (R = 0.51), and is stronger for models with smaller frequency biases (R = -0.65). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (R = 0.58). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (R = -0.63). The inverse relationship between model bias and projection, and the role of model resolution are discussed.

  4. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  5. Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.

    PubMed

    Sutyrin, Georgi G.

    1994-06-01

    Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.

  6. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  7. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  8. Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement

    NASA Astrophysics Data System (ADS)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Chikunov, Alexander V.; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2017-09-01

    Despite the dangers associated with tropical cyclones and their rainfall, the origin of the moisture in these storms, which include destructive hurricanes and typhoons, remains surprisingly uncertain. Existing studies have focused on the region 40-400 km from a cyclone's center. It is known that the rainfall within this area cannot be explained by local processes alone but requires imported moisture. Nonetheless, the dynamics of this imported moisture appears unknown. Here, considering a region up to three thousand kilometers from cyclone center, we analyze precipitation, atmospheric moisture and movement velocities for severe tropical cyclones - North Atlantic hurricanes. Our findings indicate that even over such large areas a hurricane's rainfall cannot be accounted for by concurrent evaporation. We propose instead that a hurricane consumes pre-existing atmospheric water vapor as it moves. The propagation velocity of the cyclone, i.e. the difference between its movement velocity and the mean velocity of the surrounding air (steering flow), determines the water vapor budget. Water vapor available to the hurricane through its movement makes the hurricane self-sufficient at about 700 km from the hurricane center obviating the need to concentrate moisture from greater distances. Such hurricanes leave a dry wake, whereby rainfall is suppressed by up to 40% compared to the local long-term mean. The inner radius of this dry footprint approximately coincides with the hurricane's radius of water self-sufficiency. We discuss how Carnot efficiency considerations do not constrain the power of such open systems. Our findings emphasize the incompletely understood role and importance of atmospheric moisture stocks and dynamics in the behavior of severe tropical cyclones.

  9. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  10. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    PubMed Central

    Deng, Zhengyi; Xun, Huanmiao; Zhou, Maigeng; Jiang, Baofa; Wang, Songwang; Guo, Qing; Wang, Wei; Kang, Ruihua; Wang, Xin; Marley, Gifty; Ma, Wei

    2015-01-01

    Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA) was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs) and the 95% confidence intervals (CIs). Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93) and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25), respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33) and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56), respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27) and OR = 3.05 (95% CI: 2.20–4.23), respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones. PMID:25622139

  11. Fatty acid profiles of phyllosoma larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic eddies of the Leeuwin Current off Western Australia

    NASA Astrophysics Data System (ADS)

    Wang, M.; O'Rorke, R.; Waite, A. M.; Beckley, L. E.; Thompson, P.; Jeffs, A. G.

    2014-03-01

    The recent dramatic decline in settlement in the population of the spiny lobster, Panulirus cygnus, may be due to changes in the oceanographic processes that operate offshore of Western Australia. It has been suggested that this decline could be related to poor nutritional condition of the post-larvae, especially lipid which is accumulated in large quantities during the preceding extensive pelagic larval stage. The current study focused on investigations into the lipid content and fatty acid (FA) profiles of lobster phyllosoma larvae from three mid to late stages of larval development (stages VI, VII, VIII) sampled from two cyclonic and two anticyclonic eddies of the Leeuwin Current off Western Australia. The results showed significant accumulation of lipid and energy storage FAs with larval development regardless of location of capture, however, larvae from cyclonic eddies had more lipid and FAs associated with energy storage than larvae from anticyclonic eddies. FA food chain markers from the larvae indicated significant differences in the food webs operating in the two types of eddy, with a higher level of FA markers for production from flagellates and a lower level from copepod grazing in cyclonic versus anticyclonic eddies. The results indicate that the microbial food web operating in cyclonic eddies provides better feeding conditions for lobster larvae despite anticyclonic eddies being generally more productive and containing greater abundances of zooplankton as potential prey for lobster larvae. Gelatinous zooplankton, such as siphonophores, may play an important role in cyclonic eddies by accumulating dispersed microbial nutrients and making them available as larger prey for phyllosoma. The markedly superior nutritional condition of lobster larvae feeding in the microbial food web found in cyclonic eddies, could greatly influence their subsequent settlement and recruitment to the coastal fishery.

  12. What to Do in a Fire (For Kids)

    MedlinePlus

    ... damage property. You can do your part to prevent fires by never playing with matches, lighters, and other fire sources. Also stay away from fireplaces, candles, and stoves. By following this advice, you'll be doing important work — preventing fires in the first place! Reviewed by: ...

  13. KENNEDY SPACE CENTER, FLA. - Children enjoy displays of fire equipment during Take Our Children to Work Day. Employees were invited to share their work experience with their children on this annual event.

    NASA Image and Video Library

    2003-07-24

    KENNEDY SPACE CENTER, FLA. - Children enjoy displays of fire equipment during Take Our Children to Work Day. Employees were invited to share their work experience with their children on this annual event.

  14. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... performance of the work under this contract to protect the health and safety of its employees and of members... hazards to life and property. The contractor shall comply with all applicable health, safety, and fire... an order stopping all or any part of the work. Thereafter, a start work order for resumption of work...

  15. Particulate Characterization and Control Evaluation for Carbon Fiber Composite Aircraft Crash Recovery Operations

    DTIC Science & Technology

    2010-03-01

    Advanced Composite Office, Wright-Patterson BEE Flight, and USAFSAM for their help procuring the materials and supplies needed to perform this study...through the cyclone. (Cohen & Charles S . McCammonn, 2001) The major limitation of the cyclone is that the cut curve of the cyclone does not precisely...If the pump is not precisely calibrated to the specified flow the cut point will be altered. (Cohen & Charles S . McCammonn, 2001) Once the sample

  16. Response of the South China Sea to Forcing by Tropical Cyclone Ernie (1996)

    DTIC Science & Technology

    1998-03-01

    complicated. Wide continental shelves appear in the northwest and southwest of the basin and steep slopes in the central portion, framing a deep, bowl...bottom topography of the SCS basin provides a favorable condition for the formation of anticyclonic eddies in the central SCS during the spring. From...cyclone is produced. This cyclonic wind stress then generates Ekman upwelling in the central basin and the formation of a cold pool. Again, through

  17. Tropical Cyclone Forecasters Reference Guide 2. Tropical Climatology

    DTIC Science & Technology

    1992-04-01

    stratosphere and discovered three periods of oscillation: 1.3.3 1 Quasi-biennial Oscillation (OBO) The QBO in tropical stratospheric winds is defined as a...The QBO may be associated with the seasonal weather activities. Gray (1984a,b) has used the QBO at the 30-mb level as one of the indexes to predict the...yearly number of tropical cyclones in the Atlantic with some success. However, the physical links between cyclone activity and QBO are not clearly

  18. An Interactive Parallel Coordinates Technique Applied to a Tropical Cyclone Climate Analysis

    DTIC Science & Technology

    2008-06-06

    12). 3.4 Quasi-Biennial Oscillation Variable Research has also shown that the Quasi-Biennial Oscillation ( QBO ) is corre- lated to tropical cyclone...activity. The QBO is a stratospheric (16 to 35 km altitude) oscillation of equatorial east-west winds which vary with a period of about 26 to 30 months...again. The west phase of the QBO has been shown to provide favorable conditions for development of tropical cyclones, possibly because it reduces

  19. The influence of an extended Atlantic hurricane season on inland flooding potential in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica H.; Cohen, Sagy

    2017-03-01

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20 % more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the southeastern United States that are frequently impacted by tropical cyclones. An analysis of the timing of tropical cyclones that impact these river basins found that most occur during the low-discharge season and thus rarely produce riverine flooding conditions. However, an extension of the current hurricane season of June-November could encroach upon the high-discharge seasons in these basins, increasing the susceptibility for riverine hurricane-induced flooding. Our results indicate that 28-180 % more days would be at risk of flooding from an average tropical cyclone with an extension of the hurricane season to May-December (just 2 months longer). Future research should aim to extend this analysis to all river basins in the United States that are impacted by tropical cyclones in order to provide a bigger picture of which areas are likely to experience the worst increases in flooding risk due to a probable extension of the hurricane season with expected global climate change in the near future.

  20. Ship and satellite observations of chlorophyll stocks in interacting cyclone-anticyclone eddy pairs in the western Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Biggs, Douglas, C.; Mueller-Karger, Frank E.

    1994-01-01

    When anticyclonic eddies shed by the Loop Current of the Gulf of Mexico reach the western margin of the gulf, they influence the surface circulation over the continental slope and rise. Of particular interest is the generation of cyclone (cold-core)-anticyclone (warm-core) pairs when aging Loop Current eddies interact with the continental margin. In this paper we describe the physical and biological characteristics of these cyclone-anticyclone pairs. Our objective was to determine how eddy pairs affect the distribution of phytoplankton in the region and how satellite ocean color measurements are applicable to tracing of the eddies. We present shipboard data collected between 1980 and 1982 on the hydrography, chlorophyll stocks, and nutrient concentrations of eddy pairs in the western Gulf of Mexico and compare these data with coastal zone color scanner (CZCS) images collected during the time frame of the cruises. Surface pigment concentrations followed a seasonal cycle, with low concentrations (0.05-0.1 mg m(exp -3)) found within cyclones and anticyclones from April through early November and higher concentrations (greater than 0.1 mg(exp -3)) found in the winter. CZCS pigment concentrations were locally high in the flow confluence of cyclone-anticyclone pairs. The CZCS imagery shows that some cyclone-anticyclone geometries transport high-chlorophyll shelf water seaward at least 100-200 km off-shelf.

Top