Sample records for cyclone track forecasting

  1. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  2. Extra-tropical Cyclones and Windstorms in Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon

    2015-04-01

    Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.

  3. Hurricane track forecast cones from fluctuations

    PubMed Central

    Meuel, T.; Prado, G.; Seychelles, F.; Bessafi, M.; Kellay, H.

    2012-01-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations. PMID:22701776

  4. Impact on Hurricane Track and Intensity Forecasts of GPS Dropwindsonde Observations from the First-Season Flights of the NOAA Gulfstream-IV Jet Aircraft.

    NASA Astrophysics Data System (ADS)

    Aberson, Sim D.; Franklin, James L.

    1999-03-01

    In 1997, the Tropical Prediction Center (TPC) began operational Gulfstream-IV jet aircraft missions to improve the numerical guidance for hurricanes threatening the continental United States, Puerto Rico, and the Virgin Islands. During these missions, the new generation of Global Positioning System dropwindsondes were released from the aircraft at 150-200-km intervals along the flight track in the environment of the tropical cyclone to obtain profiles of wind, temperature, and humidity from flight level to the surface. The observations were ingested into the global model at the National Centers for Environmental Prediction, which subsequently serves as initial and boundary conditions to other numerical tropical cyclone models. Because of a lack of tropical cyclone activity in the Atlantic basin, only five such missions were conducted during the inaugural 1997 hurricane season.Due to logistical constraints, sampling in all quadrants of the storm environment was accomplished in only one of the five cases during 1997. Nonetheless, the dropwindsonde observations improved mean track forecasts from the Geophysical Fluid Dynamics Laboratory hurricane model by as much as 32%, and the intensity forecasts by as much as 20% during the hurricane watch period (within 48 h of projected landfall). Forecasts from another dynamical tropical cyclone model (VICBAR) also showed modest improvements with the dropwindsonde observations. These improvements, if confirmed by a larger sample, represent a large step toward the forecast accuracy goals of TPC. The forecast track improvements are as large as those accumulated over the past 20-25 years, and those for forecast intensity provide further evidence that better synoptic-scale data can lead to more skillful dynamical tropical cyclone intensity forecasts.

  5. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  6. An evaluation of the real-time tropical cyclone forecast skill of the Navy Operational Global Atmospheric Prediction System in the western North Pacific

    NASA Technical Reports Server (NTRS)

    Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.

    1993-01-01

    The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.

  7. The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model

    NASA Astrophysics Data System (ADS)

    Rosado, K.; Tallapragada, V.; Jenkins, G. S.

    2016-12-01

    In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.

  8. A similarity retrieval approach for weighted track and ambient field of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Li, Ying; Xu, Luan; Hu, Bo; Li, Yuejun

    2018-03-01

    Retrieving historical tropical cyclones (TC) which have similar position and hazard intensity to the objective TC is an important means in TC track forecast and TC disaster assessment. A new similarity retrieval scheme is put forward based on historical TC track data and ambient field data, including ERA-Interim reanalysis and GFS and EC-fine forecast. It takes account of both TC track similarity and ambient field similarity, and optimal weight combination is explored subsequently. Result shows that both the distance and direction errors of TC track forecast at 24-hour timescale follow an approximately U-shape distribution. They tend to be large when the weight assigned to track similarity is close to 0 or 1.0, while relatively small when track similarity weight is from 0.2˜0.7 for distance error and 0.3˜0.6 for direction error.

  9. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  10. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  11. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    NASA Astrophysics Data System (ADS)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible third limit, though the results are inconclusive. Due to limited aircraft resources, optimal observing strategies for these missions must be developed. Since observations in areas of decaying error modes are unlikely to have large impact on subsequent forecasts, such strategies should be based on taking observations in those geographic locations corresponding to the most rapidly growing error modes in the numerical models and on known deficiencies in current data assimilation systems. Here, the most rapidly growing modes are represented by areas of large forecast spread in the NCEP bred-mode global ensemble forecasting system. The sampling strategy requires sampling the entire target region at approximately the same resolution as the North American rawinsonde network to limit the possibly spurious spread of information from dropwindsonde observations into data-sparse regions where errors are likely to grow. When only the subset of data in these fully-sampled target regions is assimilated into the numerical models, statistically significant reduction of the track forecast errors of up to 25% within the critical first two days of the forecast are seen. These model improvements are comparable with the cumulative business-as-usual track forecast model improvements expected over eighteen years.

  12. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    DTIC Science & Technology

    2016-03-01

    cyclone THORPEX The Observing System Research and Predictability Experiment TIGGE THORPEX Interactive Grand Global Ensemble TS tropical storm ...forecast possible, but also relay the level of uncertainty unique to a given storm . This will better inform decision makers to help protect all assets at...for any given storm . Thus, the probabilities may 4 increase or decrease (and the probability swath may widen or narrow) to provide a more

  13. Long-Range Operational Military Forecasts for Iraq

    DTIC Science & Technology

    2007-03-01

    http://www.afccc.af.mil 5 March 2007] .................................................. 4 Figure 3. Primary storm tracks for: (a) June, July, August...Laboratory ETC extratropical cyclone FA forecast accuracy FAR false alarm rate HSS Heidke skill score IO Indian Ocean IOZM Indian Ocean Zonal...precipitation is associated with transient extratropical cyclones (ETCs). Most of Iraq’s terrain is relatively flat with little change in elevation

  14. An evaluation of the precipitation distribution associated with landfalling tropical systems

    NASA Astrophysics Data System (ADS)

    Atallah, Eyad H.

    Several recent landfalling tropical cyclones (e.g. Dennis, Floyd, and Irene 1999) have highlighted a need for a refinement in the forecasting paradigms and techniques in the area of quantitative precipitation forecasting (QPF). Accordingly, several landfalling tropical storms were composited based on the precipitation distribution relative to the cyclone track (i.e. left of, right of, or along track), and cases from each composite were examined using a potential vorticity (PV) and quasi-geostrophic (QG) framework. Results indicate that a left of track precipitation distribution (e.g. Floyd 1999) is characteristic of tropical systems undergoing extratropical transition (ET). In these cases, a significant positively tilted mid-latitude trough approaches the cyclone from the northwest, shifting precipitation to the north-northwest of the cyclone. PV redistribution through diabatic heating then leads to enhanced ridging over and downstream of the tropical cyclone resulting in an increase in the cyclonic advection of vorticity by the thermal wind. Precipitation distribution is heaviest to the right of the track of the storm when downstream intensification of the ridge is important (e.g. David, 1979). Enhancement of the downstream ridge ahead of a weak mid-latitude trough accentuates the PV gradient between the tropical system and the downstream ridge. This, in combination with a slight acceleration in the movement of the tropical system, produces a region of enhanced positive PV advection (implied ascent) between the tropical system and the downstream ridge. Precipitation is heaviest along/very near the track of a storm when shear values are low and/or oriented along the track of the tropical cyclone (e.g. Fran 1996). Without large scale forcing for vertical motion associated with a midlatitude trough, most of the ascent remains concentrated near the storm core in the region of greatest diabatic heating and maximum wind speeds. In all cases, the diabatic enhancement of the downstream ridge is instrumental in the redistribution of precipitation about the tropical system. Unfortunately, this process is not well simulated in operational forecast models, leading to systematic errors in QPF.

  15. The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Choudhury, Devanil; Das, Someshwar

    2017-06-01

    The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.

  16. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    NASA Astrophysics Data System (ADS)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides guidance of formation and tracks on 10-30 day timescales.

  17. Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bhaskaran, Prasad K.

    2017-12-01

    This study evaluates the performance of the Advanced Research Weather Research and Forecasting (WRF-ARW) model for prediction of land-falling Bay of Bengal (BoB) tropical cyclones (TCs). Model integration was performed using two-way interactive double nested domains at 27 and 9 km resolutions. The present study comprises two major components. Firstly, the study explores the impact of five different planetary boundary layer (PBL) and six cumulus convection (CC) schemes on seven land-falling BoB TCs. A total of 85 numerical simulations were studied in detail, and the results signify that the model simulated better both the track and intensity by using a combination of Yonsei University (YSU) PBL and the old simplified Arakawa-Schubert CC scheme. Secondly, the study also investigated the model performance based on the best possible combinations of model physics on the real-time forecasts of four BoB cyclones (Phailin, Helen, Lehar, and Madi) that made landfall during 2013 based on another 15 numerical simulations. The predicted mean track error during 2013 was about 71 km, 114 km, 133 km, 148 km, and 130 km respectively from day-1 to day-5. The Root Mean Square Error (RMSE) for Minimum Central Pressure (MCP) was about 6 hPa and the same noticed for Maximum Surface Wind (MSW) was about 4.5 m s-1 noticed during the entire simulation period. In addition the study also reveals that the predicted track errors during 2013 cyclones improved respectively by 43%, 44%, and 52% from day-1 to day-3 as compared to cyclones simulated during the period 2006-2011. The improvements noticed can be attributed due to relatively better quality data that was specified for the initial mean position error (about 48 km) during 2013. Overall the study signifies that the track and intensity forecast for 2013 cyclones using the specified combinations listed in the first part of this study performed relatively better than the other NWP (Numerical Weather Prediction) models, and thereby finds application in real-time forecast.

  18. Increasing vertical resolution in US models to improve track forecasts of Hurricane Joaquin with HWRF as an example

    PubMed Central

    Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.

    2016-01-01

    The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121

  19. Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting

    NASA Astrophysics Data System (ADS)

    Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.

    2015-12-01

    JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.

  20. The Influence of the North Atlantic Oscillation on Tropospheric Distributions of Ozone and Carbon Monoxide.

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2015-12-01

    The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within the warm conveyor belt airstream which rises ahead of the cold front.

  1. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    NASA Technical Reports Server (NTRS)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west side of the domain. The displacement error was significantly reduced after the domain size from the western model boundary was decreased. Study results demonstrate the capability and need of a high-resolution mesoscale modeling framework for simulating the complex interactions that contribute to the formation of tropical cyclones over the Bay of Bengal region

  2. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model

    NASA Astrophysics Data System (ADS)

    Raju, P. V. S.; Potty, Jayaraman; Mohanty, U. C.

    2011-09-01

    Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12 h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8 hPa, maximum wind error of 12 m s-1and track error of 77 km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.

  3. Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME

    NASA Astrophysics Data System (ADS)

    Kumkar, Yogesh V.; Sen, P. N.; Chaudhari, Hemankumar S.; Oh, Jai-Ho

    2018-02-01

    In this paper, an attempt has been made to conduct a numerical experiment with the high-resolution global model GME to predict the tropical storms in the North Indian Ocean during the year 2007. Numerical integrations using the icosahedral hexagonal grid point global model GME were performed to study the evolution of tropical cyclones, viz., Akash, Gonu, Yemyin and Sidr over North Indian Ocean during 2007. It has been seen that the GME model forecast underestimates cyclone's intensity, but the model can capture the evolution of cyclone's intensity especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as cyclones approach the coastal region. A series of numerical simulation of tropical cyclones have been performed with GME to examine model capability in prediction of intensity and track of the cyclones. The model performance is evaluated by calculating the root mean square errors as cyclone track errors.

  4. Satellite radiance data assimilation for binary tropical cyclone cases over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Choi, Yonghan; Cha, Dong-Hyun; Lee, Myong-In; Kim, Joowan; Jin, Chun-Sil; Park, Sang-Hun; Joh, Min-Su

    2017-06-01

    A total of three binary tropical cyclone (TC) cases over the Western North Pacific are selected to investigate the effects of satellite radiance data assimilation on analyses and forecasts of binary TCs. Two parallel cycling experiments with a 6 h interval are performed for each binary TC case, and the difference between the two experiments is whether satellite radiance observations are assimilated. Satellite radiance observations are assimilated using the Weather Research and Forecasting Data Assimilation (WRFDA)'s three-dimensional variational (3D-Var) system, which includes the observation operator, quality control procedures, and bias correction algorithm for radiance observations. On average, radiance assimilation results in slight improvements of environmental fields and track forecasts of binary TC cases, but the detailed effects vary with the case. When there is no direct interaction between binary TCs, radiance assimilation leads to better depictions of environmental fields, and finally it results in improved track forecasts. However, positive effects of radiance assimilation on track forecasts can be reduced when there exists a direct interaction between binary TCs and intensities/structures of binary TCs are not represented well. An initialization method (e.g., dynamic initialization) combined with radiance assimilation and/or more advanced DA techniques (e.g., hybrid method) can be considered to overcome these limitations.

  5. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  6. Investigating Lateral Boundary Forcing of Weather Research and Forecasting (WRF) Model Forecasts for Artillery Mission Support

    DTIC Science & Technology

    2013-01-01

    the internal variability, such as the storm track or rainfall pattern (8). Arguments have emerged for the use of small domains in certain cases as...Sensitivity experiments were performed with the WRF-ARW over Meiningen, Germany for two strong wintertime extratropical cyclones. These cases were chosen

  7. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  8. Statistical Analysis of Ensemble Forecasts of Tropical Cyclone Tracks over the North Atlantic

    DTIC Science & Technology

    2012-06-01

    Figure 6. Official tracks of the 2008 Atlantic hurricane season. Storms are listed in the top-right box with the symbols and track color explained in...Atlantic hurricane season. Storms are listed in the top-right box with the symbols and track color explained in the legend in the bottom-right box (From...NHC 2012l). ...................................................13 Figure 8. Official tracks of the 2010 Atlantic hurricane season. Storms are listed

  9. Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model

    NASA Astrophysics Data System (ADS)

    Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.

    2017-12-01

    The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.

  10. Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model.

    PubMed

    Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.

  11. Assimilation of Tropical Cyclone Track and Wind Radius Data with an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kunii, M.

    2014-12-01

    Improving tropical cyclone (TC) forecasts is one of the most important issues in meteorology, but TC intensity forecasts are a challenging task. Because the lack of observations near TCs usually results in degraded accuracy of initial fields, utilizing TC advisory data in data assimilation typically has started with an ensemble Kalman filtering (EnKF). In this study, TC intensity and position information was directly assimilated using the EnKF, and the impact of these observations was investigated by comparing different assimilation strategies. Another experiment with TC wind radius data was carried out to examine the influence of TC shape parameters. Sensitivity experiments indicated that the assimilation of TC intensity and position data yielded results that were superior to those based on conventional assimilation of TC minimum sea level pressure as a standard surface pressure observation. Assimilation of TC radius data modified TC outer circulations closer to observations. The impacts of these TC parameters were also evaluated using the case of Typhoon Talas in 2011. The TC intensity, position, and wind radius data led to improved TC track forecasts and thence to improved precipitation forecasts. These results imply that initialization with these TC-related observations benefits TC forecasts, offering promise for the prevention and mitigation of natural disasters caused by TCs.

  12. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU-A) on Aqua substantially reduced forecast track errors. Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. SA is also bringing several state of the art instruments in recent field campaigns to peer under the clouds and study the inner workings of the tropical storms. With the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that includes the Global Hawk Unmanned Airborne System (UAS) configured with a suite of in situ and remote sensing instruments that are observing and characterizing the lifecycle of hurricanes, we expect significant improvement in our understanding of the track and intensification processes with the assimilation of the satellite and field campaign observations of meteorological parameters in the numerical prediction models.

  13. Predicting the trajectories and intensities of hurricanes by applying machine learning techniques

    NASA Astrophysics Data System (ADS)

    Sujithkumar, A.; King, A. W.; Kovilakam, M.; Graves, D.

    2017-12-01

    The world has witnessed an escalation of devastating hurricanes and tropical cyclones over the last three decades. Hurricanes and tropical cyclones of very high magnitude will likely be even more frequent in a warmer world. Thus, precise forecasting of the track and intensity of hurricane/tropical cyclones remains one of the meteorological community's top priorities. However, comprehensive prediction of hurricane/ tropical cyclone is a difficult problem due to the many complexities of underlying physical processes with many variables and complex relations. The availability of global meteorological and hurricane/tropical storm climatological data opens new opportunities for data-driven approaches to hurricane/tropical cyclone modeling. Here we report initial results from two data-driven machine learning techniques, specifically, random forest (RF) and Bayesian learning (BL) to predict the trajectory and intensity of hurricanes and tropical cyclones. We used International Best Track Archive for Climate Stewardship (IBTrACS) data along with weather data from NOAA in a 50 km buffer surrounding each of the reported hurricane and tropical cyclone tracts to train the model. Initial results reveal that both RF and BL are skillful in predicting storm intensity. We will also present results for the more complicated trajectory prediction.

  14. Sources of Wind Variability at a Single Station in Complex Terrain During Tropical Cyclone Passage

    DTIC Science & Technology

    2013-12-01

    Mesoscale Prediction System CPA Closest point of approach ET Extratropical transition FNMOC Fleet Numerical Meteorology and Oceanography Center...forecasts. However, 2 the TC forecast tracks and warnings they issue necessarily focus on the large-scale structure of the storm , and are not...winds at one station. Also, this technique is a storm - centered forecast and even if the grid spacing is on order of one kilometer, it is unlikely

  15. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    NASA Astrophysics Data System (ADS)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  16. Numerical simulations of tropical cyclones with assimilation of satellite, radar and in-situ observations: lessons learned from recent field programs and real-time experimental forecasts

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, L.

    2010-12-01

    The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.

  17. Growth of Errors and Uncertainties in Medium Range Ensemble Forecasts of U.S. East Coast Cool Season Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Zheng, Minghua

    Cool-season extratropical cyclones near the U.S. East Coast often have significant impacts on the safety, health, environment and economy of this most densely populated region. Hence it is of vital importance to forecast these high-impact winter storm events as accurately as possible by numerical weather prediction (NWP), including in the medium-range. Ensemble forecasts are appealing to operational forecasters when forecasting such events because they can provide an envelope of likely solutions to serve user communities. However, it is generally accepted that ensemble outputs are not used efficiently in NWS operations mainly due to the lack of simple and quantitative tools to communicate forecast uncertainties and ensemble verification to assess model errors and biases. Ensemble sensitivity analysis (ESA), which employs a linear correlation and regression between a chosen forecast metric and the forecast state vector, can be used to analyze the forecast uncertainty development for both short- and medium-range forecasts. The application of ESA to a high-impact winter storm in December 2010 demonstrated that the sensitivity signals based on different forecast metrics are robust. In particular, the ESA based on the leading two EOF PCs can separate sensitive regions associated with cyclone amplitude and intensity uncertainties, respectively. The sensitivity signals were verified using the leave-one-out cross validation (LOOCV) method based on a multi-model ensemble from CMC, ECMWF, and NCEP. The climatology of ensemble sensitivities for the leading two EOF PCs based on 3-day and 6-day forecasts of historical cyclone cases was presented. It was found that the EOF1 pattern often represents the intensity variations while the EOF2 pattern represents the track variations along west-southwest and east-northeast direction. For PC1, the upper-level trough associated with the East Coast cyclone and its downstream ridge are important to the forecast uncertainty in cyclone strength. The initial differences in forecasting the ridge along the west coast of North America impact the EOF1 pattern most. For PC2, it was shown that the shift of the tri-polar structure is most significantly related to the cyclone track forecasts. The EOF/fuzzy clustering tool was applied to diagnose the scenarios in operational ensemble forecast of East Coast winter storms. It was shown that the clustering method could efficiently separate the forecast scenarios associated with East Coast storms based on the 90-member multi-model ensemble. A scenario-based ensemble verification method has been proposed and applied it to examine the capability of different EPSs in capturing the analysis scenarios for historical East Coast cyclone cases at lead times of 1-9 days. The results suggest that the NCEP model performs better in short-range forecasts in capturing the analysis scenario although it is under-dispersed. The ECMWF ensemble shows the best performance in the medium range. The CMC model is found to show the smallest percentage of members in the analysis group and a relatively high missing rate, suggesting that it is less reliable regarding capturing the analysis scenario when compared with the other two EPSs. A combination of NCEP and CMC models has been found to reduce the missing rate and improve the error-spread skill in medium- to extended-range forecasts. Based on the orthogonal features of the EOF patterns, the model errors for 1-6-day forecasts have been decomposed for the leading two EOF patterns. The results for error decomposition show that the NCEP model tends to better represent both EOF1 and EOF2 patterns by showing less intensity and displacement errors during 1-3 days. The ECMWF model is found to have the smallest errors in both EOF1 and EOF2 patterns during 4-6 days. We have also found that East Coast cyclones in the ECMWF forecast tend to be towards the southwest of the other two models in representing the EOF2 pattern, which is associated with the southwest-northeast shifting of the cyclone. This result suggests that ECMWF model may have a tendency to show a closer-to-shore solution in forecasting East Coast winter storms. The downstream impacts of Rossby wave packets (RWPs) on the predictability of winter storms are investigated to explore the source of ensemble uncertainties. The composited RWPA anomalies show that there are enhanced RWPs propagating across the Pacific in both large-error and large-spread cases over the verification regions. There are also indications that the errors might propagate with a speed comparable with the group velocity of RWPs. Based on the composite results as well as our observations of the operation daily RWPA, a conceptual model of errors/uncertainty development associated with RWPs has been proposed to serve as a practical tool to understand the evolution of forecast errors and uncertainties associated with the coherent RWPs originating from upstream as far as western Pacific. (Abstract shortened by ProQuest.).

  18. Possible sources of forecast errors generated by the global/regional assimilation and prediction system for landfalling tropical cyclones. Part I: Initial uncertainties

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Yamaguchi, Munehiko; Qin, Xiaohao

    2016-07-01

    This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.

  19. Impact of Parameterization of Physical Processes on Simulation of Track and Intensity of Tropical Cyclone Nargis (2008) with WRF-NMM Model

    PubMed Central

    Pattanayak, Sujata; Mohanty, U. C.; Osuri, Krishna K.

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error. PMID:22701366

  20. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  1. Moist Thermodynamics of Tropical Cyclone Formation and Intensification in High-Resolution Climate Models

    NASA Astrophysics Data System (ADS)

    Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).

  2. Climate and Weather Analysis of Afghanistan Thunderstorms

    DTIC Science & Technology

    2011-09-01

    dry, continental polar (cP) air. The subtropical jet (STJ) and Extratropical storm track tend to lie south of Kabul. Mean high SFC temperatures...March-April-May (MAM). Note that AFG lies to the east of a broad trough centered over southern Europe and to the west of broad ridge centered over... Extratropical Cyclone FAR False Alarm Rate FOB Forward Operating Base FRN Forecaster Reference Notebook GFS Global Forecast System GoA

  3. Testing a Coupled Global-limited-area Data Assimilation System using Observations from the 2004 Pacific Typhoon Season

    NASA Astrophysics Data System (ADS)

    Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.

    2011-12-01

    Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global analyses. The intensity analyses, measured by the minimum sea level pressure, are of similar quality in all of the analyses. Regional deterministic forecasts started from our analyses are generally not significantly different from those started from the GFS operational analysis. On average, the regional experiments performed better for longer than 48 h sea level pressure forecasts, while the global forecast performed better in predicting the position for longer than 48 h.

  4. Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Elsberry, Russell L.

    2013-12-01

    SummaryAn opportunity exists to extend support to the decision-making processes of water resource management and hydrological operations by providing extended-range tropical cyclone (TC) formation and track forecasts in the western North Pacific from the 51-member ECMWF 32-day ensemble. A new objective verification technique demonstrates that the ECMWF ensemble can predict most of the formations and tracks of the TCs during July 2009 to December 2010, even for most of the tropical depressions. Due to the relatively large number of false-alarm TCs in the ECMWF ensemble forecasts that would cause problems for support of hydrological operations, characteristics of these false alarms are discussed. Special attention is given to the ability of the ECMWF ensemble to predict periods of no-TCs in the Taiwan area, since water resource management decisions also depend on the absence of typhoon-related rainfall. A three-tier approach is proposed to provide support for hydrological operations via extended-range forecasts twice weekly on the 30-day timescale, twice-daily on the 15-day timescale, and up to four times a day with a consensus of high-resolution deterministic models.

  5. An ensemble Kalman filter with a high-resolution atmosphere-ocean coupled model for tropical cyclone forecasts

    NASA Astrophysics Data System (ADS)

    Kunii, M.; Ito, K.; Wada, A.

    2015-12-01

    An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.

  6. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  7. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  8. Storm-Tracks in ERA-40 and ERA-Interim Reanalyses

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Trigo, I. F.; Trigo, R. M.

    2009-04-01

    Extratropical cyclones, their dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of cyclone characteristics for the Euro-Atlantic sector (85°W-70°E; 20°N-75°N) presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al., 1999, 2002) and recently extended to a larger Euro-Atlantic region (Trigo, 2006). The objective methodology, which identifies and follows individual lows (Trigo et al. 1999), is applied to 6-hourly geopotential data at 1000-hPa from two reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA-Interim reanalyses. Two storm-track databases are built over the Northern Atlantic European area, spanning the common available extended winter seasons from October 1989 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions (T106 and T255, respectively). This exercise is mostly focused on the key areas of cyclone formation and dissipation and main cyclone characteristics for the Euro-Atlantic sector. Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685-1696. Trigo I. F., G. R. Bigg and T. D. Davies, 2002: Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 130, 549-569. Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.

  9. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.

  10. Annual Tropical Cyclone Report 2011

    DTIC Science & Technology

    2012-05-24

    nuclear plant, still reeling after the tsunami disaster just a few months earlier.6 Operations at Kadena Air Base were put on hold 48 with major...conditions. Several of these early to mid-season forming TCs exhibited ―S‖ shaped, looping, or generally erratic tracks, with numerous passages near or over...track errors after -the fact to extend the data base (3) Mean forecast errors for all w arned systems in Northwest Pacific. 120-Hour Along Cross

  11. Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Wang, Bin; Ji, Zhongzhen; Liang, Xudong; Deng, Guo; Zhang, Xin

    2005-07-01

    In this study, an attempt to improve typhoon forecasts is made by incorporating three-dimensional Advanced Microwave Sounding Unit-A (AMSU-A) retrieved wind and temperature and the central sea level pressure of cyclones from typhoon reports or bogus surface low data into initial conditions, on the basis of the Fifth-Generation National Center for Atmospheric Research/Pennsylvania State University Mesoscale Model (MM5) four-dimensional variational data assimilation (4DVar) system with a full-physics adjoint model. All the above-mentioned data are found to be useful for improvement of typhoon forecasts in this mesoscale data assimilation experiment. The comparison tests showed the following results: (1) The assimilation of the satellite-retrieved data was found to have a positive impact on the typhoon track forecast, but the landing position error is ˜150 km. (2) The assimilation of both the satellite-retrieved data and moving information of the typhoon center dramatically improved the track forecast and captured the recurvature and landfall. The mean track error during the 72-hour forecast is 69 km. The predicted typhoon intensity, however, is much weaker than that from observations. (3) The assimilation of both the satellite-retrieved data and the bogus surface low data improved the intensity and track forecasts more significantly than the assimilation of only bogus surface low data (bogus data assimilation) did. The mean errors during the 72-hour forecast are 2.6 hPa for the minimum sea level pressure and 87 km for track position. However, the forecasted landing time is ˜6 hours earlier than the observed one.

  12. Impact of CYGNSS Data on Tropical Cyclone Analyses and Forecasts in a Regional OSSE Framework

    NASA Astrophysics Data System (ADS)

    Annane, B.; McNoldy, B. D.; Leidner, S. M.; Atlas, R. M.; Hoffman, R.; Majumdar, S.

    2016-12-01

    The Cyclone Global Navigation Satellite System, or CYGNSS, is a planned constellation of micro-satellites that will utilize reflected Global Positioning System (GPS) satellite signals to retrieve ocean surface wind speed along the satellites' ground tracks. The orbits are designed so that there is excellent coverage of the tropics and subtropics, resulting in more thorough spatial sampling and improved sampling intervals over tropical cyclones than is possible with current spaceborne scatterometer and passive microwave sensor platforms. Furthermore, CYGNSS will be able to retrieve winds under all precipitating conditions, and over a large range of wind speeds.A regional Observing System Simulation Experiment (OSSE) framework was developed at NOAA/AOML and University of Miami that features a high-resolution regional nature run (27-km regional domain with 9/3/1 km storm-following nests; Nolan et al., 2013) embedded within a lower-resolution global nature run . Simulated observations are generated by sampling from the nature run and are provided to a data assimilation scheme, which produces analyses for a high-resolution regional forecast model, the 2014 operational Hurricane-WRF model. For data assimilation, NOAA's GSI and EnKF systems are used. Analyses are performed on the parent domain at 9-km resolution. The forecast model uses a single storm-following 3-km resolution nest. Synthetic CYGNSS wind speed data have also been created, and the impacts of the assimilation of these data on the forecasts of tropical cyclone track and intensity will be discussed.In addition to the choice of assimilation scheme, we have also examined a number of other factors/parameters that effect the impact of simulated CYGNSS observations, including frequency of data assimilation cycling (e.g., hourly, 3-hourly and 6-hourly) and the assimilation of scalar versus vector synthetic CYGNSS winds.We have found sensitivity to all of the factors tested and will summarize the methods used for testing as well as results. Generally, we have found that more frequent cycling is better than less; and flow-dependent background error covariances (e.g., EnKF) are better than static or climatological assumptions about the background error covariance.

  13. Resolving Tropical Cyclone Intensity in Models

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  14. The Global Precipitation Measurement (GPM) Mission contributions to hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Huffman, G. J.; Skofronick Jackson, G.

    2016-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission provides near real-time precipitation data worldwide that is used by a broad range of end users, from tropical cyclone forecasters to agricultural modelers to researchers evaluating the spread of diseases. The GPM constellation provides merged, multi-satellite data products at three latencies that are critical for research and societal applications around the world. This presentation will outline current capabilities in using accurate and timely information of precipitation to directly benefit society, including examples of end user applications within the tropical cyclone forecasting, disasters response, agricultural forecasting, and disease tracking communities, among others. The presentation will also introduce some of the new visualization and access tools developed by the GPM team.

  15. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (< 2 days) sensitivity experiments used to highlight the effect of oceanic waves coupling show limited impact on the track, the intensity evolution, and the turbulent surface fluxes of the tropical cyclone. However, it is also shown that using a fully coupled OWA system is essential to obtain consistent sea salt emissions. Spatial and temporal coherence of the sea state with the 10 m wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  16. Challenges associated with the prediction of tropical storms in the Bay of Bengal when using the WRF model

    NASA Astrophysics Data System (ADS)

    Machineni, N.; Veldore, V.; Mesquita, M. D. S.

    2016-12-01

    Accuracy in predicting tropical cyclones over low lying coastal regions is pivotal for understanding storm tracks and their subsequent impacts. The present study highlights the challenges in predicting the Bay of Bengal (BOB) cyclone "AILA" (during 23rd to 25th May 2009) using the Weather Research and Forecast model, Advanced research core module (WRF-ARW). The model configuration uses a two-way interactive nested domain with 10 km resolution over BOB. Its initial and boundary conditions are driven from the NCEP FNL operational global analysis data at every 6 hours. A total of 74 sensitivity experiments were conducted to test the following factors and levels: a) parametrization schemes: two microphysics and two cumulus physics schemes used to select appropriate combination over study region, b) model domain:including/excluding Himalayas, c) vertical resolution: eight various increasing/decreasing vertical levels have been carried out to evaluate the storm track dependencies on these factors, d) domain size: and increasing (decreasing) the grid points of model domain in east-west direction shows that approximately 50-100 km track difference for every two points. Our results show that, the experiments including the Himalayas provide a better representation of cyclone track and speed. In order to reduce the computational time required to do such tremendous amount of experiment, we hypothesize to use statistical tools of experimental design which can involve all the factors that determine the cyclone tracks. A proper experimental design might provide unbiased results and also we might need less number of experiments.

  17. Challenges associated with the prediction of tropical storms in the Bay of Bengal when using the WRF model

    NASA Astrophysics Data System (ADS)

    Machineni, Nehru; Veldore, Vidyunmala; Mesquita, Michel d. S.

    2017-04-01

    Accuracy in predicting tropical cyclones over low lying coastal regions is pivotal for understanding storm tracks and their subsequent impacts. The present study highlights the challenges in predicting the Bay of Bengal (BOB) cyclone "AILA" (during 23rd to 25th May 2009) using the Weather Research and Forecast model, Advanced research core module (WRF-ARW). The model configuration uses a two-way interactive nested domain with 10 km resolution over BOB. Its initial and boundary conditions are driven from the NCEP FNL operational global analysis data at every 6 hours. A total of 74 sensitivity experiments were conducted to test the following factors and levels: a) parametrization schemes: two microphysics and two cumulus physics schemes used to select appropriate combination over study region, b) model domain:including/excluding Himalayas, c) vertical resolution: eight various increasing/decreasing vertical levels have been carried out to evaluate the storm track dependencies on these factors, d) domain size: and increasing (decreasing) the grid points of model domain in east-west direction shows that approximately 50-100 km track difference for every two points. Our results show that, the experiments including the Himalayas provide a better representation of cyclone track and speed. In order to reduce the computational time required to do such tremendous amount of experiment, we hypothesize to use statistical tools of experimental design which can involve all the factors that determine the cyclone tracks. A proper experimental design might provide unbiased results and also we might need less number of experiments.

  18. Observations of the structure and evolution of surface and flight-level wind asymmetries in Hurricane Rita (2005)

    NASA Astrophysics Data System (ADS)

    Rogers, Robert; Uhlhorn, Eric

    2008-11-01

    Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.

  19. Convection in Extratropical Cyclones: Analysis of GPM, NexRAD, GCMs and Re-Analysis

    NASA Astrophysics Data System (ADS)

    Jeyaratnam, J.; Booth, J. F.; Naud, C. M.; Luo, J.

    2017-12-01

    Extratropical Cyclones (ETCs) are the most common cause of extreme precipitation in mid-latitudes and are important in the general atmospheric circulation as they redistribute moisture and heat. Isentropic lifting, upright convection, and slantwise convection are mechanisms of vertical motion within an ETC, which deliver different rain rates and might respond differently to global warming. In this study we compare different metrics for identifying convection within the ETC's and calculate the relative contribution of convection to total ETC precipitation. We determine if convection occurs preferentially in specific regions of the storm and decide how to best utilize GPM retrievals covering other parts of the mid-latitudes. Additionally, mid-latitude cyclones are tracked and composites of these tracked cyclones are compared amongst multiple versions of Global Circulation Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) prototype models and re-analysis data; Model Diagnostic Task Force (MDTF) Geophysical Fluid Dynamics Laboratory (GFDL) using a two-plume convection scheme, MDTF GFDL using the Donner convection scheme, Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), and European Reanalysis produced by the European Center for Medium-Range Weather Forecasts (ECMWF).

  20. Model assessment using a multi-metric ranking technique

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.

    2017-12-01

    Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.

  1. The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific Objectives and Experimental Design.

    NASA Astrophysics Data System (ADS)

    Joly, Alain; Jorgensen, Dave; Shapiro, Melvyn A.; Thorpe, Alan; Bessemoulin, Pierre; Browning, Keith A.; Cammas, Jean-Pierre; Chalon, Jean-Pierre; Clough, Sidney A.; Emanuel, Kerry A.; Eymard, Laurence; Gall, Robert; Hildebrand, Peter H.; Langland, Rolf H.; Lemaître, Yvon; Lynch, Peter; Moore, James A.; Persson, P. Ola G.; Snyder, Chris; Wakimoto, Roger M.

    1997-09-01

    The Fronts and Atlantic Storm-Track Experiment (FASTEX) will address the life cycle of cyclones evolving over the North Atlantic Ocean in January and February 1997. The objectives of FASTEX are to improve the forecasts of end-of-storm-track cyclogenesis (primarily in the eastern Atlantic but with applicability to the Pacific) in the range 24 to 72 h, to enable the testing of theoretical ideas on cyclone formation and development, and to document the vertical and the mesoscale structure of cloud systems in mature cyclones and their relation to the dynamics. The observing system includes ships that will remain in the vicinity of the main baroclinic zone in the central Atlantic Ocean, jet aircraft that will fly and drop sondes off the east coast of North America or over the central Atlantic Ocean, turboprop aircraft that will survey mature cyclones off Ireland with dropsondes, and airborne Doppler radars, including ASTRAIA/ELDORA. Radiosounding frequency around the North Atlantic basin will be increased, as well as the number of drifting buoys. These facilities will be activated during multiple-day intensive observing periods in order to observe the same meteorological systems at several stages of their life cycle. A central archive will be developed in quasi-real time in Toulouse, France, thus allowing data to be made widely available to the scientific community.

  2. The NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Provost, D.; Rose, R.; Scherrer, J.; Atlas, R. M.; Chang, P.; Clarizia, M. P.; Garrison, J. L.; Gleason, S.; Katzberg, S. J.; Jelenak, Z.; Johnson, J. T.; Majumdar, S.; O'Brien, A.; Posselt, D. J.; Ridley, A. J.; Said, F.; Soisuvarn, S.; Zavorotny, V. U.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is scheduled for launch in November 2016 to study the surface wind structure in and near the inner core of tropical cyclones. CYGNSS consists of a constellation of eight observatories carried into orbit on a single launch vehicle. Each observatory carries a 4-channel bistatic radar receiver tuned to receive GPS navigation signals scattered from the ocean surface. The eight satellites are spaced approximately twelve minutes apart in a common circular, low inclination orbit plane to provide frequent temporal sampling in the tropics. The 35deg orbit inclination results in coverage of the full globe between 38deg N and 38deg S latitude with a median(mean) revisit time of 3(7) hours The 32 CYGNSS radars operate in L-Band at a wavelength of 19 cm. This allows for adequate penetration to enable surface wind observations under all levels of precipitation, including those encountered in the inner core and eyewall of tropical cyclones. The combination of operation unaffected by heavy precipitation together with high temporal resolution throughout the life cycle of storms is expected to support significant improvements in the forecast skill of storm track and intensity, as well as better situational awareness of the extent and structure of storms in near real time. A summary of the properties of the CYGNSS science data products will be presented, together with an update on the results of ongoing Observation System Simulation Experiments performed by members of the CYGNSS science team over the past four years, in particular addressing the expected impact on storm track and intensity forecast skill. With launch scheduled for the month prior to AGU, the on orbit status of the constellation will also be presented.

  3. Storm-tracks interannual variability and large-scale climate modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern hemisphere. Trigo IF., TD Davies, GR Bigg (1999) Objective climatology of cyclones in the Mediterranean region. J. Climate 12: 1685-1696. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 26: 127-143.

  4. Tracking motions from satellite water vapor imagery: Quantitative applications to hurricane track forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher; Nieman, Steve; Aberson, Sim; Franklin, James

    1993-01-01

    Water vapor imagery from GOES satellites has been available for over a decade. These data are used extensively, mainly in a qualitative mode, by forecasters in the United States (Weldon and Holmes, 1991). Some attempts have been made at quantifying the data by tracking features in time sequences of the imagery (Stewart et al., 1985; Hayden and Stewart, 1987). For a variety of reasons, applications of this approach have produced marginal results (Velden, 1990). Recently, METEOSAT-3 (M-3) was repositioned at 50W by the European Space Agency, in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the GOES satellite, the M-3 has a superior resolution and signal-to-noise ratio in its water vapor channel, which translates into improved automated tracking capabilities. During a period in 1992 which included the Atlantic hurricane season, water vapor tracking algorithms were applied to the M-3 data in order to evaluate the coverage, accuracy and model impact of the derived vectors. Data sets were produced during several tropical cyclone cases, including Hurricane Andrew. In this paper, the M-3 water vapor wind sets are assessed, and their impact on a hurricane track forecast model is examined.

  5. Hydrometeorological application of an extratropical cyclone classification scheme in the southern United States

    NASA Astrophysics Data System (ADS)

    Senkbeil, J. C.; Brommer, D. M.; Comstock, I. J.; Loyd, T.

    2012-07-01

    Extratropical cyclones (ETCs) in the southern United States are often overlooked when compared with tropical cyclones in the region and ETCs in the northern United States. Although southern ETCs are significant weather events, there is currently not an operational scheme used for identifying and discussing these nameless storms. In this research, we classified 84 ETCs (1970-2009). We manually identified five distinct formation regions and seven unique ETC types using statistical classification. Statistical classification employed the use of principal components analysis and two methods of cluster analysis. Both manual and statistical storm types generally showed positive (negative) relationships with El Niño (La Niña). Manual storm types displayed precipitation swaths consistent with discrete storm tracks which further legitimizes the existence of multiple modes of southern ETCs. Statistical storm types also displayed unique precipitation intensity swaths, but these swaths were less indicative of track location. It is hoped that by classifying southern ETCs into types, that forecasters, hydrologists, and broadcast meteorologists might be able to better anticipate projected amounts of precipitation at their locations.

  6. OSSE Evaluation of Aircraft Reconnaissance Observations and their Impact on Hurricane Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Delgado, J.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2016-12-01

    NOAA/AOML's Hurricane Research Division (HRD) annually conducts its Hurricane Field Program during which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in track design is valuable for determining the optimal air reconnaissance flight pattern for a prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories of NOAA aircraft are simulated in a variety of ways and are evaluated to examine the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  7. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    NASA Astrophysics Data System (ADS)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  8. The influence of asymmetric convections on typhoon cyclonic deflection tracks across Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, L. H.; Su, S. H.

    2016-12-01

    This study focus on the mechanisms of typhoon cyclonic deflection tracks (CDT) approaching the east coast of Taiwan. We analyzed for 84 landfall typhoons which has 49 CDT cases, 18 cases are with very large deflection angles (DA) ( > 20°) and another 7 cases are with cyclonic looping tracks (CLT). Most of the large DA and CLT cases are with relatively slow translation speeds of 4 m s-1 and occurred near the east coast, north of 23 °N in Taiwan. The Weather Research and Forecasting (WRF) Model was used to simulate the typhoon CDT cases. We use the potential vorticity (PV) tendency diagnosis to analyze the typhoon movements, and decompose the wave number one component of PV tendencies into horizontal advection (HA), vertical advection (VA) and diabatic heating (DH) terms. The northern landfall storms have significant vorticity stretching and subsidence warming to the south of the storm. The subsidence warming suppresses convections and produces heating asymmetries for the typhoon structure. The vorticity stretching (VA effect) and diabatic heating asymmetries (DH effect) which lead the southwestward deflection storm motion. The HA effect in general does not contribute to the CDT. Our results highlight the effects of vorticity stretching and asymmetric convective heating in producing the CDT to north of 23 °N near the east coast of Taiwan.

  9. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  10. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  11. Long-Range Forecasting of Surface Air Temperature and Precipitation for the Korean Peninsula

    DTIC Science & Technology

    2013-03-01

    tropics and extratropics and tend to produce their maximum extratropical impacts in the winter hemisphere. For example, ENLN have been shown to...convection anomalies during the summer that can extend across large portions of the extratropics (Figure 3). This tropical convection is significantly...anomalously frequent (less frequent) and strong (weak) extratropical cyclones tracking in a more northerly (southerly) path across the North Atlantic

  12. Application of SeaWinds Scatterometer and TMI-SSM/I Rain Rates to Hurricane Analysis and Forecasting

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Hou, Arthur; Reale, Oreste

    2004-01-01

    Results provided by two different assimilation methodologies involving data from passive and active space-borne microwave instruments are presented. The impact of the precipitation estimates produced by the TRMM Microwave Imager (TMI) and Special Sensor Microwave/Imager (SSM/I) in a previously developed 1D variational continuous assimilation algorithm for assimilating tropical rainfall is shown on two hurricane cases. Results on the impact of the SeaWinds scatterometer on the intensity and track forecast of a mid-Atlantic hurricane are also presented. This work is the outcome of a collaborative effort between NASA and NOAA and indicates the substantial improvement in tropical cyclone forecasting that can result from the assimilation of space-based data in global atmospheric models.

  13. Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.

    2004-01-01

    A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.

  14. The Relationship Between Extratropical Cyclone Steering and Blocking Along the North American East Coast

    NASA Astrophysics Data System (ADS)

    Booth, James F.; Dunn-Sigouin, Etienne; Pfahl, Stephan

    2017-12-01

    The path and speed of extratropical cyclones along the east coast of North America influence their societal impact. This work characterizes the climatological relationship between cyclone track path and speed, and blocking and the North Atlantic Oscillation (NAO). An analysis of Lagrangian cyclone track propagation speed and angle shows that the percentage of cyclones with blocks is larger for cyclones that propagate northward or southeastward, as is the size of the blocked region near the cyclone. Cyclone-centered composites show that propagation of cyclones relative to blocks is consistent with steering by the block: northward tracks more often have a block east/northeast of the cyclone; slow tracks tend to have blocks due north of the cyclone. Comparison with the NAO shows that to first-order blocking and the NAO steer cyclones in a similar manner. However, blocked cyclones are more likely to propagate northward, increasing the likelihood of cyclone related impacts.

  15. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  16. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  17. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  18. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  19. The Importance of Hurricane Research to Life, Property, the Economy, and National Security.

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2017-12-01

    The devastating 2017 Atlantic hurricane season has brought into stark relief how much hurricane forecasts have improved - and how important it is to make them even better. Whereas the error in 48-hour track forecasts has been reduced by more than half, according to the National Hurricane Center, intensity forecasts remain challenging, especially with storms such as Harvey that strengthened from a tropical depression to a Category 4 hurricane in less than three days. The unusually active season, with Hurricane Irma sustaining 185-mph winds for a record 36 hours and two Atlantic hurricanes reaching 150-mph winds simultaneously for the first time, also highlighted what we do, and do not, know about how tropical cyclones will change as the climate warms. The extraordinary toll of Hurricanes Harvey, Irma, and Maria - which may ultimately be responsible for hundreds of deaths and an estimated $200 billion or more in damages - underscores why investments into improved forecasting must be a national priority. At NCAR and UCAR, scientists are working with their colleagues at federal agencies, the private sector, and the university community to advance our understanding of these deadly storms. Among their many projects, NCAR researchers are making experimental tropical cyclone forecasts using an innovative Earth system model that allows for variable resolution. We are working with NOAA to issue flooding, inundation, and streamflow forecasts for areas hit by hurricanes, and we have used extremely high-resolution regional models to simulate successfully the rapid hurricane intensification that has proved so difficult to predict. We are assessing ways to better predict the damage potential of tropical cyclones by looking beyond wind speed to consider such important factors as the size and forward motion of the storm. On the important question of climate change, scientists have experimented with running coupled climate models at a high enough resolution to spin up a hurricane, and we have used a convection-permitting regional model to examine how named storms of the past might look if they were to formed in a warmer, wetter future. Finally, research is also being performed to better communicate forecasts to help residents make informed choices when a damaging storm approaches.

  20. Wave ensemble forecast system for tropical cyclones in the Australian region

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  1. Understanding the influence of assimilating satellite-derived observations on mesoscale analyses and forecasts of tropical cyclone track and structure

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Chi

    This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.

  2. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    PubMed

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  3. Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ho, S.; Talukder, A.; Liu, T.; Tang, W.; Bingham, A.

    2008-12-01

    Existing cyclone detection and tracking solutions involve extensive manual analysis of modeled-data and field campaign data by teams of experts. We have developed a novel automated global cyclone detection and tracking system by assimilating and sharing information from multiple remote satellites. This unprecedented solution of combining multiple remote satellite measurements in an autonomous manner allows leveraging off the strengths of each individual satellite. Use of multiple satellite data sources also results in significantly improved temporal tracking accuracy for cyclones. Our solution involves an automated feature extraction and machine learning technique based on an ensemble classifier and Kalman filter for cyclone detection and tracking from multiple heterogeneous satellite data sources. Our feature-based methodology that focuses on automated cyclone discovery is fundamentally different from, and actually complements, the well-known Dvorak technique for cyclone intensity estimation (that often relies on manual detection of cyclonic regions) from field and remote data. Our solution currently employs the QuikSCAT wind measurement and the merged level 3 TRMM precipitation data for automated cyclone discovery. Assimilation of other types of remote measurements is ongoing and planned in the near future. Experimental results of our automated solution on historical cyclone datasets demonstrate the superior performance of our automated approach compared to previous work. Performance of our detection solution compares favorably against the list of cyclones occurring in North Atlantic Ocean for the 2005 calendar year reported by the National Hurricane Center (NHC) in our initial analysis. We have also demonstrated the robustness of our cyclone tracking methodology in other regions over the world by using multiple heterogeneous satellite data for detection and tracking of three arbitrary historical cyclones in other regions. Our cyclone detection and tracking methodology can be applied to (i) historical data to support Earth scientists in climate modeling, cyclonic-climate interactions, and obtain a better understanding of the cause and effects of cyclone (e.g. cyclo-genesis), and (ii) automatic cyclone discovery in near real-time using streaming satellite to support and improve the planning of global cyclone field campaigns. Additional satellite data from GOES and other orbiting satellites can be easily assimilated and integrated into our automated cyclone detection and tracking module to improve the temporal tracking accuracy of cyclones down to ½ hr and reduce the incidence of false alarms.

  4. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  5. OSSE Evaluation of Prospective Aircraft Reconnaissance Flight Patterns and their Impact on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Ryan, K. E.; Bucci, L. R.; Christophersen, H.; Atlas, R. M.; Murillo, S.; Dodge, P.

    2015-12-01

    Each year, NOAA/AOML's Hurricane Research Division (HRD) conducts its Hurricane field Program in which observations are collected via NOAA aircraft to improve the understanding and prediction of hurricanes. Mission experiments suggest a variety of flight patterns and sampling strategies aimed towards their respective goals described by the Intensity Forecasting Experiment (IFEX; Rogers et al., BAMS, 2006, 2013), a collaborative effort among HRD, NHC, and EMC. Evaluating the potential impact of various trade-offs in design is valuable for determining the optimal air reconnaissance flight pattern for a given prospective mission. AOML's HRD has developed a system for performing regional Observing System Simulation Experiments (OSSEs) to assess the potential impact of proposed observing systems on hurricane track and intensity forecasts and analyses. This study focuses on investigating the potential impact of proposed aircraft reconnaissance observing system designs. Aircraft instrument and flight level retrievals were simulated from a regional WRF ARW Nature Run (Nolan et al., 2013) spanning 13 days, covering the life cycle of a rapidly intensifying Atlantic tropical cyclone. The aircraft trajectories are simulated in a variety of ways and are evaluated to investigate the potential impact of aircraft reconnaissance observations on hurricane track and intensity forecasts.

  6. New Hurricane Exhibit

    NASA Image and Video Library

    2007-08-29

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  7. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  8. The effect of physical parameterizations and initial data on the numerical prediction of the President's Day cyclone

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1984-01-01

    Results are presented from a series of forecast experiments which were conducted to assess the importance of large-scale dynamical processes, diabatic heating, and initial data to the prediction of the President's Day cyclone. The synoptic situation and NMC model forecasts for this case are summarized, and the analysis/forecast system and experiments are described. The GLAS Model forecast from the GLAS analysis at 0000 GMT 18 February is found to have correctly predicted intense coastal cyclogenesis and heavy precipitation. A forecast with surface heat and moisture fluxes eliminated failed to predict any cyclogenesis while a similar forecast with only the surface moisture flux excluded showed weak development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low-level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic.

  9. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  10. Experiments with Tropical Cyclone Wave and Intensity Forecasts

    DTIC Science & Technology

    2008-09-30

    algorithm In collaboration with Paul Wittmann (Fleet Numerical Metorology and Oceanography Center) and Hendrik Tolman (National Centers for...Wittmann, P.A., C Sampson and H. Tolman: 2006: Wave Analysis Guidance for Tropical Cyclone Forecast Advisories. 9th International Workshop on Wave

  11. Multi-scale Sensitivity and Predictability of Hurricane Joaquin (2015) Illuminated Through Adjoint Studies

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Holdaway, D.; Amerault, C. M.

    2017-12-01

    Hurricane Joaquin (2015) was a strong category 4 hurricane (maximum winds of 135 kts) that developed from an upper-level low over the western Atlantic and was noteworthy because of its large impact in the Bahamas, as well as the sinking of the cargo ship El Farroand loss of her 33 crew members. Joaquin initially moved southwest towards the Bahamas and rapidly intensified before sharply turning northeastward. Nearly all operational model forecasts failed to provide an accurate prediction of the rapid intensification and track, even at short lead times. As a result, the National Hurricane Center forecasted landfall in the mid-Atlantic, while in reality the storm moved well offshore. In this study, we utilize two adjoint modeling systems, the Navy COAMPS and the NASA GEOS-5, to investigate the role of initial condition errors that may have led to the relatively poor track and intensity predictions of Hurricane Joaquin. Adjoint models can provide valuable insight into the practical limitations of our ability to predict the path of tropical cyclones and their strength. An adjoint model can be used for the efficient and rigorous computation of numerical weather forecast sensitivity to changes in the initial state. The adjoint sensitivity diagnostics illustrate complex influences on the evolution of Joaquin that occur over a wide range of spatial scales. The sensitivity results highlight the importance of an upper-level trough to the northeast that provided the steering flow for the poorly-predicted southwesterly movement of the hurricane in its early phase. The steering flow and hurricane track are found to be very sensitive to relatively small changes in the initial state to the east-northeast of the hurricane. Additionally, the intensity prediction of Hurricane Joaquin is found to be very sensitive to the initial state moisture including highly structured regions around the storm and in remote regions as well. Hurricane Joaquin was observed in four NASA WB-57 research flights during the ONR Tropical Cyclone Intensity (TCI) experiment. The dropsondes that were deployed in regions of large initial state sensitivity are used to characterize the atmospheric properties of these sensitive regions. We will also quantify the impact of TCI dropsondes on COAMPS forecasts for select forecasts of Hurricane Joaquin.

  12. Statistical Analysis of the Links between Blocking and Nor'easters

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Pfahl, S.

    2015-12-01

    Nor'easters can be loosely defined as extratropical cyclones that develop as they progress northward along the eastern coast of North America. The path makes it possible for these storms to generate storm surge along the coastline and/or heavy precipitation or snow inland. In the present analysis, the path of the storms is investigated relative to the behavior of upstream blocking events over the North Atlantic Ocean. For this analysis, two separate Lagrangian tracking methods are used to identify the extratropical cyclone paths and the blocking events. Using the cyclone paths, Nor'easters are identified and blocking statistics are calculated for the days prior to, during and following the occurrence of the Nor'easters. The path, strength and intensification rates of the cyclones are compared with the strength and location of the blocks. In the event that a Nor'easter occurs, the likelihood of the presence of block at the southeast tip of Greenland is statistically significantly increased, i.e., the presence of a block concurrent with a Nor'easter happens more often than by random coincidence. However no significant link between the strength of the storms and the strength of the block is identified. These results suggest that the presence of the block mainly affects the path of the Nor'easters. On the other hand, in the event of blocking at the southeast tip of Greenland, the likelihood of a Nor'easter, as opposed to a different type of storm is no greater than what one might expect from randomly sampling cyclone tracks. The results confirm a long held understanding in forecast meteorology that upstream blocking is a necessary but not sufficient condition for generating a Nor'easter.

  13. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    NASA Astrophysics Data System (ADS)

    Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana

    2016-05-01

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  14. Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data

    DOE PAGES

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    2017-01-22

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  15. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    NASA Astrophysics Data System (ADS)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.

  16. Predictability and prediction of tropical cyclones on daily to interannual time scales

    NASA Astrophysics Data System (ADS)

    Belanger, James Ian

    The spatial and temporal complexity of tropical cyclones (TCs) raises a number of scientific questions regarding their genesis, movement, intensification, and variability. In this dissertation, the principal goal is to determine the current state of predictability for each of these processes using global numerical prediction systems. The predictability findings are then used in conjunction with several new statistical calibration techniques to develop a proof-of-concept, operational forecast system for North Atlantic TCs on daily to intraseasonal time scales. To quantify the current extent of tropical cyclone predictability, we assess probabilistic forecasts from the most advanced global numerical weather prediction system to date, the ECMWF Variable Resolution Ensemble Prediction System (VarEPS; Hamill et al. 2008, Hagedorn et al. 2012). Using a new false alarm clustering technique to maximize the utility of the VarEPS, the ensemble system is shown to provide well-calibrated probabilistic forecasts for TC genesis through a lead-time of one week and pregenesis track forecasts with similar skill compared to the VarEPS's postgenesis track forecasts. These findings provide evidence that skillful real-time TC genesis predictions may be made in the North Indian Ocean—a region that even today has limited forecast warning windows for TCs relative to other ocean basins. To quantify the predictability of TCs on intraseasonal time scales, forecasts from the ECMWF Monthly Forecast System (ECMFS) are examined for the North Atlantic Ocean. From this assessment, dynamically based forecasts from the ECMFS provide forecast skill exceeding climatology out to weeks three and four for portions of the southern Gulf of Mexico, western Caribbean and the Main Development Region. Forecast skill in these regions is traced to the model's ability to capture correctly the variability in deep-layer vertical wind shear as well as the relative frequency of easterly waves moving through these regions. Following the TC predictability studies, a proof-of-concept operational forecast system for North Atlantic TCs is presented for daily to intraseasonal time scales. Findings from the predictability studies are used in conjunction with recently developed forecast calibration techniques to render the VarEPS and ECMFS forecasts more useful in an operational setting. The proposed combination of bias-calibrated regional probabilistic forecast guidance along with objectively-defined measures of confidence is a new way of providing TC forecasts on intraseasonal time scales. On interannual time scales, the predictability of TCs is examined by considering their relationship with tropical Atlantic easterly waves. First, a set of easterly wave climatologies for the Climate Forecast System-Reanalysis, ERA-Interim, ERA-40, and NCEP/NCAR Reanalysis are developed using a new easterly wave tracking algorithm based on 700 hPa curvature relative vorticity anomalies. From the reanalysis-derived easterly wave climatologies, a moderately positive and statistically significant relationship is seen with tropical Atlantic TCs, suggesting that approximately 20-30% of the total variance in the number of TCs on interannual time scales may be explained by the frequency of easterly waves. In relation to large-scale climate modes, the Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Mode (AMM) exhibit the strongest positive covariability with Atlantic easterly wave frequency. Besides changes in the number of easterly waves, the intensification efficiency of easterly waves, which is the percentage of waves that induce North Atlantic TC formation, has also been evaluated. These findings offer a plausible physical explanation for the recent increase in the number of NATL TCs, as it has been concomitant with an increasing trend in both the number of tropical Atlantic easterly waves and intensification efficiency. In addition, the easterly wave-tropical cyclone pathway is likely an important mechanism governing how the AMO and AMM modulate North Atlantic TC frequency—more so than previous thought (e.g., Thorncroft and Hodges 2001, Hopsch et al. 2007, Kossin and Vimont 2007). The last component of this dissertation examines how the historical variability in U.S. landfalling TCs has impacted the annual TC tornado record. To reconcile the inhomogeneous, historical tornado record, two statistical tornado models, developed from a set of a priori predictors for TC tornado formation, are used to reconstruct the TC tornado climatology. Based on the evaluation period during the most reliable portion of the TC tornado record, these models possess moderate skill in forecasting the magnitude of a tornado outbreak from a Gulf landfalling TC and have high skill in forecasting the annual number of TC tornadoes. While the synthetic TC tornado record also reflects decadal scale variations in association with the AMO, a comparison of the current warm phase of the AMO with the previous warm phase period shows that the median number of tornadoes per Gulf TC landfall has significantly increased. This change likely reflects the increase in median TC size (by 35%) of Gulf landfalling TCs along with an increased frequency of large TCs at landfall.

  17. Augmentation of Early Intensity Forecasting in Tropical Cyclones

    DTIC Science & Technology

    2011-09-30

    modeled storms to the measured signatures. APPROACH The deviation-angle variance technique was introduced in Pineros et al. (2008) as a procedure to...the algorithm developed in the first year of the project. The new method used best-track storm fixes as the points to compute the DAV signal. We...In the North Atlantic basin, RMSE for tropical storm category is 11 kt, hurricane categories 1-3 is 12.5 kt, category 4 is 18 kt and category 5 is

  18. Tropical Cyclone Report: Joint Typhoon Warning Center Guam, Mariana Islands, 1991

    DTIC Science & Technology

    1991-01-01

    provided by the weather unit supporting synoptic time plus three hours (0300Z, 0900Z, the 15th Air Base Wing , Hickam AFB, Hawaii. 1500Z and 2100Z). By...DYNAMIC 5.2.3.1 CLIMATOLOGY AND PERSISTENCE 5.2.4.1 NOGAPS VORTEX TRACKING ( CLIP ) - A statistical regression technique that ROUTINE (NGPS) - This...forecast skill of other in the expected vicinity of the storm is more sophisticated techniques. CLIP in the conducted every six hours through 72 hours

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  20. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  1. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of pre-existing 'parent' cyclones. Furthermore, it was found that a higher proportion of east Atlantic cyclones are type C cyclones with strong upper-level forcing but weak low-level forcing suggesting that latent energy plays a more important role in their intensification than for west Atlantic cyclones.

  2. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of pre-existing 'parent' cyclones. Furthermore, it was found that a higher proportion of east Atlantic cyclones are type C cyclones with strong upper-level forcing but weak low-level forcing suggesting that latent energy plays a more important role in their intensification than for west Atlantic cyclones.

  3. Modulation of precipitation by conditional symmetric instability release

    NASA Astrophysics Data System (ADS)

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-03-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to climatological precipitation accumulations for the North Atlantic and western Europe. Case studies reveal that CSI release could be common along cold fronts of mature extratropical cyclones and the North Atlantic storm track is found to be a region with large CSI according to two independent CSI metrics. Correlations of CSI with accumulated precipitation are also large in this region and CSI release is inferred to be occurring about 20% of the total time over depths of over 1 km. We conclude that the inability of current global weather forecast and climate prediction models to represent CSI release (due to insufficient resolution yet lack of subgrid parametrization schemes) may lead to errors in precipitation distributions, particularly in the region of the North Atlantic storm track.

  4. Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2017-04-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.

  5. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.

    2016-11-01

    The main synoptic patterns associated with the wet season (October-May) eastern Mediterranean cyclones have been analyzed and described using NCEP/NCAR reanalysis datasets for the period 1958-2013. The cyclone tracks detected in the eastern Mediterranean are classified into two types based on their positions: the local tracks and the long tracks. The local tracks are either stationary or short tracks. The long tracks distinguished into eleven very closed and highly correlated clusters, which are presented into three regimes namely the northern, the southern and the eastern border Mediterranean regimes. Among the 940 (44.78% of a total of 2099) long tracks, the northern, southern, and eastern border regime contributes respectively about 53.62%, 41.81% and 5% of the long tracks. In addition, the distribution of the long tracks reveals that a larger proportion of the cyclones are generated at the northern coast during November and spring months, while few cyclones are developed over the eastern Mediterranean border in warm months (April and May). Further, their synoptic features show that the regimes are associated with the extension of Azores high, specifically for each regime, the cyclogenesis areas of its clusters are controlled by the intersection of low level (850 hPa) trough and the position of the upper level (250 hPa) maximum wind. Furthermore, the orientations of clusters are controlled by the extension of Siberian high and the shape of cyclonic trough at 850 hPa. In addition, the synoptic study shows that most of the southern cyclones generated externally by African and Red Sea troughs, while most of the northern and eastern border cyclones are generated internally.

  6. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  7. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  8. The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Cione, Joseph Jerome

    In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.

  9. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Preliminary Results with Very Severe Cyclonic Storm Nargis (2008)

    NASA Astrophysics Data System (ADS)

    Shen, B.; Tao, W.; Atlas, R.

    2008-12-01

    Very Severe Cyclonic Storm Nargis, the deadliest named tropical cyclone (TC) in the North Indian Ocean Basin, devastated Burma (Myanmar) in May 2008, causing tremendous damage and numerous fatalities. An increased lead time in the prediction of TC Nargis would have increased the warning time and may therefore have saved lives and reduced economic damage. Recent advances in high-resolution global models and supercomputers have shown the potential for improving TC track and intensity forecasts, presumably by improving multi-scale simulations. The key but challenging questions to be answered include: (1) if and how realistic, in terms of timing, location and TC general structure, the global mesoscale model (GMM) can simulate TC genesis and (2) under what conditions can the model extend the lead time of TC genesis forecasts. In this study, we focus on genesis prediction for TCs in the Indian Ocean with the GMM. Preliminary real-data simulations show that the initial formation and intensity variations of TC Nargis can be realistically predicted at a lead time of up to 5 days. These simulations also suggest that the accurate representations of a westerly wind burst (WWB) and an equatorial trough, associated with monsoon circulations and/or a Madden-Julian Oscillation (MJO), are important for predicting the formation of this kind of TC. In addition to the WWB and equatorial trough, other favorable environmental conditions will be examined, which include enhanced monsoonal circulation, upper-level outflow, low- and middle-level moistening, and surface fluxes.

  10. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  11. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  12. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    NASA Astrophysics Data System (ADS)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  13. Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.

    2016-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.

  14. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  15. Influence of sea-ice coverage, sea-surface temperatures and latent heat release on baroclinic instability of an Arctic cyclone

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Zhang, X.

    2012-12-01

    Arctic sea ice has shrunk drastically and Arctic storm activity has intensified over last decades. To improve understanding air-ice-sea interactions in the context of storm activity, we conducted a modeling study of a selected intense storm that invaded and was persistent for prolonged time in the central Arctic Ocean during March 16-22, 2011. A series of control and sensitivity simulations were carried out by employing the Weather Research and Forecasting (WRF) model, which was configured using two nested domains at a resolution of 10 km for the inner domain and 30 km for the outer domain. The control simulations well captured the cyclone genesis, regeneration, track and intensity. Diagnostic analysis and a comparison between the and sensitivity experiments suggest that the strong intensity, regeneration, and long-lasting duration of the cyclone were driven by unusually sustained baroclinic instability, which was resulted due to (1) anomalously reduced sea-ice coverage and strong advection of heat, moisture and vorticity from the North Atlantic; and (2) a release of latent heat due to condensation.

  16. Hurricane and Monsoon Tracking with Driftsondes

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Cocquerez, Philippe; Doerenbecher, A.; Hock, Terrence; Lavaysse, C.; Parsons, D.; Redelsperger, J. L.

    Tropical cyclones (TCs) are a typical weather threat. The threat can apply to humans, their properties, and activities. Their prediction, particularly their trajectory and intensity, remains difficult. In addition, TCs develop above the tropical oceans where the coverage by in situ observations is poor and within cloud clusters (mesoscale convective systems MCS) that limit the ability of numerical weather prediction (NWP) models to assimilate satellite data [18]. Improved forecast of TCs trajectories is a huge benefit in terms of material costs of evacuations and damage, not being able to quantify saved life.

  17. Studying the Processes Contributed to the Hairpin Turn of Hurricane Joaquin with WRF numerical simulations and TCI-2015 observations

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Yu, Y.

    2016-12-01

    The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.

  18. 1998 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1998-01-01

    1998 ANNUAL TROPICAL CYCLONE REPORT Microwave imagery of Typhoon Rex (06W) as it passed through the Bonin Islands, taken at 0800Z on 28 August... DAVE ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.3 TESTING AND RESULTS...weighting the forecasts given by XTRP and CLIM. 5.2.5.2 DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell

  19. A Global Climatology of Extratropical Transition

    NASA Astrophysics Data System (ADS)

    Camargo, S. J.; Bieli, M.; Sobel, A. H.; Evans, J. L.; Hall, T. M.

    2017-12-01

    When moving into midlatitude regions, tropical cyclones often undergo a process called extratropical transition (ET), in which they radically change their physical structure and develop characteristics typical of extratropical cyclones. We present the first climatology of ET that encompasses all major global tropical cyclone basins and is based on a consistent set of data, time period, and method. Using best-track data from 1979-2015 to define the tracks of the storm centers, we identify storms that undergo ET by means of their paths in the cyclone phase space (CPS), calculated from geopotential height fields in reanalysis datasets. Two reanalyses are employed and compared for this purpose, the Japanese 55-year Reanalysis (JRA-55) and the ECMWF Interim Reanalysis (ERA-Interim). The results are used to study the seasonal and geographical distributions of storms undergoing ET, inter-basin differences in the statistics of ET occurrence, and the differences between the ETs defined by CPS and those defined by the 'extratropical' labels (determined subjectively by human forecasters using a wider range of data) in the best-track archives. About 50% of all storms in the North Atlantic and the Western North Pacific undergo ET. In the southern hemisphere, ET fractions range from about 20% in the South Indian Ocean and the Australian region to 40% in the South Pacific. The North Atlantic and Western North Pacific exhibit somewhat different seasonal cycles, with the probability of ET maximizing later in the North Atlantic, but having a local minimum in the earlier part of the peak season in both basins. Southern hemispheric basins have much less pronounced seasonal cycles. The classification of ET storms based on JRA-55 agrees better with the best-track data than the ERA-Interim classification. In the North Atlantic and the Western North Pacific, the differences are small and both reanalyses achieve F1 performance scores of at least 0.8, but JRA-55 has a higher classification skill in all other basins.Due to the global scope and consistent methodology, the results presented are well suited to serve as a benchmark for other studies including research on ET under climate change scenarios.

  20. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  1. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  2. Influences of the Saharan Air Layer on the Formation and Intensification of Hurricane Isabel (2003): Analysis of AIRS data and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Wu, L.; Braun, S. A.

    2006-12-01

    Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.

  3. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  4. Ocean Model Impact Study for Coupled Hurricane Forecasting: An HFIP Initiative

    NASA Astrophysics Data System (ADS)

    Kim, H. S. S.; Halliwell, G. R., Jr.; Tallapragada, V.; Black, P. G.; Bond, N.; Chen, S.; Cione, J.; Cronin, M. F.; Ginis, I.; Liu, B.; Miller, L.; Jayne, S. R.; Sanabia, E.; Shay, L. K.; Uhlhorn, E.; Zhu, L.

    2016-02-01

    Established in 2009, the NOAA Hurricane Forecast Improvement Project (HFIP) is a ten-year project to promote accelerated improvements hurricane track and intensity forecasts (Gall et al. 2013). The Ocean Model Impact Tiger Team (OMITT) consisting of model developers and research scientists was formed as one of HFIP working groups in December 2014, to evaluate the impact of ocean coupling in tropical cyclone (TC) forecasts. The team investigated the ocean model impact in real cases for Category 3 Hurricane Edouard in 2014, using simulations and observations that were collected for different stages of the hurricane. Two Eastern North Pacific Hurricanes in 2015, Blanca and Dolores, are also of special interest. These two powerful Category 4 storms followed a similar track, however, they produced dramatically different ocean cooling, about 7.2oC for Hurricane Blanca but only about 2.7oC for Hurricane Dolores, and the corresponding intensity changes were negative 40 ms-1 and 20 ms-1, respectively. Two versions of operational HWRF and COAMPS-TC coupled prediction systems are employed in the study. These systems are configured to have 1D and 3D ocean dynamics coupled to the atmosphere. The ocean components are initialized separately with climatology, analysis and nowcast products to evaluate the impact of ocean initialization on hurricane forecasts. Real storm forecast experiments are being designed and performed with different levels of the ocean model complexity and various model configurations to study model sensitivity. In this talk, we report the OMITT activities conducted during the past year, present preliminary results of on-going investigation of air-sea interactions in the simulations, and discuss future plans toward improving coupled TC predictions. Gall, R., J. Franklin, F. Marks, E.N. Rappaport, and F. Toepfer, 2013: THE HURRICANE FORECAST IMPROVEMENT PROJECT. Bull. Amer. Meteor. Soc., 329-343.

  5. Mid-latitude storm track variability and its influence on atmospheric composition

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2013-12-01

    Using the storm tracking algorithm, TRACK (Hodges, 1994, 1995, 1999), we have studied the behaviour of storm tracks in the North Atlantic basin, using 850-hPa relative vorticity from the ERA-Interim Re-analysis (Dee et al., 2011). We have correlated surface ozone measurements at rural coastal sites in Europe to the storm track data to explore the role mid-latitude cyclones and their transport of pollutants play in determining surface air quality in Western Europe. To further investigate this relationship, we have used the Monitoring Atmospheric Composition Climate (MACC) Re-analysis dataset (Inness et al., 2013) in TRACK. The MACC Re-analysis is a 10-year dataset which couples a chemistry transport model (Mozart-3; Stein 2009, 2012) to an extended version of the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). Storm tracks in the MACC Re-analysis compare well to the storm tracks using the ERA-Interim Re-analysis for the same 10-year period, as both are based on ECMWF IFSs. We also compare surface ozone values from MACC to surface ozone measurements previously studied. Using TRACK, we follow ozone (O3) and carbon monoxide (CO) through the life cycle of storms from North America to Western Europe. Along the storm tracks, we examine the distribution of CO and O3 within 6 degrees of the center of each storm and vertically at different pressure levels in the troposphere. We hope to better understand the mechanisms with which pollution is vented from the boundary layer to the free troposphere, as well as transport of pollutants to rural areas. Our hope is to give policy makers more detailed information on how climate variability associated with storm tracks between 1979-2013 may affect air quality in Northeast USA and Western Europe.

  6. Interannual variability of the frequency and intensity of tropical cyclones striking the California coast

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.

    2016-12-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  7. Hydroclimatology of Extreme Precipitation and Floods Originating from the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer

    This study explores seasonal patterns and structures of moisture transport pathways from the North Atlantic Ocean and the Gulf of Mexico that lead to extreme large-scale precipitation and floods over land. Storm tracks, such as the tropical cyclone tracks in the Northern Atlantic Ocean, are an example of moisture transport pathways. In the first part, North Atlantic cyclone tracks are clustered by the moments to identify common traits in genesis locations, track shapes, intensities, life spans, landfalls, seasonal patterns, and trends. The clustering results of part one show the dynamical behavior differences of tropical cyclones born in different parts of the basin. Drawing on these conclusions, in the second part, statistical track segment model is developed for simulation of tracks to improve reliability of tropical cyclone risk probabilities. Moisture transport pathways from the North Atlantic Ocean are also explored though the specific regional flood dynamics of the U.S. Midwest and the United Kingdom in part three of the dissertation. Part I. Classifying North Atlantic Tropical Cyclones Tracks by Mass Moments. A new method for classifying tropical cyclones or similar features is introduced. The cyclone track is considered as an open spatial curve, with the wind speed or power information along the curve considered as a mass attribute. The first and second moments of the resulting object are computed and then used to classify the historical tracks using standard clustering algorithms. Mass moments allow the whole track shape, length and location to be incorporated into the clustering methodology. Tropical cyclones in the North Atlantic basin are clustered with K-means by mass moments producing an optimum of six clusters with differing genesis locations, track shapes, intensities, life spans, landfalls, seasonality, and trends. Even variables that are not directly clustered show distinct separation between clusters. A trend analysis confirms recent conclusions of increasing tropical cyclones in the basin over the past two decades. However, the trends vary across clusters. Part II: Tropical cyclone Intensity and Track Simulator (HITS) with Atlantic Ocean Applications for Risk Assessment. A nonparametric stochastic model is developed and tested for the simulation of tropical cyclone tracks. Tropical cyclone tracks demonstrate continuity and memory over many time and space steps. Clusters of tracks can be coherent, and the separation between clusters may be marked by geographical locations where groups of tracks diverge due to the physics of the underlying process. Consequently, their evolution may be non-Markovian. Markovian simulation models, as often used, may produce tracks that potentially diverge or lose memory quicker than nature. This is addressed here through a model that simulates tracks by randomly sampling track segments of varying length, selected from historical tracks. For performance evaluation, a spatial grid is imposed on the domain of interest. For each grid box, long-term tropical cyclone risk is assessed through the annual probability distributions of the number of storm hours, landfalls, winds, and other statistics. Total storm length is determined at birth by local distribution, and movement to other tropical cyclone segments by distance to neighbor tracks, comparative vector, and age of track. An assessment of the performance for tropical cyclone track simulation and potential directions for the improvement and use of such model are discussed. Part III: Dynamical Structure of Extreme Floods in the U.S. Midwest and the United Kingdom. Twenty extreme spring floods that occurred in the Ohio Basin between 1901 and 2008, identified from daily river discharge data, are investigated and compared to the April 2011 Ohio River flood event. Composites of synoptic fields for the flood events show that all these floods are associated with a similar pattern of sustained advection of low-level moisture and warm air from the tropical Atlantic Ocean and the Gulf of Mexico. The typical flow conditions are governed by an anomalous semi-stationary ridge situated east of the US East Coast, which steers the moisture and converges it into the Ohio Valley. Significantly, the moisture path common to all the 20 cases studied here as well as the case of April 2011 is distinctly different from the normal path of Atlantic moisture during spring, which occurs further west. It is shown further that the Ohio basin moisture convergence responsible for the floods is caused primarily by the atmospheric circulation anomaly advecting the climatological mean moisture field. Transport and related convergence due to the covariance between moisture anomalies and circulation anomalies are of secondary but non-negligible importance. The importance of atmospheric circulation anomalies to floods is confirmed by conducting a similar analysis for a series of winter floods on the River Eden in northwest England.

  8. Medium-Range Forecast Skill for Extraordinary Arctic Cyclones in Summer of 2008-2016

    NASA Astrophysics Data System (ADS)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-05-01

    Arctic cyclones (ACs) are a severe atmospheric phenomenon that affects the Arctic environment. This study assesses the forecast skill of five leading operational medium-range ensemble forecasts for 10 extraordinary ACs that occurred in summer during 2008-2016. Average existence probability of the predicted ACs was >0.9 at lead times of ≤3.5 days. Average central position error of the predicted ACs was less than half of the mean radius of the 10 ACs (469.1 km) at lead times of 2.5-4.5 days. Average central pressure error of the predicted ACs was 5.5-10.7 hPa at such lead times. Therefore, the operational ensemble prediction systems generally predict the position of ACs within 469.1 km 2.5-4.5 days before they mature. The forecast skill for the extraordinary ACs is lower than that for midlatitude cyclones in the Northern Hemisphere but similar to that in the Southern Hemisphere.

  9. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of predicted landfall locations compared with observations.

  10. The roles of static stability and tropical-extratropical interactions in the summer interannual variability of the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh Oumar; Woollings, Tim; Dacre, Helen F.; Hodges, Kevin I.

    2018-04-01

    Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector's interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill.

  11. Large‐scale heavy precipitation over central Europe and the role of atmospheric cyclone track types

    PubMed Central

    Lexer, Annemarie; Homann, Markus; Blöschl, Günter

    2017-01-01

    ABSTRACT Precipitation patterns over Europe are largely controlled by atmospheric cyclones embedded in the general circulation of the mid‐latitudes. This study evaluates the climatologic features of precipitation for selected regions in central Europe with respect to cyclone track types for 1959–2015, focusing on large‐scale heavy precipitation. The analysis suggests that each of the cyclone track types is connected to a specific pattern of the upper level atmospheric flow, usually characterized by a major trough located over Europe. A dominant upper level cut‐off low (COL) is found over Europe for strong continental (CON) and van Bebber's type (Vb) cyclones which move from the east and southeast into central Europe. Strong Vb cyclones revealed the longest residence times, mainly due to circular propagation paths. The central European cyclone precipitation climate can largely be explained by seasonal track‐type frequency and cyclone intensity; however, additional factors are needed to explain a secondary precipitation maximum in early autumn. The occurrence of large precipitation totals for track events is strongly related to the track type and the region, with the highest value of 45% of all Vb cyclones connected to heavy precipitation in summer over the Czech Republic and eastern Austria. In western Germany, Atlantic winter cyclones are most relevant for heavy precipitation. The analysis of the top 50 precipitation events revealed an outstanding heavy precipitation period from 2006 to 2011 in the Czech Republic, but no gradual long‐term change. The findings help better understand spatio‐temporal variability of heavy precipitation in the context of floods and may be used for evaluating climate models.

  12. Paradigms for Tropical-Cyclone Intensification

    DTIC Science & Technology

    2011-01-01

    Hurricane Opal (1995) using the Geo- physical Fluid Dynamics Laboratory hurricane prediction model, Möller and Shapiro (2002) found unbalanced flow...al. (2008) calculations on an f -plane, described in section 6.1. A specific aim was to deter- mine the separate contributions of diabatic heating and... Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866-1881. Marks FD Shay LK. 1998: Landfalling tropical cyclones: Forecast

  13. Global climatology of explosive cyclones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Explosive cyclones, which have rapidly intensifying winds and heavy rain, can seriously threaten life and property. These "meteorological bombs" are difficult to forecast, in part because scientists need a better understanding of the physical mechanisms by which they form. In particular, the large-scale circulation conditions that may contribute to explosive cyclone formation are not well understood.

  14. Communicating Storm Surge Forecast Uncertainty

    NASA Astrophysics Data System (ADS)

    Troutman, J. A.; Rhome, J.

    2015-12-01

    When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.

  15. A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone

    NASA Technical Reports Server (NTRS)

    Dare, P. M.; Smith, P. J.

    1983-01-01

    The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.

  16. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'

    NASA Astrophysics Data System (ADS)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.

    2018-04-01

    Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.

  17. The Poleward Shift of Storm Tracks Under Climate Change: Tracking Cyclones in CMIP5

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Tamarin, T.

    2017-12-01

    Extratropical cyclones dominate the distribution of precipitation and wind in the midlatitudes, and therefore their frequency, intensity, and paths have a significant effect on weather and climate. Comprehensive climate models forced by enhanced greenhouse gas emissions suggest that under a climate change scenario, the latitudinal band of storm tracks would shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what is the dominant dynamical mechanism. Here we use a Lagrangian approach to study the poleward shift, by employing a storm-tracking algorithm on an ensemble of CMIP5 models forced by increased CO2 emissions. We demonstrate that in addition to a poleward shift in the latitude of storm genesis, associated with the expansion of the Hadley cell, the averaged cyclonic storm also propagates more poleward until it reaches its maximum intensity. A mechanism for enhanced poleward motion of cyclones in a warmer climate is proposed, supported by idealized global warming experiments, and relates the shift to changes in upper level jet and atmospheric water vapour content. Our results imply that under the RCP8.5 climate change scenario, the averaged latitude of peak cyclone intensity shifts poleward by about 1.2○ (1.0○) in the Atlantic (Pacific) storm track in the Northern Hemisphere (NH), and by about 1.6○ in the Southern Hemisphere (SH) storm track. These changes in cyclone tracks can have a significant impact on midlatitude climate.

  18. Tropical cyclone track Analysis over Indian Coast Using Spatio-Temporal data-mining

    NASA Astrophysics Data System (ADS)

    Mohapatra, Gyanendranath; Manjunath, Swetha; Behera, Sasmita; Mohanty, Pratap Kumar

    2015-04-01

    Tropical cyclones are a natural hazard which largely affects the lives and property with its destructive wind and heavy rainfall. Fluctuations in the frequency and intensity complicate the detection of long-term trends and play an important role in the global climate system; therefore understanding and predicting tropical cyclones track, intensity, and landfall location is of both societal and scientific significance. In this study a data-mining approach is being used to analyze the tropical cyclone track both in the temporal and spatial scale. Basically, the Indian coast line is divided into four zones viz. north east, south east in the eastern side adjoining Bay of Bengal and North west and south west in the western side adjoining Arabian sea as these coastal areas are very much vulnerable for disaster due to maximum number of landfall of Tropical Cyclones. The track and landfall associated with all the cyclones are clustered based on their intensity (Severe, moderate and low) and landfall location. The analyses are carried out for landfall location and the extent of track separately for the events happening in two seasons i.e. pre-monsoon and post-monsoon period. Along with categorization of intensity, trend analysis of track and the targeted zone of maximum damage also been studied. Algorithms are being developed for potential resilient and impact assessment of the parameters associated with cyclone disaster in the coastal region of India. One of the important objectives of this present work is also the identification of most disaster prone coastal area and becoming a part of the information support system during the cyclone period. Based on the statistics like mean, Standard Deviation, regression and correlation analysis, an index is developed which determines the level of damage and vulnerability along the coastal region. This index can be used for the early warning system of particular coastal areas for the preparedness and mitigation of future cyclone events.

  19. Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks

    DOE PAGES

    Daloz, Anne S.; Camargo, S. J.; Kossin, J. P.; ...

    2015-02-11

    A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. Here, for both configurations, tracksmore » are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Lastly, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.« less

  20. Numerical prediction of the Mid-Atlantic states cyclone of 18-19 February 1979

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Rosenberg, R.

    1982-01-01

    A series of forecast experiments was conducted to assess the accuracy of the GLAS model, and to determine the importance of large scale dynamical processes and diabatic heating to the cyclogenesis. The GLAS model correctly predicted intense coastal cyclogenesis and heavy precipitation. Repeated without surface heat and moisture fluxes, the model failed to predict any cyclone development. An extended range forecast, a forecast from the NMC analysis interpolated to the GLAS grid, and a forecast from the GLAS analysis with the surface moisture flux excluded predicted weak coastal low development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic. As an upper level short wave trough approached this ridge, diabatic heating associated with the release of latent heat intensified, and the gradient of vorticity, vorticity advection and upper level divergence in advance of the trough were greatly increased, providing strong large scale forcing for the surface cyclogenesis.

  1. A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui

    2014-05-01

    Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various air-sea interaction processes by high-resolution coupled air-sea modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and air-sea coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that air-sea interaction processes played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the air-sea interaction processes. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled air-sea modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.

  2. Simulating the characteristics of tropical cyclones over the South West Indian Ocean using a Stretched-Grid Global Climate Model

    NASA Astrophysics Data System (ADS)

    Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.

    2018-03-01

    Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.

  3. Towards a Statistical Model of Tropical Cyclone Genesis

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  4. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  5. An Evaluation of QuikSCAT data over Tropical Cyclones as Determined in an Operational Environment

    NASA Astrophysics Data System (ADS)

    Hawkins, J. D.; Edson, R. T.

    2001-12-01

    QuikSCAT data over all global tropical cyclones were examined during the past 3 1/2 years in conjunction with the development of a user¡_s guide to the forecasters at the Joint Typhoon Warning Center, Pearl Harbor, Hawaii. The active microwave scatterometer has greatly enhanced the forecaster's ability to evaluate surface winds over the data poor regions of the tropical oceans. The QuikSCAT scatterometer¡_s unique ability to provide both wind speed and direction on a nearly bi-daily basis has greatly increased the forecaster¡_s near real-time knowledge of tropical cyclone genesis, intensification potential, outer wind structure, and a ¡rminimum estimate¡_ for a tropical cyclone¡_s maximum sustained winds. Scatterometer data were compared with data available to the forecasters in a near real-time environment including ship, land and buoy reports. In addition, comparisons were also made with aircraft measurements (for Atlantic and East Pacific systems), numerical weather model wind fields, and various remote sensing techniques. Wind speeds were found to be extremely useful, especially for the radius of gale force winds. However, in rain-contaminated areas, light winds were often greatly overestimated while in heavy winds, wind speeds were often quite reasonable if not slightly underestimated. The largest issues are still focused on the correct wind direction selection. In these cases, rain-flagged wind vector cells greatly affected the results from the direction ambiguity selection procedure. The ambiguity selection algorithm often had difficulties resolving a circulation center when large areas of the tropical cyclone¡_s center were flagged. Often a block of winds would occur perpendicular to the swath irregardless of the circulation¡_s position. These winds caused considerable confusion for the operational forecasters. However, it was determined that in many cases, an accurate center position could still be obtained by using methods to incorporate the more accurate wind speeds and the outer wind field vectors that were not as seriously affected. Quantitative results and comparisons will be shown in this presentation. In addition, guides to the operational forecasters to determine system centers inspite of the ambiguity selection problems will also be discussed.

  6. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    NASA Astrophysics Data System (ADS)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1

  7. Characteristics of the internal and external sources of the Mediterranean synoptic cyclones for the period 1956-2013

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.; Nazrul Islam, M.

    2017-07-01

    This paper investigates the main sources and features of the Mediterranean synoptic cyclones affecting the basin, using the cyclone tracks. The cyclones' tracks are identified using sea level pressure (SLP) from the NCEP/NCAR reanalysis data for the period 1956-2013. The identified cyclones are classified into two categories: basin affected and basin non-affected. Most of the basin-affected (non-affected) cyclones are internal (external), i.e., generated inside (outside) the Mediterranean basin. This study reveals four (five) main sources of internal (external) cyclones. These four (five) main sources generated about 63.76% (57.25%) of the internal (external) cyclones. Seasonal analysis shows that most of the basin-affected internal (external) cyclones were generated in the winter (spring) season. The lowest number of cyclones were found in the summer. Moreover, the synoptic study of the atmospheric systems accompanied the highest- and lowest-generated years demonstrates that the deepening of the north Europe cyclones and the relative positions of Azores- and Siberian-high systems represent the important factors that influence the number of internal cyclones. Essential factors influencing the external cyclones are the strength of the maximum upper wind, Azores high, Siberian high, and orientations of their ridges.

  8. A climatology of extratropical cyclones over East Asia during 1958-2001

    NASA Astrophysics Data System (ADS)

    Zhang, Yingxian; Ding, Yihui; Li, Qiaoping

    2012-06-01

    A climatology of extratropical cyclones (ECs) over East Asia (20°-75°N, 60°-160°E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data. A total of 12914 EC processes for the period of 1958-2001 are identified, with an EC database integrated and EC activities reanalyzed using the objective algorithm. The results reveal that there are three major cyclogenesis regions: West Siberian Plain, Mongolia (to the south of Lake Baikal), and the coastal region of East China; whereas significant cyclolysis regions are observed in Siberia north of 60°N, Northeast China, and Okhotsk Sea-Northwest Pacific. It is found that the EC lifetime is largely 1-7 days while winter ECs have the shortest lifespan. The ECs are the weakest in summer among the four seasons. Strong ECs often appear in West Siberia, Northeast China, and Okhotsk Sea-Northwest Pacific. Statistical analysis based on k-means clustering has identified 6 dominating trajectories in the area south of 55°N and east of 80°E, among which 4 tracks have important impacts on weather/climate in China. ECs occurring in spring (summer) tend to travel the longest (shortest). They move the fastest in winter, and the slowest in summer. In winter, cyclones move fast in Northeast China, some areas of the Yangtze-Huaihe River region, and the south of Japan, with speed greater than 15 m s-1. Explosively-deepening cyclones are found to occur frequently along the east coast of China, Japan, and Northwest Pacific, but very few storms occur over the inland area. Bombs prefer to occur in winter, spring, and autumn. Their annual number and intensity in 1990 and 1992 in East Asia (EA) are smaller and weaker than their counterparts in North America.

  9. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic

    NASA Astrophysics Data System (ADS)

    Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.

    2018-01-01

    The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.

  10. The Hurricane-Flood-Landslide Continuum: Forecasting Hurricane Effects at Landfall

    NASA Technical Reports Server (NTRS)

    Negri, A.; Golden, J. H.; Updike, R.

    2004-01-01

    Hurricanes, typhoons, and cyclones strike Central American, Caribbean, Southeast Asian and Pacific Island nations even more frequently than the U.S. The global losses of life and property from the floods, landslides and debris flows caused by cyclonic storms are staggering. One of the keys to reducing these losses, both in the U.S. and internationally, is to have better forecasts of what is about to happen from several hours to days before the event. Particularly in developing nations where science, technology and communication are limited, advance-warning systems can have great impact. In developing countries, warnings of even a few hours or days can mitigate or reduce catastrophic losses of life. With the foregoing needs in mind, we propose an initial project of three years total duration that will aim to develop and transfer a warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispanola. The Hurricane-Flood-Landslide Continuum will include satellite observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict near-future runoff, and streamflow changes in affected regions, and landslide models to warn when and where landslides and debris flows are imminent. Since surface communications are likely to be interrupted during these crises, the project also includes the capability to communicate disaster information via satellite to vital government officials in Puerto Rico, Haiti, and Dominican Republic.

  11. Contrasting effects of tropical cyclones on the annual survival of a pelagic seabird in the Indian Ocean.

    PubMed

    Nicoll, Malcolm A C; Nevoux, Marie; Jones, Carl G; Ratcliffe, Norman; Ruhomaun, Kevin; Tatayah, Vikash; Norris, Ken

    2017-02-01

    Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life-history stages across the annual life cycle. We used a 20-year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long-term capture-mark-recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity. © 2016 John Wiley & Sons Ltd.

  12. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    NASA Astrophysics Data System (ADS)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  13. Evaluating CMEMS products in the Western Mediterranean using multiplatform in situ data and an eddy tracker

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Burgoa, Nadia; Pascual, Ananda; Sánchez-Román, Antonio; Tintoré, Joaquín; Ruiz, Simón

    2017-04-01

    Assessment of three CMEMS forecast modelling products (MEDSEA, IBI and GLOBAL) available for the Western Mediterranean has been done for the period 2013-2016. The final objective is to contribute to the improvement of these products by providing feedback to the Monitoring and Forecasting Centers (MFCs). To achieve this objective, a multiplatform approach, combining in-situ and satellite data in synergy with numerical simulations is followed. We present new results on the mesoscale content of three operational models operating in the Western Mediterranean, based on standard statistical analysis and an automated eddy tracker (py-eddy-tracker, v2.1.0; Mason et al., 2014). Properties such as eddy radius, amplitude, polarity, eddy center and tracks have been produced for the three products. For each product the eddy tracker is run over the same period, at a sampling frequency of 1 day. The parameters used for the tracking are the same for each product. Eddy tracks reveal clear areas of dominance of either cyclones or anticyclones. These patterns are visible in all three products. In addition, CMEMS products have been evaluated for specific dates, using high-resolution multiplatform observations from different field experiments carried out in the Western Mediterranean. This study is a contribution to the MedSUB project, funded by Copernicus Marine Service within the Service Evolution 21-SE-CALL1.

  14. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    NASA Astrophysics Data System (ADS)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  15. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    PubMed Central

    Tuluri, Francis; Reddy, R. Suseela; Anjaneyulu, Y.; Colonias, John; Tchounwou, Paul

    2010-01-01

    Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes. PMID:20623002

  16. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  17. Recent and Upcoming Changes to NOAA Marine Forecasts

    Science.gov Websites

    tropical cyclone forecast products effective on or about June 1, 2018 Updated: Continuing experimental around May 15, 2018 Updated: Continuing experimental status in offshore and high seas gridded forecasts been disestablished Discontinuing experimental text products used in the creation of the Tampa Bay

  18. A new method for evaluating impacts of data assimilation with respect to tropical cyclone intensity forecast problem

    NASA Astrophysics Data System (ADS)

    Vukicevic, T.; Uhlhorn, E.; Reasor, P.; Klotz, B.

    2012-12-01

    A significant potential for improving numerical model forecast skill of tropical cyclone (TC) intensity by assimilation of airborne inner core observations in high resolution models has been demonstrated in recent studies. Although encouraging , the results so far have not provided clear guidance on the critical information added by the inner core data assimilation with respect to the intensity forecast skill. Better understanding of the relationship between the intensity forecast and the value added by the assimilation is required to further the progress, including the assimilation of satellite observations. One of the major difficulties in evaluating such a relationship is the forecast verification metric of TC intensity: the maximum one-minute sustained wind speed at 10 m above surface. The difficulty results from two issues : 1) the metric refers to a practically unobservable quantity since it is an extreme value in a highly turbulent, and spatially-extensive wind field and 2) model- and observation-based estimates of this measure are not compatible in terms of spatial and temporal scales, even in high-resolution models. Although the need for predicting the extreme value of near surface wind is well justified, and the observation-based estimates that are used in practice are well thought of, a revised metric for the intensity is proposed for the purpose of numerical forecast evaluation and the impacts on the forecast. The metric should enable a robust observation- and model-resolvable and phenomenologically-based evaluation of the impacts. It is shown that the maximum intensity could be represented in terms of decomposition into deterministic and stochastic components of the wind field. Using the vortex-centric cylindrical reference frame, the deterministic component is defined as the sum of amplitudes of azimuthal wave numbers 0 and 1 at the radius of maximum wind, whereas the stochastic component is represented by a non-Gaussian PDF. This decomposition is exact and fully independent of individual TC properties. The decomposition of the maximum wind intensity was first evaluated using several sources of data including Step Frequency Microwave Radiometer surface wind speeds from NOAA and Air Force reconnaissance flights,NOAA P-3 Tail Doppler Radar measurements, and best track maximum intensity estimates as well as the simulations from Hurricane WRF Ensemble Data Assimilation System (HEDAS) experiments for 83 real data cases. The results confirmed validity of the method: the stochastic component of the maximum exibited a non-Gaussian PDF with small mean amplitude and variance that was comparable to the known best track error estimates. The results of the decomposition were then used to evaluate the impact of the improved initial conditions on the forecast. It was shown that the errors in the deterministic component of the intensity had the dominant effect on the forecast skill for the studied cases. This result suggests that the data assimilation of the inner core observations could focus primarily on improving the analysis of wave number 0 and 1 initial structure and on the mechanisms responsible for forcing the evolution of this low-wavenumber structure. For the latter analysis, the assimilation of airborne and satellite remote sensing observations could play significant role.

  19. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured withmore » sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance activity. This will allow (i) a direct comparison of future TC activity that could be expected for an active or inactive season in an altered climate regime, and (ii) a measure of the level of uncertainty and variability in TC activity resulting from different carbon emission scenarios.« less

  20. The poleward shift of storm tracks under global warming: A Lagrangian perspective

    NASA Astrophysics Data System (ADS)

    Tamarin, T.; Kaspi, Y.

    2017-10-01

    Comprehensive models of climate change projections have shown that the latitudinal band of extratropical storms will likely shift poleward under global warming. Here we study this poleward shift from a Lagrangian storm perspective, through simulations with an idealized general circulation model. By employing a feature tracking technique to identify the storms, we demonstrate that the poleward motion of individual cyclones increases with increasing global mean temperature. A potential vorticity tendency analysis of the cyclone composites highlights two leading mechanisms responsible for enhanced poleward motion: nonlinear horizontal advection and diabatic heating associated with latent heat release. Our results imply that for a 4 K rise in the global mean surface temperature, the mean poleward displacement of cyclones increases by about 0.85° of latitude, and this occurs in addition to a poleward shift of about 0.6° in their mean genesis latitude. Changes in cyclone tracks may have a significant impact on midlatitude climate, especially in localized storm tracks such as the Atlantic and Pacific storm tracks, which may exhibit a more poleward deflected shape.

  1. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    Tropical cyclones are the most extreme weather phenomena which severely impact coastal communities and island nations. There is an ongoing research (i) on accurate analysis of observed trends in tropical cyclone occurrences, and (ii) how tropical cyclone frequency and intensity may change in the future as a result of climate change. Reliable historical records of cyclone activity are vital for this research. The Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) program is dedicated to help Pacific Island countries and Timor Leste gain a better understanding of how climate change will impact their regions. One of the key PACCSAP projects is focused on developing a tropical cyclone archive, climatology and seasonal prediction for the regions. As part of the project, historical tropical cyclone best track data have been examined and prepared to be subsequently displayed through the enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean. Data from the Regional Specialised Meteorological Centre (RSMC) Nadi, Fiji and Tropical Cyclone Warning Centres (TCWCs) in Brisbane, Darwin and Wellington for 1969-1970 to 2010-2011 tropical cyclone seasons have been carefully examined. Errors and inconsistencies which have been found during the quality control procedure have been corrected. To produce a consolidated data set for the South Pacific Ocean, best track data from these four centres have been used. Specifically, for 1969-1970 to 1994-1995 tropical cyclone seasons, data from TCWCs in Brisbane, Darwin and Wellington have been used. In 1995, RSMC Nadi, Fiji has been established with responsibilities for issuing tropical cyclone warnings and preparing best track data for the area south of the equator to 25°S, 160°E to 120°W. Consequently, data from RSMC Nadi have been used as a primary source for this area, starting from the 1995-1996 tropical cyclone season. These data have been combined with the data from TCWC Wellington for the area 25°S to 40°S, 160°E to 120°W and with the data from TCWCs in Brisbane and Darwin for the area south of the equator to 37°S, 135°E to 160°E. In addition, tropical cyclone best track data for the North-West Pacific for 1977-2011 seasons prepared at RSMC Tokyo and for the South Indian Ocean for 1969-2011 prepared at RSMC la Réunion have been added to the dataset. As a result, new design of the Southern Hemisphere/Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) incorporates best track data for the Western Pacific both south and north of the equator and for the South Indian Ocean. The portal has been developed using the OpenLayers web mapping library. Main features of the portal include dynamic map navigation, presenting detailed cyclone information for a selected region in the Southern Hemisphere and North-West Pacific and displaying changes in tropical cyclone intensity over the lifetime of a cyclone. One of the unique features of the portal is its enhanced functionality for spatial and temporal selection for cyclones in selected areas (e.g. economic exclusion zones of the countries). Acknowledgement The research discussed in this paper was conducted through the PACCSAP supported by the AusAID and the Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO. We acknowledge C. Shamsu, D. Duong, P. Lopatecki, W. Banerjee, P. He, P. Wickramasinghe and A. Bauers from the School of Computer Sciences and IT at the Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia for their contribution to the development of the portal's functionality on spatial selection.

  2. On the Evolution of Precipitation Associated with a Wintertime East Coast Cyclone: A GALE Preliminary Study.

    DTIC Science & Technology

    1985-01-01

    CYCLES (CYCLone Extratropical Storms project), a more elaborate study of precipitation structure, has been carried out by Hobbs and his collaborators...toward the heavily populated northeast portion of the country. The disruption of human activity caused by these often poorly forecast storms is...daily synoptic maps over a century ago permitted analysis of the structure and behavior of extratropical cyclones. Since then considerable literature

  3. The Navy’s Next-Generation Tropical Cyclone Model

    DTIC Science & Technology

    2009-09-30

    when compared with the Doppler radar observations (Fig. 6c). An example of a real-time COAMPS-TC forecast during T- PARC /TCS-08 initialized on 26...prediction support for the THORPEX-Pacific Asian Campaign (T- PARC ) and the Tropical Cyclone Structure 2008 (TCS-08) (T- PARC /TCS-08) experiments...implemented from the CBLAST project. In support of the T- PARC /TCS-08 campaign, adaptive observing guidance for tropical cyclones has been provided

  4. The use of a calculus-based cyclone identification method for generating storm statistics

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.; Chen, D.

    2006-08-01

    Maps of 12 hr sea-level pressure (SLP) from the former National Meteotrological Center (NMC) and 24 hr SLP maps from the European Centre for Medium-range Weather Forecasts (ECMWF) 40 yr re-analysis (ERA40) were used to identify extratropical cyclones in the North Atlantic region. A calculus-based cyclone identification (CCI) method is introduced and evaluated, where a multiple regression against a truncated series of sinusoids was used to obtain a Fourier approximation of the north-south and east-west SLP profiles, providing a basis for analytical expressions of the derivatives. Local SLP minima were found from the zero-crossing points of the first-order derivatives for the SLP gradients where the second-order derivatives were greater than zero. Evaluation of cyclone counts indicates a good correspondence with storm track maps and independent monthly large-scale SLP anomalies. The results derived from ERA40 also revealed that the central storm pressure sometimes could be extremely deep in the re-analysis product, and it is not clear whether such outliers are truly representative of the actual events. The position and the depth of the cyclones were subjects for a study of long-term trends in cyclone number for various regions around the North Atlantic. Noting that the re-analyses may contain time-dependent biases due to changes in the observing practises, a tentative positive linear trend, statistically significant at the 10% level, was found in the number of intense storms over the Nordic countries over the period 1955-1994 in both the NMC and the ERA40 data. However, there was no significant trend in the western parts of the North Atlantic where trend analysis derived from NMC and ERA40 yielded different results. The choice of data set had a stronger influence on the results than choices such as the number of harmonics to include or spatial resolution of interpolation.

  5. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    NASA Astrophysics Data System (ADS)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  6. Serial Clustering of North Atlantic Cyclones and Wind Storms: A New Identification Base and Sensitivity to Intensity and Intra-Seasonal Variability

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Kirchner-Bossi, N. O.; Befort, D. J.; Ulbrich, U.

    2015-12-01

    Time-clustered mid-latitude winter storms are responsible for a large portion of the overall windstorm-related damage in Europe. Thus, its study entails a high meteorological interest, while its outcome can result in a crucial utility for the (re)insurance industry. In addition to existing cyclone-based studies, here we use an event identification approach based on surface near wind speeds only, to investigate windstorm clustering and compare it to cyclone clustering. Specifically, cyclone and windstorm tracks are identified for winter 1979-2013 (Oct-Mar), to perform two sensitivity analyses on event-clustering in the North Atlantic using ERA-Interim Reanalysis. First, the link between clustering and cyclone intensity is analysed and compared to windstorms. Secondly, the sensitivity of clustering on intra-seasonal time scales is investigated, for both cyclones and windstorms. The wind-based approach reveals additional regions of clustering over Western Europe, which could be related to extreme damages, showing the added value of investigating wind field derived tracks in addition to that of cyclone tracks. Previous studies indicate a higher degree of clustering for stronger cyclones. However, our results show that this assumption is not always met. Although a positive relationship is confirmed for the clustering centre located over Iceland, clustering off the coast of the Iberian Peninsula behaves opposite. Even though this region shows the highest clustering, most of its signal is due to cyclones with intensities below the 70th percentile of the Laplacian of MSLP. Results on the sensitivity of clustering to the time of the winter season (Oct-Mar) show a temporal evolution of the clustering patterns, for both windstorms and cyclones. Compared to all cyclones, clustering of windstorms and strongest cyclones culminate around February, while all cyclone clustering peak in December to January.

  7. Sensitivity of the simulation of tropical cyclone size to microphysics schemes

    NASA Astrophysics Data System (ADS)

    Chan, Kelvin T. F.; Chan, Johnny C. L.

    2016-09-01

    The sensitivity of the simulation of tropical cyclone (TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model (WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes-Ferrier (FER), WRF Single-Moment 5-class (WSM5) and WRF Single-Moment 6-class (WSM6)-are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size (the inner-core size, especially). In addition, the inclusion of graupel microphysics processes (as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.

  8. A comparison of observed and forecast energetics over North America

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1985-01-01

    The observed kinetic energy balance is calculated over North America and compared with that computed from forecast fields for the 13-15 January 1979 cyclone. The FGGE upper-air rawinsonde network serves as the observational database while the forecast energetics are derived from a numerical integration with the GLAS fourth-order general circulation model initialized at 00 GMT 13 January. Maps of the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. Both the forecast and observations exhibit the lower and upper tropospheric maxima in vertical profiles of kinetic energy generation and dissipation typically found in cyclonic disturbances. An interesting time lag is noted in the observational analysis with the maximum observed kinetic energy occurring 12 h later than the maximum eddy conversion over the same region.

  9. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  10. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    NASA Astrophysics Data System (ADS)

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; Frappier, Amy Benoit; Asmerom, Yemane; Liu, Kam-Biu; Prufer, Keith M.; Ridley, Harriet E.; Polyak, Victor; Kennett, Douglas J.; MacPherson, Colin G.; Aquino, Valorie V.; Awe, Jaime; Breitenbach, Sebastian F. M.

    2016-11-01

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the North American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. Our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.

  11. Persistent northward North Atlantic tropical cyclone track migration over the past five centuries

    DOE PAGES

    Baldini, Lisa M.; Baldini, James U. L.; McElwaine, Jim N.; ...

    2016-11-23

    Accurately predicting future tropical cyclone risk requires understanding the fundamental controls on tropical cyclone dynamics. Here we present an annually-resolved 450-year reconstruction of western Caribbean tropical cyclone activity developed using a new coupled carbon and oxygen isotope ratio technique in an exceptionally well-dated stalagmite from Belize. Western Caribbean tropical cyclone activity peaked at 1650 A.D., coincident with maximum Little Ice Age cooling, and decreased gradually until the end of the record in 1983. Considered with other reconstructions, the new record suggests that the mean track of Cape Verde tropical cyclones shifted gradually north-eastward from the western Caribbean toward the Northmore » American east coast over the last 450 years. Since ~1870 A.D., these shifts were largely driven by anthropogenic greenhouse gas and sulphate aerosol emissions. In conclusion, our results strongly suggest that future emission scenarios will result in more frequent tropical cyclone impacts on the financial and population centres of the northeastern United States.« less

  12. Synoptic Scale North American Weather Tracks and the Formation of North Atlantic Windstorms

    NASA Astrophysics Data System (ADS)

    Baum, A. J.; Godek, M. L.

    2014-12-01

    Each winter, dozens of fatalities occur when intense North Atlantic windstorms impact Western Europe. Forecasting the tracks of these storms in the short term is often problematic, but long term forecasts provide an even greater challenge. Improved prediction necessitates the ability to identify these low pressure areas at formation and understand commonalities that distinguish these storms from other systems crossing the Atlantic, such as where they develop. There is some evidence that indicates the majority of intense windstorms that reach Europe have origins far west, as low pressure systems that develop over the North American continent. This project aims to identify the specific cyclogenesis regions in North America that produce a significantly greater number of dangerous storms. NOAA Ocean Prediction Center surface pressure reanalysis maps are used to examine the tracks of storms. Strong windstorms are characterized by those with a central pressure of less than 965 hPa at any point in their life cycle. Tracks are recorded using a coding system based on source region, storm track and dissipation region. The codes are analyzed to determine which region contains the most statistical significance with respect to strong Atlantic windstorm generation. The resultant set of codes also serves as a climatology of North Atlantic extratropical cyclones. Results indicate that a number of windstorms favor cyclogenesis regions off the east coast of the United States. A large number of strong storms that encounter east coast cyclogenesis zones originate in the central mountain region, around Colorado. These storms follow a path that exits North America around New England and subsequently travel along the Canadian coast. Some of these are then primed to become "bombs" over the open Atlantic Ocean.

  13. Assessing the capability of high resolution climatic model experiments to simulate Mediterranean cyclonic tracks

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Giannakopoulos, C.; Kostopoulou, E.; Kouroutzoglou, I.; Keay, K.; Simmonds, I.

    2010-09-01

    In this study, a comparison of a reanalysis driven simulation to a GCM driven simulation of a regional climate model is performed in order to assess the model's ability to capture the climatic characteristics of cyclonic tracks in the Mediterranean in the present climate. The ultimate scope of the study will be to perform a future climate projection related to cyclonic tracks in order to better understand and assess climate change in the Mediterranean. The climatology of the cyclonic tracks includes inter-monthly variations, classification of tracks according to their origin domain, dynamic and kinematic characteristics, as well as trend analysis. For this purpose, the ENEA model is employed based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the ERA402 with lateral Boundary conditions from ERA40 for the 43-year period 1958-2000, and b) the EH5OM_20C3M where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region, consistent with previous studies. The classification of the tracks according to their origin domain show that the vast majority originate within the examined area itself. The study of the kinematic and dynamic parameters of tracks according to their origin demonstrate that deeper cyclones follow the SW track. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  14. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  15. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    PubMed

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  16. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  17. Comparison of Mid-latitude Cyclones in Sea Level Pressure, Gepotential Height and Vorticity Fields

    NASA Astrophysics Data System (ADS)

    Raible, Christoph C.; Blender, Richard; Fraedrich, Klaus

    2013-04-01

    The mid-latitudes are dominated by diurnal variability, which is related to traveling high- and low-pressure systems. The lows or cyclones are a major source of natural hazards. This has led to growing interest in the scientific community to develop Eulerian and Lagrangian measures and to analyze the atmospheric high-frequency variability. One important issue is that there is no straight forward definition of cyclones resulting in a large variety of so-called cyclone detection and tracking methods. Each of these methods relies on different input fields which are related to specific features of a cyclone, e.g., sea level pressure (SLP), which specifically focuses on the mass aspect of the velocity field. Recently, the available methods have been compared with respect to climatology and life cycles using the ERA interim data set (Neu et al. 2013). Based on this study we investigate different fields as input for one specific method. We focus on the three mostly used input data, sea level pressure (SLP), 1000-hPa gepotential height (Z1000) and 850-hPa vorticity (850VOR). The cyclone detection and tracking method developed by Blender et al. (1997) is used and we apply it to ERA interim data in the 1.5 x 1.5 resolution. The method was mainly applied for Z1000 and the Northern Hemisphere (e.g., Blender et al. 1997; Raible et al. 2008). To compare the tracks and cyclone characteristics obtained from the different input data we need to adapt critical parameters of the method in such a way that comparable numbers of cyclone centers are identified in either field. The target is set to the number of cyclone centers in northern hemispheric winter. This enables us to assess the seasonal and hemispheric dependence. Preliminary results show that the agreement between cyclones based on SLP and Z1000 varies between roughly 70 to 80% depending on the season and the hemisphere. Spatially, most of the differences are found around orographic features like Greenland. An interesting finding is that the number of cyclones based on Z1000 is increased comparing the winter and summer season as the number of heat lows increases in summer. However, the behavior is vice versa for cyclones based on SLP. References: Blender R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727-741. Neu, U., M. G. Akperov, N. Bellenbaum, R. Benestad, R. Blender, R. Caballero, A. Cocozza, H. F. Dacre, Y. Feng, K. Fraedrich, J. Grieger, S. Gulev, J. Hanley, T. Hewson, M. Inatsu, K. Keay, S. F. Kew, I. Kindem, G. C. Leckebusch, M. L. R. Liberato, P. Lionello, I. I. Mokhov, J. G. Pinto, C. C. Raible, M. Reale, I. Rudeva, M. Schuster, I. Simmonds, M. Sinclair, M. Sprenger, N. D. Tilinina, I. F. Trigo, S. Ulbrich, U. Ulbrich, X. L. Wang, H. Wernli, 2012: IMILAST - a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties, Bulletin of the American Meteorological Society, in press. Raible, C. C., P. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses, Mon. Wea. Rev., 136 880-897.

  18. Tropical Cyclone Forecasters Reference Guide 2. Tropical Climatology

    DTIC Science & Technology

    1992-04-01

    stratosphere and discovered three periods of oscillation: 1.3.3 1 Quasi-biennial Oscillation (OBO) The QBO in tropical stratospheric winds is defined as a...The QBO may be associated with the seasonal weather activities. Gray (1984a,b) has used the QBO at the 30-mb level as one of the indexes to predict the...yearly number of tropical cyclones in the Atlantic with some success. However, the physical links between cyclone activity and QBO are not clearly

  19. Changes of Mediterranean cyclones in the future climate employing high resolution climate simulations

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Kouroutzoglou, J.; Keay, K.; Simmonds, I.; Giannakopoulos, C. A.; Brikolas, V.

    2011-12-01

    A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of Mediterranean cyclones, including temporal and spatial variations of frequency of cyclonic tracks, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the MPI-HH regional coupled climate model of the Max Planck Institute for Meteorology is employed consisting of the REgional atmosphere MOdel (REMO), the Max-Planck-Institute for Meteorology ocean model (MPI-OM) and the Hydrological Discharge Model (HD Model). A 25 km resolution domain is established on a rotated latitude-longitude coordinate system, while the physical parameterizations are taken from the global climate model ECHAM-4. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. The model results for the present climate are evaluated against ERA-40 Reanalysis (available through ECMWF), for the period 1962-2001. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. The model experiments verify that considerable inter-monthly variations of track density occur in the Mediterranean region. The study of the kinematic and dynamic parameters of the cyclonic tracks according to their origin domain show that the vast majority originate within the examined area itself. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  20. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  1. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  2. Retrieval of spatially distributed hydrological properties from satellite observations for spatial evaluation of a national water resources model.

    NASA Astrophysics Data System (ADS)

    Mendiguren González, G.; Stisen, S.; Koch, J.

    2016-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  3. Global view of the upper level outflow patterns associated with tropical cyclone intensity changes during FGGE

    NASA Technical Reports Server (NTRS)

    Chen, L.; Gray, W. M.

    1985-01-01

    The characteristics of the upper tropospheric outflow patterns which occur with tropical cyclone intensification and weakening over all of the global tropical cyclone basins during the year long period of the First GARP Global Experiment (FGGE) are discussed. By intensification is meant the change in the tropical cyclone's maximum wind or central pressure, not the change of the cyclone's outer 1 to 3 deg radius mean wind which we classify as cyclone strength. All the 80 tropical cyclones which existed during the FGGE year are studied. Two-hundred mb wind fields are derived from the analysis of the European Center for Medium Range Weather Forecasting (ECMWF) which makes extensive use of upper tropospheric satellite and aircraft winds. Corresponding satellite cloud pictures from the polar orbiting U.S. Defense Meteorological Satellite Program (DMSP) and other supplementary polar and geostationary satellite data are also used.

  4. Atmospheric rivers and bombs

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Newell, Reginald E.

    1994-09-01

    Filamentary structure is a common feature of atmospheric water vapor transport; the filaments may be termed “atmospheric rivers” because some carry as much water as the Amazon [Newell et al., 1992]. An extratropical cyclone whose central pressure fall averages at least 1 hPa hr-1 for 24 hours is known in meteorology as a “bomb” [Sanders and Gyakum, 1980]. We report here an association between rivers and bombs. When a cyclonic system is penetrated by a river, the cyclonic center moves to be close to the position occupied by the leading edge of the river twelve hours previously and the central pressure falls. If the river then moves away from the cyclone, the central pressure rises. Based on a pilot study of pressure fall and water vapor flux convergence for two winter months, the cause of the explosive deepening appears to be latent heat liberation. This is substantiated by composite maps of seven Atlantic and seven Pacific bombs which show that the flux convergence near the bomb center has a comma cloud signature. The observed association may be useful in forecasting 12-hour direction of motion and pressure change of rapidly developing cyclonic systems; the incorporation of better moisture data into numerical forecasting models may be the reason for the reported increase of skill in the prediction of bombs in recent years.

  5. Ensemble-based diagnosis of the large-scale processes associated with multiple high-impact weather events over North America during late October 2007

    NASA Astrophysics Data System (ADS)

    Moore, B. J.; Bosart, L. F.; Keyser, D.

    2013-12-01

    During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high-impact weather events, including relative humidity, temperature, and precipitation, demonstrates quantitatively that all three high-impact weather events are closely linked with the development of the ridge-trough pattern over North America. Moreover, results of this analysis indicate that the development of the ridge-trough pattern is modulated by DBD and cyclogenesis upstream over the central and eastern North Pacific. Specifically, ensemble members exhibiting less intense cyclogenesis and a more poleward cyclone track over the central and eastern North Pacific feature the development of a poleward-displaced ridge over the eastern North Pacific and western North America and a cut-off low over the Intermountain West, an unfavorable scenario for the occurrence the three high-impact weather events. Conversely, ensemble members exhibiting more intense cyclogenesis and a less poleward cyclone track feature persistent ridging along the western coast of North America and trough development over central North America, establishing a favorable flow pattern for the three high-impact weather events. Results demonstrate that relatively small initial differences in the large-scale flow pattern over the North Pacific among ensemble members can result in large uncertainty in the forecast downstream flow response over North America.

  6. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Chang, Edmund K. M.; Yau, Albert M. W.

    2016-09-01

    In this study, a comprehensive comparison of Northern Hemisphere winter storm track trend since 1959 derived from multiple reanalysis datasets and rawinsonde observations has been conducted. In addition, trends in terms of variance and cyclone track statistics have been compared. Previous studies, based largely on the National Center for Environmental Prediction-National Center for Atmospheric Research Reanalysis (NNR), have suggested that both the Pacific and Atlantic storm tracks have significantly intensified between the 1950s and 1990s. Comparison with trends derived from rawinsonde observations suggest that the trends derived from NNR are significantly biased high, while those from the European Center for Medium Range Weather Forecasts 40-year Reanalysis and the Japanese 55-year Reanalysis are much less biased but still too high. Those from the two twentieth century reanalysis datasets are most consistent with observations but may exhibit slight biases of opposite signs. Between 1959 and 2010, Pacific storm track activity has likely increased by 10 % or more, while Atlantic storm track activity has likely increased by <10 %. Our analysis suggests that trends in Pacific and Atlantic basin wide storm track activity prior to the 1950s derived from the two twentieth century reanalysis datasets are unlikely to be reliable due to changes in density of surface observations. Nevertheless, these datasets may provide useful information on interannual variability, especially over the Atlantic.

  7. Assessing the impact of cyclones in the coastal zone of Bangladesh

    NASA Astrophysics Data System (ADS)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  8. Intercomparison of mid latitude storm diagnostics (IMILAST)

    NASA Astrophysics Data System (ADS)

    Neu, U.

    2009-04-01

    Diagnostics of the observed and projection of the future changes of extratropical storms are a key issue e.g. for insurance companies, risk management and adaptation planning. Storm-associated damages are amongst the highest losses due to natural disasters in the mid-latitudes. Therefore the knowledge of the future variability and change in extratropical cyclone frequency, intensity and track locations is crucial for the strategic planning and minimization of the disaster impacts. Future changes in the total number of storms might be small but major signals could occur in the characteristics of cyclone life cycle such as intensity, life time, track locations. The quantification of such trends is not independent from the methodologies for storm track detection applied to observational data and models. Comparison of differences in cyclone characteristics obtained using different methods from a single data set may be as large as or even exceed the differences between the results derived from different data sets using a single methodology. Even more, the metrics used become particularly sensitive, resulting in the fact that scientific studies may find seemingly contradictory results based on the same datasets. For users of storm track analyses and projections the results are very difficult to interprete. Thus, it would be very helpful if the research community would provide information in a kind of "handbook" which contains definitions and a description of the available different identification and tracking schemes as well as of the parameters used for the quantification of cyclone activity. It cannot be expected that there is an optimum or standard scheme that fulfills all needs. Rather, a proper knowledge about advantages and restrictions of different schemes must be obtained to be able to provide a synthesis of results rather than puzzling the scientific and the general public with apparently contradicing statements. The project IMILAST aims at providing a systematic intercomparison of different methodologies and a comprehensive assessment of all types of uncertainties inherent in the mid-latitudinal storm tracking by comparing different methodologies with respect to data of different resolution (time and space) and limited areas, for both cyclone identification and cyclone tracking respectively.

  9. A Weather Analysis and Forecasting System for Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information on storm location, expected track, and potential impact on weather conditions over Baja California. From late June through October, a set of more than 50 messages were issued daily and distributed to these users. This presentation focuses on providing an overview of the lessons learned from this experience, feedback from users, and our plans for the upcoming 2006 season.

  10. NASA CYGNSS Tropical Cyclone Mission

    NASA Astrophysics Data System (ADS)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling properties for observing the Madden-Julian Oscillation (MJO) and Convectively Coupled Equatorial Waves (CCEW) indicate that it will allow for improved characterization of MJO temporal variability and of the major CCEW modes. The EGU 2017 presentation will include an overview of the CYGNSS mission, a report on current mission status, and summaries of the simulation studies performed regarding TC forecasts and MJO and CCEW characterization.

  11. Does NASA SMAP Improve the Accuracy of Power Outage Models?

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.; McRoberts, D. B.; Toy, B.; Alvarado, B.

    2016-12-01

    Electric power utilities make critical decisions in the days prior to hurricane landfall that are primarily based on the estimated impact to their service area. For example, utilities must determine how many repair crews to request from other utilities, the amount of material and equipment they will need to make repairs, and where in their geographically expansive service area to station crews and materials. Accurate forecasts of the impact of an approaching hurricane within their service area are critical for utilities in balancing the costs and benefits of different levels of resources. The Hurricane Outage Prediction Model (HOPM) are a family of statistical models that utilize predictions of tropical cyclone windspeed and duration of strong winds, along with power system and environmental variables (e.g., soil moisture, long-term precipitation), to forecast the number and location of power outages. This project assesses whether using NASA SMAP soil moisture improves the accuracy of power outage forecasts as compared to using model-derived soil moisture from NLDAS-2. A sensitivity analysis is employed since there have been very few tropical cyclones making landfall in the United States since SMAP was launched. The HOPM is used to predict power outages for 13 historical tropical cyclones and the model is run using twice, once with NLDAS soil moisture and once with SMAP soil moisture. Our results demonstrate that using SMAP soil moisture can have a significant impact on power outage predictions. SMAP has the potential to enhance the accuracy of power outage forecasts. Improved outage forecasts reduce the duration of power outages which reduces economic losses and accelerates recovery.

  12. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact posits an interesting start for further theoretical and physical consideration.

  13. Active and Passive Microwave Determination of the Circulation and Characteristics of Weddell and Ross Sea Ice

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Liu, Xiang

    2000-01-01

    A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.

  14. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    PubMed Central

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  15. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  16. Public understanding of cyclone warning in India: Can wind be predicted?

    PubMed

    Dash, Biswanath

    2015-11-01

    In spite of meteorological warning, many human lives are lost every year to cyclone mainly because vulnerable populations were not evacuated on time to a safe shelter as per recommendation. It raises several questions, most prominently what explains people's behaviour in the face of such danger from a cyclonic storm? How do people view meteorological advisories issued for cyclone and what role they play in defining the threat? What shapes public response during such situation? This article based on an ethnographic study carried out in coastal state of Odisha, India, argues that local public recognising inherent limitations of meteorological warning, fall back on their own system of observation and forecasting. Not only are the contents of cyclone warning understood, its limitations are accommodated and explained. © The Author(s) 2014.

  17. Pacific-Australia Climate Change Science and Adaptation Planning program: supporting climate science and enhancing climate services in Pacific Island Countries

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Jones, David; Hendon, Harry; Charles, Andrew; Shelton, Kay; de Wit, Roald; Cottrill, Andrew; Nakaegawa, Toshiyuki; Atalifo, Terry; Prakash, Bipendra; Seuseu, Sunny; Kaniaha, Salesa

    2013-04-01

    Over the past few years, significant progress in developing climate science for the Pacific has been achieved through a number of research projects undertaken under the Australian government International Climate Change Adaptation Initiative (ICCAI). Climate change has major impact on Pacific Island Countries and advancement in understanding past, present and futures climate in the region is vital for island nation to develop adaptation strategies to their rapidly changing environment. This new science is now supporting new services for a wide range of stakeholders in the Pacific through the National Meteorological Agencies of the region. Seasonal climate prediction is particularly important for planning in agriculture, tourism and other weather-sensitive industries, with operational services provided by all National Meteorological Services in the region. The interaction between climate variability and climate change, for example during droughts or very warm seasons, means that much of the early impacts of climate change are being felt through seasonal variability. A means to reduce these impacts is to improve forecasts to support decision making. Historically, seasonal climate prediction has been developed based on statistical past relationship. Statistical methods relate meteorological variables (e.g. temperature and rainfall) to indices which describe large-scale environment (e.g. ENSO indices) using historical data. However, with observed climate change, statistical approaches based on historical data are getting less accurate and less reliable. Recognising the value of seasonal forecasts, we have used outputs of a dynamical model POAMA (Predictive Ocean Atmosphere Model for Australia), to develop web-based information tools (http://poama.bom.gov.au/experimental/pasap/index.shtml) which are now used by climate services in 15 partner countries in the Pacific for preparing seasonal climate outlooks. Initial comparison conducted during 2012 has shown that the predictive skill of POAMA is consistently higher than skill of statistical-based method. Presently, under the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program, we are developing dynamical model-based seasonal climate prediction for climate extremes. Of particular concern are tropical cyclones which are the most destructive weather systems that impact on coastal areas of Australia and Pacific Island Countries. To analyse historical cyclone data, we developed a consolidate archive for the Southern Hemisphere and North-Western Pacific (http://www.bom.gov.au/cyclone/history/tracks/). Using dynamical climate models (POAMA and Japan Meteorological Agency's model), we work on improving accuracy of seasonal forecasts of tropical cyclone activity for the regions of Western Pacific. Improved seasonal climate prediction based on dynamical models will further enhance climate services in Australia and Pacific Island Countries.

  18. Extreme Rainfall from Hurricane Harvey (2017): Intercomparisons of WRF Simulations and Polarimetric Radar Fields

    NASA Astrophysics Data System (ADS)

    Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.

    2017-12-01

    Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.

  19. Japanese 25-year reanalysis (JRA-25)

    NASA Astrophysics Data System (ADS)

    Ohkawara, Nozomu

    2006-12-01

    A long term global atmospheric reanalysis Japanese 25-year Reanalysis (JRA-25) which covers from 1979 to 2004 was completed using the Japan Meteorological Agency (JMA) numerical assimilation and forecast system. This is the first long term reanalysis undertaken in Asia. JMA's latest numerical assimilation system, and observational data collected as much as possible, were used in JRA-25 to generate a consistent and high quality reanalysis dataset to contribute to climate research and operational work. One purpose of JRA-25 is to enhance to a high quality the analysis in the Asian region. 6-hourly data assimilation cycles were performed and produced 6-hourly atmospheric analysis and forecast fields with various kinds of physical variables. The global model used in JRA-25 has a spectral resolution of T106 (equivalent to a horizontal grid size of around 120km) and 40 vertical layers with the top level at 0.4hPa. For observational data, a great deal of satellite data was used in addition to conventional surface and upper air data. Atmospheric Motion Vector (AMV) data retrieved from geostationary satellites, brightness temperature (TBB) data from TIROS Operational Vertical Sounder (TOVS), precipitable water retrieved from radiance of microwave radiometer from orbital satellites and some other satellite data were assimilated with 3-dimensional variational method (3DVAR). Many advantages have been found in the JRA-25 reanalysis. Firstly, forecast 6-hour global total precipitation in JRA-25 performs well, distribution and amount are properly represented both in space and time. JRA-25 has the best performance compared to other reanalysis with respect to time series of global precipitation over many years, with few unrealistic variations caused by degraded quality of satellite data due to volcanic eruptions. Secondly, JRA-25 is the first reanalysis which assimilated wind profiles surrounding tropical cyclones retrieved from historical best track information; tropical cyclones were analyzed correctly in all the global regions. Additionally, low-level cloud along the subtropical western coast of continents is forecast very accurately, and snow depth analysis is also good.

  20. Climate change and Mediterranean storm tracks: present and future climate simulations of a high-resolution Mediterranean model

    NASA Astrophysics Data System (ADS)

    Hatzaki, M.; Flocas, H. A.; Simmonds, I.; Keay, K.; Giannakopoulos, C.; Brikolas, V.; Kouroutzoglou, J.

    2010-09-01

    A number of studies suggest that cyclone activity over both hemispheres has changed over the second half of the 20th century. General features include a reduction in the number of cyclones but with an increase in the number of more intense cyclones; as well as a poleward shift in the tracks. Moreover, these features are expected to be projected in the future under global warming conditions. The assessment of the future changes of the cyclonic activity as imposed by global warming conditions is very important since these cyclones can be associated with extreme precipitation conditions, severe storms and floods. This is more important for the Mediterranean that has been found to be more vulnerable to climate change. The main objective of the current study is to better understand and assess future changes in the main characteristics of cyclonic tracks in the Mediterranean. The climatology of the cyclonic tracks includes temporal and spatial variations of frequency, and dynamic and kinematic parameters, such as intensity, size, propagation velocity, as well as trend analysis. For this purpose, the ENEA high resolution model is employed, based on PROTHEUS system composed of the RegCM atmospheric regional model and the MITgcm ocean model, coupled through the OASIS3 flux coupler. These model data became available through the EU Project CIRCE which aims to perform, for the first time, climate change projections with a realistic representation of the Mediterranean Sea. Two experiments are employed; a) the EH5OM_20C3M present climate simulation, where the lateral boundary conditions for the atmosphere (1951-2000) are taken from the ECHAM5-MPIOM 20c3m global simulation (run3) included in the IPCC-AR4, and b) the EH5OM_A1B scenario simulation, where the IPCC-AR4 ECHAM5-MPIOM SRESA1B global simulation (run3) has been used for the period 2001-2050. The identification and tracking of cyclones is performed with the aid of the Melbourne University algorithm (MS algorithm), according to the Lagrangian perspective. MS algorithm characterizes a cyclone only if a vorticity maximum could be connected with a local pressure minimum. This approach is considered to be crucial, since open lows are also incorporated into the storm life-cycle, preventing possible inappropriate time series breaks, if a temporary weakening to an open-low state occurs. According to the results, a decrease of the storm number and a tendency towards deeper cyclones is expected in the future, in general agreement with the results of previous studies. However, new findings reveal with respect to the dynamic/kinematic characteristics of the cyclonic tracks. ACKNOWLEDGMENTS: M. Hatzaki would like to thank the Greek State Scholarships Foundation for financial support through the program of postdoctoral research. The support of EU-FP6 project CIRCE Integrated Project-Climate Change and Impact Research: the Mediterranean Environment (http://www.circeproject.eu) for climate model data provision is also greatly acknowledged.

  1. Tropical Cyclone Prediction Using COAMPS-TC

    DTIC Science & Technology

    2014-09-01

    landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review 136:1,990–2,005, http://dx.doi.org/10.1175/2007MWR2085.1. DeMaria, M...Weisman. 2004. The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast ( WRF ) Model. Atmospheric Science

  2. Climatic hazards warning process in Bangladesh: Experience of, and lessons from, the 1991 April cyclone

    NASA Astrophysics Data System (ADS)

    Haque, C. Emdad

    1995-09-01

    Science and technology cannot control entirely the causes of natural hazards. However, by using multifaceted programs to modify the physical and human use systems, the potential losses from disasters can effectively be minized. Predicting, identifying, monitoring, and forecasting extreme meteorological events are the preliminary actions towards mitigating the cyclone-loss potential of coastal inhabitants, but without the successful dissemination of forecasts and relevant information, and without appropriate responses by the potential victims, the loss potential would probably remain the same. This study examines the process through which warning of the impending disastrous cyclone of April 1991 was received by the local communities and disseminated throughout the coastal regions of Bangladesh. It is found that identification of the threatening condition due to atmospheric disturbance, monitoring of the hazard event, and dissemination of the cyclone warning were each very successful. However, due to a number of socioeconomic and cognitive factors, the reactions and responses of coastal inhabitants to the warning were in general passive, resulting in a colossal loss, both at the individual and national level. The study recommends that the hazard mitigation policies should be integrated with national economic development plans and programs. Specifically, it is suggested that, in order to attain its goals, the cyclone warning system should regard the aspects of human response to warnings as a constituent part and accommodate human dimensions in its operational design.

  3. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone.

    PubMed

    Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J

    2007-03-23

    As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the air-sea momentum exchange is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the air-sea interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.

  4. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.

    2017-10-01

    Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.

  5. Assessment of marine weather forecasts over the Indian sector of Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.

    2017-09-01

    The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.

  6. Predicatbility of windstorm Klaus; sensitivity to PV perturbations

    NASA Astrophysics Data System (ADS)

    Arbogast, P.; Maynard, K.

    2010-09-01

    It appears that some short-range weather forecast failures may be attributed to initial conditions errors. In some cases it is possible to anticipate the behavior of the model by comparison between observations and model analyses. In the case of extratropical cyclone development one may qualify the representation of the upper-level precursors described in terms of PV in the initial conditions by comparison with either satellite ozone or water-vapor. A step forward has been made in developing a tool based upon manual modifications of dynamical tropopause (i.e. height of 1.5 PV units) and PV inversion. After five years of experimentations it turns out that the forecasters eventually succeed in improving the forecast of some strong cyclone development. However the present approach is subjective per se. To measure the subjectivity of the procedure a set of 15 experiments has been performed provided by 7 different people (senior forecasters and scientists involved in dynamical meteorology) in order to improve an initial state of the global model ARPEGE leading to a poor forecast of the wind storm Klaus (24 January 2009). This experiment reveals that the manually defined corrections present common features but also a large spread.

  7. A climatology based on reanalysis of baroclinic developmental regions in the extratropical northern hemisphere.

    PubMed

    de la Torre, Laura; Nieto, Raquel; Noguerol, Marta; Añel, Juan Antonio; Gimeno, Luis

    2008-12-01

    Regions of the occurrence of different phenomena related to the development of baroclinic disturbances are reviewed for the Northern Hemisphere extratropics, using National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. The occurrence of height lows appears to be related to the orography near the earth's surface and with surface- and upper-air cyclogenesis in the upper troposphere. Over the cyclone tracks, the surface maxima appear to be trapped by land masses, whereas over the Mediterranean Sea they are located on the lee side of mountain ranges. The forcing terms of the geopotential tendency and omega equations mark the genesis (and, by the vorticity advection terms, the path) of the extratropical cyclones on the storm track. They occur mostly over the western coast of the oceans, beginning and having maxima on the lee side of the Rocky Mountains and the Tibetan Plateau. Their associated fronts form from the cold air coming from the continents and converging with the warm air over the Gulf and Kuroshio currents. Evident trends are found only for the Atlantic cyclone track (positive) and the Pacific cyclone track (negative) until the last decade when the tendency reverses. Over the southern Pacific, the number of fronts is lower during 1978-1997, coinciding with a period of strong El Niño Southern Oscillation episodes. This information is important for validating numerical models in order to predict changes associated with climate change and to study the behavior of extratropical cyclones and fronts.

  8. A novel framework for objective detection and tracking of TC center from noisy satellite imagery

    NASA Astrophysics Data System (ADS)

    Johnson, Bibin; Thomas, Sachin; Rani, J. Sheeba

    2018-07-01

    This paper proposes a novel framework for automatically determining and tracking the center of a tropical cyclone (TC) during its entire life-cycle from the Thermal infrared (TIR) channel data of the geostationary satellite. The proposed method handles meteorological images with noise, missing or partial information due to the seasonal variability and lack of significant spatial or vortex features. To retrieve the cyclone center from these circumstances, a synergistic approach based on objective measures and Numerical Weather Prediction (NWP) model is being proposed. This method employs a spatial gradient scheme to process missing and noisy frames or a spatio-temporal gradient scheme for image sequences that are continuous and contain less noise. The initial estimate of the TC center from the missing imagery is corrected by exploiting a NWP model based post-processing scheme. The validity of the framework is tested on Infrared images of different cyclones obtained from various Geostationary satellites such as the Meteosat-7, INSAT- 3 D , Kalpana-1 etc. The computed track is compared with the actual track data obtained from Joint Typhoon Warning Center (JTWC), and it shows a reduction of mean track error by 11 % as compared to the other state of the art methods in the presence of missing and noisy frames. The proposed method is also successfully tested for simultaneous retrieval of the TC center from images containing multiple non-overlapping cyclones.

  9. Comparison of the Effects of RAS vs. Kain-Fritsch Convective Schemes on Katrina Forecasts with GEOS-5

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Cohen, Charles; Paxton, Jessica; Robertson, F. R. (Pete)

    2009-01-01

    Global forecasts were made with the 0.25-degree latitude version of GEOS-5, with the RAS scheme and with the Kain-Fritsch scheme. Examination was made of the Katrina (2005) hurricane simulation. Replacement of the RAS convective scheme with the K-F scheme results in a much more vigorous Katrina, closer to reality. Still, the result is not as vigorous as reality. In terms of wind maximum, the gap was closed by 50%. The result seems to be due to the RAS scheme drying out the boundary layer, thus hampering the grid-scale secondary circulation and attending cyclone development. The RAS case never developed a full warm core, whereas the K-F case did. Not shown here: The K-F scheme also resulted in a more vigorous storm than when GEOS-5 is run with no convective parameterization. Also not shown: An experiment in which the RAS firing level was moved up by 3 model levels resulted in a stronger, warm-core storm, though not as strong as the K-F case. Effects on storm track were noticed, but not studied.

  10. A High Resolution Tropical Cyclone Power Outage Forecasting Model for the Continental United States

    NASA Astrophysics Data System (ADS)

    Pino, J. V.; Quiring, S. M.; Guikema, S.; Shashaani, S.; Linger, S.; Backhaus, S.

    2017-12-01

    Tropical cyclones cause extensive damage to the power infrastructure system throughout the United States. This damage can leave millions without power for extended periods of time, as most recently seen with Hurricane Matthew (2016). Accurate and timely prediction of power outages are essential for utility companies, emergency management agencies, and governmental organizations. Here we present a high-resolution (250 m x 250 m) hurricane power outage model for the United States. The model uses only publicly-available data to make predictions. It uses forecasts of storm variables such as maximum 3-second wind gust, duration of strong winds > 20 m s-2, soil moisture, and precipitation. It also incorporates static environmental variables such as elevation characteristics, land cover type, population density, tree species data, and root zone depth. A web tool was established for use by the Department of Energy (DOE) so that the model can be used for real-time outage forecasting or for synthetic tropical cyclones as an exercise in emergency management. This web tool provides DOE decision-makers with high impact analytic results and products that can be disseminated to federal, local, and state agencies. The results then aid utility companies in their pre- and post-storm activities, thus decreasing restoration times and lowering costs.

  11. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  12. Analysis and Forecast of Two Storms Characterized by Extreme Deepening Rates

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Riishojgaard, Lars Peter

    2003-01-01

    Between 25 and 27 December 1999 two very intense cyclones, named Lothar and Martin, swept across northern and western France causing substantial life and property loss. In this work, the finite volume general circulation model and data assimilation system (fvDAS) developed at the Data Assimilation Office of the NASA Goddard Space and Flight Center is being used to investigate these storms. In the first part of this article the dynamics of the storms is analyzed, and some important mechanisms are unveiled. The second part describes a set of eleven data assimilation experiments to study the impact of different data types on the automated analyses. Cloud-track winds provided by EUMETSAT and surface winds from QuikSCAT are being used. These data are assimilated with a range of different parameter settings of the forecast error covariance model. The results show that generally the additional wind data set have positive impacts on the analyses: particularly, the analysis of Lothar can be slightly improved by using the Eumetsat winds, and the analysis of Martin can be strongly improved by using the full-resolution QuikSCAT winds with a more localized influence. The third part of this article is focused on the forecast of Lothar which is very well predicted in the 1-5 day range by the fvDAS system.

  13. Dynamics and Predictability of Tropical Cyclone Genesis, Structure and Intensity Change

    DTIC Science & Technology

    2012-09-30

    analyses and forecasts of tropical cyclones, including genesis, intensity change, and extratropical transition. A secondary objective is to understand... storm -centered assimilation algorithm. Basic research in Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...COMPLETED For the four storms consider (Nuri, Jangmi, Sinlaku, and Hagupit), an 80-member EnKF has been cycled on observations (surface, rawinsondes, GPS

  14. Climate extremes in the Pacific: improving seasonal prediction of tropical cyclones and extreme ocean temperatures to improve resilience

    NASA Astrophysics Data System (ADS)

    Kuleshov, Y.; Jones, D.; Spillman, C. M.

    2012-04-01

    Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and adaptive capacity of Australia and Pacific Island Countries under climate change. Acknowledgement The research discussed in this paper was conducted with the support of the PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.

  15. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  16. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  17. Tropical-Cyclone Formation: Theory and Idealized Modelling

    DTIC Science & Technology

    2010-11-01

    to saturation at the sea-surface temperature and the positive entropy flux from the ocean surface...and Atmospheric Administration; IFEX = Intensity Forecasting Experiment. 15GFS = NOAA Global Forecasting System ; NOGAPS = Navy Operational Global... Atmospheric Prediction System ; UKMET = United Kingdom Meteorological Office. 16 http://www.met.nps.edu/~mtmontgo/storms2010.html 18 overcomes

  18. Impact of Climate Change on the Climatology of Vb Cyclones

    NASA Astrophysics Data System (ADS)

    Messmer, Martina; José Gómez-Navarro, Juan; Blumer, Sandro; Raible, Christoph C.

    2017-04-01

    Extra-tropical cyclones of type Vb develop over the western Mediterranean and move northeastward, leading to heavy precipitation over Central Europe and posing a major natural hazard. Since such cyclones are high-impact events that lead to important economical and personal damage, in Central Europe, and especially in the Alpine region, understanding their sensitivity to climate change is important to provide suitable adaptation measures. This communication aims at investigating the impact of climate change in Vb cyclones through a climate simulation covering the whole 21st century performed with the Community Earth System Model (CESM1). Further, some selected Vb episodes within the simulation are downscaled with the Weather Research and Forecasting Model (WRF). The analysis focuses on two different time periods. The reference period spans the ERA-Interim period 1979 to 2013, whereas the other one covers the last 30 years of the 21st century 2070-2099. The simulation uses the emissions from the business as usual scenario (RCP8.5). For both periods, the Vb cyclones were identified using a tracking tool and their main properties were characterized. During the reference period 86 Vb cyclones can be identified overall, which corresponds to approximately 2.5 Vb cyclones per year. This number corresponds very well to the 82 Vb cyclones found in the ERA-Interim reanalysis dataset in the same period of time. This number is reduced under future climate conditions, leading to 48 Vb cyclones in total, or to 1.6 Vb cyclones per year on average. Despite the reduction in their number, results indicate that there is a tendency for intensification in precipitation for high-impact Vb events of around 10% over the Alpine region in the future compared to the ones between 1979 and 2013. Interestingly, while the summer months are most prone for the occurrence of the 10 heaviest precipitation Vb events in the current conditions, the 10 heaviest precipitation Vb events in the future become shifted towards spring and also fall months, implicating an important change in the seasonality of the phenomenon. In order to gain more insight on the changes in the processes responsible for such changes in precipitation and occurrence of Vb events, we downscaled the 10 most precipitation intense Vb events of each of the two periods. Preliminary results indicate that future Vb events tend to affect more strongly the eastern costs of the Mediterranean Sea, while the impact in the Alpine region becomes slightly ameliorated compared to current situations. This result is in agreement with results previously obtained through the analysis of a set of highly idealized sensitivity experiments, and can be related to an increasing instability at the eastern coast of the Mediterranean Sea induced by a stronger latent heating over the sea under future conditions.

  19. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep convection in the inner core and result in increases of lightning probability even though the cyclones are weakening. We use a Lagrangian approach similar to the used by Rutherford and Montgomery (2012, Atmos. Chem. Phys., 12, 11355-11381, 2012), to study moisture fluxes between intensifying and weakening in recurving tropical cyclones.

  20. 1975 Annual Typhoon Report

    DTIC Science & Technology

    1995-01-01

    southwest monsoon. Tropical Cyclone 24-75 formed just off the southwest tip of the Indian subcontinent. 3X tracked northwest and dissipated over water ...Tropical Cyclone 33-75 formed in late November and described an erratic track in the southwest portion of the Bay. The storm dissipated over water ...Leyte leaving 15 dead rains were spawned over the caused widespread flooding Choppy waters near capsized a crowded motorboat and 30 missing. FIGURE 4

  1. Extratropical Cyclones Leading to Extreme Weather Events over Central and Eastern North America

    NASA Astrophysics Data System (ADS)

    Bentley, Alicia M.

    Cool-season extreme weather events (EWEs) occurring over central and eastern North America are typically associated with strong extratropical cyclones (ECs) that are governed by varying combinations of baroclinic, diabatic, and barotropic processes. This dissertation investigates the climatology, evolution, and predictability of ECs leading to EWEs over central and eastern North America, and provides a foundation on which to compare ECs leading to EWEs to ordinary ECs forming over and traversing the same regions. A climatology of ECs leading to EWEs over central and eastern North America during October-March 1979-2016 reveals that these ECs typically form 1) in the lee of the Rocky Mountains, 2) over the south central U.S., and 3) along the east coast of North America at latitudes equatorward of the typical genesis locations of ordinary ECs. ECs leading to EWEs included in the climatology form most frequently in November and March, when the seasonal alignment of baroclinic and convectively driven forcings occurs. Consistent with previous studies of North American ECs, the location and frequency of ECs leading to EWEs are partially determined by the states of the Pacific-North American pattern and the North Atlantic Oscillation. Metrics representing baroclinic, diabatic, and barotropic processes are formulated in this dissertation and are used to determine the combinations of baroclinic, diabatic, and barotropic processes associated with the formation and maintenance of ordinary ECs and ECs leading to EWEs. These metrics reveal that ECs leading to EWEs are associated with contributions from baroclinic, diabatic, and barotropic processes that are 1) similar to those associated with ordinary ECs at the time of formation (t0) and 2) considerably larger than those associated with ordinary ECs at the time of maximum intensity (tmax). Baroclinic processes typically contribute more than diabatic and barotropic processes throughout the evolution of ECs leading to EWEs. Diabatic processes typically contribute more during the intensification of ECs leading to EWEs than during their maintenance after tmax, whereas barotropic processes typically contribute more during the maintenance of ECs leading to EWEs after tmax than during their intensification. The relative contributions from baroclinic, diabatic, and barotropic processes during the evolution of ECs leading to EWEs are also shown to differ based on their genesis location. The 1.0° NOAA Global Ensemble Forecast System (GEFS) reforecast dataset is used in this dissertation to evaluate the forecast skill associated with ordinary ECs and ECs leading to EWEs at 0-192-h lead times. Ordinary ECs are consistently too slow and left of track in the GEFS, and are often too weak at longer lead times. ECs leading to EWEs are consistently too weak, fast, and right of track in the GEFS at longer lead times, and consistently too strong, slow, and left of track at shorter lead times. The positions of ordinary ECs are forecast with less skill and more spread than the positions of ECs leading to EWEs in the GEFS, whereas the intensities of ordinary ECs and ECs leading to EWEs are forecast with similar skill and spread. Locations over central and eastern North America where the positions and intensities of ordinary ECs and ECs leading to EWEs are frequently forecast with relatively low and high skill and spread in the GEFS are also identified.

  2. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  3. Pattern Classification of Tropical Cyclone Tracks over the Western North Pacific using a Fuzzy Clustering Method

    NASA Astrophysics Data System (ADS)

    Kim, H.; Ho, C.; Kim, J.

    2008-12-01

    This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation. This study may be applied to the statistical-dynamic long-range forecast model of TC activity as well as the diagnostic study of TC activity.

  4. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915

    PubMed Central

    Rohli, Robert V.; DeLong, Kristine L.; Harley, Grant L.; Trepanier, Jill C.

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851–present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820–1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707–2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations. PMID:27898726

  5. Evaluation of WRF model simulations of tropical cyclones in the western North Pacific over the CORDEX East Asia domain

    NASA Astrophysics Data System (ADS)

    Shen, Wenqiang; Tang, Jianping; Wang, Yuan; Wang, Shuyu; Niu, Xiaorui

    2017-04-01

    In this study, the characteristics of tropical cyclones (TCs) over the East Asia Coordinated Regional Downscaling Experiment domain are examined with the Weather Research and Forecasting (WRF) model. Eight 20-year (1989-2008) simulations are performed using the WRF model, with lateral boundary forcing from the ERA-Interim reanalysis, to test the sensitivity of TC simulation to interior spectral nudging (SN, including nudging time interval, nudging variables) and radiation schemes [Community Atmosphere Model (CAM), Rapid Radiative Transfer Model (RRTM)]. The simulated TCs are compared with the observation from the Regional Specialized Meteorological Centers TC best tracks. It is found that all WRF runs can simulate the climatology of key TC features such as the tracks and location/frequency of genesis reasonably well, and reproduce the inter-annual variations and seasonal cycle of TC counts. The SN runs produce enhanced TC activity compare to the runs without SN. The thermodynamic profile suggests that nudging with horizontal wind increases the unstable of thermodynamic states in tropics, which results in excessive TCs genesis. The experiments with wind and temperature nudging improve the overestimation of TCs numbers, especially suppress the TCs intensification by correct the thermodynamic profile. Weak SN coefficient enhances TCs activity significantly even with wind and temperature nudging. The analysis of TCs numbers and large scale circulation shows that the SN parameters adopted in our experiments do not appear to suppress the formation of TC. The excessive TCs activity in CAM runs relative to RRTM runs are also due to the enhanced atmospheric instability.

  6. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    NASA Astrophysics Data System (ADS)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  7. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  8. The influence of local sea surface temperatures on Australian east coast cyclones

    NASA Astrophysics Data System (ADS)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2016-11-01

    Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.

  9. Long-Range Lightning Products for Short Term Forecasting of Tropical Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.

    2010-12-01

    This paper will describe innovative graphical products derived in real time from long-range lightning data. The products have been designed to aid in short-term forecasting of tropical cyclone development for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range lightning data are from Vaisala’s Global Lightning Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with lightning data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on lightning rate - rain rate conversion derived from TRMM and PacNet data. iv. A lightning history product that plots each hour of lightning flash locations in a different color for a 12-hour period. v. Graphs of lightning counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core lightning density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the lightning and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of lightning counts within 50 km of the storm center and graph of storm central pressure as a function of time.

  10. An updated climatology of explosive cyclones using alternative measures of cyclone intensity

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Caballero, R.

    2009-04-01

    Using a novel cyclone tracking and identification method, we compute a climatology of explosively intensifying cyclones or ‘bombs' using the ERA-40 and ERA-Interim datasets. Traditionally, ‘bombs' have been identified using a central pressure deepening rate criterion (Sanders and Gyakum, 1980). We investigate alternative methods of capturing such extreme cyclones. These methods include using the maximum wind contained within the cyclone, and using a potential vorticity column measure within such systems, as a measure of intensity. Using the different measures of cyclone intensity, we construct and intercompare maps of peak cyclone intensity. We also compute peak intensity probability distributions, and assess the evidence for the bi-modal distribution found by Roebber (1984). Finally, we address the question of the relationship between storm intensification rate and storm destructiveness: are ‘bombs' the most destructive storms?

  11. Southern Hemisphere Extratropical Cyclones and their Relationship with ENSO in springtime

    NASA Astrophysics Data System (ADS)

    Reboita, M. S.; Ambrizzi, T.; Da Rocha, R.

    2013-05-01

    Extratropical cyclones occurrence is associated with the teleconnection mechanisms that produce climate variability. Among these mechanisms we have El Niño-Southern Oscillation (ENSO). Some works have indicated that during the ENSO positive phase there are more cyclogenetic conditions in some parts of the globe as the southwest of South Atlantic Ocean. Therefore, the purpose of this study is to verify if the extratropical cyclones number and location are altered in the different ENSO phases in the austral spring over the Southern Hemisphere (SH). The Melbourne University automatic tracking scheme was used to determine the cyclone climatology from 1980 to 2012. All cyclones that appear with lifetime higher or equal to 24 hours in the sea level pressure data from National Centers for Environment Prediction reanalysis I were included in the climatology. El Niño (EN), La Niña (LN) and Neutral (N) years were identified through the Oceanic Niño Index (ONI) from Climate Prediction Center/NOAA. The average number of cyclones in the spring over the SH is similar in the EN (200), N (184) and LN (197) episodes. By latitude bands, during EN episodes the cyclones occurrence reduces in 16% between 70-60 degrees and increases in ~15% between 80-70 and 50-40 degrees. On the other hand, during the LN episodes, the cyclones are 17% more frequent in 50-60 degrees and 22% less frequent in 30-20 degrees. One more detailed analysis of the cyclones trajectory density (that is a statistic product of the tracking algorithm) shows that in the South Atlantic Ocean, near the southeast of South America, the number of cyclones in EN years is higher than in the neutral period and lower than in the LN years. In the Indian Ocean, the EN year is characterized by a cyclones reduction in the west and east sector, near the continents. In the Pacific Ocean, the region southward the New Zealand presents more cyclones occurrence in EN years.

  12. Predictability and possible earlier awareness of extreme precipitation across Europe

    NASA Astrophysics Data System (ADS)

    Lavers, David; Pappenberger, Florian; Richardson, David; Zsoter, Ervin

    2017-04-01

    Extreme hydrological events can cause large socioeconomic damages in Europe. In winter, a large proportion of these flood episodes are associated with atmospheric rivers, a region of intense water vapour transport within the warm sector of extratropical cyclones. When preparing for such extreme events, forecasts of precipitation from numerical weather prediction models or river discharge forecasts from hydrological models are generally used. Given the strong link between water vapour transport (integrated vapour transport IVT) and heavy precipitation, it is possible that IVT could be used to warn of extreme events. Furthermore, as IVT is located in extratropical cyclones, it is hypothesized to be a more predictable variable due to its link with synoptic-scale atmospheric dynamics. In this research, we firstly provide an overview of the predictability of IVT and precipitation forecasts, and secondly introduce and evaluate the ECMWF Extreme Forecast Index (EFI) for IVT. The EFI is a tool that has been developed to evaluate how ensemble forecasts differ from the model climate, thus revealing the extremeness of the forecast. The ability of the IVT EFI to capture extreme precipitation across Europe during winter 2013/14, 2014/15, and 2015/16 is presented. The results show that the IVT EFI is more capable than the precipitation EFI of identifying extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase. However, the precipitation EFI is superior during the negative NAO phase and at shorter lead times. An IVT EFI example is shown for storm Desmond in December 2015 highlighting its potential to identify upcoming hydrometeorological extremes.

  13. Atlantic Hurricane Activity: 1851-1900

    NASA Astrophysics Data System (ADS)

    Landsea, C. W.

    2001-12-01

    This presentation reports on the second year's work of a three year project to re-analyze the North Atlantic hurricane database (or HURDAT). The original database of six-hourly positions and intensities were put together in the 1960s in support of the Apollo space program to help provide statistical track forecast guidance. In the intervening years, this database - which is now freely and easily accessible on the Internet from the National Hurricane Center's (NHC's) Webpage - has been utilized for a wide variety of uses: climatic change studies, seasonal forecasting, risk assessment for county emergency managers, analysis of potential losses for insurance and business interests, intensity forecasting techniques and verification of official and various model predictions of track and intensity. Unfortunately, HURDAT was not designed with all of these uses in mind when it was first put together and not all of them may be appropriate given its original motivation. One problem with HURDAT is that there are numerous systematic as sell as some random errors in the database which need correction. Additionally, analysis techniques have changed over the years at NHC as our understanding of tropical cyclones has developed, leading to biases in the historical database that have not been addressed. Another difficulty in applying the hurricane database to studies concerned with landfalling events is the lack exact location, time and intensity at hurricane landfall. Finally, recent efforts into uncovering undocumented historical hurricanes in the late 1800s and early 1900s led by Jose Fernandez-Partagas have greatly increased our knowledge of these past events, which are not yet incorporated into the HURDAT database. Because of all of these issues, a re-analysis of the Atlantic hurricane database is being attempted that will be completed in three years. As part of the re-analyses, three files will be made available: {* } The revised Atlantic HURDAT (with six hourly intensities & positions) {* }{* } HURDAT meta-file: A text file with detailed information about each suggested change proposed in the revised HURDAT. {* }{* }{* } A ``center fix" file: This file is composed of actual observations of tropical cyclone positions and intensity estimates from the following platforms: aircraft, satellite, radar, and synoptic. All changes made to HURDAT will be approved by a NHC Committee as this database is one that is officially maintained by them. At the conference, results will be shown including a revised climatology of U.S. hurricane strikes back to 1851. >http://www.aoml.noaa.gov/hrd/hurdat/index.html

  14. The impact of Saharan Dust on the genesis and evolution of Hurricane Earl (2010)

    NASA Astrophysics Data System (ADS)

    Pan, B.; Wang, Y.; Hsieh, J. S.; Lin, Y.; Hu, J.; Zhang, R.

    2017-12-01

    Dust, one of the most abundant natural aerosols, can exert substantial radiative and microphysical effects on the regional climate and has potential impacts on the genesis and intensification of tropical cyclones (TCs). A Weather Research and Forecasting Model and the Regional Oceanic Modeling System coupled model (WRF-ROMS) is used to simulate the evolution of Hurricane Earl (2010), of which Earl was interfered by Saharan dust at the TC genesis stage. A new dust module has been implemented to the TAMU two-moment microphysics scheme in the WRF model. It accounts for both dust as Cloud Condensation Nuclei (CCN) and Ice Nuclei (IN). The hurricane track, intensity and precipitation have been compared to the best track data and TRMM precipitation, respectively. The influences of Saharan dust on Hurricane Earl are investigated with dust-CCN, dust-IN, and dust-free scenarios. The analysis shows that Saharan dust changes the latent heat and moisture distribution, invigorates the convections in the hurricane's eyewall, and suppresses the development of Earl. This finding addresses the importance of accounting dust microphysics effect on hurricane predictions.

  15. Development and Application of an Objective Tracking Algorithm for Tropical Cyclones over the North-West Pacific purely based on Wind Speeds

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Kruschke, Tim; Leckebusch, Gregor C.

    2017-04-01

    Tropical Cyclones over East Asia have huge socio-economic impacts due to their strong wind fields and large rainfall amounts. Especially, the most severe events are associated with huge economic losses, e.g. Typhoon Herb in 1996 is related to overall losses exceeding 5 billion US (Munich Re, 2016). In this study, an objective tracking algorithm is applied to JRA55 reanalysis data from 1979 to 2014 over the Western North Pacific. For this purpose, a purely wind based algorithm, formerly used to identify extra-tropical wind storms, has been further developed. The algorithm is based on the exceedance of the local 98th percentile to define strong wind fields in gridded climate data. To be detected as a tropical cyclone candidate, the following criteria must be fulfilled: 1) the wind storm must exist for at least eight 6-hourly time steps and 2) the wind field must exceed a minimum size of 130.000km2 for each time step. The usage of wind information is motivated to focus on damage related events, however, a pre-selection based on the affected region is necessary to remove events of extra-tropical nature. Using IBTrACS Best Tracks for validation, it is found that about 62% of all detected tropical cyclone events in JRA55 reanalysis can be matched to an observed best track. As expected the relative amount of matched tracks increases with the wind intensity of the event, with a hit rate of about 98% for Violent Typhoons, above 90% for Very Strong Typhoons and about 75% for Typhoons. Overall these results are encouraging as the parameters used to detect tropical cyclones in JRA55, e.g. minimum area, are also suitable to detect TCs in most CMIP5 simulations and will thus allow estimates of potential future changes.

  16. Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings

    DTIC Science & Technology

    2012-09-30

    maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be

  17. Potential Seasonal Predictability for Winter Storms over Europe

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2017-04-01

    Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.

  18. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  19. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  20. Simulating the Cyclone Induced Turbulent Mixing in the Bay of Bengal using COAWST Model

    NASA Astrophysics Data System (ADS)

    Prakash, K. R.; Nigam, T.; Pant, V.

    2017-12-01

    Mixing in the upper oceanic layers (up to a few tens of meters from surface) is an important process to understand the evolution of sea surface properties. Enhanced mixing due to strong wind forcing at surface leads to deepening of mixed layer that affects the air-sea exchange of heat and momentum fluxes and modulates sea surface temperature (SST). In the present study, we used Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to demonstrate and quantify the enhanced cyclone induced turbulent mixing in case of a severe cyclonic storm. The COAWST model was configured over the Bay of Bengal (BoB) and used to simulate the atmospheric and oceanic conditions prevailing during the tropical cyclone (TC) Phailin that occurred over the BoB during 10-15 October 2013. The model simulated cyclone track was validated with IMD best-track and model SST validated with daily AVHRR SST data. Validation shows that model simulated track & intensity, SST and salinity were in good agreement with observations and the cyclone induced cooling of the sea surface was well captured by the model. Model simulations show a considerable deepening (by 10-15 m) of the mixed layer and shoaling of thermocline during TC Phailin. The power spectrum analysis was performed on the zonal and meridional baroclinic current components, which shows strongest energy at 14 m depth. Model results were analyzed to investigate the non-uniform energy distribution in the water column from surface up to the thermocline depth. The rotary spectra analysis highlights the downward direction of turbulent mixing during the TC Phailin period. Model simulations were used to quantify and interpret the near-inertial mixing, which were generated by cyclone induced strong wind stress and the near-inertial energy. These near-inertial oscillations are responsible for the enhancement of the mixing operative in the strong post-monsoon (October-November) stratification in the BoB.

  1. Skill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Dresback, Kendra M.; Fleming, Jason G.; Blanton, Brian O.; Kaiser, Carola; Gourley, Jonathan J.; Tromble, Evan M.; Luettich, Richard A.; Kolar, Randall L.; Hong, Yang; Van Cooten, Suzanne; Vergara, Humberto J.; Flamig, Zac L.; Lander, Howard M.; Kelleher, Kevin E.; Nemunaitis-Monroe, Kodi L.

    2013-12-01

    Due to the devastating effects of recent hurricanes in the Gulf of Mexico (e.g., Katrina, Rita, Ike and Gustav), the development of a high-resolution, real-time, total water level prototype system has been accelerated. The fully coupled model system that includes hydrology is an extension of the ADCIRC Surge Guidance System (ASGS), and will henceforth be referred to as ASGS-STORM (Scalable, Terrestrial, Ocean, River, Meteorological) to emphasize the major processes that are represented by the system.The ASGS-STORM system incorporates tides, waves, winds, rivers and surge to produce a total water level, which provides a holistic representation of coastal flooding. ASGS-STORM was rigorously tested during Hurricane Irene, which made landfall in late August 2011 in North Carolina. All results from ASGS-STORM for the advisories were produced in real-time, forced by forecast wind and pressure fields computed using a parametric tropical cyclone model, and made available via the web. Herein, a skill assessment, analyzing wind speed and direction, significant wave heights, and total water levels, is used to evaluate ASGS-STORM's performance during Irene for three advisories and the best track from the National Hurricane Center (NHC). ASGS-STORM showed slight over-prediction for two advisories (Advisory 23 and 25) due to the over-estimation of the storm intensity. However, ASGS-STORM shows notable skill in capturing total water levels, wind speed and direction, and significant wave heights in North Carolina when utilizing Advisory 28, which had a slight shift in the track but provided a more accurate estimation of the storm intensity, along with the best track from the NHC. Results from ASGS-STORM have shown that as the forecast of the advisories improves, so does the accuracy of the models used in the study; therefore, accurate input from the weather forecast is a necessary, but not sufficient, condition to ensure the accuracy of the guidance provided by the system. While Irene provided a real-time test of the viability of a total water level system, the relatively insignificant freshwater discharges precludes definitive conclusions about the role of freshwater discharges on total water levels in estuarine zones. Now that the system has been developed, on-going work will examine storms (e.g., Floyd) for which the freshwater discharge played a more meaningful role.

  2. Communicating the Threat of a Tropical Cyclone to the Eastern Range

    NASA Technical Reports Server (NTRS)

    Winters, Katherine A.; Roeder, William P.; McAleenan, Mike; Belson, Brian L.; Shafer, Jaclyn A.

    2012-01-01

    The 45th Weather Squadron (45 WS) has developed a tool to help visualize the Wind Speed Probability product from the National Hurricane Center (NHC) and to help communicate that information to space launch customers and decision makers at the 45th Space Wing (45 SW) and Kennedy Space Center (KSC) located in east central Florida. This paper reviews previous work and presents the new visualization tool, including initial feedback as well as the pros and cons. The NHC began issuing their Wind Speed Probability product for tropical cyclones publicly in 2006. The 45 WS uses this product to provide a threat assessment to 45 SW and KSC leadership for risk evaluations with an approaching tropical cyclone. Although the wind speed probabilities convey the uncertainty of a tropical cyclone well, communicating this information to customers is a challenge. The 45 WS continually strives to provide the wind speed probability information to customers in a context which clearly communicates the threat of a tropical cyclone. First, an intern from the Florida Institute of Technology (FIT) Atmospheric Sciences department, sponsored by Scitor Corporation, independently evaluated the NHC wind speed probability product. This work was later extended into a M.S. thesis at FIT, partially funded by Scitor Corporation and KSC. A second thesis at FIT further extended the evaluation partially funded by KSC. Using this analysis, the 45 WS categorized the probabilities into five probability interpretation categories: Very Low, Low, Moderate, High, and Very High. These probability interpretation categories convert the forecast probability and forecast interval into easily understood categories that are consistent across all ranges of probabilities and forecast intervals. As a follow-on project, KSC funded a summer intern to evaluate the human factors of the probability interpretation categories, which ultimately refined some of the thresholds. The 45 WS created a visualization tool to express the timing and risk for multiple locations in a single graphic. Preliminary results on an on-going project by FIT will be included in this paper. This project is developing a new method of assigning the probability interpretation categories and updating the evaluation of the performance of the NHC wind speed probability analysis.

  3. Jason Tracks Powerful Tropical Cyclone Gonu High Winds, Waves

    NASA Image and Video Library

    2007-06-08

    This pair of images from the radar altimeter instrument on NASA U.S./France Jason mission reveals information on wind speeds and wave heights of Tropical Cyclone Gonu, which reached Category 5 strength in the Arabian Sea prior to landfall in early June.

  4. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    DTIC Science & Technology

    2014-05-15

    atmospheric fields, including sea level pressure ( SLP ), on daily and sub-daily time scales at 2° horizontal resolution. A higher-resolution and more...its 21st-century simulation. Extreme cyclones were defined as occurrences of daily mean SLP at least 40 hPa below the climatological annual-average... SLP at a grid point. As such, no cyclone-tracking algorithm was employed, because the purpose here is to identify instances of extremely strong

  5. Tropical Cyclone Genesis and Sudden Changes of Track and Intensity in the Western Pacific

    DTIC Science & Technology

    2008-09-30

    North Atlantic . (Published in 2008) Our work on the effect of internally generated inner-core asymmetries on tropical cyclone potential intensity has...of the atmospheric circulation in TC basins to the global warming is more critical than increasing SST to understanding the impacts of global warming...Japan and its adjacent seas is studied with WRF model. The results suggest that the northward moisture transport through the outer cyclonic circulation

  6. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  7. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective

    NASA Astrophysics Data System (ADS)

    Cao, Zuohao; Zhang, Da-Lin

    2005-11-01

    In this study, the characteristics of moist potential vorticity (MPV) in the vicinity of a surface cyclone center and their physical processes are investigated. A prognostic equation of surface absolute vorticity is then used to examine the relationship between the cyclone tracks and negative MPV (NMPV) using numerical simulations of the life cycle of an extratropical cyclone. It is shown that the MPV approach developed herein, i.e., by tracing the peak NMPV, can be used to help trace surface cyclones during their development and mature stages. Sensitivity experiments are conducted to investigate the impact of different initial moisture fields on the effectiveness of the MPV approach. It is found that the lifetime of NMPV depends mainly on the initial moisture field, the magnitude of condensational heating, and the advection of NMPV. When NMPV moves into a saturated environment at or near a cyclone center, it can trace better the evolution of the surface cyclone due to the conservative property of MPV. It is also shown that the NMPV generation is closely associated with the coupling of large potential temperature and moisture gradients as a result of frontogenesis processes. Analyses indicate that condensation, confluence and tilting play important but different roles in determining the NMPV generation. NMPV is generated mainly through the changes in the strength of baroclinicity and in the direction of the moisture gradient due to moist and/or dry air mass intrusion into the baroclinic zone.

  8. Northern Hemisphere extratropical winter cyclones variability over the 20th century derived from ERA-20C reanalysis

    NASA Astrophysics Data System (ADS)

    Varino, Filipa; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Granier, Jean-Baptiste

    2018-03-01

    The multi-decadal variations of wintertime extra-tropical cyclones during the last century are studied using a vorticity-based tracking algorithm applied to the long-term ERA-20C reanalysis from ECMWF. The variability of moderate-to-deep extra-tropical winter cyclones in ERA-20C show three distinct periods. Two at the beginning and at the end of the century (1900-1935 and 1980-2010) present weak or no significant trends in the Northern Hemisphere as a whole and only some regional trends. The period in between (1935-1980) is marked by a significant increase in Northern Hemisphere moderate-to-deep cyclones frequency. During the latter period, polar regions underwent a significant cooling over the whole troposphere that increased and shifted poleward the mid-latitude meridional temperature gradient and the baroclinicity. This is linked to positive-to-negative shifts of the PDO between 1935 and 1957 and of the AMO between 1957 and 1980 which mainly reinforced the storm-track eddy generation in the North Pacific and North Atlantic regions respectively, as seen from baroclinic conversion from mean to eddy potential energy. As a result, both the North Pacific and North Atlantic extra-tropical storms increase in frequency during the two subperiods (1935-1957 and 1957-1980), together with other storm-track quantities such as the high-frequency eddy kinetic energy. In contrast, the first and third periods are characterized by a warming of the polar temperatures. However, as the stronger warming is confined to the lower troposphere, the baroclinicity do not uniformly increase in the whole troposphere. This may explain why the recent rapid increase in polar temperatures has not affected the behaviour of extratropical cyclones very much. Finally, the large magnitude of the positive trend found in moderate-to-deep cyclone frequency during the second period is still questioned as the period is marked by an important increase in the number of assimilated observations. However, the dynamical link between changes in cyclone frequency, changes in large-scale baroclinicity and ocean decadal variability found in the present study makes us confident on the sign of the detected cyclone trend.

  9. Saharan Air and Atlantic Tropical Cyclone Suppression From a Global Modeling Perspective

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K. M.; daSilva, A.; Kim, K.-M.

    2007-01-01

    During summer 2006, the NASA African Monsoon Multidisciplinary Analysis (NAMMA) organized a field campaign in Africa called Special Observation Period (SOP-3), in which scientists in the field were involved in a number of surface network and aircraft measurements. One of the scientific goals of the campaign was to understand the nature and causes for tropical cyclogenesis originating out of African Easterly Waves (AEWs, westward propagating atmospheric disturbances sometimes associated with precursors of hurricanes), and the role that the Saharan Air Layer (SAL, a hot and dry air layer advecting large amounts of dust) can play in the formation or suppression of tropical cyclones. During the NAMMA campaign a high-resolution global model, the NASA GEOS-5, was operationally run by the NASA Global Modeling and Assimilation Office (GMAO) in support to the mission. The daily GEOS-5 forecasts were found to be very useful by decision-making scientists in the field as an aid to discriminate between developing and non-developing AEWs and plan the flight tracks. In the post-event analyses which were performed mostly by the Goddard Laboratory for Atmospheres, two events were highlighted: a non-developing AEW which appeared to have been suppressed by Saharan air, compared to a developing AEW which was the precursor of hurricane Helene. Both events were successfully predicted by the GEOS-5 during the real-time forecasts provided in support to the mission. In this work it is found that very steep moisture gradients and a strong thermal dipole, with relatively warm air in the mid-troposphere and cool air below, are associated with SAL in both the GEOS-5 forecasts and the NCEP analyses, even at -great distance- from the Sahara. The presence of these unusual thermodynamic features over the Atlantic Ocean, at several thousands of kilometers from the African coastline, is suggestive that SAL mixing is very minimal and that the model's capability of retaining the different properties of air masses during transport are important to represent effectively the role of dry air intrusions in the tropical circulation.

  10. Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities

    USGS Publications Warehouse

    Marks, F.D.; Shay, L.K.; Barnes, G.; Black, P.; Demaria, M.; McCaul, B.; Mounari, J.; Montgomery, M.; Powell, M.; Smith, J.D.; Tuleya, B.; Tripoli, G.; Xie, Lingtian; Zehr, R.

    1998-01-01

    The Fifth Prospectus Development Team of the U.S. Weather Research Program was charged to identify and delineate emerging research opportunities relevant to the prediction of local weather, flooding, and coastal ocean currents associated with landfalling U.S. hurricanes specifically, and tropical cyclones in general. Central to this theme are basic and applied research topics, including rapid intensity change, initialization of and parameterization in dynamical models, coupling of atmospheric and oceanic models, quantitative use of satellite information, and mobile observing strategies to acquire observations to evaluate and validate predictive models. To improve the necessary understanding of physical processes and provide the initial conditions for realistic predictions, a focused, comprehensive mobile observing system in a translating storm-coordinate system is required. Given the development of proven instrumentation and improvement of existing systems, three-dimensional atmospheric and oceanic datasets need to be acquired whenever major hurricanes threaten the United States. The spatial context of these focused three-dimensional datasets over the storm scales is provided by satellites, aircraft, expendable probes released from aircraft, and coastal (both fixed and mobile), moored, and drifting surface platforms. To take full advantage of these new observations, techniques need to be developed to objectively analyze these observations, and initialize models aimed at improving prediction of hurricane track and intensity from global-scale to mesoscale dynamical models. Multinested models allow prediction of all scales from the global, which determine long- term hurricane motion to the convective scale, which affect intensity. Development of an integrated analysis and model forecast system optimizing the use of three-dimensional observations and providing the necessary forecast skill on all relevant spatial scales is required. Detailed diagnostic analyses of these datasets will lead to improved understanding of the physical processes of hurricane motion, intensity change, the atmospheric and oceanic boundary layers, and the air- sea coupling mechanisms. The ultimate aim of this effort is the construction of real-time analyses of storm surge, winds, and rain, prior to and during landfall, to improve warnings and provide local officials with the comprehensive information required for recovery efforts in the hardest hit areas as quickly as possible.

  11. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    NASA Technical Reports Server (NTRS)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  12. Associating extreme precipitation events to parent cyclones in gridded data

    NASA Astrophysics Data System (ADS)

    Rhodes, Ruari; Shaffrey, Len; Gray, Sue

    2015-04-01

    When analysing the relationship of regional precipitation to its parent cyclone, it is insufficient to consider the cyclone's region of influence as a fixed radius from the centre due to the irregular shape of rain bands. A new method is therefore presented which allows the use of objective feature tracking data in the analysis of regional precipitation. Utilising the spatial extent of precipitation in gridded datasets, the most appropriate cyclone(s) may be associated with regional precipitation events. This method is applied in the context of an analysis of the influence of clustering and stalling of extra-tropical cyclones in the North Atlantic on total precipitation accumulations over England and Wales. Cyclone counts and residence times are presented for historical records (ERA-Interim) and future projections (HadGEM2-ES) of extreme (> 98th percentile) precipitation accumulations over England and Wales, for accumulation periods ranging from one day to one month.

  13. Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient

    DTIC Science & Technology

    2012-12-11

    low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly

  14. Annual Tropical Cyclone Report, 1982.

    DTIC Science & Technology

    1982-01-01

    intensity forecast are made once each day by processed at AFGWC is recorded on-board applying the Dvorak technique (NOAA Technical the spacecraft as it...tropical cyclone. Season totals and the 700 mb pressure surface within the percentages are also indicated. vortex recorded in meters. 7 Z ;l__...16 TY GORDON 27 AUG - 5 SEP 10 39 100 944 2014 17 TS HOPE 4 SEP - 6 SEP 3 10 #0 979 630 18 TY IRVING 5 SEP - 16 SEP 12 44 90 952 1770 19 TY JUDY 5 SEP

  15. Mediterranean Cyclones in a changing climate. First statistical results

    NASA Astrophysics Data System (ADS)

    Tous, M.; Genoves, A.; Campins, J.; Picornell, M. A.; Jansa, A.; Mizuta, R.

    2009-09-01

    The Mediterranean storms play an important role in weather and climate. Their influence in determining the local weather is known; heavy precipitation systems and strong wind cases are often related to the presence of a cyclone in the Mediterranean. From a large-scale point of view, the Mediterranean storm track has importance in the vertical and horizontal transfers of heat and water vapour towards the Eastern regions. For all of these reasons, any future change related to the intensity, frequency or tracks of these storms can be important for both the local weather and local climate, at least, in the countries around the basin. The Mediterranean cyclones constitute a study subject of increasing interest. Some climatologies from long series of re-analyses, like ERA15, NCEP/NCAR and ERA40, or from operational and high resolution analysis systems, like HIRLAM_INM and ECMWF, have allowed to define the main characteristics of these storms. Generally speaking, the Mediterranean storms have the characteristics of extratropical storms, showing smaller sizes and shorter life cycles than those ones developed in other maritime areas of the world. Moreover, the influence of the land areas and high mountains around the basin and the large-scale heat releases have been revealed as key factors for understanding their genesis and rates of development. In spite of the fact that probably the existing automatic procedures include some large scale assumptions, which may not the best for the correct detection and tracking the Mediterranean storms, these procedures can provide a first and almost necessary step, from a statistical/climatological point of view, specially taking into account both the current resolution of the existent global re-analysis series and global climatic models and the state-of-the art about Mediterranean cyclones. A cyclone detection and tracking procedure, originally designed for the description of Mediterranean storms, has been applied to the low resolution (1.5 degrees lat-lon) outputs of the JMA-GSM climate general circulation model. Preliminary results are here presented. Two different periods have been analysed. The first period, covering 1979-2002 has been compared with the previously computed ERA-40 climatology of cyclones. Results agree reasonably well with those obtained from ERA-40, providing confidence to the current climate simulation of JMA-GSM. Once validated the model from the perspective of cyclonic climatology under current climate conditions, the same procedure is applied to a scenario period (2075-2099) to investigate possible changes in cyclonic activity linked to climate change.

  16. Structural Variability of Tropospheric Growth Factors Transforming Mid-latitude Cyclones to Severe Storms over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2015-04-01

    The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.

  17. Bill spurs efforts to improve forecasting of inland flooding from tropical storms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Newly-enacted U.S. legislation to reduce the threat of inland flooding from tropical storms could provide a "laser beam" focus to dealing with this natural hazard, according to Rep. Bob Etheridge (D-N.C.), the chief sponsor of the bill.The Tropical Cyclone Inland Forecasting Improvement and Warning System Development Act, (PL. 107-253), signed into law on 29 October, authorizes the National Oceanic and Atmospheric Administration's U.S. Weather Research Program (USWRP) to improve the capability to accurately forecast inland flooding from tropical storms through research and modeling.

  18. ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin

    2016-11-01

    In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.

  19. Extremes of Extra-tropical Storms and Drivers of Variability on Different Time Scales

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2015-12-01

    Extreme extra-tropical cyclones are highly complex dynamical systems with relevance not only for the meteorological and climatological conditions themselves, but also for impacts on different sectors of society and economy. In this presentation latest research results to severe cyclones and related wind fields from synoptic to multi-decadal and anthropogenic scales will be presented, including recent work to risk assessment of potential damages out of this natural hazard. Nevertheless, the focus is laid on the seasonal timescale and recent results to predictability and predictive skills out of different forecast suites will be discussed. In this context, three seasonal forecast suites, namely ECMWF System 3, ECMWF System 4 and Met Office HadGEM-GA3, are analysed regarding their ability to represent wintertime extra-tropical cyclone and wind storm events for the period 1992 until 2011. Two objective algorithms have been applied to 6 hourly MSLP data and 12 hourly wind speeds in 925hPa to detect cyclone and wind storm events, respectively. Results show that all model suites are able to simulate the climatological mean distribution of cyclones and wind storms. For wind storms, all model suites show positive skill in simulating the inter-annual variability over the sub-tropical Pacific. Results for the Atlantic region are more model dependent, with all models showing negative correlations over the western Atlantic. Over the eastern Atlantic/Western Europe only HadGEM-GA3 and ECMWF-S4 reveal significant positive correlations. However, it is found that results over this region are not robust in time for ECMWF-S4, as correlations drop if using 1982 until 2011 instead of 1992 until 2011. Factors of potential predictability will be discussed.

  20. Predictability of the 2012 Great Arctic Cyclone on medium-range timescales

    NASA Astrophysics Data System (ADS)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-03-01

    Arctic Cyclones (ACs) can have a significant impact on the Arctic region. Therefore, the accurate prediction of ACs is important in anticipating their associated environmental and societal costs. This study investigates the predictability of the 2012 Great Arctic Cyclone (AC12) that exhibited a minimum central pressure of 964 hPa on 6 August 2012, using five medium-range ensemble forecasts. We show that the development and position of AC12 were better predicted in forecasts initialized on and after 4 August 2012. In addition, the position of AC12 was more predictable than its development. A comparison of ensemble members, classified by the error in predictability of the development and position of AC12, revealed that an accurate prediction of upper-level fields, particularly temperature, was important for the prediction of this event. The predicted position of AC12 was influenced mainly by the prediction of the polar vortex, whereas the predicted development of AC12 was dependent primarily on the prediction of the merging of upper-level warm cores. Consequently, an accurate prediction of the polar vortex position and the development of the warm core through merging resulted in better prediction of AC12.

  1. An Investigation of Bomb Cyclone Climatology: Reanalysis vs. NCEP's CFS Model

    NASA Astrophysics Data System (ADS)

    Alvarez, F. M.; Eichler, T.; Gottschalck, J.

    2009-12-01

    Given the concerns and potential impacts of climate change, the need for climate models to simulate weather phenomena is as important as ever. An example of such phenomena is rapidly intensifying cyclones, also known as "bombs." These intense cyclones have devastating effects on residential and marine commercial interests as well as the transportation industry. In this study, we generate a climatology of rapid cyclogenesis using the National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model. Results are compared to NCEP’s global reanalysis data to determine if the CFS model is capable of producing a realistic extreme storm climatology. This represents the first step in quantifying rapidly intensifying cyclones in the CFS model, which will be useful in contributing towards future model improvements, as well as gauging its ability in determining the role of synoptic-scale storms in climate change.

  2. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  3. The unusual wet summer (July) of 2014 in Southern Europe

    NASA Astrophysics Data System (ADS)

    Ratna, Satyaban B.; Ratnam, J. V.; Behera, Swadhin K.; Cherchi, Annalisa; Wang, Wanqiu; Yamagata, Toshio

    2017-06-01

    Southern Europe (Italy and the surrounding countries) experienced an unusual wet summer in 2014. The monthly rainfall in July 2014 was 84% above (more than three standard deviation) normal with respect to the 1982-2013 July climatology. The heavy rainfall damaged agriculture, and affected tourism and overall economy of the region. In this study, we tried to understand the physical mechanisms responsible for such abnormal weather by using model and observed datasets. The anomalously high precipitation over Italy is found to be associated with the positive sea surface temperature (SST) and convective anomalies in the tropical Pacific through the atmospheric teleconnection. Rossby wave activity flux at upper levels shows an anomalous tropospheric quasi-stationary Rossby wave from the Pacific with an anomalous cyclonic phase over southern Europe. This anomalous cyclonic circulation is barotropic in nature and seen extending to lower atmospheric levels, weakening the seasonal high and causing heavy precipitation over the Southern Europe. The hypothesis is verified using the National Centers for Environmental Prediction (NCEP) coupled forecast system model (CFSv2) seasonal forecasts. It is found that two-month lead forecast of CFSv2 was able to capture the wet summer event of 2014 over Southern Europe. The teleconnection pattern from Pacific to Southern Europe was also forecasted realistically by the CFSv2 system.

  4. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  5. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    NASA Astrophysics Data System (ADS)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  6. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mawren, D.; Reason, C. J. C.

    2017-03-01

    Track and intensity are key aspects of tropical cyclone behavior. Intensity may be impacted by the upper-ocean heat content relevant for TC intensification (known as Tdy) and barrier layer thickness (BLT). Here the variability of Tdy and BLT in the South West Indian Ocean and their relationships with tropical cyclones are investigated. It is shown that rapid cyclone intensification is influenced by large Tdy values, thick barrier layers and the presence of anticyclonic eddies. For TC generation in the South West Indian Ocean, the parameter Tdy was found to be important. Large BLT values overlay with large Tdy values during summer. Both fields are modulated by the westward propagation of Rossby waves, which are often associated with ENSO. For example, the 1997-1998 El Niño shows a strong signal in Tdy, SST, and BLT over the South West Indian Ocean. After this event, an increasing trend in Tdy occurred over most of the basin which may be associated with changes in atmospheric circulation. Increasing SST, Power Dissipation Index and frequency of Category 5 tropical cyclones also occurred from 1980 to 2010. To further examine the links between tropical cyclones, Tdy, and BLT, the ocean response to Category 5 Tropical Cyclone Bansi that developed near Madagascar during January 2015 was analyzed. Its unusual track was found to be linked with the strengthening of the monsoonal north westerlies while its rapid intensification from Category 2 to Category 4 was linked to a high-Tdy region, associated with a warm core eddy and large BLT.

  7. Wind and wave extremes over the world oceans from very large ensembles

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.

    2014-07-01

    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.

  8. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    NASA Astrophysics Data System (ADS)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  9. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    PubMed

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  10. Impacts and Recovery from Severe Tropical Cyclone Yasi on the Great Barrier Reef

    PubMed Central

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1—Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance. PMID:25874718

  11. Upper-ocean Response to Hurricane Gonzalo (2014): Salinity Effects Revealed by Targeted and Sustained Underwater Glider Observation

    NASA Astrophysics Data System (ADS)

    Domingues, R. M.; Goni, G. J.; Bringas, F.; Lee, S. K.; Kim, H. S. S.; Halliwell, G. R., Jr.; Dong, J.; Morell, J. M.; Pomales, L.

    2016-02-01

    In July 2014, two underwater gliders were deployed off Puerto Rico as part of a multi-institutional effort lead by NOAA/AOML funded by the Disaster Appropriations Relief Act of 2013 known as Sandy Supplemental. The goal of this work is to collect ocean observations to: (1) investigate the response of the ocean to tropical cyclone (TC) wind conditions; (2) improve understanding on the role that the ocean plays in the intensification of TCs; and (3) help improve TC seasonal and intensity forecasts. The two gliders were piloted along predetermined tracks in the Caribbean Sea and in the North Atlantic Ocean (Figure 1), where TCs very often travel and intensify. On October 12, 2014, TC Gonzalo developed in the tropical North Atlantic, reaching the status of Category 3 hurricane on October 14 as it travelled 85 km northeast of the location of the glider (site B, Figure 1). The sampling strategy adopted during the passage of Hurricane Gonzalo consisted of carrying out observations: along a repeat section three times between sites A and B, one before and two after the passage of the hurricane; and at a fixed location at site B during the passage of the hurricane. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper-ocean response to hurricane winds. The main finding in this study is that salinity played an important role on the upper-ocean response to Hurricane Gonzalo; where a near-surface barrier-layer has likely suppressed the hurricane-induced upper-ocean cooling, leading to smaller than expected temperature changes of -0.4°C. Post-storm observations also revealed a partial recovery of the ocean to pre-storm conditions 11 days after the hurricane. Glider observations were further compared with outputs from a numerical coupled atmospheric-ocean model used for hurricane prediction to evaluate the model performance in simulating the upper-ocean response during Hurricane Gonzalo. The comparison revealed that model-observations discrepancies were largely linked to salinity effects. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.

  12. Influence of Projected Changes in North American Snow Cover Extent on Mid-Latitude Cyclone Progression

    NASA Astrophysics Data System (ADS)

    Clare, R. M.; Desai, A. R.; Martin, J. E.; Notaro, M.; Vavrus, S. J.

    2017-12-01

    It has long been hypothesized that snow cover and snow extent have an influence on the development or steering of synoptic mid-latitude cyclones (MLCs). Rydzik and Desai (2014) showed a robust statistical relationship among snow cover extent, generation of low-level baroclinicity, and MLC tracks. Though snow cover extent is highly variable year to year, the changing global climate is expected to continue an already observed pattern of poleward retreat of mean snow cover in North America, particularly in late winter and spring. For this experiment, large ensemble simulations with the Weather Research and Forecasting model (WRF) were forced with output from the Community Earth System Model (CESM) to test the effect contributed solely by snow cover and the projected effects of a changing climate. Our experiment induces an adjustment to the extent of snow cover in North America according to CESM RCP 8.5 projections for each decade from 2020 to 2100 before and during several cases of MLCs moving east across the Great Plains near the snow line. To evaluate mechanisms of pre-existing and current snow influence on MLCs, model cases are started with snow line adjustment occurring from three days prior up to the storm's arrival over the Great Plains. We demonstrate that snow cover changes do alter MLC intensity and path via modification of low-level potential vorticity.

  13. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections

    NASA Astrophysics Data System (ADS)

    Park, Doo-Sun R.; Ho, Chang-Hoi; Chan, Johnny C. L.; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-01

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  14. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections.

    PubMed

    Park, Doo-Sun R; Ho, Chang-Hoi; Chan, Johnny C L; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-30

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  15. A Statistical Model of Tropical Cyclone Tracks in the Western North Pacific with ENSO-Dependent Cyclogenesis

    NASA Technical Reports Server (NTRS)

    Yonekura, Emmi; Hall, Timothy M.

    2011-01-01

    A new statistical model for western North Pacific Ocean tropical cyclone genesis and tracks is developed and applied to estimate regionally resolved tropical cyclone landfall rates along the coasts of the Asian mainland, Japan, and the Philippines. The model is constructed on International Best Track Archive for Climate Stewardship (IBTrACS) 1945-2007 historical data for the western North Pacific. The model is evaluated in several ways, including comparing the stochastic spread in simulated landfall rates with historic landfall rates. Although certain biases have been detected, overall the model performs well on the diagnostic tests, for example, reproducing well the geographic distribution of landfall rates. Western North Pacific cyclogenesis is influenced by El Nino-Southern Oscillation (ENSO). This dependence is incorporated in the model s genesis component to project the ENSO-genesis dependence onto landfall rates. There is a pronounced shift southeastward in cyclogenesis and a small but significant reduction in basinwide annual counts with increasing ENSO index value. On almost all regions of coast, landfall rates are significantly higher in a negative ENSO state (La Nina).

  16. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  17. The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)

    NASA Astrophysics Data System (ADS)

    Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.

    2017-12-01

    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast using the HYCOM-HWRF model. Data collected by this project are transmitted in real-time to the Global Telecommunication System, distributed through the institutional web pages, by the IOOS Glider Data Assembly Center, and by NCEI, and assimilated in real-time numerical weather forecast models.

  18. Reliability of windstorm predictions in the ECMWF ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Becker, Nico; Ulbrich, Uwe

    2016-04-01

    Windstorms caused by extratropical cyclones are one of the most dangerous natural hazards in the European region. Therefore, reliable predictions of such storm events are needed. Case studies have shown that ensemble prediction systems (EPS) are able to provide useful information about windstorms between two and five days prior to the event. In this work, ensemble predictions with the European Centre for Medium-Range Weather Forecasts (ECMWF) EPS are evaluated in a four year period. Within the 50 ensemble members, which are initialized every 12 hours and are run for 10 days, windstorms are identified and tracked in time and space. By using a clustering approach, different predictions of the same storm are identified in the different ensemble members and compared to reanalysis data. The occurrence probability of the predicted storms is estimated by fitting a bivariate normal distribution to the storm track positions. Our results show, for example, that predicted storm clusters with occurrence probabilities of more than 50% have a matching observed storm in 80% of all cases at a lead time of two days. The predicted occurrence probabilities are reliable up to 3 days lead time. At longer lead times the occurrence probabilities are overestimated by the EPS.

  19. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muni Krishna, K.

    2016-05-01

    Phet super cyclone (31 May-7 June 2010) was the most intense and also the rarest of the rare track in Arabian Sea as per the recorded history during 1877-2009. The present study focuses on the ocean physical responses to Phet cyclone using satellite and Argo observations. The sea surface temperature is decreased to 6 °C with an approximately 350 km long and 100 km width area in the Arabian Sea after the cyclone passage. The translation speed of cyclone is 3.86 m/s, the mixed layer is 79 m, and thermocline displacement is 13 m at the cooling area. With the relationship of wind stress curl and Ekman pumping velocity (EPV), the author found that the speed of EPV was increased after the passage of cyclone. So the extent of the SST drop was probably due to the moving speed of cyclone and the depth of the mixed layer.

  20. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.

  1. A western boundary current eddy characterisation study

    NASA Astrophysics Data System (ADS)

    Ribbe, Joachim; Brieva, Daniel

    2016-12-01

    The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.

  2. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving lives through its use in operational forecasting could not be quantified. The objective of this paper is to describe a possible technique to estimate the number of lives saved per year and apply it to the TRMM case and the use of its data in monitoring and forecasting tropical cyclones.

  3. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The key changes have to do with overflight of high convective cloud tops and those producing lightning. Experience shows that most tropical oceanic convection (including that in tropical cyclones) is relatively gentle even if the cloud tops are quite high, and can be safely overflown. Exceptions are convective elements producing elevated lightning flash rates (more than just the occasional flash, which would trigger avoidance under the previous rules) and significant overshooting cloud tops.

  4. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  5. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  6. Data Assimilation and Predictability Studies on Typhoon Sinlaku (2008) Using the WRF-LETKF System

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Kunii, M.

    2011-12-01

    Data assimilation and predictability studies on Tropical Cyclones with a particular focus on intensity forecasts are performed with the newly-developed Local Ensemble Transform Kalman Filter (LETKF) system with the WRF model. Taking advantage of intensive observations of the internationally collaborated T-PARC (THORPEX Pacific Asian Regional Campaign) project, we focus on Typhoon Sinlaku (2008) which intensified rapidly before making landfall to Taiwan. This study includes a number of data assimilation experiments, higher-resolution forecasts, and sensitivity analysis which quantifies impacts of observations on forecasts. This presentation includes latest achievements up to the time of the conference.

  7. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    NASA Astrophysics Data System (ADS)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for Environmental Prediction (NCEP) tropical cyclone tracker by Marchok that was used to identify cyclones based off its physical characteristics. We will discuss the methods and challenges to creating this dataset and the dataset's use for our current supervised machine learning model as well as use for future work on events such as convection initiation.

  8. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    NASA Technical Reports Server (NTRS)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean.

  9. Global Tropical Moisture Exports and their Influence on Extratropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Wernli, H.; Gläser, G.

    2012-04-01

    Many case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fuelled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a climatology of TMEs to both hemispheres is constructed on the basis of seven-day forward trajectories, which were started daily from the tropical lower troposphere and which were required to reach a water vapour flux of at least 100 g kg-1 m s-1 somewhere poleward of 35 degrees. For this analysis 6-hourly European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim re-analysis data have been used for the 32-year period 1979-2010. A comparison with a TME climatology based upon the older ERA-40 re-analysis shows little sensitivity. The results are then related to the deepening of objectively identified (extratropical) cyclones in both hemispheres. On average TME trajectories move upwards and eastwards on their way across the subtropics in both hemispheres and are associated with both moisture and meridional-wind anomalies. TME shows four main regions of activity in both hemispheres: In the northern hemisphere these are the eastern Pacific ("Pineapple Express" region) with a marked activity maximum in boreal winter, the West Pacific with maximum activity in summer and autumn associated with the Asian monsoon, the narrow Great Plains region with a maximum in spring and summer associated with the North American monsoon and the western Atlantic or Gulf Stream region with a rather flat seasonal cycle. In the southern hemisphere activity peaks over the central and eastern Pacific, eastern South America and the adjacent Atlantic, the western Indian Ocean, and western Australia. Southern hemisphere TME activity peaks in boreal winter, particularly over the Atlantic and Pacific Oceans, which suggests a significant influence of northern hemispheric Rossby wave energy propagation across the equator. The interannual variability in several regions is significantly modulated by El Niño. A detailed analysis of TME encounters along individual extratropical cyclone tracks reveals several extraordinary cyclone-deepening events associated with TME trajectories (e.g. storm "Klaus" in January 2009). A statistical analysis quantifies the fraction of explosively deepening cyclones that occur with and without a TME influence.

  10. A simple method to forecast the frequency of depressions and cyclones over Bay of Bengal during summer monsoon season

    NASA Astrophysics Data System (ADS)

    Sadhuram, Y.; Maneesha, K.; Suneeta, P.

    2018-04-01

    In this study, an attempt has been made to develop a simple multiple regression model to forecast the total number of depressions and cyclones (TNDC) over Bay of Bengal during summer monsoon (June-September) season using the data for the period, 1995-2016. Four potential predictors (zonal wind speed at 850 hPa in May and April SST in the North Australia-Indonesia region, 05°S-15°S; 120°E-160°E; March NINO 3.4 SST and geopotential height at 200 hPa in the region, 0°N-10°N; 80°E-100°E) have been identified to forecast TNDC. A remarkably high multiple correlation coefficient of 0.92 has been observed with the TNDC which explains 85% variability. The methodology has been tested for the recent 5 years (2012-2016) and found a good agreement between the observed and forecast values of TNDC except in 2015 in which the observed and predicted TNDC were 2 and 0, respectively. It is interesting to see high and significant correlations between the above predictors and the genesis potential parameter (GPP) during summer monsoon season. This GPP depends on the relative vorticity at 850 hPa, mid troposphere relative humidity, thermal instability between 850 and 500 hPa, and vertical wind shear between 200 and 850 hPa. It is inferred that the above predictors are influencing the environmental conditions over Bay of Bengal which, in turn, influencing the genesis of cyclones during summer monsoon season. The impact of ENSO (El-Nino-Southern Oscillation) and La-Nina in TNDC is examined and found that the vertical wind shear and relative vorticity are high and the GPP was almost double in ENSO compared with that in La-Nina which favoured high (low) TNDC under ENSO (La-Nina).

  11. Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal Tropical Cyclone of November 2008 near Tamilnadu using WRF model

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Yesubabu, V.; Venkatesan, R.; Ramarkrishna, S. S. V. S.

    2010-12-01

    The objective of this study is to examine the impact of assimilation of conventional and satellite data on the prediction of a severe cyclonic storm that formed in the Bay of Bengal during November 2008 with the four-dimensional data assimilation (FDDA) technique. The Weather Research and Forecasting (WRF ARW) model was used to study the structure, evolution, and intensification of the storm. Five sets of numerical simulations were performed using the WRF. In the first one, called Control run, the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) was used for the initial and boundary conditions. In the remaining experiments available observations were used to obtain an improved analysis and FDDA grid nudging was performed for a pre-forecast period of 24 h. The second simulation (FDDAALL) was performed with all the data of the Quick Scatterometer (QSCAT), Special Sensor Microwave Imager (SSM/I) winds, conventional surface, and upper air meteorological observations. QSCAT wind alone was used in the third simulation (FDDAQSCAT), the SSM/I wind alone in the fourth (FDDASSMI) and the conventional observations alone in the fifth (FDDAAWS). The FDDAALL with assimilation of all observations, produced sea level pressure pattern closely agreeing with the analysis. Examination of various parameters indicated that the Control run over predicted the intensity of the storm with large error in its track and landfall position. The assimilation experiment with QSCAT winds performed marginally better than the one with SSM/I winds due to better representation of surface wind vectors. The FDDAALL outperformed all the simulations for the intensity, movement, and rainfall associated with the storm. Results suggest that the combination of land-based surface, upper air observations along with satellite winds for assimilation produced better prediction than the assimilation with individual data sets.

  12. How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere?

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2015-12-01

    Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments, such as the March 2014 nor'easter which developed along the United States coastline, with hurricane force winds in eastern Maine and the Maritimes. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981-1999) and future (2081-2099). Explosive cyclones are projected to shift northwards by about 2.2° latitude on average in the northern Pacific, with fewer and weaker events south of 45°N, and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (R = 0.56). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17% when averaging across models, with the largest changes occurring along North America's East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (R = 0.51), and is stronger for models with smaller frequency biases (R = -0.65). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (R = 0.58). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (R = -0.63). The inverse relationship between model bias and projection, and the role of model resolution are discussed.

  13. NASA Sees Large Tropical Cyclone Yasi Headed Toward Queensland, Australia

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 30, 2011 at 23:20 UTC. Satellite: Terra Click here to see the most recent image captured Feb. 1: www.flickr.com/photos/gsfc/5407540724/ Tropical Storm Anthony made landfall in Queensland, Australia this past weekend, and now the residents are watching a larger, more powerful cyclone headed their way. NASA's Terra satellite captured a visible image of the large Tropical Cyclone Yasi late yesterday as it makes its way west through the Coral Sea toward Queensland. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra satellite captured an image of Cyclone Yasi on Jan. 30 at 23:20 UTC (6:20 p.m. EST/09:20 a.m., Monday, January 31 in Australia/Brisbane local time). Although the image did not reveal a visible eye, the storm appears to be well-formed and also appears to be strengthening. Warnings and watches are already in effect throughout the Coral Sea. The Solomon Islands currently have a Tropical Cyclone warning for the provinces of Temotu, Rennell & Bellona, Makira and Guadalcanal. The Australian Bureau of Meteorology has already posted a Tropical Cyclone Watch from Cooktown to Yeppoon and inland to between Georgetown and Moranbah in Queensland, Australia. The Australian Bureau of Meteorology expects damaging winds to develop in coastal and island communities between Cooktown and Yeppoon Wednesday morning, and inland areas on Wednesday afternoon. Updates from the Australian Bureau of Meteorology can be monitored at the Bureau's website at www.bom.gov.au. On January 31 at 1500 UTC (10 a.m. EST/ 1:00 a.m. Tuesday February 1, 2011 in Australia/Brisbane local time), Tropical Cyclone Yasi had maximum sustained winds near 90 knots (103 mph/166 kmh). Yasi is a Category Two Cyclone on the Saffir-Simpson Scale. It was centered about 875 miles E of Cairns, Australia, near 13.4 South latitude and 160.4 East longitude. It was moving west near 19 knots (22 mph/35 kmh). Cyclone-force winds extend out to 30 miles (48 km) from the center. Animated infrared satellite imagery, such as that from the Atmospheric Infrared Sounder (AIRS) that flies on NASA's Aqua satellite, showed deep convective (thunderstorm) bands wrapping tighter into the low level circulation center. Wrapping bands of thunderstorms indicate strengthening. Yasi is forecast to move west then southwestward into an area of low vertical wind shear (strong wind shear can weaken a storm). Forecasters at the Joint Typhoon Warning Center (JTWC) expect Yasi to continue strengthening over the next 36 hours. JTWC forecasts a landfall just south of Cairns as a large 100-plus knot (115 mph/185 kmh)n system by Wednesday. Residents along the Queensland coast should now be making preparations now for the storm's arrival. Rob Gutro NASA's Goddard Space Flight Center Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Click here to see more images from MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. Mariner's guide for hurricane awareness in the North Atlantic basin.

    DOT National Transportation Integrated Search

    2000-08-01

    This guide will hopefully aid the Mariner in understanding the complex structure and behavior of : tropical cyclones in the North Atlantic Ocean. Once armed with this knowledge, and the information : on where to acquire forecasts and guidance for cur...

  15. Mesoscale Frontogenesis: An Analysis of Two Cold Front Case Studies

    DTIC Science & Technology

    1993-01-01

    marked the boundary of warm air or the "warm sector". Further development of this cyclone model by Bjerknes and Solberg (1922) and Bergeron (1928) provided...represent 25 mn s -1 Relative humidity of greater than 80% indicated by the shaded region in gray. Frontal zones marked with solid black lines. 24 two... Zuckerberg , J.T. Schaefer, and G.E. Rasch, 1986: Forecast problems: The meteorological and operational factors, In: Mesoscale Meteorology and Forecasting

  16. Coastal emergency managers' preferences for storm surge forecast communication.

    PubMed

    Morrow, Betty Hearn; Lazo, Jeffrey K

    2014-01-01

    Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.

  17. Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations

    NASA Astrophysics Data System (ADS)

    Norris, Jesse; Carvalho, Leila M. V.; Jones, Charles; Cannon, Forest

    2018-02-01

    Glaciers over the central Himalaya have retreated at particularly rapid rates in recent decades, while glacier mass in the Karakoram appears stable. To address the meteorological factors associated with this contrast, 36 years of Climate Forecast System Reanalyses (CFSR) are dynamically downscaled from 1979 to 2015 with the Weather Research and Forecasting (WRF) model over High Mountain Asia at convection permitting grid spacing (6.7 km). In all seasons, CFSR shows an anti-cyclonic warming trend over the majority of High Mountain Asia, but distinctive differences are observed between the central Himalaya and Karakoram in winter and summer. In winter and summer, the central Himalaya has been under the influence of an anti-cyclonic trend, which in summer the downscaling shows has reduced cloud cover, leading to significant warming and reduced snowfall in recent years. Contrastingly, the Karakoram has been near the boundary between large-scale cyclonic and anti-cyclonic trends and has not experienced significant snowfall or temperature changes in winter or summer, despite significant trends in summer of increasing cloud cover and decreasing shortwave radiation. This downscaling does not identify any trends over glaciers in closer neighboring regions to the Karakoram (e.g., Hindu Kush and the western Himalaya) where glaciers have retreated as over the central Himalaya, indicating that there are other factors driving glacier mass balance that this downscaling is unable to capture. While this study does not fully explain the Karakoram anomaly, the identified trends detail important meteorological contributions to the observed differences between central Himalaya and Karakoram glacier evolution in recent decades.

  18. The President's Day cyclone 17-19 February 1979: An analysis of jet streak interactions prior to cyclogenesis

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.

    1981-01-01

    The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.

  19. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, Donatella

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimatedmore » stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.« less

  20. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  1. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    NASA Technical Reports Server (NTRS)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  2. Seasonal prediction of typhoon genesis frequency and track patterns in the North West Pacific area

    NASA Astrophysics Data System (ADS)

    Hyoun, Yoosun; Kang, Kiryong; Shin, Do-Shick

    2014-05-01

    This study is to investigate the performance of the typhoon seasonal predictability using a dynamical model. The check items are the monthly statistics for total number of typhoon genesis in Western North Pacific (WNP) area and possible threat to Korean peninsula among them, and the probability of each categorized track pattern. As the dynamical model the Florida State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) was used, and it uses five ensemble members including control run are generated using time-lagged methods and the resolution of T126L27 (a Gaussian grid spacing of 0.94º). The model initial conditions are obtained from the National Center for Enviromental Prediction Global Forecast System (NCEP GFS) and the SST from Climate Forecast System with bias correction was used for ocean surface boundary condition. The summer (Jun-Jul-Aug) season prediction is made one month prior to target season. The detection of tropical cyclone used in this system is based on six criteria. First, the isolated vortex type minimum sea level pressure should be below 1008hPa. Second, the maximum wind speed is larger than 17m s-1. Third, the magnitude of the maximum relative vorticity at 850hPa exceeds 3.5x10-5s-1. Fourth, the average temperature difference from the area mean of surrounding region at 300hPa, 500hPa, 700hPa exceeds 2.5K. Fifth, the maximum wind speed at 850hPa is larger than that at 300hPa. Sixth, this identified vortex should last more than two days. These criteria were chosen after close examination from model-observation comparison. In this study, we will focus on performance of the system typhoon frequency and track pattern in the WNP area during 2004-2013.

  3. Hurricane Prediction: Progress and Problem Areas

    ERIC Educational Resources Information Center

    Simpson, R. H.

    1973-01-01

    Describes progress made in recent decades in predicting the track and landfall of hurricanes. Examines the problems of detecting, tracking, and describing tropical cyclones, and the difficulties which continue to complicate the matter of warning and evacuating coastal residents. (JR)

  4. Tropical Cyclone Report, 1990.

    DTIC Science & Technology

    1990-01-01

    organization as system underwent increased vertical wind shear and loss of latent and sensible heat. HI. TRACK AND MOTION After initially tracking...PASADENA CIUDAD UNIVERSITARIA. MEXICO LISD CAMP SPRINGS CENTER, MD CIVIL DEFENSE, BELAU LOS ANGELES PUBLIC LIBRARY CIVIL DEFENSE, MAJURO MAURITIUS

  5. Response of winter North Atlantic storm track to climate change in the CNRM-CM5 simulations

    NASA Astrophysics Data System (ADS)

    Chauvin, Fabrice; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    Climate variability in Europe in winter is largely controlled by North Atlantic storm tracks. These are associated with transport of energy, momentum, and water vapour, between the equator and mid latitudes. Extratropical cyclones have caused severe damages over some regions in north-western Europe, since they can combine extreme precipitation and strong winds. This is why it is relevant to study the impact of climate change on the extratropical cyclones, principally on their intensity, position or lifespan. Indeed, several recent studies have focused on this subject by using atmospheric reanalysis and general circulation models (GCMs). The main conclusions from the CMIP3 simulations showed a decreasing of the total number of cyclones and a poleward shift of their tracks in response to global warming. In the recent CMIP5 exercise, the consensus is not so clear, probably due to more complex feedbacks acting in the different models. Thus, the question of changes in North Atlantic storm-tracks with warming remains open. The main goal of this work is to explore the changes in the North Atlantic storm-tracks in the past and future decades and to analyze the contributions of the different external forcings (natural and anthropogenic) versus the internal variability. On this purpose, we use the Detection and Attribution (D&A) simulations performed with the coupled model CNRM-CM5. To characterize the extratropical cyclones and their tracks, a tracking scheme based on the detection of maximum of relative vorticity at 850 hPa is conducted. We show that the coupled model fairly well reproduces the storm genesis locations as well as the tracks pathways comparing to several atmospheric reanalysis products. In the recent historical period (1950-2005), the model shows a decrease in the number of storms in the southern North-Atlantic, when all the forcings (anthropogenic and natural) are prescribed. Even if the role of internal variability is important in the last decades (the inter-members spread is very large), and the signals rarely emerge from the noise, analysis based on the Eady Growth Rate parameter has lead to quantify the respective roles of baroclinicity and meridional temperature gradients. Finally, in the scenario (RCP8.5), the tendency seen in the all-forcings historical run is confirmed and reinforced.

  6. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also, cyclones which are generated in the northern North Atlantic and the Labrador Sea are to an extraordinary extent underestimated in the "uncoupled" MPI-ESM - for the latter region the TWC can balance this shortcoming. In the Northern Hemisphere annual mean statistics the TWC does not change the distribution of the strength of cyclones, but it changes the distribution of the lifetime of cyclones.

  7. Refinements to Atlantic basin seasonal hurricane prediction from 1 December

    NASA Astrophysics Data System (ADS)

    Klotzbach, Philip J.

    2008-09-01

    Atlantic basin seasonal hurricane predictions have been issued by the Tropical Meteorology Project at Colorado State University since 1984, with early December forecasts being issued every year since early December 1991. These forecasts have yet to show real-time forecast skill, despite several statistical models that have shown considerable hindcast skill. In an effort to improve both hindcast skill and hopefully real-time forecast skill, a modified forecast scheme has been developed using data from 1950 to 2007. Predictors were selected based upon how much variance was explained over the 1950-1989 subperiod. These predictors were then required to explain similar amounts of variance over a latter subperiod from 1990 to 2007. Similar amounts of skill were demonstrated for each of the three predictors selected over the 1950-1989 period, the 1990-2007 period, and the full 1950-2007 period. In addition, significant correlations between individual predictors and physical features known to affect hurricanes during the following August-October (i.e., tropical Atlantic wind shear and sea level pressure changes, ENSO phase changes) were obtained. This scheme uses a new methodology where hindcasts were obtained using linear regression and then ranked to generate final hindcast values. Fifty-four percent of the variance was explained for seasonal Net Tropical Cyclone (NTC) activity over the 1950-2007 period. These hindcasts show considerable differences in landfalling U.S. tropical cyclones, especially for the Florida Peninsula and East Coast. Seven major hurricanes made Florida Peninsula and East Coast landfall during the top 15 largest NTC hindcasts compared with only two major hurricane landfalls in the bottom 15 smallest NTC hindcasts.

  8. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    NASA Astrophysics Data System (ADS)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  9. Impacts of Potential Aircraft Observations on Forecasts of Tropical Cyclones Over the Western North Pacific

    DTIC Science & Technology

    2014-12-01

    anticyclone. Vertical wind shear was low, while a moderate level of upper level diffluence existed. The minimum sea level pressure ( SLP ) was estimated...pre-Sinlaku disturbance. At this time, JTWC estimated maximum surface level winds to be 15 to 20 kt, with a SLP near 1005 hPa. 17 Figure 11...poleward side of the circulation. Surface winds had increased to near 23 kt as the SLP continued to fall to 1004 hPa. JTWC forecasters upgraded the

  10. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    DTIC Science & Technology

    2010-09-30

    techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in the top panel near...the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid at 1200 UTC is shown

  11. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    DTIC Science & Technology

    2012-09-30

    techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...real-time COAMPS-TC forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in...the top panel near the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid

  12. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    DTIC Science & Technology

    2012-09-30

    techniques, as well as observational results from the scientific community including the recent T- PARC /TCS08 and ITOP field campaigns to build upon the...forecast for the recent Hurricane Irene is shown in Figure 2. The composite National Weather Service radar reflectivity is shown in the top panel...near the time of landfall in North Carolina at 1148 UTC 27 August 2011 and the COAMPS-TC predicted radar reflectivity at 36 h valid at 1200 UTC is

  13. Achieving Superior Tropical Cyclone Intensity Forecasts by Improving the Assimilation of High-Resolution Satellite Data into Mesoscale Prediction Models

    DTIC Science & Technology

    2013-09-30

    using polar orbit microwave and infrared sounder measurements from the Global Telecommunication System (GTS). The SDAT system was developed as a...WRF/GSI initial conditions and WRF boundary conditions. • WRF system to do short-range forecasts (6 hours) to provide the background fields for GSI...UCAR is related to a NASA GNSS proposal: “Improving Tropical Prediction and Analysis using COSMIC Radio Occultation Observations and an Ensemble Data

  14. Tropical cyclone prediction skills - MJO and ENSO dependence in S2S data sets

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Camargo, S.; Vitart, F.; Sobel, A. H.; Tippett, M.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO) are two important climate controls on tropical cyclone (TC) activity. The seasonal prediction skill of dynamical models is determined in large part by their accurate representations of the ENSO-TC relationship. Regarding intraseasonal TC variability, observations suggest MJO to be the primary control. Given the ongoing effort to develop dynamical seasonal-to-subseasonal (S2S) TC predictions, it is important to examine whether the global models, running on S2S timescales, are able to reproduce these known ENSO-TC and MJO-TC relationships, and how this ability affects forecasting skill. Results from the S2S project (from F. Vitart) suggest that global models have skill in predicting MJO phase with up to two weeks of lead time (four weeks for ECMWF). Meanwhile, our results show that, qualitatively speaking, the MJO-TC relationship in storm genesis is reasonably captured, with some models (e.g., ECMWF, BoM, NCEP, MetFr) performing better than the others. However, we also find that model skill in predicting basin-wide genesis and accumulated cyclone energy (ACE) are mainly due to the models' ability to capture the climatological seasonality. Removing the seasonality significantly reduces the models' skill; even the best model (ECMWF) in the most reliable basin (western north Pacific and Atlantic) has very little skill (close to 0.1 in Brier skill score for genesis and close to 0 in rank probability skill score for ACE). This brings up the question: do any factors contribute to intraseasonal TC prediction skill other than seasonality? Is the low skill, after removing the seasonality, due to poor MJO and ENSO simulations, or to poor representation of other ENSO-TC or MJO-TC relationships, such as ENSO's impact on the storm tracks? We will quantitatively discuss the dependence of the TC prediction skill on ENSO and MJO, focusing on Western North Pacific and Atlantic, where we have sufficient sample sizes, and the S2S TC predictions are relatively more skillful. Various skill scores will be applied to genesis and ACE, with subsets of data binned based on ENSO and MJO status. We will also look at MJO and ENSO's impact on TC tracks through cluster analysis, and analyze model skill in each cluster.

  15. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    NASA Astrophysics Data System (ADS)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  16. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    NASA Astrophysics Data System (ADS)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  17. Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Xiande; Wu, Lixin; Wang, Qi

    2018-06-01

    With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.

  18. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  19. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-01-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  20. Vulnerability Factors and Effectiveness of Disaster Mitigation Measures in the Bangladesh Coast

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazir; Paul, Shitangsu Kumar

    2018-05-01

    The major objective of this paper is to identify the vulnerability factors and examine the effectiveness of disaster mitigation measures undertaken by individuals, government and non-government organisations to mitigate the impacts of cyclones in the Bangladesh coast experiencing from Cyclone Aila. The primary data were collected from two villages of southwestern coastal areas of Bangladesh using questionnaire survey and interviews of the key informants. The data were analysed using the descriptive and inferential statistics. This paper reveals that the disaster management measures have a significant role to lessen the impacts of the cyclonic event, especially in pre-disaster preparedness, cyclone warning message dissemination, evacuation and post-disaster rehabilitation. The households, who have access to shelter, find weather forecast regularly and adopted pre-disaster awareness measures are relatively less susceptible to hazard's impacts. The disaster management measures undertaken by individuals and GOs and NGOs help coastal people to save their lives and property from the negative impacts of cyclones. The analysis shows that the NGOs' role is more effective and efficient than the GOs in cyclone disaster management. This paper identifies distance to shelter, participation in disaster training, efficient warning, etc. as the influential factors of vulnerability cyclones. The analysis finds the households as less affected who have adopted disaster preparedness measures. However, this paper concludes that the effective and proper disaster management and mitigation measures are very crucial to shield the lives and properties of the Bangladeshi coastal people.

  1. Characteristics of tropical cyclones in high-resolution models in the present climate

    DOE PAGES

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; ...

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TCmore » frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.« less

  2. Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer; Camargo, Suzana J.; Sobel, Adam H.; Henderson, Naomi; Emanuel, Kerry A.; Kumar, Arun; LaRow, Timothy E.; Murakami, Hiroyuki; Roberts, Malcolm J.; Scoccimarro, Enrico; Vidale, Pier Luigi; Wang, Hui; Wehner, Michael F.; Zhao, Ming

    2017-09-01

    Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodel ensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologies are used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass moment ellipses. First, the models' TC tracks are compared to observed TC tracks' characteristics, and a subset of the models is chosen for analysis, based on the tracks' similarity to observations and sample size. Potential changes in track types in a warming climate are identified by comparing the kernel smoothed probability distributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnov significance test. Two track changes are identified. The first is a statistically significant increase in the north-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented from expanding equatorward due to the weak Coriolis force near the equator. The second change is an eastward shift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicating a possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of the results on which model and future scenario are considered emphasizes the necessity of including multiple models and scenarios when considering future changes in TC characteristics.

  3. Arthur Strengthens, Moves Northward

    NASA Image and Video Library

    2014-07-02

    Despite a somewhat ragged appearance on satellite imagery, Arthur has strengthened overnight. NOAA and Air Force Reserve Hurricane Hunter aircraft have found surface winds in the 45-50 kt range to the south and northeast of the center, while also finding the central pressure has fallen to about 996 mb. Arthur has begun moving steadily northward at around 5 kt. The overall track forecast reasoning remains unchanged, as the tropical cyclone should continue northward for the next 12 to 24 hours. This image was taken by GOES West at the far eastern periphery of its scan, at 1200Z on July 2, 2014. Image credit: NOAA/NASA GOES Project Caption credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Louisiana Natural Disasters and Ecological Forecasting: Assessment of Tropical Cyclone Induced Transgression of the Chandeleur Islands for Restoration and Wildlife Management

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Mitchell, B. S.; Childs, L. M.; Billiot, A.; Brown, T.

    2009-12-01

    The Chandeleur Islands are the first line of defense against tropical storms and hurricanes for coastal Louisiana. They provide habitats for bird species and are a national wildlife refuge; however, they are eroding and transgressing at an alarming rate. In 1998, Hurricane Georges caused severe damage to the chain, prompting restoration and monitoring efforts by both Federal and State agencies. Since then, storm events have steadily diminished the condition of the islands. Quantification of shoreline erosion, vegetation, and land loss, from 1979 to 2009, was calculated through the analysis of imagery from Landsat 2-4 Multispectral Scanner, Landsat 4 & 5 Thematic Mapper, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. QuickBird imagery was used to validate the accuracy of these results. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in tracking the landward migration of the Chandeleur Islands. The use of near infrared reflectance calculated from MOD09 surface reflectance data from 2000 to 2008 was analyzed using the Time Series Product Tool. The scope of this project includes not only assessments of the tropical cyclonic events during this time period, but also the effects of tides, winds, and cold fronts on the spatial extent of the islands. Partnering organizations, such as the Pontchartrain Institute for Environmental Sciences, will utilize those results in an effort to better monitor and address the continual change of the Chandeleur Islands.

  5. The environmental influence on tropical cyclone precipitation

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  6. The Environmental Influence on Tropical Cyclone Precipitation.

    NASA Astrophysics Data System (ADS)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-05-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were 1) mean climatological sea surface temperatures, 2) vertical wind shear, 3) environmental tropospheric water vapor flux, and 4) upper-tropospheric eddy relative angular momentum flux convergence.The analyses revealed that 1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; 2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; 3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; 4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; 5) in regions with the combined warm sea surface temperatures (above 26°C) and low vertical wind shear (less than 5 m s1), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  7. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection.more » Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.« less

  8. Session A-14: Variability of Storm Tracks Storm Tracks and Unseasonable Temperatures in Europe in December 2001

    NASA Technical Reports Server (NTRS)

    Przybylak, R.; Ardizzone, J.; Atlas, R.; Koslowsky, D.; Otterman, J.; Rogers, J.; Starr, D.; Atlas, Robert (Technical Monitor)

    2002-01-01

    In December 2001, a series of cyclonic centers progressed rapidly into Europe from the west and north. The cyclones moved in generally similar directions, along paths separated by few hundreds of kilometers. The advancing cyclones brought the usual sequence of changing wind directions and produced some high speed wind events. We investigate the wind patterns for this month based on analyses derived the Special Sensor Microwave/Imager observations and NCEP analyses. Whereas southwesterlies from the North Atlantic produced moderate temperatures early in the month, strong northerlies and northwesterlies (up to 15 m/s on 20-22 December) produced a drop in daily minimum and maximum temperatures of 18.8 C and 9.9 C, respectively, over a 4 day period (to -18.8 C and -6.8 C, respectively, on December 23 in Torun, Poland). Such low values in December are unprecedented in recent decades, though not for January or February.

  9. On the movement of tropical cyclone LEHAR

    NASA Astrophysics Data System (ADS)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  10. Is a changing climate affecting the tropical cyclone behavior of Cape Verde?

    NASA Astrophysics Data System (ADS)

    Emmenegger, T. W.; Mann, M. E.; Evans, J. L.

    2016-12-01

    An existing dataset of synthetic tropical cyclone (TC) tracks derived from climate change simulations were used to explore TC variability within a 250 km radius of the Cape Verde Islands (16.5388N, 23.0418W). The synthetic sets were examined according to genesis point location, track projection, intensity, frequency, and seasonality within the observational era (1851 AD to present). These factors of TC variability have been shown to be strongly related to climate oscillations, thus the historical era was grouped by the increasing and decreasing regimes of sea surface temperature (SST) in the main development region (MDR) of the Atlantic Ocean. Numerous studies have examined Atlantic Basin activity throughout this era; the goal of this study is to investigate possible variations in TC behavior around Cape Verde, ultimately determining whether Cape Verde experiences similar fluctuations in activity as observed basin-wide. We find that several facets of TC variability such as intensity, seasonality, and genesis point location around Cape Verde are not significantly different to that of the entire basin, thus forecasts of the entire basin in these respects may also apply to our site. A long-term trend of increasing TC frequency can be identified basin-wide within the observed set, yet activity around Cape Verde does not display this same behavior observably or in any synthetic set. A relationship between the location of genesis points and the regimes of SST fluctuation is shown to be existent. We find both more observed and synthetic genesis points within the vicinity of Cape Verde during cool periods, and an eastward and equatorward shift in cyclogenesis is evident during warm regimes. This southeastern shift in genesis points attributes to the increased intensities of TCs seen during periods of warmer SST. Years of increased SST are additionally linked to an earlier seasonality in Cape Verde.

  11. Trends of Cyclone Characteristics in the Arctic and Their Patterns From Different Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Zahn, Matthias; Akperov, Mirseid; Rinke, Annette; Feser, Frauke; Mokhov, Igor I.

    2018-03-01

    Cyclones in the Arctic are detected and tracked in four different reanalysis data sets from 1981 to 2010. In great detail the spatial and seasonal patterns of changes are scrutinized with regards to their frequencies, depths, and sizes. We find common spatial patterns for their occurrences, with centers of main activity over the seas in winter, and more activity over land and over the North Pole in summer. The deep cyclones are more frequent in winter, and the number of weak cyclones peaks in summer. Overall, we find a good agreement of our tracking results across the different reanalyses. Regarding the frequency changes, we find strong decreases in the Barents Sea and along the Russian coast toward the North Pole and increases over most of the central Arctic Ocean and toward the Pacific in winter. Areas of increasing and decreasing frequencies are of similar size in winter. In summer there is a longish region of increase from the Laptev Sea toward Greenland, over the Canadian archipelago, and over some smaller regions west of Novaya Zemlya and over the Russia. The larger part of the Arctic experiences a frequency decrease. All the summer changes are found statistically unrelated to the winter patterns. In addition, the frequency changes are found unrelated to changes in cyclone depth and size. There is generally good agreement across the different reanalyses in the spatial patterns of the trend sign. However, the magnitudes of changes in a particular region may strongly differ across the data.

  12. Explosive cyclones in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds of the polar jet stream.

  13. The Representation of Extra-tropical Cyclones in Recent Re-Analyses: ERA-Interim, NASA-MERRA, NCEP-CFS and JRA25

    NASA Astrophysics Data System (ADS)

    Hodges, K.

    2010-12-01

    Re-analyses are produced using a forecast model, data assimilation system and historical observations. Whilst the observations are common between the re-analyses the way they are assimilated and the forecast model used are often different between the re-analyses which can introduce uncertainty in the representation of particular phenomena between the re-analyses, for example the distribution and properties of weather systems. It is important to inter-compare re-analyses to determine the uncertainty in their representation of the atmosphere, its circulation and weather systems in order to have confidence in their use for studies of the atmosphere and validating climate models. The four recent re-analyses, ERA-Interim, NASA-MERRA, NCEP-CFS and JRA25 are explored and compared for the representation of synoptic scale extra-tropical cyclones. Previous studies of the older re-analyses. ERA40, NCEP-NCAR and DOE has shown that whilst in the NH there was relatively good agreement between the re-analyses in terms of the distribution and properties of extra-tropical cyclones, in the SH there was much larger uncertainty. The newest re-analyses are produced at much higher resolutions than previous re-analyses, in addition more modern data assimilation systems and forecast models have been used. Hence, it would be hoped that the representation of cyclones will be improved to the same extent as that seen in modern NWP systems. This study contrasts extra-tropical cyclones, their distribution and properties, between these new re-analyses and compares them with cyclones in the slightly older though lower resolution JRA25 re-analysis. Results will show that in general in the higher resolution re-analysis more cyclones are identified than in JRA25. In the NH the distribution of storms agrees as well if not better than was the case for the older re-analyses. However, it is in the SH that the largest improvement in agreement is seen for the distribution of storms. For ERA-Interim, NASA-MERRA and NCEP-CFS the agreement in the SH is almost as good as in the NH with the best agreement occurring between ERA-Interim and NCEP-CFS. However, the comparison with JRA25 shows the same level of uncertainty as seen with the older re-analyses. Determining the separation distances of storms using storm matching confirm these results. The biggest differences between the re-analyses occurs for the intensity of storms with the NASA-MERRA having consistently the strongest extreme storms in terms of pressure and winds and JRA25 the weakest, ERA-Interim and NCEP-CFS are very similar in this respect. Using vorticity as an intensity measure shows the greatest sensitivity and goes with resolution. If time permits a comparison of the structure of the storms will also be presented. The approach used only highlights the uncertainty between the re-analyses it does not say which one is right. To try to address this some early results of comparing the re-analyses directly with observations of low level winds from scatterometers in the vicinity of storms will be presented if time permits.

  14. An investigation of the Sutcliffe development theory

    NASA Technical Reports Server (NTRS)

    Dushan, J. D.

    1973-01-01

    Two case studies were used to test the Sutcliffe-Peterssen development theory for both cyclonic and anticyclonic development over the eastern United States. Each term was examined to determine when and where it made a significant contribution to the development process. Results indicate the advection of vorticity at the level of non-divergence exerts the dominant influence for initial cyclone development, and that the thermal terms (advection of thickness, stability, and diabatic influence) become important after development has begun. Anticyclonic development, however, depends primarily on the stability term throughout the life cycle of the anticyclone. Simple procedures for forecasting the development and movement of cyclones and anticyclones are listed. These rules indicate that routine National Meteorological Center analyses may be used to locate areas where the positive advection of 500-mb vorticity, indicative of cyclonic development, coincides with regions of severe weather activity. The development of anticyclones also is predicted easily. Regions of increasing stability, indicating anticyclonic development, may be located by use of National Meteorological Center radar summaries and analyses for 1000-500-mb thickness. A test of these techniques found them to be satisfactory for the case examined.

  15. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    NASA Astrophysics Data System (ADS)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  16. An analysis of simulated and observed storm characteristics

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.

    2010-09-01

    A calculus-based cyclone identification (CCI) method has been applied to the most recent re-analysis (ERAINT) from the European Centre for Medium-range Weather Forecasts and results from regional climate model (RCM) simulations. The storm frequency for events with central pressure below a threshold value of 960-990hPa were examined, and the gradient wind from the simulated storm systems were compared with corresponding estimates from the re-analysis. The analysis also yielded estimates for the spatial extent of the storm systems, which was also included in the regional climate model cyclone evaluation. A comparison is presented between a number of RCMs and the ERAINT re-analysis in terms of their description of the gradient winds, number of cyclones, and spatial extent. Furthermore, a comparison between geostrophic wind estimated though triangules of interpolated or station measurements of SLP is presented. Wind still represents one of the more challenging variables to model realistically.

  17. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    DTIC Science & Technology

    2013-09-30

    scientific community including the recent T- PARC /TCS08, ITOP, and HS3 field campaigns to build upon the existing modeling capabilities. We will...heating and cooling rates in developing and non-developing tropical disturbances during tcs-08: radar -equivalent retrievals from mesoscale numerical

  18. Utilization of Precipitation and Moisture Products Derived from Satellites to Support NOAA Operational Precipitation Forecasts

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Zhao, L.; Kuligowski, R. J.; Kusselson, S.; Ma, L.; Kidder, S. Q.; Forsythe, J. M.; Jones, A. S.; Ebert, E. E.; Valenti, E.

    2012-12-01

    NOAA/NESDIS operates a constellation of polar and geostationary orbiting satellites to support weather forecasts and to monitor the climate. Additionally, NOAA utilizes satellite assets from other U.S. agencies like NASA and the Department of Defense, as well as those from other nations with similar weather and climate responsibilities (i.e., EUMETSAT and JMA). Over the past two decades, through joint efforts between U.S. and international government researchers, academic partners, and private sector corporations, a series of "value added" products have been developed to better serve the needs of weather forecasters and to exploit the full potential of precipitation and moisture products generated from these satellites. In this presentation, we will focus on two of these products - Ensemble Tropical Rainfall Potential (eTRaP) and Blended Total Precipitable Water (bTPW) - and provide examples on how they contribute to hydrometeorological forecasts. In terms of passive microwave satellite products, TPW perhaps is most widely used to support real-time forecasting applications, as it accurately depicts tropospheric water vapor and its movement. In particular, it has proven to be extremely useful in determining the location, timing, and duration of "atmospheric rivers" which contribute to and sustain flooding events. A multi-sensor approach has been developed and implemented at NESDIS in which passive microwave estimates from multiple satellites and sensors are merged to create a seamless, bTPW product that is more efficient for forecasters to use. Additionally, this product is being enhanced for utilization for television weather forecasters. Examples will be shown to illustrate the roll of atmospheric rivers and contribution to flooding events, and how the bTPW product was used to improve the forecast of these events. Heavy rains associated with land falling tropical cyclones (TC) frequently trigger floods that cause millions of dollars of damage and tremendous loss of lives. To provide observations-based forecast guidance for TC heavy rain, the Tropical Rainfall Potential (TRaP), an extrapolation forecast generated by accumulating rainfall estimates from satellites with microwave sensors as the storm is translated along the forecast track, was originally developed to predict the maximum rainfall at landfall, as well as the spatial pattern of precipitation. More recently, an enhancement has been made to combine the TRaP forecasts from multiple sensors and various start times into an ensemble (eTRaP). The ensemble approach provides not only more accurate quantitative precipitation forecasts, including more skillful maximum rainfall amount and location, it also produces probabilistic forecasts of rainfall exceeding various thresholds that decision makers can use to make critical risk assessments. Examples of the utilization and performance of eTRaP will be given in the presentation.

  19. Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region

    DTIC Science & Technology

    2012-03-01

    low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean

  20. Tropical Cyclone Evolution and Water and Energy Fluxes: A Hurricane Katrina Case Study

    NASA Astrophysics Data System (ADS)

    Pinheiro, M. C.; Zhou, Y.

    2015-12-01

    Tropical cyclones are a highly destructive force of nature, characterized by extreme precipitation levels and wind speeds and heavy flooding. There are concerns that climate change will cause changes in the intensity and frequency of tropical cyclones. Therefore, the quantification of the water and energy fluxes that occur during a tropical cyclone's life cycle are important for anticipating the magnitude of damages that are likely to occur. This study used HURDAT2 storm track information and data from the satellite-derived SeaFlux and TRMM products to determine changes in precipitation, wind, and latent and sensible heat throughout the life cycle of Hurricane Katrina. The variables were examined along and around the storm track, taking averages both at stationary 5x5 degree boxes and within the instantaneous hurricane domain. Analysis focused on contributions of convergence and latent heat to the storm evolution and examined how the total flux was related to the storm intensity. Certain features, such as the eye, were not resolved due to the data resolution, but the data captures the general trend of enhanced flux levels that are due to the storm's presence. Analysis also included examination of the water and energy budgets as related to convergence and the sensible and latent heat fluxes.

  1. The role of mid-level vortex in the intensification and weakening of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Gohil, Kanishk

    2017-10-01

    The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.

  2. Frequency changes of tropical cyclones during the last century recorded in a canyon of the northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Kudrass, Hermann; Machalett, Björn; Palamenghi, Luisa; Meyer, Inka

    2017-04-01

    Frequent cyclones originating in the Bay of Bengal and landfall to the southern delta of the Ganges and Brahmaputra are well recorded in sediment cores from a canyon which deeply incises into the shelf and ends at the foreset beds of the submarine Ganges Brahmaputra delta. The large sediment supply by the two rivers during the monsoonal floods forms temporary deposits on the inner shelf, which are mobilized by waves and currents during the passage of cyclones. The resulting sand-silt-clay suspension forms high-density water masses, which plunge from the inner shelf into the shelf canyon, where they deposit graded beds evenly draping the broad canyon floor. A simple model was used to rank the historical known cyclones according to their capacity to transfer sediment from the submarine delta into the canyon. In a 362 cm-long sediment core ranging from the year 1985 to 2006, 48 graded beds can be correlated with the observed 41 cyclones. The cyclonic impact on the sediment transport has decreased by a factor of three during the last decade. The highest cyclonic impact occurred during the seventies. Compared to the sediment transfer by cyclones, the input by tidal currents and monsoonal floods is negligible. Thus cyclones are the dominating process for mobilizing and distributing sediment on the Bangladesh shelf and probably also on all shelf areas, which lie in the track of tropical cyclones.

  3. Hurricane Watch

    NASA Astrophysics Data System (ADS)

    Hobgood, Jay S.

    Hurricanes, the strongest form of tropical cyclones over the Atlantic Ocean, are among the most deadly and destructive natural hazards. Population growth along the eastern and southern coasts of the United States places millions of people who have never experienced a major hurricane in harm's way during each hurricane season. A successful evacuation requires accurate forecasts and public education about the hazards associated with these violent storms. Bob Heets and Jack Williams' Hurricane Watch informs readers without formal training in meteorology about hurricanes and the dangers they present. Although the authors make some references to tropical cyclones in other parts of the world, the book's primary focus is on hurricanes over the Atlantic Ocean.

  4. Climatology and Impact of Polar Lows in the North Atlantic: Present and Future

    NASA Astrophysics Data System (ADS)

    Michel, Clio; Haukeland, Magnus; Spengler, Thomas

    2016-04-01

    Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. We use the Melbourne University algorithm to detect and track polar lows in the North Atlantic. The algorithm is applied to ERA-Interim reanalyses as well as high resolution (25 and 50 km) global climate model data from GFDL for present and future climates. Cyclone track densities for the GFDL present climate and the ERA-Interim reanalyses compare well for the occurrence of present day polar lows. We also present cyclone track densities for future climates under RCP4.5 and RCP8.5 for the early and late 21st century. Polar lows mainly form close to Svalbard but also along the coast of Greenland, in the Norwegian Sea and Barents Sea. We present the shifts in location and intensity of polar lows for future climates and discuss potential reasons for these changes. During their lifetime, they travel several 100 kilometres and can reach the Norwegian coast as well as off-shore infrastructures. Therefore we also assess the difference between current and future occurrence of polar lows reaching the coast of Norway as well as areas with oil platforms and active fisheries. This analysis pinpoints the exposure to current and future impacts of polar lows on these socio-economic assets.

  5. A View of Hurricane Katrina with Early 2lSt Century Technology

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Li, J.-L.; Suarez, M. J.; Tompkins, A. M.; Waliser, D. E.; Rienecker, M. M.; Bacmeister, J.; Jiang, J.; Wu, H.-T.; Tassone, C. M.

    2006-01-01

    Recent advances in space-borne observations and numerical weather prediction models provide new opportunities for improving hurricane forecasts. In this study, state-of-the-art satellite observations are used to document the evolution of one of the most devastating tropical cyclones ever to hit the United States: Hurricane Katrina. The ECMWF and NASA global high-resolution forecasts, the latter being run in experimental mode, are compared with satellite observations, with a focus on precipitation and cloud processes. Future directions on modeling and observations are briefly discussed.

  6. Upwelling Response to Hurricane Isaac in Geostrophic Oceanic Vortices

    NASA Astrophysics Data System (ADS)

    Jaimes, B.; Shay, L. K.; Brewster, J. K.; Schuster, R.

    2013-05-01

    As a tropical cyclone (TC) moves over the ocean, the cyclonic curl of the wind stress produces a region of upwelling waters under the TC center that is compensated by downwelling waters at regions outside the center. Direct measurements conducted during hurricane Rita and recent numerical studies indicate that this is not necessarily the case when TCs move over geostrophic oceanic features, where its background relative vorticity impacts wind-driven horizontal current divergence and the upwelling velocity. Modulation of the upwelling response in these energetic oceanic regimes impacts vertical mixing across the oceanic mixed layer base, air-sea fluxes into the atmosphere, and ultimately storm intensity. As part of NOAA Intensity Forecasting Experiment, an experiment was conducted during the passage of TC Isaac over the energetic geostrophic eddy field in the Gulf of Mexico in August 2012. Expendable bathythermographs, current profilers, and conductivity-temperature-depth probes were deployed in Isaac from NOAA WP-3D aircraft during four in-storm flights to measure oceanic variability and its impact on TC-driven upwelling and surface fluxes of heat and momentum. During intensification to hurricane, the cyclonic curl of the wind stress of Isaac extended over a region of more than 300 km in diameter (4 to 5 times the radius of maximum winds). Isaac's center moved over a cold cyclonic feature, while its right and left sides moved over warm anticyclones. Contrasting upwelling and downwelling regimes developed inside the region of cyclonic curl of the wind stress. Both positive (upwelling) and negative (downwelling) vertical displacements of 40 and 60 m, respectively, were measured inside the region of cyclonic curl of the wind stress, which are between 3 to 4 times larger than predicted vertical displacements for a quiescent ocean based on scaling arguments. Oceanic mixed layer (OML) currents of 0.2 to 0.7 m s-1 were measured, which are about 50% smaller than the expected velocity response under quiescent oceanic conditions. Although OML currents were measured inside the core of cyclonic curl of the wind stress, their orientation is not consistent with horizontally divergent flows typically found in upwelling regimes under TC centers. Theoretical predictions that consider background relative vorticity effects on the upwelling response mimic the contrasting upwelling/downwelling regimes inside the region of cyclonic curl of the wind stress. These results point to an important modulation of the OML current and upwelling response by background oceanic flows, where the upwelling velocity is a function of the curl of wind-intensified pre-storm geostrophic currents, rather than just a function of the curl of the wind stress. Thus, properly initializing temperature and salinity fields in numerical models is needed to accurately represent these oceanic processes in coupled forecast models.

  7. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    NASA Astrophysics Data System (ADS)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  8. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the inundation at many sites and were mapped as line features. Coral boulders of more than 1 m diameter were measured on Erromango. Along each island that was sampled, Cyclone Pam deposited a 1 - 20 cm thick sedimentary layer consisting of foraminfera-bearing sand and pumice cobbles. Infrastructure damage on traditional and modern structures was assessed. Eyewitnesses were interviewed at most sites to document the chronology of the wind and coastal flooding events, survival strategies, cyclone and tsunami awareness, evacuation procedures, shelter locations and ancestral knowledge. Field observations were compared with surveyed eyewitness accounts of historic events such as severe tropical cyclone Uma in 1987. The measured cyclone Pam high water marks will facilitate the interpretation of the collected sedimentary evidence and serve as benchmarks for modeling studies.

  9. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  10. Statistics and Dynamics of Aircraft Encounters of Turbulence over Greenland

    DTIC Science & Technology

    2009-08-01

    America and Europe , and turbulence above Greenland is the fo- cus of this study. Turbulence derived from interactions with terrain and mountain waves can...Seasonal variations in the large- scale circulation (viz., storm tracks) will modify the frequency of occurrence of cyclones. Such variations coupled with...Greenland’s southern tip is from the southeast quadrant. The passage of extratropical cyclones to the south of the turbulent regions is one source of low

  11. Climatology of North Pacific Tropical Cyclone Tracks

    DTIC Science & Technology

    1988-11-01

    positions before they were used in the analyses and calculations. The interpolation was accomplished by the Akima method.* ( It should be noted that the...constant throughout its life with a heading between 2500 and 3600. A recurver is defined as a tropical cyclone that turned from its initial westward or... belongs to two periods, and in some cases three. The starting date was chosen for classification purposes because, in operational fact, a storm’s

  12. Comparison of Forecast and Observed Energetics

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1985-01-01

    An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; and (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum Eddy conversion 12 h earlier is noted.

  13. Linkages Between the Great Arctic Cyclone of August 2012 and Tropopause Polar Vortices

    NASA Astrophysics Data System (ADS)

    Biernat, K.; Keyser, D.; Bosart, L. F.

    2017-12-01

    Coherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), are common features in the Arctic. TPVs may interact with and strengthen jet streams, as well as act as precursor disturbances for the development of Arctic cyclones. Arctic cyclones may be associated with strong surface winds and poleward advection of warm, moist air, contributing to reductions in Arctic sea-ice extent. Also, heavy precipitation, strong surface winds, and large waves accompanying Arctic cyclones may pose hazards to ships moving through open passageways in the Arctic Ocean. The Great Arctic Cyclone of August 2012 (hereafter AC12) is an example of an intense Arctic cyclone. AC12 formed on 2 August 2012 over central Siberia and attained a minimum sea level pressure (SLP) of 964 hPa on 6 August 2012 over the Arctic. Strong surface winds associated with AC12 led to reductions in Arctic sea-ice extent during a time in which sea ice was thin. Two TPVs are hypothesized to play a role in the life cycle of AC12. The purpose of this study is to investigate the linkages between AC12 and the two TPVs. The ERA-Interim dataset was utilized to examine the linkages between AC12 and the two TPVs. The two TPVs, TPV 1 and TPV 2, were tracked objectively using a TPV tracking algorithm. AC12 was tracked manually by following the locations of minimum SLP. During early August 2012, as TPV 1 approached and interacted with AC12 in a region of strong baroclinicity, it likely played an important role in the subsequent intensification of AC12. In addition, TPV-jet interactions involving both TPV 1 and TPV 2 likely contributed to the formation of a dual-jet configuration and jet coupling over AC12. The presence of warm, moist air and relatively strong lower-tropospheric ascent in the region of jet coupling and the subsequent interaction between both TPVs likely facilitated the intensification of AC12. After attaining its minimum SLP, AC12 moved slowly over the Arctic, where its expansive surface wind field contributed to reductions of Arctic sea-ice extent over a prolonged period. This study illustrates that TPVs, along with associated TPV-jet and TPV-TPV interactions, may play important roles in the life cycles of Arctic cyclones, which may lead to reductions in Arctic sea-ice extent.

  14. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  15. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Joss, J.; Schmid, W.

    2000-12-01

    Nowcasting for hydrological applications is discussed. The tracking algorithm extrapolates radar images in space and time. It originates from the pattern recognition techniques TREC (Tracking Radar Echoes by Correlation, Rinehart and Garvey, J. Appl. Meteor., 34 (1995) 1286) and COTREC (Continuity of TREC vectors, Li et al., Nature, 273 (1978) 287). To evaluate the quality of the extrapolation, a parameter scheme is introduced, able to distinguish between errors in the position and the intensity of the predicted precipitation. The parameters for the position are the absolute error, the relative error and the error of the forecasted direction. The parameters for the intensity are the ratio of the medians and the variations of the rain rate (ratio of two quantiles) between the actual and the forecasted image. To judge the overall quality of the forecast, the correlation coefficient between the forecasted and the actual radar image has been used. To improve the forecast, three aspects have been investigated: (a) Common meteorological attributes of convective cells, derived from a hail statistics, have been determined to optimize the parameters of the tracking algorithm. Using (a), the forecast procedure modifications (b) and (c) have been applied. (b) Small-scale features have been removed by using larger tracking areas and by applying a spatial and temporal smoothing, since problems with the tracking algorithm are mainly caused by small-scale/short-term variations of the echo pattern or because of limitations caused by the radar technique itself (erroneous vectors caused by clutter or shielding). (c) The searching area and the number of searched boxes have been restricted. This limits false detections, which is especially useful in stratiform precipitation and for stationary echoes. Whereas a larger scale and the removal of small-scale features improve the forecasted position for the convective precipitation, the forecast of the stratiform event is not influenced, but limiting the search area leads to a slightly better forecast. The forecast of the intensity is successful for both precipitation events. Forecasting the variation of the rain rate calls for further investigation. Applying COTREC improves the forecast of the convective precipitation, especially for extrapolation times exceeding 30 min.

  16. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias

    NASA Astrophysics Data System (ADS)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.

    2016-02-01

    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  17. El Niño-Southern Oscillation and the seasonal predictability of

    Science.gov Websites

    relationships and can be utilized to provide seasonal forecasts of tropical cyclones. Details of methodologies thunderstorm systems (called mesoscale convective complexes [MCCs]) often produce an inertially stable, warm , they considered hurricanes and intense hurricanes that occurred anywhere within these water boundaries

  18. Tropical Cyclone Wind Probability Forecasting (WINDP).

    DTIC Science & Technology

    1981-04-01

    llq. h. ,c ilrac (t’ small probabilities (below 107c) is limited II(t’h, numb(r o!, significant digits given: therefore 1t( huld lU r~ruidvd as being...APPLIED SCI. CORP. ENGLAMD ;7MOS. SCIENCES OEPT., LIBRARY ATTN: LIBARY , SUITE 500 400 WASHINGTON AVE. 6811 KENILWORTH AVE. EUROPEAN CENTRE FOR MEDIUM

  19. A Probabilistic Approach to Tropical Cyclone Conditions of Readiness (TCCOR)

    DTIC Science & Technology

    2008-09-01

    from CDO SOP #10)....18 Figure 9. TCCOR boundaries produced by the TPU for Typhoon MAWAR in August 2005...19 Figure 10. The JTWC warning graphic for Typhoon MAWAR ...operational use, only as additional guidance for the forecaster. Figure 9. TCCOR boundaries produced by the TPU for Typhoon MAWAR in August

  20. Tropical Cyclone Wind Probability Forecasting for the Eastern North Pacific (EPWINDP).

    DTIC Science & Technology

    1982-04-01

    INSTITUTO DE GEOFISICA DIRECTOR HONOLULU, HI 96822 U.N.A.M. BIBLIOTECA NATIONAL HURRICANE CENTER TORRE DE CIENCIAS, 3ER PISO NOAA, GABLES ONE TOWER CHAIRMAN...METEOROLOGY DEPT. CIUDAD UNIVERSITARIA 1320 S. DIXIE HWY. UNIVERSITY OF WISCONSIN MEXICO 20, D.F. CORAL GABLES, FL 33146 1225 W. DAYTON STREET

  1. A cyclogenesis index for tropical Atlantic off the African coasts

    NASA Astrophysics Data System (ADS)

    Sall, Saïdou Moustapha; Sauvageot, Henri; Gaye, Amadou Thierno; Viltard, Alain; de Felice, Pierre

    2006-02-01

    The westward moving Soudano-Sahelian mesoscale convective systems (MCS) frequently reach and cross the Atlantic Coast. At the end of their continental route, most MCS weaken and vanish over the ocean, near the coast, while others strengthen. The latter play an important part in the genesis of some Atlantic tropical cyclones. In the present paper, following the work of Gray (1977, 1979) [Gray, W.M., 1977. Tropical cyclone genesis in the western North Pacific. J. Meteorol. Soc. Jpn. 55, 465-482; Gray, W.M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D.B. Shaw, (Ed.), Roy. Meteorol. Soc., 155-218] and Gray et al. (1994, 1999) [Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1994. Predicting Atlantic seasonal tropical cyclone activity by 1 June. Weather Forecast. 9, 103-115; Gray, W.M., Landsea, C.W., Mielke Jr., P.W., Berry, K.J., 1999. Forecast of Atlantic seasonal hurricane activity for 1999. Dept. of Atmos. Sci. Report, Colo. State Univ., Ft. Collins, CO, released on 4 June, 1999], an index liable to be associated with the coast-crossing MCS cyclonic evolution is built. The data used in this work are observations by the Dakar-Yoff radar, reanalyses of NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research), outgoing long wave radiation at the top of the atmosphere, and the resources of the National Hurricane Center data base. Several terms describing the variation of individual meteorological parameters are first analysed and then combined into an index of cyclogenesis or ICY. Combination of vertical vorticity at 925 hPa and potential vorticity at 700 hPa is notably found to be a good factor to discriminate between strengthening and weakening MCS over the near Atlantic. A good correlation between the ICY maximum and the beginning of the MCS cyclogenesis is observed. This index enables discrimination of the simultaneous presence of two separate cyclonic perturbations over the Atlantic. These results show that the sole variable ICY is useful to detect a cyclogenesis process in progress in a Sahelian MCS.

  2. Statistical Detection of Anthropogenic Temporal Changes in the Distribution of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Joannes-boyau, R.; Bodin, T.; Scheffers, A.; Sambridge, M.

    2012-12-01

    Recent studies highlighting the potential impact of climate change on tropical cyclones have added fuel to the already controversial debates. The link between climate change and tropical cyclone intensity and frequency has been disputed, as both appear to remain in the natural variability. The difficulty lies in our ability to distinguish natural changes from anthropogenic-induced anomalies. The increased anthropogenic atmospheric carbon dioxide leads to environmental changes such as warmer Sea Surface Temperatures (SST) and thus could impact tropical cyclones intensities and frequencies. However, recent studies show that, against an increasing SST, no global trend in respect to cyclone frequency has yet emerged. Scientists have warned to consider the heterogeneity of the existing dataset; especially since the historical tropical cyclone record is frequently accused to be incomplete. Given the abundance of cyclone record data and its likely sensitivity to a number of environmental factors, the real limitation comes from our ability to understand the record as a whole. Thus, strong arguments against the impartiality of proposed models are often debated. We will present an impartial and independent statistical tool applicable to a wide variety of physical and biological phenomena such as processes described by power laws, to observe temporal variations in the tropical cyclone track record from 1842 to 2010. This methodology allows us to observe the impact of anthropogenic-induced modifications on climatic events, without being clustered in subjective parameterised models.

  3. OSSE Assessment of Ocean Observing System Enhancements to Improve Coupled Tropical Cyclone Intensity Prediction

    NASA Astrophysics Data System (ADS)

    Halliwell, G. R., Jr.; Mehari, M. F.; Dong, J.; Kourafalou, V.; Atlas, R. M.; Kang, H.; Le Henaff, M.

    2016-02-01

    A new ocean OSSE system validated in the tropical/subtropical Atlantic Ocean is used to evaluate ocean observing strategies during the 2014 hurricane season with the goal of improving coupled tropical cyclone forecasts. Enhancements to the existing operational ocean observing system are evaluated prior to two storms, Edouard and Gonzalo, where ocean measurements were obtained during field experiments supported by the 2013 Disaster Relief Appropriation Act. For Gonzalo, a reference OSSE is performed to evaluate the impact of two ocean gliders deployed north and south of Puerto Rico and two Alamo profiling floats deployed in the same general region during most of the hurricane season. For Edouard, a reference OSSE is performed to evaluate impacts of the pre-storm ocean profile survey conducted by NOAA WP-3D aircraft. For both storms, additional OSSEs are then conducted to evaluate more extensive seasonal and pre-storm ocean observing strategies. These include (1) deploying a larger number of synthetic ocean gliders during the hurricane season, (2) deploying pre-storm synthetic thermistor chains or synthetic profiling floats along one or more "picket fence" lines that cross projected storm tracks, and (3) designing pre-storm airborne profiling surveys to have larger impacts than the actual pre-storm survey conducted for Edouard. Impacts are evaluated based on error reduction in ocean parameters important to SST cooling and hurricane intensity such as ocean heat content and the structure of the ocean eddy field. In all cases, ocean profiles that sample both temperature and salinity down to 1000m provide greater overall error reduction than shallower temperature profiles obtained from AXBTs and thermistor chains. Large spatial coverage with multiple instruments spanning a few degrees of longitude and latitude is necessary to sufficiently reduce ocean initialization errors over a region broad enough to significantly impact predicted surface enthalpy flux into the storm. Error reduction in hurricane intensity forecasts resulting from the additional ocean observations is then assessed by initializing the ocean component of the HYCOM-HWRF coupled prediction system with analyses produced by the OSSE system.

  4. The NASA EV-2 CYGNSS Small Satellite Constellation Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.

    2012-12-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.

  5. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2018-06-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/ Nh, V max/ Nh, U/ fL x , V max/ fR, h/ L x , and R/ L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/ Nh and U/ fL x , moderate h/ L x , and large V max/ Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max 2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  6. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  7. Assessing the Importance of Atlantic Basin Tropical Cyclone Steering Currents in Anticipating Landfall Risk

    NASA Astrophysics Data System (ADS)

    Truchelut, R.; Hart, R. E.

    2013-12-01

    While a number of research groups offer quantitative pre-seasonal assessments of aggregate annual Atlantic Basin tropical cyclone activity, the literature is comparatively thin concerning methods to meaningfully quantify seasonal U.S. landfall risks. As the example of Hurricane Andrew impacting Southeast Florida in the otherwise quiet 1992 season demonstrates, an accurate probabilistic assessment of seasonal tropical cyclone threat levels would be of immense public utility and economic value; however, the methods used to predict annual activity demonstrate little skill for predicting annual count of landfalling systems of any intensity bin. Therefore, while current models are optimized to predict cumulative seasonal tropical cyclone activity, they are not ideal tools for assessing the potential for sensible impacts of storms on populated areas. This research aims to bridge the utility gap in seasonal tropical cyclone forecasting by shifting the focus of seasonal modelling to the parameters that are most closely linked to creating conditions favorable for U.S. landfalls, particularly those of destructive and costly intense hurricanes. As it is clear from the initial findings of this study that overall activity has a limited influence on sensible outcomes, this project concentrates on detecting predictability and trends in cyclogenesis location and upper-level wind steering patterns. These metrics are demonstrated to have a relationship with landfall activity in the Atlantic Basin climatological record. By aggregating historic seasonally-averaged steering patterns using newly-available reanalysis model datasets, some atmospheric and oceanic precursors to an elevated risk of North American tropical cyclone landfall have been identified. Work is ongoing to quantify the variance, persistence, and predictability of such patterns over seasonal timescales, with the aim of yielding tools that could be incorporated into tropical cyclone risk mitigation strategies.

  8. ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model

    NASA Technical Reports Server (NTRS)

    Yonekura, Emmi; Hall, Timothy M.

    2014-01-01

    Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (ENSO) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of ENSO dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme ENSO states. ENSO effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of ENSO on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of ENSO on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with ENSO. Landfall-rate changes from genesis- and track-ENSO effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases.

  9. The Use of Interactive Graphics Processing in Short-Range Terminal Weather Forecasting: An Initial Assessment.

    DTIC Science & Technology

    1983-03-31

    Height Analysis for 000 GMT, 22 Deec 1981 41 " 4 : "-6 ".. * °5 * d ... FORECAST EXPERIMENT 10: At 04 GMT 6 April 1982 a developing cvcont’ was moving...distribution of precipitation, Mlon. Wea. Rev., 107:5:-67. 140 Appendix C Inland Cyclogenesis Decision Assistance Procedure CI1. II II. N1 N(:Y(:lA4)(; %I~SI...cyclogenesis. 149 . .. ... . ,,. - 7 72 500 millibar heightt contours ". 500 millibar vorticity contours . L Surface Cyclone Fizue (2. N1 (’ridia i -I rough C(I

  10. Further Studies of Observational Undersampling of the Surface Wind and Pressure Fields in the Hurricane Inner-Core

    NASA Astrophysics Data System (ADS)

    Nolan, D. S.; Klotz, B.

    2016-12-01

    Obtaining the best estimate of tropical cyclone (TC) intensity is vital for operational forecasting centers to produce accurate forecasts and to issue appropriate warnings. Aircraft data traditionally provide the most reliable information about the TC inner core and surrounding environment, but sampling strategies and observing platforms associated with reconnaissance aircraft have inherent deficiencies that contribute to the uncertainty of the intensity estimate. One such instrument, the stepped frequency microwave radiometer (SFMR) on the NOAA WP-3D aircraft, provides surface wind speeds along the aircraft flight track. However, the standard "figure-4" flight pattern substantially limits the azimuthal coverage of the eyewall, such that the chance of observing the true peak wind speeds is actually quite small. By simulating flights through a high-resolution simulation of Hurricane Isabel (2003), a previous study found that the 1-minute mean (maximum) SFMR winds underestimate a 6-hour running mean maximum wind (i.e. best track) by 7.5-10%. This project applies the same methodology to a suite of hurricane simulations with even higher resolution and more sophisticated physical parameterizations. These include the hurricane nature run of Nolan et al. (2013), the second hurricane nature run, a simulation of Hurricane Bill (2009), and additional idealized simulations. For the nature run cases, we find that the mean underestimate of the best-track estimate is 12-15%, considerably higher than determined from the Isabel simulation, while the other cases are similar to the previous result. Comparisons of the various cases indicates that the primary factors that lead to greater undersampling rates are storm size and storm asymmetry. Minimum surface pressure is also frequently estimated from pressures reported by dropsondes released into the eye, with a standard correction of 1 hPa per 10 knots of wind at the time of "splash." Statistics from thousands of simulated splash points show that this rule is quite good for large wind speeds, but for low wind speeds there is still a positive bias to the pressure estimate, because the chance of hitting the true pressure minimum is quite small.

  11. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage on Samoa totalled to US130 million. Cyclone Val caused damage and destruction to 95% of houses in Samoa and severe crop damage; total damage was estimated as US200 million. Recently, severe tropical cyclone Evan affected Samoa and Fiji (December 2012). Significant progress in operational tropical cyclone forecasting has been achieved over the past few decades which resulted in improving early warning system but death toll attributed to cyclones is still high - at least 14 deaths in Samoa are related to cyclone Evan (luckily, no death reports in Fiji). Cyclone-related economic losses also remain very high making significant negative impact on economies of the countries. Preliminary assessment of damage caused by cyclone Evan in Fiji indicates loses of about 75.29 million. By the end of this century projections suggest decreasing numbers of tropical cyclones but a possible shift towards more intense categories. In addition, geographic shifts in distribution of tropical cyclone occurrences caused by warming of the atmospheric and oceanic environment are possible. This should be taken in consideration by authorities of the Pacific Island Countries when developing adaptation strategies to increasing tropical cyclone risk due to climate change.

  12. Comparison of Forecast and Observed Energetics

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Brin, Y.

    1984-01-01

    An energetics analysis scheme was developed to compare the observed kinetic energy balance over North America with that derived from forecast fields of the GLAS fourth order model for the 13 to 15 January 1979 cyclone case. It is found that: (1) the observed and predicted kinetic energy and eddy conversion are in good qualitative agreement, although the model eddy conversion tends to be 2 to 3 times stronger than the observed values. The eddy conversion which is stronger in the 12 h forecast than in observations and may be due to several factors is studied; (2) vertical profiles of kinetic energy generation and dissipation exhibit lower and upper tropospheric maxima in both the forecast and observations; (3) a lag in the observational analysis with the maximum in the observed kinetic energy occurring at 0000 GMT 14 January over the same region as the maximum ddy conversion 12 h earlier is noted.

  13. Research on regional numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1976-01-01

    Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.

  14. The Early-Warning System for incoming storm surge and tide in the Republic of Mauritius

    NASA Astrophysics Data System (ADS)

    Bogaard, Tom; de Lima Rego, Joao; Vatvani, Deepak; Virasami, Renganaden; Verlaan, Martin

    2016-04-01

    The Republic of Mauritius (ROM) is a group of islands in the South West of the Indian Ocean, consisting of the main islands of Mauritius, Rodrigues and Agalega and the archipelago of Saint Brandon. The ROM is particularly vulnerable to the adverse effects of climate change, especially in the coastal zone, where a convergence of accelerating sea level rise and increasing intensity of tropical cyclones is expected to result in considerable economic loss, humanitarian stresses, and environmental degradation. Storm surges and swell waves are expected to be aggravated through sea level rise and climate change effects on weather patterns. Adaptation to increased vulnerability requires a re-evaluation of existing preparedness measures. The focus of this project is on more effective preparedness and issuing of alerts developing a fully-automated Early-Warning System for incoming storm surge and tide, together with the Mauritius Meteorological Services and the National Disaster Risk Reduction and Management Centre (NDRRMC), such that coastal communities in Mauritius, Rodrigues and Agalega Islands are able to evacuate timely and safely in case of predicted extreme water levels. The Mauritius Early-Warning System for storm surge and tide was implemented using software from Deltares' Open-Source and free software Community. A set of five depth-averaged Delft3D-FLOW hydrodynamic models are run every six-hours with a forecast horizon of three days, simulating water levels along the coast of the three main islands. Two regional models of horizontal resolution 5km force the three detailed models of 500m resolution; all models are forced at the surface by the 0.25° NOAA/GFS meteorological forecasts. In addition, our Wind-Enhancement Scheme is used to blend detailed cyclone track bulletin's info with the larger-scale Numerical Weather Predictions. Measured data is retrieved near real-time from available Automatic Weather Stations. All these workflows are managed by the operational platform software, Delft-FEWS. The presently operational Mauritius Early-Warning System produces a set of intuitive tables for each island, containing time- and space-varying information on threshold crossings by predicted water levels. At multiple locations for each island of the ROM, the operator is informed in one glance about the recommended preparedness level, from "Safe" to "Watch", "Alert" or "Warning" based on water level forecasts. The HTML page was designed together with the MMS and the NDRRMC, in order to be easy to interpret and disseminate by local authorities.

  15. A new aircraft hurricane wind climatology and applications in assessing the predictive skill of tropical cyclone intensity using high-resolution ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.

    2015-07-01

    Hurricane surface wind is a key measure of storm intensity. However, a climatology of hurricane winds is lacking to date, largely because hurricanes are relatively rare events and difficult to observe over the open ocean. Here we present a new hurricane wind climatology based on objective surface wind analyses, which are derived from Stepped Frequency Microwave Radiometer measurements acquired by NOAA WP-3D and U.S. Air Force WC-130J hurricane hunter aircraft. The wind data were collected during 72 aircraft reconnaissance missions into 21 western Atlantic hurricanes from 1998 to 2012. This climatology provides an opportunity to validate hurricane intensity forecasts beyond the simplistic maximum wind speed metric and allows evaluating the predictive skill of probabilistic hurricane intensity forecasts using high-resolution model ensembles. An example of application is presented here using a 1.3 km grid spacing Weather Research and Forecasting model ensemble forecast of Hurricane Earl (2010).

  16. Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Long, L.; Baxter, S.

    2013-12-01

    Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities Jae-Kyung E. Schemm, Lindsey Long and Stephen Baxter Climate Prediction Center, NCEP/NWS/NOAA Predictability of intraseasonal tropical storm (TS) activities is assessed using the 1999-2010 CFSv2 hindcast suite. Weekly TS activities in the CFSv2 45-day forecasts were determined using the TS detection and tracking method devised by Carmago and Zebiak (2002). The forecast periods are divided into weekly intervals for Week 1 through Week 6, and also the 30-day mean. The TS activities in those intervals are compared to the observed activities based on the NHC HURDAT and JTWC Best Track datasets. The CFSv2 45-day hindcast suite is made of forecast runs initialized at 00, 06, 12 and 18Z every day during the 1999 - 2010 period. For predictability evaluation, forecast TS activities are analyzed based on 20-member ensemble forecasts comprised of 45-day runs made during the most recent 5 days prior to the verification period. The forecast TS activities are evaluated in terms of the number of storms, genesis locations and storm tracks during the weekly periods. The CFSv2 forecasts are shown to have a fair level of skill in predicting the number of storms over the Atlantic Basin with the temporal correlation scores ranging from 0.73 for Week 1 forecasts to 0.63 for Week 6, and the average RMS errors ranging from 0.86 to 1.07 during the 1999-2010 hurricane season. Also, the forecast track density distribution and false alarm statistics are compiled using the hindcast analyses. In real-time applications of the intraseasonal TS activity forecasts, the climatological TS forecast statistics will be used to make the model bias corrections in terms of the storm counts, track distribution and removal of false alarms. An operational implementation of the weekly TS activity prediction is planned for early 2014 to provide an objective input for the CPC's Global Tropical Hazards Outlooks.

  17. Storm Surge Hazard in Oman Based on Cyclone Gonu and Historic Events

    NASA Astrophysics Data System (ADS)

    Blount, C.; Fritz, H. M.; Albusaidi, F. B.; Al-Harthy, A. H.

    2008-12-01

    Super Cyclone Gonu was the strongest tropical cyclone on record in the Arabian Sea. Gonu developed sustained winds reaching 240 km/h with gusts up to 315 km/h and an estimated central pressure of 920 mbar by late 4 June 2007 while centered east-southeast of Masirah Island on the coast of Oman. Gonu weakened after encountering dry air and cooler waters prior to the June 5 landfall on the eastern-most tip of Oman, becoming the strongest tropical cyclone to hit the Arabian Peninsula. Gonu dropped heavy rainfall near the eastern coastline, reaching up to 610 mm which caused wadi flooding and heavy damage. The shore parallel cyclone track resulted in coastal damage due to storm surge and storm wave impact along a 300km stretch of Omani coastline. Maximum high water marks, overland flow depths, and inundation distances were measured along the Gulf of Oman during the 1-4 August 2007 reconnaissance. The high water marks peaked at Ras al Hadd at the eastern tip of Oman exceeding 5 meters, surpassing 2004 Indian Ocean tsunami runup at every corresponding point. The cyclone caused $4 billion in damage and at least 49 deaths in the Sultanate of Oman. Prior to Gonu, only two similar cyclones struck the coast of Oman in the last 1200 years (in 865 and 1890). The 1890 storm, which remains the worst natural disaster in Oman's history, drenched the coast from Soor to Suwayq causing inland wadi flooding. Matrah and Muscat were the hardest hit areas with many ships being washed ashore and wrecked. The storm is known to have killed about 727 people and caused huge agricultural and shipping losses. Similarly, the 865 storm affected areas between Gobrah and Sohar. A high-resolution finite element ADCIRC mesh of the Arabian Sea is created to model storm surge and is coupled with STWAVE. Modeling results from Gonu are compared to measurements and used to determine the contribution from storm surge and waves. The 1890 and 865 storms are modeled with standard cyclone parameters and results are compared to historical records to estimate the storm tracks. These results can be used to assess the coastal vulnerability in the Gulf of Oman.

  18. Why Do Model Tropical Cyclones Grow Progressively in Size and Decay in Intensity after Reaching Maturity

    DTIC Science & Technology

    2015-08-17

    the distribution of azimuthally-averaged diabatic heating rate derived from the MM5 output. The coefficients of this equation are deter- mined by the...contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881. Montgomery, M. T., M. E

  19. Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS

    DTIC Science & Technology

    2010-09-30

    of predicting up to three moments (total number concentration, mass, and the 6th-moment reflectivity factor) of hydrometeor hydrometeor particle size...R. Novak, F. E. Barthold, M. J. Bodner, J. J. Levit , C. B. Entwistle, T. Jensen, J. S. Kain, M. C. Coniglio, and R. S. Schneider, 2010: An overview

  20. Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS

    DTIC Science & Technology

    2011-09-30

    capable of predicting up to three moments of hydrometeor particle size distributions (PSDs) inside the Navy’s Coupled Ocean/Atmosphere Mesoscale...Sobash, P. T. Marsh, A. R. Dean, M. Xue, F. Kong, K. W. Thomas, J. Du, D. R. Novak, F. E. Barthold, M. J. Bodner, J. J. Levit , C. B. Entwistle, T. Jensen

  1. Using CloudSat and the A-Train to Estimate Tropical Cyclone Intensity in the Western North Pacific

    DTIC Science & Technology

    2014-09-01

    CloudSat System Data Flow (from Cooperative Institute for Research in the Atmosphere 2008...radar Department of Defense Data Processing Center European Centre for Medium-Range Weather Forecasts Earth observing system Earth observing... system data and information system Earth sciences systems pathfinder hierarchical data format moderate resolution imaging spectroradiometer moist

  2. RegCM4-HadGEM2-ES simulated cyclone climatology (1979-2005) over the Southwestern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Porfírio da Rocha, Rosmeri; Simões Reboita, Michelle

    2015-04-01

    Cyclones over the Southwestern South Atlantic Ocean (SAO) are a subject of great interest once they modify the weather and control the climate near east coast of South America (SA). In this study we compare the cyclones climatology in the period 1979-2005 simulated by Regional Climate Model version 4 (RegCM4) with that from ERA-Interim reanalysis (ECMWF). RegCM4 was nested in HadGEM2-ES output and the simulation used the SA domain of CORDEX project, with a horizontal grid of 50 km and 18 sigma-pressure levels in the vertical. The RegCM4 simulation used the land surface Biosphere-Atmosphere Transfer Scheme (BATS) and the mixed convection Emanuel-Grell scheme configurations. This simulation is part of the CREMA (CORDEX REgCM4 hyper-MAtrix) experiment. The cyclones were identified using an automated tracking scheme based on minima (cyclonic in Southern Hemisphere) of relative vorticity from the wind at 925 hPa. The threshold of -1.5 x 10-5s-1 was used in the algorithm. All cyclones in RegCM4 and ERA-Interim with relative vorticity lower than this threshold and with lifetime higher or equal 24 hours were included in the climatology. ERA-Interim shows three main cyclogenetic regions near east coast of SA. In general, RegCM4 simulated these same regions but with an underestimation of the number of cyclones. In each of these regions, there is a different season of higher cyclones frequency. Over extreme south of southern Brazil and Uruguay the higher frequency of cyclones occurs in winter, while southeastern Brazil and southeastern Argentina cyclones are most frequent during summer. RegCM4 is able to simulate this observed seasonality.

  3. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  4. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar

    NASA Astrophysics Data System (ADS)

    Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim

    2017-04-01

    Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.

  5. Effects of track and threat information on judgments of hurricane strike probability.

    PubMed

    Wu, Hao-Che; Lindell, Michael K; Prater, Carla S; Samuelson, Charles D

    2014-06-01

    Although evacuation is one of the best strategies for protecting citizens from hurricane threat, the ways that local elected officials use hurricane data in deciding whether to issue hurricane evacuation orders is not well understood. To begin to address this problem, we examined the effects of hurricane track and intensity information in a laboratory setting where participants judged the probability that hypothetical hurricanes with a constant bearing (i.e., straight line forecast track) would make landfall in each of eight 45 degree sectors around the Gulf of Mexico. The results from 162 participants in a student sample showed that the judged strike probability distributions over the eight sectors within each scenario were, unsurprisingly, unimodal and centered on the sector toward which the forecast track pointed. More significantly, although strike probability judgments for the sector in the direction of the forecast track were generally higher than the corresponding judgments for the other sectors, the latter were not zero. Most significantly, there were no appreciable differences in the patterns of strike probability judgments for hurricane tracks represented by a forecast track only, an uncertainty cone only, or forecast track with an uncertainty cone-a result consistent with a recent survey of coastal residents threatened by Hurricane Charley. The study results suggest that people are able to correctly process basic information about hurricane tracks but they do make some errors. More research is needed to understand the sources of these errors and to identify better methods of displaying uncertainty about hurricane parameters. © 2013 Society for Risk Analysis.

  6. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  7. Velocity and Vorticity Measurements of Jupiter's Great Red Spot Using Automated Cloud Feature Trackers

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Banfield, D.; Gierasch, P. J.; Showman, A. P.

    2006-09-01

    We have produced mosaics of the Great Red Spot (GRS) using images taken by Galileo in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen in our velocity vector map, and highest wind velocities are measured to be 166.4 m/s. The high resolution of the mosaics have also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. (1996) and Vasavada et al. (1998). We have also discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5-um (Terrile et al. 1979). It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo images from 1996, first analyzed by Vasavada et al. (1998). Cyclonic rings around Jovian anti-cyclones have also appeared in numerical modeling studies by Showman (2006). We also calculate how absolute vorticity changes as a function of latitude along particle trajectories around the GRS and compare these measurements to similar ones performed by Dowling & Ingersoll (1988) using Voyager data. From this comparison, we show no dramatic evolution in the structure of the GRS since the Voyager era. This work was supported by NASA Planetary Atmospheres grants to APS and PJG, along with support from Cornell Presidential Research Scholars.

  8. An atlas of 1977 and 1978 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Taylor, R. L.

    1980-01-01

    All of the GEOS 3 satellite altimeter schedule information were collected with all of the available 1977 and 1978 tropical cyclone positional information. The time period covers from March 23, 1977 through Nov. 23, 1978. The geographical region includes all ocean area north of the equator divided into the following operational areas: the Atlantic area (which includes the Caribbean and Gulf of Mexico); the eastern Pacific area; the central and western Pacific area; and the Indian Ocean area. All available source material concerning tropical cyclones was collected. The date/time/location information was extracted for each disturbance. This information was compared with the GEOS 3 altimeter ON/OFF history information to determine the existence of any altimeter data close enough in both time and location to make the data potentially useful for further study (the very liberal criteria used was time less than 24 hours and location within 25 degrees). Geographic plots (cyclone versus GEOS 3 orbit track) were produced for all of the events found showing the approximate location of the cyclone and the GEOS 3 orbit traces for the full day.

  9. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08 and TCS-08 Field Experiment Support

    DTIC Science & Technology

    2010-09-30

    TRMM Precipitation Radar and Microwave Imager observations have been collected for the developing and non-developing pre-tropical cyclone disturbances...The ELDORA radar sampled the deep convection (Fig. 3a) and the radar -relative winds (Fig. 3b) define low-level convergence and upper-level...locations of dropsondes. The yellow line defines the flight track of the NRL P-3 aircraft. The white star defines the location of the radar reflectivity

  10. TECA: A Parallel Toolkit for Extreme Climate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  11. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  12. An Investigation of Bomb Cyclogenesis in NCEP's CFS Model

    NASA Astrophysics Data System (ADS)

    Alvarez, F. M.; Eichler, T.; Gottschalck, J.

    2008-12-01

    With the concerns, impacts and consequences of climate change increasing, the need for climate models to simulate daily weather is very important. Given the improvements in resolution and physical parameterizations, climate models are becoming capable of resolving extreme weather events. A particular type of extreme event which has large impacts on transportation, industry and the general public is a rapidly intensifying cyclone referred to as a "bomb." In this study, bombs are investigated using the National Center for Environmental Prediction's (NCEP) Climate Forecast System (CFS) model. We generate storm tracks based on 6-hourly sea-level pressure (SLP) from long-term climate runs of the CFS model. Investigation of this dataset has revealed that the CFS model is capable of producing bombs. We show a case study of a bomb in the CFS model and demonstrate that it has characteristics similar to the observed. Since the CFS model is capable of producing bombs, future work will focus on trends in their frequency and intensity so that an assessment of the potential role of the bomb in climate change can be assessed.

  13. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  14. Impact of ozone observations on the structure of a tropical cyclone using coupled atmosphere-chemistry data assimilation

    NASA Astrophysics Data System (ADS)

    Lim, S.; Park, S. K.; Zupanski, M.

    2015-04-01

    Since the air quality forecast is related to both chemistry and meteorology, the coupled atmosphere-chemistry data assimilation (DA) system is essential to air quality forecasting. Ozone (O3) plays an important role in chemical reactions and is usually assimilated in chemical DA. In tropical cyclones (TCs), O3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting atmospheric as well as chemical variables. To identify the impact of O3 observations on TC structure, including atmospheric and chemical information, we employed the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) with an ensemble-based DA algorithm - the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over the East Asia, our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O3 observations impacts atmospheric and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on atmospheric variables was similar in both over China and near the TC. The analysis results are validated using several measures that include the cost function, root-mean-squared error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysis - the cost function and root mean square error have decreased by 16.9 and 8.87%, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeast China.

  15. The implementation of an automated tracking algorithm for the track detection of migratory anticyclones affecting the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hatzaki, Maria; Flocas, Elena A.; Simmonds, Ian; Kouroutzoglou, John; Keay, Kevin; Rudeva, Irina

    2013-04-01

    Migratory cyclones and anticyclones mainly account for the short-term weather variations in extra-tropical regions. By contrast to cyclones that have drawn major scientific attention due to their direct link to active weather and precipitation, climatological studies on anticyclones are limited, even though they also are associated with extreme weather phenomena and play an important role in global and regional climate. This is especially true for the Mediterranean, a region particularly vulnerable to climate change, and the little research which has been done is essentially confined to the manual analysis of synoptic charts. For the construction of a comprehensive climatology of migratory anticyclonic systems in the Mediterranean using an objective methodology, the Melbourne University automatic tracking algorithm is applied, based to the ERA-Interim reanalysis mean sea level pressure database. The algorithm's reliability in accurately capturing the weather patterns and synoptic climatology of the transient activity has been widely proven. This algorithm has been extensively applied for cyclone studies worldwide and it has been also successfully applied for the Mediterranean, though its use for anticyclone tracking is limited to the Southern Hemisphere. In this study the performance of the tracking algorithm under different data resolutions and different choices of parameter settings in the scheme is examined. Our focus is on the appropriate modification of the algorithm in order to efficiently capture the individual characteristics of the anticyclonic tracks in the Mediterranean, a closed basin with complex topography. We show that the number of the detected anticyclonic centers and the resulting tracks largely depend upon the data resolution and the search radius. We also find that different scale anticyclones and secondary centers that lie within larger anticyclone structures can be adequately represented; this is important, since the extensions of major anticyclonic systems affect the Mediterranean basin throughout the year. Acknowledgement: This research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. Some funding from the Australian Research Council is also acknowledged.

  16. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  17. Using the JPL Tropical Cyclone Information System to study the climatology of hurricane precipitation structure from 10 years of passive microwave satellite observations in the Atlantic

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, Svetla; Haddad, Ziad; Knosp, Brian; Lambrigtsen, Bjorn; Li, P. Peggy; Poulsen, William; Seo, Eun-Kyoung; Shen, Tsae-Pyng; Turk, Francis J.; Vu, Quoc

    2013-04-01

    In spite of recent improvements in hurricane track forecast accuracy, currently there are still many unanswered questions about the physical processes that determine hurricane genesis, and evolution. Furthermore, a significant amount of work remains to be done in validating and improving hurricane forecast models. None of this can be accomplished without a comprehensive set of multi-parameter observations that are relevant to both the large-scale and the storm-scale processes in the atmosphere and in the ocean. Despite the significant amount of satellite observations today, they are still underutilized in hurricane research and operations, due to complexity and volume. To facilitate hurricane research, we developed the JPL Tropical Cyclone Information System (TCIS) of multi-instrument satellite observations pertaining to: i) the thermodynamic and microphysical structure of the storms; ii) the air-sea interaction processes; iii) the larger-scale environment as depicted by the SST and the Total Precipitable Water of the environment (Hristova-Veleva et al., 2008, 2011). Our goal was to create a one-stop place to provide the researchers with an extensive set of observed hurricane data, and their graphical representation, organized in an easy way to determine when coincident observations from multiple instruments are available. In this study we use the 10+ years of passive microwave observations of Atlantic hurricanes to create composite structures that are segregated by hurricane category and by intensification rate. The use of composite structures provides a statistically robust framework (e.g. Rogers et al., 2012). We analyze the storm asymmetry as depicted by several factors - brightness temperatures and their derivatives such as a newly-develop Rain Indicator and a new convective/stratiform separation that is based on the value and the spatial variability of this Rain Indicator. The goal is to determine whether the storm morphology (in particular, the storm asymmetry or lack thereof) carries predictive skills regarding the potential for intensification. The presentation will describe the JPL TCIS and the results of our analysis of the passive microwave satellite observations of the Atlantic hurricanes. Refernces: Hristova-Veleva, S. M., C. Ao, Y. Chao, V. Dang, R. Fovell, M. Garay, Z. Haddad, B. Knosp, B. Lambrigtsen, P. P. Li, K. J. Park, W. Poulsen, H. Su, S. Tanelli, D. Vane, Q. A. Vu, J. Willis, D. L. Wu, 2008: "Using the JPL Tropical Cyclone Information System for Research and Applications", AMS 28th Hurricane and Tropical Meteorology Conference, Orlando, FL, 28Apr.-02May 2008 Hristova-Veleva, S. M., A. Chau, Z. Haddad, B. Knosp, B. Lambrigtsen, P. P. Li, E. Rodriguez, T. -. P. Shen, B. Stiles, H. Su, J. Turk, and Q. Vu, 2011: "Impact of microphysical parameterizations on the structure and intensity of simulated hurricanes: Using satellite data to determine the parameterizations that produce most realistic storms", 14th Conference on Mesoscale Processes, 1-4 August 2011, Los Angeles, California Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, F. Marks, 2012: Multiscale Analysis of Tropical Cyclone Kinematic Structure from Airborne Doppler Radar Composites. Mon. Wea. Rev., 140, 77-99.

  18. An intercomparison of tropical cyclone best-track products for the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Magee, Andrew D.; Verdon-Kidd, Danielle C.; Kiem, Anthony S.

    2016-06-01

    Recent efforts to understand tropical cyclone (TC) activity in the southwest Pacific (SWP) have led to the development of numerous TC databases. The methods used to compile each database vary and are based on data from different meteorological centres, standalone TC databases and archived synoptic charts. Therefore the aims of this study are to (i) provide a spatio-temporal comparison of three TC best-track (BT) databases and explore any differences between them (and any associated implications) and (ii) investigate whether there are any spatial, temporal or statistical differences between pre-satellite (1945-1969), post-satellite (1970-2011) and post-geostationary satellite (1982-2011) era TC data given the changing observational technologies with time. To achieve this, we compare three best-track TC databases for the SWP region (0-35° S, 135° E-120° W) from 1945 to 2011: the Joint Typhoon Warning Center (JTWC), the International Best Track Archive for Climate Stewardship (IBTrACS) and the Southwest Pacific Enhanced Archive of Tropical Cyclones (SPEArTC). The results of this study suggest that SPEArTC is the most complete repository of TCs for the SWP region. In particular, we show that the SPEArTC database includes a number of additional TCs, not included in either the JTWC or IBTrACS database. These SPEArTC events do occur under environmental conditions conducive to tropical cyclogenesis (TC genesis), including anomalously negative 700 hPa vorticity (VORT), anomalously negative vertical shear of zonal winds (VSZW), anomalously negative 700 hPa geopotential height (GPH), cyclonic (absolute) 700 hPa winds and low values of absolute vertical wind shear (EVWS). Further, while changes in observational technologies from 1945 have undoubtedly improved our ability to detect and monitor TCs, we show that the number of TCs detected prior to the satellite era (1945-1969) are not statistically different to those in the post-satellite era (post-1970). Although data from pre-satellite and pre-geostationary satellite periods are currently inadequate for investigating TC intensity, this study suggests that SPEArTC data (from 1945) may be used to investigate long-term variability of TC counts and TC genesis locations.

  19. Uncertainties related to the representation of momentum transport in shallow convection

    NASA Astrophysics Data System (ADS)

    Schlemmer, Linda; Bechtold, Peter; Sandu, Irina; Ahlgrimm, Maike

    2017-04-01

    The vertical transport of horizontal momentum by convection has an important impact on the general circulation of the atmosphere as well as on the life cycle and track of cyclones. So far convective momentum transport (CMT) has mostly been studied for deep convection, whereas little is known about its characteristics and importance in shallow convection. In this study CMT by shallow convection is investigated by analyzing both data from large-eddy simulations (LES) and simulations performed with the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). In addition, the central terms underlying the bulk mass-flux parametrization of CMT are evaluated offline. Further, the uncertainties related to the representation of CMT are explored by running the stochastically perturbed parametrizations (SPP) approach of the IFS. The analyzed cases exhibit shallow convective clouds developing within considerable low-level wind shear. Analysis of the momentum fluxes in the LES data reveals significant momentum transport by the convection in both cases, which is directed down-gradient despite substantial organization of the cloud field. A detailed inspection of the convection parametrization reveals a very good representation of the entrainment and detrainment rates and an appropriate representation of the convective mass and momentum fluxes. To determine the correct values of mass-flux and in-cloud momentum at the cloud base in the parametrization yet remains challenging. The spread in convection-related quantities generated by the SPP is reasonable and addresses many of the identified uncertainties.

  20. An experiment in hurricane track prediction using parallel computing methods

    NASA Technical Reports Server (NTRS)

    Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.

    1994-01-01

    The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.

  1. Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki

    2017-03-01

    Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.

  2. Lessons learnt from tropical cyclone losses

    NASA Astrophysics Data System (ADS)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  3. Trend discrepancies among three best track data sets of western North Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Song, Jin-Jie; Wang, Yuan; Wu, Liguang

    2010-06-01

    The hot debate over the influence of global warming on tropical cyclone (TC) activity in the western North Pacific over the past several decades is partly due to the diversity of TC data sets used in recent publications. This study investigates differences of track, intensity, frequency, and the associated long-term trends for those TCs that were simultaneously recorded by the best track data sets of the Joint Typhoon Warning Center (JTWC), the Regional Specialized Meteorological Center (RSMC) Tokyo, and the Shanghai Typhoon Institute (STI). Though the differences in TC tracks among these data sets are negligibly small, the JTWC data set tends to classify TCs of category 2-3 as category 4-5, leading to an upward trend in the annual frequency of category 4-5 TCs and the annual accumulated power dissipation index, as reported by Webster et al. (2005) and Emanuel (2005). This trend and potential destructiveness over the period 1977-2007 are found only with the JTWC data set, but downward trends are apparent in the RSMC and STI data sets. It is concluded that the different algorithms used in determining TC intensity may cause the trend discrepancies of TC activity in the western North Pacific.

  4. Contrasting the projected change in extreme extratropical cyclones in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Chang, E. K. M.

    2017-12-01

    Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the dynamics behind these contrasting projected changes.

  5. Perceptions, impacts and adaptation of tropical cyclones in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga

    NASA Astrophysics Data System (ADS)

    Magee, A. D.; Verdon-Kidd, D. C.; Kiem, A. S.; Royle, S. A.

    2015-11-01

    To better understand perceptions, impacts and adaptation strategies related to tropical cyclones (TCs) in urban environments of the Southwest Pacific (SWP), a survey (with 130 participants) was conducted across three island nations; Fiji, Vanuatu and Tonga. The key aims of this study include: (i) understanding local perceptions of TC activity, (ii) investigating physical impacts of TC activity, and (iii) uncovering adaptation strategies used to offset the impacts of TCs. It was found that current methods of adaptation generally occur at the local level immediately prior to a TC event (preparation of property, gathering of food, setting up of community centres). This method of adaptation appears to be effective, however higher level adaptation measures (such as the development of building codes as developed in Fiji) may reduce vulnerability further. The survey responses also highlight that there is significant scope to provide education programs specifically aimed at improving the understanding of weather related aspects of TCs. Finally, we investigate the potential to merge ecological traditional knowledge with the non-traditional knowledge of empirical and climate mode based weather forecasts to improve forecasting of TCs, which would ultimately reduce vulnerability and increase adaptive capacity.

  6. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    NASA Astrophysics Data System (ADS)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the storm's rainband and eyewall organization. Ultimately, this project develops a consistent climatology of TC structures using a new database of research-quality historical TC satellite microwave observations. Not only can such data sets more accurately study TC structural evolution, but they may facilitate automated TC intensity estimates and provide methods to enhance current operational and research products, such as at the NRL TC webpage (http://www.nrlmry.navy.mil/TC.html). The process of developing the dataset and possible objective definitions of TC structures using passive microwave imagery will be described, with preliminary results suggesting new methods to identify TC structures that may interrogate and expand upon physical and dynamical theories. Structural metrics such as threshold analysis of the outlines of the TC shape as well as methods to diagnose the inner-core size, completion, and magnitude will be introduced.

  7. Determining relevant parameters for a statistical tropical cyclone genesis tool based upon global model output

    NASA Astrophysics Data System (ADS)

    Halperin, D.; Hart, R. E.; Fuelberg, H. E.; Cossuth, J.

    2013-12-01

    Predicting tropical cyclone (TC) genesis has been a vexing problem for forecasters. While the literature describes environmental conditions which are necessary for TC genesis, predicting if and when a specific disturbance will organize and become a TC remains a challenge. As recently as 5-10 years ago, global models possessed little if any skill in forecasting TC genesis. However, due to increased resolution and more advanced model parameterizations, we have reached the point where global models can provide useful TC genesis guidance to operational forecasters. A recent study evaluated five global models' ability to predict TC genesis out to four days over the North Atlantic basin (Halperin et al. 2013). The results indicate that the models are indeed able to capture the genesis time and location correctly a fair percentage of the time. The study also uncovered model biases. For example, probability of detection and false alarm rate varies spatially within the basin. Also, as expected, the models' performance decreases with increasing lead time. In order to explain these and other biases, it is useful to analyze the model-indicated genesis events further to determine whether or not there are systematic differences between successful forecasts (hits), false alarms, and miss events. This study will examine composites of a number of physically-relevant environmental parameters (e.g., magnitude of vertical wind shear, aerially averaged mid-level relative humidity) and disturbance-based parameters (e.g., 925 hPa maximum wind speed, vertical alignment of relative vorticity) among each TC genesis event classification (i.e., hit, false alarm, miss). We will use standard statistical tests (e.g., Student's t test, Mann-Whitney-U Test) to calculate whether or not any differences are statistically significant. We also plan to discuss how these composite results apply to a few illustrative case studies. The results may help determine which aspects of the forecast are (in)correct and whether the incorrect aspects can be bias-corrected. This, in turn, may allow us to further enhance probabilistic forecasts of TC genesis.

  8. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have based on their track and other characteristics. Prat, O.P., and B.R. Nelson, 2012. J. Climate. Conditionally Accepted. Westerink, J., R. Luettich, J. Feyen, et al, 2008. Month. Weather Rev., 136, 833-864.

  9. Towards a Flood Severity Index

    NASA Astrophysics Data System (ADS)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.

    2017-12-01

    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio-economic data, such as population density, infrastructure, urbanization or equivalent information, is required for humanitarian actors to respond properly. In the end, expanded monitoring of floods, improved mitigation measures, but also effective communication of the severity of an event has the potential to reduce loss of life in future flood events.

  10. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  11. Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean

    NASA Image and Video Library

    2017-12-08

    The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Tropical Cyclone Paul

    NASA Image and Video Library

    2010-03-30

    NASA image March 29, 2010 Tropical Cyclone Paul spanned the ocean waters between Australia and New Guinea on March 29, 2010. The MODIS on NASA’s Terra satellite captured this natural-color image the same day. The center of the cyclone is along the coast of Northern Territory’s Arnhem Land. Clouds run counter-clockwise across the Gulf of Carpentaria and Cape York Peninsula, over New Guinea’s Pulau Dolok, and over the Arafura Sea. On March 29, 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported that Tropical Cyclone Paul storm had maximum sustained winds of 60 knots (110 kilometers per hour) and gusts up to 75 knots (140 kilometers per hour). The storm was located roughly 315 nautical miles (585 kilometers) east of Darwin. The storm had moved slowly toward the southwest over the previous several hours. The JTWC forecast that the storm would likely maintain its current intensity for several more hours before slowly dissipating over land. Credit: NASA/GSFC/Jeff Schmaltz/MODIS To learn more about this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.

  14. Cloudsat tropical cyclone database

    NASA Astrophysics Data System (ADS)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms. Average zero and ten dBZ height thresholds confirm WPAC storms loft precipitation sized particles higher into the atmosphere than in other basins. Two CS eye overpasses (32 hours apart) of a weakening Typhoon Nida in 2009 reveal the collapse of precipitation cores, warm core anomaly and upper tropospheric ice water content (IWC) under steady moderate shear conditions.

  15. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    NASA Astrophysics Data System (ADS)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run a forecast with the corresponding perturbed initial state (PV-satellite). The non hydrostatic MM5 mesoscale model has been used to run all forecasts. The simulations are performed for a two-day period with a 22.5 km resolution domain (Domain 1 in http://mm5forecasts.uib.es) nested in the ECMWF large-scale forecast fields. The MEDEX cyclone of 10 June 2000, also known as the Montserrat Case, is a suitable testbed to compare the performance of each ensemble and the PV-satellite method. This case is characterized by an Atlantic upper-level trough and low-level cold front which generated a stationary mesoscale cyclone over the Spanish Mediterranean coast, advecting warm and moist air toward Catalonia from the Mediterranean Sea. The consequences of the resulting mesoscale convective system were 6-h accumulated rainfall amounts of 180 mm with estimated material losses to exceed 65 million euros by media. The performace of both ensemble forecasting systems and PV-satellite technique for our case study is evaluated through the verification of the rainfall field. Since the EPSs are probabilistic forecasts and the PV-satellite is deterministic, their comparison is done using the individual ensemble members. Therefore the verification procedure uses deterministic scores, like the ROC curve, the Taylor diagram or the Q-Q plot. These scores cover the different quality attributes of the forecast such as reliability, resolution, uncertainty and sharpness. The results show that the PV-satellite technique performance lies within the performance range obtained by both ensembles; it is even better than the non-perturbed ensemble member. Thus, perturbing randomly using the PV error climatology and introducing the perturbations in the zones given by each EPS captures the mismatch between PV and WV fields better than manual perturbations made by an expert forecaster, at least for this case study.

  16. Training on Eastern Pacific tropical cyclones for Latin American students

    NASA Astrophysics Data System (ADS)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  17. Surge in North Atlantic hurricanes due to detectors, not climate change

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-07-01

    A spate of research has indicated there may be a link between climate change and the prevalence of North Atlantic tropical cyclones. In a new paper, researchers note upon closer inspection that the prominent upswing in tropical cyclone detections beginning in the midtwentieth century is attributable predominantly to the detection of “shorties” tropical cyclones with durations of less than 2 days. That the apparent surge in cyclone activity could be attributable to changes in the quality and quantity of detections has gained ground as a potential alternative explanation. Using a database of hurricane observations stretching back to 1878, Villarini et al. try to tease out any detectable climate signal from the records. The authors note that between 1878 and 1943 there were 0.58 shorty detections per year, and between 1944 and 2008 there were 2.58 shorty detections per year. This increase in shorties, which the authors propose may be related to the end of World War II and the dawn of air-based reconnaissance and weather tracking, was not mirrored by an increase in tropical cyclone activity for storms longer than 2 days. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD015493, 2011

  18. Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.

    2000-01-01

    High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.

  19. Comparison of the ocean surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John

    2017-03-01

    Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.

  20. Data Assimilation and verification based on GEO microwave observations

    NASA Astrophysics Data System (ADS)

    He, J.

    2017-12-01

    THE frequency band from 50 to 56 GHz has been used to retrieve atmospheric temperature profiles through radiometric measurements at and near absorption maxima. Sensors working around 50-56 GHz are now only available on low earth orbit (LEO), and are still lacked in the geostationary earth orbit (GEO) application. Compared with LEO sounding, sensors working in GEO orbit can continuously monitor the full earth disk and perform. The Geostationary Interferometric Microwave Sounder (GIMS) is a synthetic aperture microwave sounder working in time-sharing sampling mode with a rotating circular antenna array. Real-time forecasting for short-term meteorological phenomena such as tropical cyclones, which is one of the most important natural disasters that cause severe damage in coastal areas around the world. Furthermore, since information available in microwave band is different from that available in visible/ infrared frequency, microwave sensor in GEO orbit can complement the existing sensors in GEO orbit that work in visible/infrared frequency to determine vertical temperature distribution and thus help investigate inner structure of tropical cyclone. As we know, a lot of improvement of WRFDA has been realized, such as radar data and LEO microwave data. It has the ability of providing initial conditions for the WRF model and assessing observing system. However, one major constraint of WRFDA is the ability of assimilating GEO microwave observations into the assimilation model and verify how the GIMS sensor effect the output data of model, especially for synthetic aperture microwave sounder. So, for my group, we focus on surface pressure and precipitation in hurricane and typhoon areas based on WRF and WRFDA model, and also, combine polar-orbit observations and geostationary microwave simulations to improve the tracking accuracy.

  1. Severe Weather Guide - Mediterranean Ports. 7. Marseille

    DTIC Science & Technology

    1988-03-01

    the afternoon. Upper—level westerlies and the associated storm track is moved northward during summer, so extratropical cyclones and associated...autumn as the extratropical storm track moves southward. Precipitation amount is the highest of the year, with an average of 3 inches (76 mm) for the...18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Marseille port

  2. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very different from our current assessments, which were mainly based on the thermodynamic theory of tropical cyclone intensity.

  3. Can we trust climate models to realistically represent severe European windstorms?

    NASA Astrophysics Data System (ADS)

    Trzeciak, Tomasz M.; Knippertz, Peter; Pirret, Jennifer S. R.; Williams, Keith D.

    2016-06-01

    Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective "seamless" approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent heating, as the main source for the under-prediction in the coarse-resolution runs. Finally, an interesting implication of these results is that the too low number of deep cyclones in many free-running climate simulations may therefore be related to an insufficient number of storm-prone initial conditions. This question will be addressed in future work.

  4. North Atlantic cyclones; trends, impacts and links to large-scale variability

    NASA Astrophysics Data System (ADS)

    Trigo, R. M.; Trigo, I. F.; Ramos, A. M.; Paredes, D.; Garcia-Herrera, R.; Liberato, M. L. R.; Valente, M. A.

    2009-04-01

    Based on the cyclone detection and tracking algorithm previously developed (Trigo, 2006) we have assessed the inter-annual variability and cyclone frequency trends between 1960 and 2000 for the Euro-Atlantic sector using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 Surface Level Pressure. Additionally, trends for the u and v wind speed components are also computed at the monthly and seasonal scales, using the same dataset. All cyclone and wind speed trend maps were computed with the corresponding statistical significance field. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February and March. Seasonal and monthly analysis of wind speed trends shows similar spatial patterns. We show that these changes in the frequency of low pressure centers and the associated wind patterns are partially responsible for trends of the significant height of waves. Throughout the extended winter months (ONDJFM), regions with positive (negative) wind magnitude trends, of up to 5 cm/s per year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for the JFM months are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of 50°N up to -3 cm/year, and positive up to 5cm/year just north of Scotland). Using precipitation data from ECMWF reanalyses and a CRU high resolution dataset we show the impact of these trends in cyclone frequencies upon the corresponding precipitation trends in the influenced areas. It is also shown that these changes are partially linked to major shifts on the indices of large-scale patterns modes, namely the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian Patterns (SCAN). Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.

  5. Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms

    NASA Astrophysics Data System (ADS)

    Gulev, Sergey; Natalia, Tilinina

    2014-05-01

    Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.

  6. Observational-numerical Study of Maritime Extratropical Cyclones Using FGGE Data

    NASA Technical Reports Server (NTRS)

    Wash, C. H.; Elsberry, R. L.

    1984-01-01

    The accomplishments, current research, and future plans of a study investigating the development, maturation, and decay of maritime extratropical cyclones are reported. Three cases of explosive cyclogenesis during the first GARP global experiment (FGGE) DOP-1 were studied diagnostically using storm-following budgets derived from the ECMWF and GLAS level III-b analyses. Mass, vorticity and angular momentum budgets for the moving storm environment were computed for each case. Key results from these studies include: (1) demonstration that the FGGE analyses can be used to explore oceanic circulations; (2) isolation of the role of upper level jet streaks in the initiation of the explosive period in all three cases; and (3) illustration of the lower tropospheric destabilization during each rapid deepening period, which is primarily due to sensible heating of the cold air by the warmer ocean surface. The physics package of the Navy global forecast model was successfully utilized in a semi-prognostic mode to estimate diabatic components of oceanic cyclone systems. Fields of sensible and latent heat fluxes, radiational heating and inferred cloud structures were also computed.

  7. Hindcast of extreme sea states in North Atlantic extratropical storms

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  8. Hurricane Debby

    Atmospheric Science Data Center

    2013-04-19

    ... cloud-tracked winds at the different cloud levels. The wind vectors, shown in the right panel, reveal cyclonic motion associated with ... of cloud height and motions globally will help us monitor the effects of climate change on the three-dimensional distribution of ...

  9. NASA Data Helps Track Heat Potential Fueling Rita

    NASA Image and Video Library

    2005-09-26

    Tropical Cyclone Heat Potential TCHP field in the Gulf of Mexico during September 22, 2005. The path of Hurricane Rita is indicated with circles spaced every 3 hours with their size and color representing intensity see legend.

  10. Regional 500 mb heights and U.S. 1 000-500 mb thickness prior to the radiosonde era

    NASA Astrophysics Data System (ADS)

    Michaels, P. J.; Sappington, D. E.; Stooksbury, D. E.; Hayden, B. P.

    1990-09-01

    We developed a statistical model relating cyclone track eigenvectors over the U.S., southern Canada, and nearby oceans to a record of mean annual 500 mb heights. The length of the cyclone track record allowed us to calculate mean heights back to 1885. Use of mean annual surface pressure data allowed us to estimate the mean 1 000-500 mb thickness, which was related to mean annual temperature. This temperature calculation is unique in that it cannot suffer from urban or site bias. We find a warming of 1.5°C from the late 19th century to 1955, followed by a drop of 0.7° to 1980. By 1987, the calculated temperatures were 0.3° above the mean for 103 years of record. As an example of regional application, we examine results over the southwestern U.S.

  11. Estimation of size of tropical cyclones in the North Indian Ocean using Oceansat-2 scatterometer high-resolution wind products

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Ha, Doan Thi Thu; Kishtawal, C. M.

    2018-03-01

    Tropical cyclone (TC) is one of the most intense weather hazards, especially for the coastal regions, as it causes huge devastation through gale winds and torrential floods during landfall. Thus, accurate prediction of TC is of great importance to reduce the loss of life and damage to property. Most of the cyclone track prediction model requires size of TC as an important parameter in order to simulate the vortex. TC size is also required in the impact assessment of TC affected regions. In the present work, the size of TCs formed in the North Indian Ocean (NIO) has been estimated using the high resolution surface wind observations from oceansat-2 scatterometer. The estimated sizes of cyclones were compared to the radius of outermost closed isobar (ROCI) values provided by Joint Typhoon warning Center (JTWC) by plotting their histograms and computing the correlation and mean absolute error (MAE). The correlation and MAE between the OSCAT wind based TC size estimation and JTWC-ROCI values was found 0.69 and 33 km, respectively. The results show that the sizes of cyclones estimated by OSCAT winds are in close agreement to the JTWC-ROCI. The ROCI values of JTWC were analyzed to study the variations in the size of tropical cyclones in NIO during different time of the diurnal cycle and intensity stages.

  12. A stochastic model for tropical cyclone tracks based on Reanalysis data and GCM output

    NASA Astrophysics Data System (ADS)

    Ito, K.; Nakano, S.; Ueno, G.

    2014-12-01

    In the present study, we try to express probability distribution of tropical cyclone (TC) trajectories estimated on the basis of GCM output. The TC tracks are mainly controlled by the atmospheric circulation such as the trade winds and the Westerlies as well as are influenced to move northward by the Beta effect. The TC tracks, which calculated with trajectory analysis, would thus correspond to the movement of TCs due to the atmospheric circulation. Comparing the result of the trajectory analysis from reanalysis data with the Best Track (BT) of TC in the present climate, the structure of the trajectory seems to be similar to the BT. However, here is a significant problem for the calculation of a trajectory in the reanalysis wind field because there are many rotation elements including TCs in the reanalysis data. We assume that a TC would move along the steering current and the rotations would not have a great influence on the direction of moving. We are designing a state-space model based on the trajectory analysis and put an adjustment parameter for the moving vector. Here, a simple track generation model is developed. This model has a possibility to gain the probability distributions of calculated TC tracks by fitting to the BT using data assimilation. This work was conducted under the framework of the "Development of Basic Technology for Risk Information on Climate Change" supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology.

  13. Unravelling the Natural and Anthropogenic Drivers of North Atlantic Tropical Cyclone Track Position since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Baldini, L. M.; Baldini, J. U. L.; McElwaine, J.; Frappier, A. B.; Asmerom, Y.; Liu, K. B.; Prufer, K. M.; Ridley, H.; Polyak, V. J.; Kennett, D. J.; Macpherson, C.; Aquino, V. V.; Awe, J.; Breitenbach, S. F. M.

    2017-12-01

    In the last decade, stalagmites have been recognised as valuable archives of past hurricane activity. The characteristically low δ18O rainfall of tropical cyclones (TCs, including both hurricanes and tropical storms) is particularly well-preserved in fast-growing tropical speleothems. Here we present a new multi-proxy approach used to extract the western Caribbean TC signal from background wet season rainfall that, at our site in southern Belize, is driven by seasonal migration of the Intertropical Convergence Zone (ITCZ). The result is an annual 450-year record of western Caribbean TC activity that, when compared to documentary and statistical model-based reconstructions of North Atlantic TC activity, reveals a northward migration of dominant TC track since the height of Little Ice Age cooling. Importantly, the record reveals a reversal in the TC track position-North Atlantic sea surface temperature relationship between the pre-Industrial and Industrial Eras. During the pre-Industrial interval, TC track position migrated with the ITCZ toward the warmer hemisphere. Conversely, anthropogenic greenhouse gas and aerosol emissions during the Industrial Era have decoupled TC track position from the ITCZ through expansion of the Hadley Cell. This research suggests that under future greenhouse gas and aerosol emissions scenarios, the dominant TC track is likely to remain to the north. Combined with greenhouse gas-induced rising sea surface temperatures, the risk to the NE US population and financial centres is likely to increase in the future.

  14. Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

    NASA Technical Reports Server (NTRS)

    Maskey, Manil; Cecil, Dan; Ramachandran, Rahul; Miller, Jeffrey J.

    2018-01-01

    Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning algorithm requiring a large number of training data. Since the archives of intensity data and tropical cyclone centric satellite images is openly available for use, the training data is easily created by combining the two. Results, case studies, prototypes, and advantages of this approach will be discussed.

  15. Potential of knowledge discovery using workflows implemented in the C3Grid

    NASA Astrophysics Data System (ADS)

    Engel, Thomas; Fink, Andreas; Ulbrich, Uwe; Schartner, Thomas; Dobler, Andreas; Fritzsch, Bernadette; Hiller, Wolfgang; Bräuer, Benny

    2013-04-01

    With the increasing number of climate simulations, reanalyses and observations, new infrastructures to search and analyse distributed data are necessary. In recent years, the Grid architecture became an important technology to fulfill these demands. For the German project "Collaborative Climate Community Data and Processing Grid" (C3Grid) computer scientists and meteorologists developed a system that offers its users a webinterface to search and download climate data and use implemented analysis tools (called workflows) to further investigate them. In this contribution, two workflows that are implemented in the C3Grid architecture are presented: the Cyclone Tracking (CT) and Stormtrack workflow. They shall serve as an example on how to perform numerous investigations on midlatitude winterstorms on a large amount of analysis and climate model data without having an insight into the data source, program code and a low-to-moderate understanding of the theortical background. CT is based on the work of Murray and Simmonds (1991) to identify and track local minima in the mean sea level pressure (MSLP) field of the selected dataset. Adjustable thresholds for the curvature of the isobars as well as the minimum lifetime of a cyclone allow the distinction of weak subtropical heat low systems and stronger midlatitude cyclones e.g. in the Northern Atlantic. The user gets the resulting track data including statistics about the track density, average central pressure, average central curvature, cyclogenesis and cyclolysis as well as pre-built visualizations of these results. Stormtrack calculates the 2.5-6 day bandpassfiltered standard deviation of the geopotential height on a selected pressure level. Although this workflow needs much less computational effort compared to CT it shows structures that are in good agreement with the track density of the CT workflow. To what extent changes in the mid-level tropospheric storm track are reflected in trough density and intensity alteration of surface cyclones. A specific feature of C3Grid is the flexible Workflow Scheduling Service (WSS) which also allows for automated nightly analysis runs of CT, Stormtrack, etc. with different input parameter sets. The statistical results of these workflows can be accumulated afterwards by a scheduled final analysis step, thereby providing a tool for data intensive analytics for the massive amounts of climate model data accessible through C3Grid. First tests with these automated analysis workflows show promising results to speed up the investigation of high volume modeling data. This example is relevant to the thorough analysis of future changes in storminess in Europe and is just one example of the potential of knowledge discovery using automated workflows implemented in the C3Grid architecture.

  16. Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation

    NASA Astrophysics Data System (ADS)

    Barcikowska, Monika; Feser, Frauke; Zhang, Wei; Mei, Wei

    2017-11-01

    An atmospheric regional climate model (CCLM) was employed to dynamically downscale atmospheric reanalyses (NCEP/NCAR 1, ERA 40) over the western North Pacific and South East Asia. This approach is used for the first time to reconstruct a tropical cyclone climatology, which extends beyond the satellite era and serves as an alternative data set for inhomogeneous observation-derived records (Best Track Data sets). The simulated TC climatology skillfully reproduces observations of the recent decades (1978-2010), including spatial patterns, frequency, lifetime, trends, variability on interannual and decadal time scales and their association with the large-scale circulation patterns. These skills, facilitated here with the spectral nudging method, seem to be a prerequisite to understand the factors determining spatio-temporal variability of TC activity over the western North Pacific. Long-term trends (1948-2011 and 1959-2001) in both simulations show a strong increase of intense tropical cyclone activity. This contrasts with pronounced multidecadal variations found in observations. The discrepancy may partly originate from temporal inhomogeneities in atmospheric reanalyses and Best Track Data, which affect both the model-based and observational-based trends. An adjustment, which removes the simulated upward trend, reduces the apparent discrepancy. Ultimately, our observational and modeling analysis suggests an important contribution of multi-decadal fluctuations in the TC activity during the last six decades. Nevertheless, due to the uncertainties associated with the inconsistencies and quality changes of those data sets, we call for special caution when reconstructing long-term TC statistics either from atmospheric reanalyses or Best Track Data.

  17. Interannual variability of the Submonthly Wave Patterns over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ko, K. C.

    2017-12-01

    This study examines the interannual variability of the 5-16 day wave patterns by separating them into active (A4mV) and inactive (I4mV) years on the basis of the 4-month (July-October) variance of a Japan-South China Sea (JSCS) circulation index from 1979 to 2013. The sea surface temperature for the A4mV years exhibited an ENSO pattern but a reversed anomaly pattern was observed in the I4mV years. Composite results indicate that tropical cyclone (TC) tracks are closely linked to the activity of the wave patterns. When the wave patterns were strong with a solid wave structure in the A4mV years, TCs would follow the propagation routes of the cyclonic anomalies of the wave patterns and separated into two types of tracks: straight-moving and recurving. However, in the I4mV years when the wave patterns were weak and poorly organized, the shapes of the cyclonic anomalies became irregular and sporadic. The weakening structure of the wave patterns in the I4mV years would induce the TCs to undergo more scattered routes near Taiwan and east coast of China. Therefore, Taiwan experienced more rainfall in the I4mV years.

  18. Evaluation of Preduster in Cement Industry Based on Computational Fluid Dynamic

    NASA Astrophysics Data System (ADS)

    Septiani, E. L.; Widiyastuti, W.; Djafaar, A.; Ghozali, I.; Pribadi, H. M.

    2017-10-01

    Ash-laden hot air from clinker in cement industry is being used to reduce water contain in coal, however it may contain large amount of ash even though it was treated by a preduster. This study investigated preduster performance as a cyclone separator in the cement industry by Computational Fluid Dynamic method. In general, the best performance of cyclone is it have relatively high efficiency with the low pressure drop. The most accurate and simple turbulence model, Reynold Average Navier Stokes (RANS), standard k-ε, and combination with Lagrangian model as particles tracking model were used to solve the problem. The measurement in simulation result are flow pattern in the cyclone, pressure outlet and collection efficiency of preduster. The applied model well predicted by comparing with the most accurate empirical model and pressure outlet in experimental measurement.

  19. Evaluation and Verification of Decadal Predictions using the MiKlip Central Evaluation System - a Case Study using the MiKlip Prototype Model Data

    NASA Astrophysics Data System (ADS)

    Illing, Sebastian; Schuster, Mareike; Kadow, Christopher; Kröner, Igor; Richling, Andy; Grieger, Jens; Kruschke, Tim; Lang, Benjamin; Redl, Robert; Schartner, Thomas; Cubasch, Ulrich

    2016-04-01

    MiKlip is project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and aims to create a model system that is able provide reliable decadal climate forecasts. During the first project phase of MiKlip the sub-project INTEGRATION located at Freie Universität Berlin developed a framework for scientific infrastructures (FREVA). More information about FREVA can be found in EGU2016-13060. An instance of this framework is used as Central Evaluation System (CES) during the MiKlip project. Throughout the first project phase various sub-projects developed over 25 analysis tools - so called plugins - for the CES. The main focus of these plugins is on the evaluation and verification of decadal climate prediction data, but most plugins are not limited to this scope. They target a wide range of scientific questions. Starting from preprocessing tools like the "LeadtimeSelector", which creates lead-time dependent time-series from decadal hindcast sets, over tracking tools like the "Zykpak" plugin, which can objectively locate and track mid-latitude cyclones, to plugins like "MurCSS" or "SPECS", which calculate deterministic and probabilistic skill metrics. We also integrated some analyses from Model Evaluation Tools (MET), which was developed at NCAR. We will show the theoretical background, technical implementation strategies, and some interesting results of the evaluation of the MiKlip Prototype decadal prediction system for a selected set of these tools.

  20. Surface Wind Field Analyses of Tropical Cyclones in the Western Pacific

    DTIC Science & Technology

    2012-09-01

    Averaged vertical profiles of actual wind speeds (m s-1) from all dropwindsondes in three ITOP storms . (b) Averaged vertical profiles of wind speeds...for the entire set of winds from the three ITOP 2010 typhoons. .............................1  Figure 27.  a) Storm -relative motion flight track for...1  Figure 28.  a) Storm -relative motion flight track for flight 0420 in TY Fanapi

  1. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    NASA Astrophysics Data System (ADS)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  2. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > Mesoscale Modeling > PEOPLE Home Mission Models R & D Collaborators Documentation Change Log People Calendar References Verification/Diagnostics Tropical & Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING PEOPLE

  3. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set perspectives for a deeper analysis of the favourable atmospheric conditions that yield high impact weather.

  4. The Sharav Cyclone: Observations and some theoretical considerations

    NASA Astrophysics Data System (ADS)

    Alpert, P.; Ziv, B.

    1989-12-01

    A special study of the Sharav Cyclones indicates that they are the result of large-scale weak baroclinicity, enhanced by vigorous boundary-layer baroclinicity between the North African coast and the Mediterranean. It is illustrated how the jet stream plays a major role in the vertical circulation in producing a complex cyclonic circulation dominated by at least three mechanisms: large-scale interior baroclinicity, boundary-layer baroclinicity, and jet stream related circulations. The main characteristics of the Sharav Cyclone (also called the Saharan Depression or Khamsin Depression) in the Mediterranean are reviewed. Unlike the cold winter cyclone, the Sharav Cyclone is a spring cyclone. Its tracks lie mainly along the North African coast and turn to the north near the southeastern Mediterranean. Its warm front is active and is sometimes associated with extremely high surface temperatures. Its cold front is shallow. The Sharav Cyclone moves eastward relatively fast, typically faster than 10 m s-1, and with a small speed variability. In general, there is an upper level trough to the west of the surface low and the surface horizontal scale is of the order of 500-1000 km. Finally, it is frequently associated with heavy dust/sand storms and low visibilities. Some of these features are illustrated in a case study of the April 28-30, 1986, cyclone. Vertical cross sections indicate a deep circulation associated with the exit region of an upper level jet. In addition to presenting evidence that the Sharav Cyclone is a deep tropospheric circulation, it is shown that the transverse indirect circulation at the exit region of the jet is a major component of its circulation. The classic two-level baroclinic model (Phillips, 1954) is applied. The effects of the major diabatic heating due to the sensible heat flux above the North African desert and the large north to south temperature gradients are incorporated through the thermal wind of the basic state. The model predicts the fast eastward motion, the relatively smaller horizontal scale and the fast growth rate. Furthermore, the model predicts an annual maximum growth rate in April and a secondary peak in October, which agrees with the frequency of occurrences of the Sharav Cyclones.

  5. Program Tracks Cost Of Travel

    NASA Technical Reports Server (NTRS)

    Mauldin, Lemuel E., III

    1993-01-01

    Travel Forecaster is menu-driven, easy-to-use computer program that plans, forecasts cost, and tracks actual vs. planned cost of business-related travel of division or branch of organization and compiles information into data base to aid travel planner. Ability of program to handle multiple trip entries makes it valuable time-saving device.

  6. Tropical-Like Cyclones in the Mediterranean: The case of Medicane "Qendresa" in 2014

    NASA Astrophysics Data System (ADS)

    Patlakas, P.; Nenes, A.; Nikolopoulos, E. I.; Kallos, G. B.

    2016-12-01

    Intense storm characteristics and structure that resemble hurricanes can periodically form over the Mediterranean Sea. These so-called Medicanes form in a similar fashion to tropical cyclones, despite the different climatic characteristics between the Mediterranean Sea and the tropical oceans. Unlike their tropical counterparts, Medicanes are poorly understood and studied. The recurrence interval of such extreme conditions is lower than tropical cyclones, but they can cause significant damages to property and pose threat to human lives. The frequency and intensity of Medicanes, in response to climate change, is also completely unknown. One recent event is the case of Medicane "Qendresa" that took place during 7-8 November 2014. It was generated in the maritime area between Italy and Tunisia and dissipated within about 48 hours. Winds and wind gusts reached 111 km/h and 154 km/h respectively, while the lowest recorded pressure reached the value of 978.6 hPa. At the same time, a 24h accumulated precipitation of more than 100 mm was recorded in the SE part of Sicily during the second day of the event. The contact of the system with Sicily and the exhibited stationarity caused the large amounts of precipitating water over the island. The quick dissipation can be attributed to the relatively quick landfall that severely reduced latent heat supply from the warm sea surface. The formation of a cyclone was forecasted by the most of operational models but its characteristics deviated significantly. In this study we utilize a state-of-the-art atmospheric model, the RAMS-ICLAMS Modeling System, to simulate the full lifecycle of the storm and study in detail the underlying mechanisms associated with the initiation, intensification and dissipation of the system. A series of sensitivity simulations define the key drivers behind the formation and development of Medicanes. The simulations revealed the high sensitivity of these systems to different dynamical and microphysical characteristics. Nevertheless, the simulations system employed here displayed a remarkable level of agreement in terms of structure and storm characteristics when compared to available in-situ measurements and satellite data. We conclude with important conclusions on the main factors that contribute to model fidelity and potential future forecasts.

  7. Variability of cyclones over the North Atlantic and Europe since 1871

    NASA Astrophysics Data System (ADS)

    Welker, C.; Martius, O.

    2012-04-01

    The scarce availability of long-term atmospheric data series has so far limited the analysis of low-frequency activity and intensity changes of cyclones over the North Atlantic and Europe. A novel reanalysis product, the Twentieth Century Reanalysis (20CR; Compo et al., 2011), spanning 1871 to present, offers potentially a very valuable resource for the analysis of the decadal-scale variability of cyclones over the North Atlantic sector and Europe. In the 20CR, only observations of synoptic surface pressure were assimilated. Monthly sea surface temperature and sea ice distributions served as boundary conditions. An Ensemble Kalman Filter assimilation technique was applied. "First guess" fields were obtained from an ensemble (with 56 members) of short-range numerical weather prediction forecasts. We apply the cyclone identification algorithm of Wernli and Schwierz (2006) to this data set, i.e. to each individual ensemble member. This enables us to give an uncertainty estimation of our findings. We find that 20CR shows a temporally relatively homogeneous representation of cyclone activity over Europe and great parts of the North Atlantic. Pronounced decadal-scale variability is found both in the frequency and intensity of cyclones over the North Atlantic and Europe. The low-frequency variability is consistently represented in all ensemble members. Our analyses indicate that in the past approximately 140 years the variability of cyclone activity and intensity over the North Atlantic and Europe can principally be associated with the North Atlantic Oscillation and secondary with a pattern similar to the East Atlantic pattern. Regionally however, the correlation between cyclone activity and these dominant modes of variability changes over time. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, and S. J. Worley, 2011: The Twentieth Century Reanalysis project. Quarterly J. Roy. Meteorol. Soc., 137, 1-28. Wernli, H. and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 2486-2507.

  8. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  9. 1997 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1997-01-01

    caused much loss of life and great destruction at their respective landfall sites in China andVietnam. Mainland Japan, the Ryukyu Islands, the Bonin ...Aside from passing through the Volcano Islands and the Bonin Islands of Japan, Nestor remained over water. Nestor did produce some high waves on...DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell (EGRR), Japanese Typhoon Model (JTYM), JT92, FBAM, OTCM

  10. A Numerical Investigation of Hurricane Induced Water Level Fluctuactions in Lake Okeechobee. Report 1. Forecasting and Design.

    DTIC Science & Technology

    1986-06-01

    compute BI and B2, (u T, v T (Pv P) (H H ) T Tv u v and (FT, F ) must be determined. We discuss the determination of theseU V terms in turn below. Finite...in the Planetary Boundary Layer of a Moving Tropical Cyclone, Masters Thesis , New York University, Department of Meteorology, New York, N.Y., pp 58. 12

  11. High-Resolution Global and Basin-Scale Ocean Analyses and Forecasts

    DTIC Science & Technology

    2009-09-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,Oceanographic Division,Stennis Space Center,MS,39529-5004 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...six weeks, here circling near the center of an anti- cyclonic eddy seen in both analyses. A third drifter is moving southward past Coffs Harbour

  12. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    NASA Astrophysics Data System (ADS)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  13. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  14. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  15. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ.

  16. A comparison of explosive cyclone characteristics in recent reanalyses: NCEP CFSR, JRA-55, and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Kita, Y.; Waseda, T.

    2016-12-01

    Explosive cyclones (EXPCs) were investigated in three recent reanalyses. Their tracking methods is diverse among researchers, and additionally reanalysis data they use are various. Reanalysis data are essential as initial conditions to implement a downscale simulation with high accuracy. In this study, characteristics of EXPCs in three recent reanalyses were investigated from several perspectives: track densities, minimum MSLP (Mean Sea Level Pressure), and radius of EXPCs. The tracking method of extratropical cyclones (ECs) is to track local minimum of MSLP. The domain is limited to Eastern Asia and the North Pacific Ocean (lat20°:70°, lon100°:200°), and target period is 2000-2014. Fig.1 shows that the frequencies of EXPCs, which is defined as ECs whose MSLP drops by over 12hPa in 12hours, are greatly different, noting that extracted EXPCs are those whose most deepening phases were located around Japan (lat20°:60°, lon110°:160°). In addition, they are dissimilar to those in a previous EXPCs database (Kawamura et al.) and results in weather map analyses. The differences between each frequency might be caused by MSLP at their centers: there were sometimes small gaps of a few hPa. The minimum MSLP and effective radius were also investigated, but distributions of effective radii of EXPCs did not show significant difference (Fig.2). Thus, the gaps of central MSLP just matter in the differences of their trends. To evaluate the path density of EXPCs, two-dimensional kernel density estimation was conducted. The kernel densities of EXPCs' tracks in three reanalyses seem similar: they accumulated apparently above ocean (not shown). Two-dimensional kernel densities of EXPCs' most deepening points accumulated above Sea of Japan, Kuroshio and Extension. Therefore, it is proved that there are considerable differences in numbers of EXPCs depending on reanalyses, while the general characteristics of EXPCs just have little difference. It is worthwhile to say that careful attention should be paid when researchers investigate an individual EXPC with reanalysis data.

  17. The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones

    NASA Astrophysics Data System (ADS)

    Baker, T. P.; Knippertz, P.; Blyth, A.

    2012-04-01

    Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the observational data from the BAe146 aircraft and other sources such as wind profilers and radiosondes. In initial model simulations of a secondary frontal wave observed during the 2009 T-NAWDEX pilot flights, the microphysics in the parameterization scheme used has a large impact on the winds observed around the hook of the occlusion. The advanced double-moment Morrison and Thompson schemes show 12-hour mean 10m winds about 50% higher than the simpler WSM3 (WRF single moment) scheme in this area. These results suggest that ice processes could play an important role in the downward transport of momentum in this part of the cyclone. Further results from this and other cases from the field campaigns will be presented at the conference.

  18. Cyclone Nargis survey in Myanmar's Ayeyarwady River delta

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.; Thwin, S.; Thu, M. K.; Chan, N.

    2008-12-01

    Tropical cyclone Nargis (Cat. 4) made landfall on May 2, 2008, causing the worst natural disaster in Myanmar's recorded history. Official death toll estimates exceed 130,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. Nargis took a rare nearly eastern track over the Bay of Bengal while developing sustained winds over 210 km/h with gusts up to 260 km/h hours prior to landfall in Myanmar at untypically low latitude near 16°N. It then proceeded northeast and approximately 12 hours later weakened to a Category 1 storm with sustained wind speeds of 130 km/h as it passed over Yangon. The first independent storm surge reconnaissance team was deployed to Myanmar from 9 to 23 August 2008. Cyclone Nargis struck low-lying coastal plains particularly vulnerable to storm surge flooding due to the lack of effective barriers. The team surveyed coastal and inland villages from Pyapon to Purian Point, encompassing the Bogale and Ayeyarwady River mouths. The survey by boat spanned more than 150 km parallel to the cyclone track between Pyapon and Pyinkhayan encompassing 20 hardest hit settlements such as Pyinsalu. More than 1m vertical erosion and 150 m land loss were measured at various coastal locations such as Aya. Massive deforestation of mangroves and land use were documented. Maximum storm surge elevations and overland flow depths were measured based on water marks on buildings, scars on trees, and rafted debris. The storm surge peaked in the landfall area south of Pyinkhayan and eastwards in Pyinsalu exceeding 5m. Storm waves more than 2m high were superimposed on the storm surge level in most areas according to eyewitnesses. Inundation distances reached beyond 50 km inland. Catastrophic peak fatality rates exceeded 80% in hardest hit villages with the majority being children and women. The high water marks and fatality rates significantly exceeded corresponding 2004 Indian Ocean tsunami values at every location. Eyewitnesses were interviewed to document the time history of the event, survival strategies, cyclone awareness and evacuation. At the end of the 3 month relief operations survivors were left drinking from rice paddies with contaminated wells and no source of safe drinking water besides rain water. Storm surge simulations can be benchmarked against the measured cyclone Nargis storm surge and inundation to perform vulnerability analysis. Unfortunately, the widely deforested, low lying and densely populated Ayeyarwady delta remains extremely vulnerable to future storm surge flooding or potential sea level rise.

  19. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    NASA Astrophysics Data System (ADS)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  20. Landscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events

    PubMed Central

    Tweel, Andrew W.; Turner, R. Eugene

    2012-01-01

    Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils. PMID:23185635

  1. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    NASA Astrophysics Data System (ADS)

    Tsuboki, Kazuhisa

    2017-04-01

    Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar, aerosol sonde, and a drone to observe typhoon-associated clouds and precipitation. After a test flight in March 2017, typhoon observations will be made for next 4 years; 2017-2020. The main target area of observation is the south of Okinawa where a typhoon reaches the maximum intensity and often changes its moving direction. This research will advance aircraft observation technique of typhoon in Japan. The aircraft observation will be a breakthrough to improve typhoon intensity estimations. Assimilation of the aircraft observation data to the cloud-resolving model will improve intensity estimations and forecasts of typhoons. This is the first step for the future advanced aircraft observation and will contribute to prevention or reduction of typhoon disasters.

  2. The coincidence of daily rainfall events in Liberia, Costa Rica and tropical cyclones in the Caribbean basin

    NASA Astrophysics Data System (ADS)

    Waylen, Peter R.; Harrison, Michael

    2005-10-01

    The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.

  3. Estimating the Risk of Tropical Cyclone Characteristics Along the United States Gulf of Mexico Coastline Using Different Statistical Approaches

    NASA Astrophysics Data System (ADS)

    Trepanier, J. C.; Ellis, K.; Jagger, T.; Needham, H.; Yuan, J.

    2017-12-01

    Tropical cyclones, with their high wind speeds, high rainfall totals and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting off shore economic activities. Events, such as Hurricane Katrina in 2005 and Hurricane Isaac in 2012, can be physically different but still provide detrimental effects due to their locations of influence. There are a wide variety of ways to estimate the risk of occurrence of extreme tropical cyclones. Here, the combined risk of tropical cyclone storm surge and nearshore wind speed using a statistical copula is provided for 22 Gulf of Mexico coastal cities. Of the cities considered, Bay St. Louis, Mississippi has the shortest return period for a tropical cyclone with at least a 50 m s-1 nearshore wind speed and a three meter surge (19.5 years, 17.1-23.5). Additionally, a multivariate regression model is provided estimating the compound effects of tropical cyclone tracks, landfall central pressure, the amount of accumulated precipitation, and storm surge for five locations around Lake Pontchartrain in Louisiana. It is shown the most intense tropical cyclones typically approach from the south and a small change in the amount of rainfall or landfall central pressure leads to a large change in the final storm surge depth. Data are used from the National Hurricane Center, U-Surge, SURGEDAT, and Cooperative Observer Program. The differences in the two statistical approaches are discussed, along with the advantages and limitations to each. The goal of combining the results of the two studies is to gain a better understanding of the most appropriate risk estimation technique for a given area.

  4. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  5. NASA-NOAA's Suomi NPP Satellite Gets Colorful Look at Hurricane Blanca

    NASA Image and Video Library

    2015-06-05

    NASA-NOAA's Suomi NPP satellite flew over Hurricane Blanca in the Eastern Pacific Ocean and gathered infrared data on the storm that was false-colored to show locations of the strongest thunderstorms within the storm. The Visible Infrared Imaging Radiometer Suite or VIIRS instrument aboard the satellite gathered infrared data of the storm that was made into an image at the University of Wisconsin-Madison. The image was false-colored to show temperature. Coldest cloud top temperatures indicate higher, stronger, thunderstorms within a tropical cyclone. Those are typically the strongest storms with potential for heavy rainfall. VIIRS is a scanning radiometer that collects visible and infrared imagery and "radiometric" measurements. Basically it means that VIIRS data is used to measure cloud and aerosol properties, ocean color, sea and land surface temperature, ice motion and temperature, fires, and Earth's albedo (reflected light). The VIIRS image from June 5 at 8:11 UTC (4:11 a.m. EDT) showed two areas of coldest cloud top temperatures and strongest storms were west-southwest and east-northeast of the center of Blanca's circulation center. On June 5 at 5 a.m. EDT (0900 UTC) Blanca's maximum sustained winds were near 105 mph (165 kph) with higher gusts. The National Hurricane Center (NHC) forecast expects some strengthening during the next day or so. Weakening is forecast to begin by late Saturday. At that time, NHC placed the center of Hurricane Blanca near latitude 14.3 North, longitude 106.2 West. That puts the center about 350 miles (560 km) south-southwest of Manzanillo, Mexico and about 640 miles (1,030 km) south-southeast of Cabo San Lucas, Mexico. The estimated minimum central pressure is 968 millibars (28.59 inches). Blanca is moving toward the northwest near 10 mph (17 kph). A northwestward to north-northwestward motion at a similar forward speed is expected to continue through Saturday night. Blanca has been stirring up surf along the coast of southwestern Mexico and will reach the Pacific coast of the Baja California peninsula and the southern Gulf of California later today, June 5. These swells are likely to cause life-threatening surf and rip current conditions. On the forecast track, the center of Blanca will approach the southern Baja California peninsula on Sunday. NHC cautions that "Interests in the southern Baja California peninsula should monitor the progress of Blanca. A tropical storm or hurricane watch will likely be required for a portion of Baja California Sur later today." The NHC forecast track shows Blanca making landfall in the southeastern tip of Baja California on Sunday, June 7 and tracking north-northeast along the Baja California peninsula, for several days following. Image credit: Credits: NASA/NOAA/UW-CIMSS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Improving Tropical Cyclone Intensity Forecasting with Theoretically-Based Statistical

    DTIC Science & Technology

    2013-01-03

    solely by diabatic heating. The sense of the circulation is counterclockwise for the dashed lines and clockwise for the solid lines. The four panels...indicates the region of diabatic heating. Colored contours indicate  , the vertical pressure velocity, which is related to w by  = −gw, with...equation (GTE) and determine the associated tangential wind tendency for a variety of initial tangential wind profiles and annular rings of diabatic

  7. The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

    DTIC Science & Technology

    2010-09-30

    oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or...from Aqua and NASA Tropical Rainfall Measuring Mission (TRMM), 2) developing mesoscale data assimilation techniques to assimilate satellite, radar

  8. Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation

    NASA Astrophysics Data System (ADS)

    Morris, M.; Ruf, C. S.

    2016-12-01

    A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.

  9. Evidence of Stratosphere-to-Troposphere Transport Within a Mesoscale Model and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stanford, John L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We present evidence for stratospheric mass transport into, and remaining in, the troposphere in an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System (MAPS) were compared with total ozone observations from the Total Ozone Measurement Spectrometer (TOMS). Coupled with parcel back-trajectory calculations, the analyses suggest two mechanisms contributed to the mass exchange: (1) A region of dynamical ly-induced exchange occurred on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and experienced dilution by turbulent mixing with tropospheric air. (2) Diabatic effects reduced parcel potential vorticity (PV) for trajectories traversing precipitation regions, resulting in a "PV-hole" signature in the cyclone center. Air with lower-stratospheric values of ozone and water vapor was left in the troposphere. The strength of the latter process may be atypical. These results, combined with other research, suggest that precipitation-induced diabatic effects can significantly modify, (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to jet core and maximum heating regions. In addition, these results underscore the importance of using not only PV but also chemical constituents for diagnoses of stratosphere-troposphere exchange (STE).

  10. The Relationship Between Tropical Cyclone Frequency and 'Climate Change'

    NASA Astrophysics Data System (ADS)

    Bolton, M.; Mogil, M.

    2013-12-01

    Please note: there have been minor updates to this work since the main author, Matt Bolton, graduated high school, but the majority of the research was compiled by him while he was a high school junior in 2011. Abstract: In recent years, there has been a growing trend by many, in the meteorological community (media and scientist) to predict expected seasonal tropical cyclone frequency in the Atlantic and Pacific Basins. Typically, the numbers are related to seasonal averages. However, these predictions often show a large positive bias (i.e., there are more years in which the expected number of storms exceeds or far exceeds average). Further, observed numbers often come close to bearing out the forecasts (actually a good thing). From a public perspective (and based on extrapolations performed by media and some scientific groups), this peaking of Atlantic tropical cyclone activity is observed globally. In an attempt to determine if such a global trend exists, we set out to collect data from weather agencies around the world and present it in a way that was as unbiased as possible. While there were inconsistencies across the various datasets, especially in regard to wind data, we were still able to construct a realistic global cyclone database. We have concluded that high activity levels in one basin are often balanced by areas of low activity in others. The Atlantic - Eastern Pacific couplet is one such example. This paper will serve as an update to our previous 2011 paper, which introduced our efforts. At that time, we found, on average, 70 named tropical cyclones worldwide. In both this and our original study, we did not address the issue of naming short-lived tropical systems, which was found to be inconsistent across worldwide ocean basins. Our results suggest, that from a global climate change perspective, a growing NUMBER of tropical cyclones is NOT being observed. In the current iteration of our study, we are examining, at least preliminarily, global Accumulated Cyclone Energy (ACE) values. As these values are computed more widely in the coming months, we also hope to include a breakdown of worldwide tropical systems by category and duration.

  11. EnKF OSSE Experiments Assessing the Impact of HIRAD Wind Speed and HIWRAP Radial Velocity Data on Analysis of Hurricane Karl (2010)

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Sippel, Jason A.; Braun, Scott A.; Miller, Timothy

    2012-01-01

    Previous studies (e.g., Zhang et al. 2009, Weng et al. 2011) have shown that radial velocity data from airborne and ground-based radars can be assimilated into ensemble Kalman filter (EnKF) systems to produce accurate analyses of tropical cyclone vortices, which can reduce forecast intensity error. Recently, wind speed data from SFMR technology has also been assimilated into the same types of systems and has been shown to improve the forecast intensity of mature tropical cyclones. Two instruments that measure these properties were present during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment in 2010 which sampled Hurricane Karl, and will next be co-located on the same aircraft for the subsequent NASA HS3 experiment. The High Altitude Wind and Rain Profiling Radar (HIWRAP) is a conically scanning Doppler radar mounted upon NASAs Global Hawk unmanned aerial vehicle, and the usefulness of its radial velocity data for assimilation has not been previously examined. Since the radar scans from above with a fairly large fixed elevation angle, it observes a large component of the vertical wind, which could degrade EnKF analyses compared to analyses with data taken from lesser elevation angles. The NASA Hurricane Imaging Radiometer (HIRAD) is a passive microwave radiometer similar to SFMR, and measures emissivity and retrieves hurricane surface wind speeds and rain rates over a much wider swath. Thus, this study examines the impact of assimilating simulated HIWRAP radial velocity data into an EnKF system, simulated HIRAD wind speed, and HIWRAP+HIRAD with the Weather Research and Forecasting (WRF) model and compares the results to no data assimilation and also to the Truth from which the data was simulated for both instruments.

  12. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  13. Forecast of drifter trajectories using a Rapid Environmental Assessment based on CTD observations

    NASA Astrophysics Data System (ADS)

    Sorgente, R.; Tedesco, C.; Pessini, F.; De Dominicis, M.; Gerin, R.; Olita, A.; Fazioli, L.; Di Maio, A.; Ribotti, A.

    2016-11-01

    A high resolution submesoscale resolving ocean model was implemented in a limited area north of Island of Elba where a maritime exercise, named Serious Game 1 (SG1), took place on May 2014 in the framework of the project MEDESS-4MS (Mediterranean Decision Support System for Marine Safety). During the exercise, CTD data have been collected responding to the necessity of a Rapid Environmental Assessment, i.e. to a rapid evaluation of the marine conditions able to provide sensible information for initialisation of modelling tools, in the scenario of possible maritime accidents. The aim of this paper is to evaluate the impact of such mesoscale-resolving CTD observations on short-term forecasts of the surface currents, within the framework of possible oil-spill related emergencies. For this reason, modelling outputs were compared with Lagrangian observations at sea: the high resolution modelled currents, together with the ones of the coarser sub-regional model WMED, are used to force the MEDSLIK-II oil-spill model to simulate drifter trajectories. Both ocean models have been assessed by comparing the prognostic scalar and vector fields as an independent CTD data set and with real drifter trajectories acquired during SG1. The diagnosed and prognosed circulation reveals that the area was characterised by water masses of Atlantic origin influenced by small mesoscale cyclonic and anti-cyclonic eddies, which govern the spatial and temporal evolution of the drifter trajectories and of the water masses distribution. The assimilation of CTD data into the initial conditions of the high resolution model highly improves the accuracy of the short-term forecast in terms of location and structure of the thermocline and positively influence the ability of the model in reproducing the observed paths of the surface drifters.

  14. Landfalling characteristics of the tropical cyclones generated in the South China Sea

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, D.

    2012-12-01

    Tracks of tropical cyclones (TCs) in the South China Sea (SCS) during 1970-2010 can mainly be divided into two categories: Westward (including west and northwest) and Eastward (east and northeast). TCs moving westward tend to make landfall along the South china or Vietnam coast, while those moving eastward tend to dissipate in the ocean or make landfall on Taiwan, Philippine Islands or occasionally the South China coast. During spring (April-May), there are 17 TCs generated in the SCS, among which 13 moves eastward, but only 4 moves westward. A total of 95 TCs forms in the SCS during TC peak season (June-September), among which 71 TCs move westward, about three times more than that moving eastward (24). During October-December, 33 TCs move westward and 12 eastward. The variability of TC track direction is investigated on intraseasonal, seasonal and inter-annual scale circulation. It is found that TC landfall activities are related to Madden-Julian Oscillation (MJO), El Nino-Southern Oscillation (ENSO), monsoon activities and TC genesis locations.

  15. Tracking signal test to monitor an intelligent time series forecasting model

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Jaraiedi, Majid; Iskander, Wafik H.

    2004-03-01

    Extensive research has been conducted on the subject of Intelligent Time Series forecasting, including many variations on the use of neural networks. However, investigation of model adequacy over time, after the training processes is completed, remains to be fully explored. In this paper we demonstrate a how a smoothed error tracking signals test can be incorporated into a neuro-fuzzy model to monitor the forecasting process and as a statistical measure for keeping the forecasting model up-to-date. The proposed monitoring procedure is effective in the detection of nonrandom changes, due to model inadequacy or lack of unbiasedness in the estimation of model parameters and deviations from the existing patterns. This powerful detection device will result in improved forecast accuracy in the long run. An example data set has been used to demonstrate the application of the proposed method.

  16. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    PubMed Central

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  17. Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vecchi, Gabriel A.; Murakami, Hiroyuki; Villarini, Gabriele; Delworth, Thomas L.; Yang, Xiaosong; Jia, Liwei

    2018-01-01

    Over the 1997-2014 period, the mean frequency of western North Pacific (WNP) tropical cyclones (TCs) was markedly lower ( 18%) than the period 1980-1996. Here we show that these changes were driven by an intensification of the vertical wind shear in the southeastern/eastern WNP tied to the changes in the Walker circulation, which arose primarily in response to the enhanced sea surface temperature (SST) warming in the North Atlantic, while the SST anomalies associated with the negative phase of the Pacific Decadal Oscillation in the tropical Pacific and the anthropogenic forcing play only secondary roles. These results are based on observations and experiments using the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low-ocean Resolution Coupled Climate Model coupled climate model. The present study suggests a crucial role of the North Atlantic SST in causing decadal changes to WNP TC frequency.

  18. Studies of Atmospheric Water in Storms with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The new tools for the study of midlattitude cyclones by atmospheric water channels of the scanning multichannel microwave radiometer (SMMR) on Nimbus 7, were discussed. The integrated atmospheric water vapor, total cloud liquid water and rain data were obtained from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR). The frontal structure of several midlattitude cyclones over the North Pacific Ocean as they approached the West Coast of North America were studied. It is found that fronts are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is a good indicator of frontal location. It is concluded that the onset of rain on the coast can be forecast accurately by simple advection of the SMMR observed rain areas.

  19. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.

    PubMed

    Peng, Shiqiu; Li, Yineng

    2015-10-26

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  20. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  1. Tropical cyclone intensities from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.

    1980-01-01

    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except

  2. Computing entropy change in synoptic-scale system

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Hu, Y. Y.; Cao, H. X.; Fu, C. F.; Feng, G. L.

    2018-03-01

    Thermodynamic entropy is of great importance in the atmospheric physics and chemistry process, because it is a non-conserved state function which making a system's tendency towards spontaneous change. But how the entropy forces a synoptic-scale system is still not well known. In this paper, we analyzed the entropy change in atmosphere system, by calculating several examples of extra tropical cyclones over the Yellow River and its adjacent area in summer. The results show that a strong negative entropy flux appears over the north of a stationary front and the thresholds Fe S ≤ - 280 and ∂s / ∂t ≤ - 50 are satisfied. At the same time, the change of total entropy is smaller than zero. Therefore the cyclone developed quickly and daily precipitation reached 371 mm, which is heaviest rain over the Yellows River area in summer. We suggest the dynamical entropy should be developed to improve the forecasting technique of heavy rainfall event in synoptic-scale.

  3. Oceanic ensemble forecasting in the Gulf of Mexico: An application to the case of the Deep Water Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Khade, Vikram; Kurian, Jaison; Chang, Ping; Szunyogh, Istvan; Thyng, Kristen; Montuoro, Raffaele

    2017-05-01

    This paper demonstrates the potential of ocean ensemble forecasting in the Gulf of Mexico (GoM). The Bred Vector (BV) technique with one week rescaling frequency is implemented on a 9 km resolution version of the Regional Ocean Modelling System (ROMS). Numerical experiments are carried out by using the HYCOM analysis products to define the initial conditions and the lateral boundary conditions. The growth rates of the forecast uncertainty are estimated to be about 10% of initial amplitude per week. By carrying out ensemble forecast experiments with and without perturbed surface forcing, it is demonstrated that in the coastal regions accounting for uncertainties in the atmospheric forcing is more important than accounting for uncertainties in the ocean initial conditions. In the Loop Current region, the initial condition uncertainties, are the dominant source of the forecast uncertainty. The root-mean-square error of the Lagrangian track forecasts at the 15-day forecast lead time can be reduced by about 10 - 50 km using the ensemble mean Eulerian forecast of the oceanic flow for the computation of the tracks, instead of the single-initial-condition Eulerian forecast.

  4. Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model

    NASA Astrophysics Data System (ADS)

    Tous, M.; Zappa, G.; Romero, R.; Shaffrey, L.; Vidale, P. L.

    2016-09-01

    Medicanes or "Mediterranean hurricanes" represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion-Genoa and South of Sicily.

  5. Tropical Cyclone Intensity and Position Analysis Using Passive Microwave Imager and Sounder Data

    DTIC Science & Technology

    2015-03-26

    NPP) Advanced Technology Microwave Sounder (ATMS) for a sample of 28 North Atlantic storms from the 2011 through 2013 TC seasons . Using a stepwise...58 27. NOAA NHC 2011 TC Season Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 28...per Season and TCs with Aircraft Reconnaissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

  6. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING NOAA

  7. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    PubMed

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment. © 2012 by the Society for Academic Emergency Medicine.

  8. Satellite derived integrated water vapor and rain intensity patterns: Indicators of rapid cyclogenesis

    NASA Technical Reports Server (NTRS)

    Mcmurdie, Lynn; Katsaros, Kristina

    1992-01-01

    We examine integrated water vapor fields and rain intensity patterns derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) for several rapidly deepening and non-rapidly deepening midlatitude cyclones in the North Atlantic. Our goal is to identify features in the satellite data unique to the rapidly deepening cases, and to explore how these data can potentially be used in the analysis and forecasting of these events.

  9. The Properties of Convective Clouds Over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

    DTIC Science & Technology

    2011-09-30

    assimilating satellite, radar and in-situ observations for improved numerical simulations of major Typhoons (Jiangmi, Sinlaku, Nuri and Hagupit) during T- PARC ...oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or

  10. Incorporation of Tropical Cyclone Avoidance Into Automated Ship Scheduling

    DTIC Science & Technology

    2014-06-01

    damage and even sink ships. Avoiding TCs adds to fuel costs and causes delays. In the private sector, commercial shipping uses automated routing...improvements in forecasting have enabled ships to avoid TC-impacted areas altogether. Avoiding TCs does not come without a cost . Delaying departure or...steaming around a TC results in more fuel being burned at a high cost , plus the cost due to the delay in arrival at the destination, and the associated

  11. Analysis of moisture advection during explosive cyclogenesis over North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ordóñez, Paulina; Liberato, Margarida L. R.; Pinto, Joaquim G.; Trigo, Ricardo M.

    2013-04-01

    The development of a mid-latitude cyclone may strongly be amplified by the presence of a very warm and moist air mass within its warm sector through enhanced latent heat release. In this work, a lagrangian approach is applied to examine the contribution of moisture advection to the deepening of cyclones over the North Atlantic Ocean. The warm sector is represented by a 5°x5° longitude/latitude moving box comprising the centre of the cyclone and its south-eastern area is defined for the tracks of different cyclones computed at 6-hourly intervals. Using the lagrangian particle model FLEXPART we evaluated the fresh water flux (E - P) along 2-days back-trajectories of the particles residing on the total column over the defined boxes for case studies occurring during winter months from 1980 to 2000. FLEXPART simulations were performed using one degree resolution and 60 model vertical levels available in ERA40 Reanalyses at 00, 06, 12, 18 UTC for each case. Sensitivity studies on the dimensions of the target area - chosen boxes representing the warm sector -, and on its relative position to the center, were performed. We have applied this methodology to several case studies of independent North Atlantic cyclones with notorious characteristics (e.g. deepening rate, wind speed, surface damages). Results indicate that the moisture transport is particularly relevant in what concerns the fast/explosive development stage of these extratropical cyclones. In particular, the advection of moist air from the subtropics towards the cyclone core is clearly associated with the warm conveyor belt of the cyclone. This methodology can be generalized to a much larger number of mid-latitude cyclones, providing a unique opportunity to analyze the moisture behavior associated with the explosive development. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  12. Extratropical Cyclones over Southwestern Atlantic Ocean: Present and Future Climates projected by RegCM4

    NASA Astrophysics Data System (ADS)

    Reboita, Michelle; Rodrigues, Marcelo; da Rocha, Rosmeri

    2017-04-01

    This study shows some of the climatological features of the extratropical cyclones in present and future climate over Southwestern Atlantic Ocean (SAO). The projections were carried out with Regional Climate Model (RegCM4) nested in HadGEM2-ES global model outputs and using representative concentration pathway 8.5 (RCP8.5) from the CMIP5. The simulations considered the South America domain suggested by CORDEX, horizontal grid spacing of 50 km, 18 sigma-pressure levels in the vertical. An objective tracking scheme based on cyclonic relative vorticity calculated using the wind at 925 hPa was used to identify the cyclones. All cyclones with relative vorticity lower than the -1.5 x 10-5 s-1 and with lifetime higher or equal 24 hours were included in the climatology. Considering the period from 1979 to 2098, RegCM4 and HadGEM2-ES project a negative trend in the frequency of the extratropical cyclones over SAO, with the biggest negative trend occuring in the latitudinal band between 40°S and 57.5°S. This result can be associated with the southward displacement of the baroclinic zone which contributes to the cyclones move to south leaving the region analyzed. The three subregions with largest cyclogenetic activity discussed in the literature (southeast coast of Brazil - RG1, coast of Uruguay and southern Brazil - RG2; east coast of Argentina - RG3) were better reproduced in RegCM4 than in HadGEM2-ES. Therefore, RegCM4 downscaling ads value in the HadGEM2-ES projections. The frequency of cyclones in present (1979-2005) and future climate (2070-2098) is higher in winter and lower in summer. Regarding the mean characteristics of the cyclones (life time, travel distance, velocity, initial relative vorticity and total average vorticity), both models successfully reproduced those obtained in the reanalysis (NCEP1, NCEP2, CFSR, ERA40 and ERA-Interim) and there are no significant differences in the future climate compared with the present.

  13. Increasing the Reliability of Circulation Model Validation: Quantifying Drifter Slip to See how Currents are Actually Moving

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2016-02-01

    Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.

  14. Increasing the Reliability of Circulation Model Validation: Quantifying Drifter Slip to See how Currents are Actually Moving

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2015-12-01

    Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.

  15. Evaluation of Causes of Large 96-H and 120-H Track Errors in the Western North Pacific

    DTIC Science & Technology

    2006-06-01

    Interpolated GFS (A) forecast track for 11W ( Mawar ) for the 0600 UTC 22 August 2005 E-DCI-m case study. The solid sections of the forecast tracks...fields for 11W ( Mawar ) predicted by GFS for taus (a) 54 and (c) 66 for 0600 UTC 22 August 2005 and the corresponding verifying 00-h NOGAPS analyses...pressure (mb) fields for 11W ( Mawar ) predicted by GFS for taus (a) 90 and (c) 114 for 0600 UTC 22 August 2005 and the corresponding verifying 00-h

  16. Cyclone Xaver seen by SARAL/AltiKa

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Fenoglio, Luciana; Annunziato, Alessandro

    2014-05-01

    During the first week of December 2013, Cyclone Xaver pounded the coasts and the North Sea. On 6 December, all along the Wadden Sea, the barrier islands along the north of the Netherlands and the northwest of Germany experienced record storm surges. We show a comparison of the storm surge measured by the radar altimeter AltiKa on-board the SARAL satellite and various types of in-situ data and models. Two tide gauges along the German North Sea coast, one in the southern harbour of the island of Helgoland and one on an offshore lighthouse Alte Weser, confirmed that the storm drove sea level to about three meters above the normal tide level. Loading effects during the storm are also detected by the GPS measurements at several tide gauge stations. The altimeter in the mean time shows that the storm surge was noticeable as far as 400 km from the coast. The altimeter measured wind speeds of 20 m/s nearly monotonically throughout the North Sea. An offshore anemometer near the island of Borkum corroborated this value. A buoy near the FINO1 offshore platform measured wave heights of 8 m, matching quite well the measurements from the altimeter, ranging from 6 m near the German coast to 12 m further out into the North Sea. Furthermore we compare the altimeter-derived and in-situ sea level, wave height and wind speed products with outputs from the Operation Circulation and Forecast model of the Bundesamt für Seeschifffahrt und Hydrographie (BSH) and with a global storm surge forecast and inundation model of the Joint Research Centre (JRC) of the European Commission. The Operational circulation model of BSH (BSHcmod) and its component, the surge model (BSHsmod), perform daily predictions for the next 72 hours based on the meteorological model of the Deutsche Wetterdienst (DWD). The JRC Storm Surge Calculation System is a new development that has been established at the JRC in the framework of the Global Disasters Alerts and Coordination System (GDACS). The system uses meteorological forecasts produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) to estimate (with a 2-day lead time) potential storm surges due to cyclone or general storm events. Departure between model and altimeter-derived values, in particularly wind, are investigated and discussed. The qualitative agreement is satisfactory; the maximum storm surge peak is correctly estimated by BSH but underestimated by JRC due to insufficient wind forcing. The wind speed of SARAL/AltiKa agrees well with the ECMWF model wind speed but is lower than the DWD model estimate. The authors acknowledge the kind support from the BSH, the Bundesumweltministerium (BMU), Projectträger Jülich (PTJ), and the Wasser- und Schifffahrtsverwaltung des Bundes (WSV).

  17. Synoptic Factors Affecting Structure Predictability of Hurricane Alex (2016)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Aleman, J. J.; Evans, J. L.; Kowaleski, A. M.

    2016-12-01

    On January 7, 2016, a disturbance formed over the western North Atlantic basin. After undergoing tropical transition, the system became the first hurricane of 2016 - and the first North Atlantic hurricane to form in January since 1938. Already an extremely rare hurricane event, Alex then underwent extratropical transition [ET] just north of the Azores Islands. We examine the factors affecting Alex's structural evolution through a new technique called path-clustering. In this way, 51 ensembles from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System (ECMWF-EPS) are grouped based on similarities in the storm's path through the Cyclone Phase Space (CPS). The differing clusters group various possible scenarios of structural development represented in the ensemble forecasts. As a result, it is possible to shed light on the role of the synoptic scale in changing the structure of this hurricane in the midlatitudes through intercomparison of the most "realistic" forecast of the evolution of Alex and the other physically plausible modes of its development.

  18. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > IMPLEMENTATION INFO Home Mission Models R & D ; Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING JUMP TO

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > MODELS Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING SREF

Top